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Abstract

Generalized algebraic data types (GADT) have been notori-
ously difficult to implement correctly in Scala. Both major
Scala compilers, Scalac and Dotty, are currently known to
have type soundness holes related to them. In particular,
covariant GADTs have exposed paradoxes due to Scala’s
inheritance model. We informally explore foundations for
GADTs within Scala’s core type system, to guide a principled
understanding and implementation of GADTs in Scala.
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1 Introduction

Generalized algebraic data types (GADT) were proposed to
encode expressive invariants through types [4, 11, 21]. For
instance, Figure 1 defines a GADT to represent well-typed
terms of simply-typed A-calculus, similarly to Rompf and
Odersky [18]. Expr is a GADT because each of its cases ex-
tends Expr with different type arguments. The eval function
maps each value of type Expr[A] into a value of type A.
Why does type checking the eval function require special
reasoning? First, in all but the Var case, the type of the scru-
tinee e is refined from Expr[A] to a more precise type. For
example, Lit extends Expr[Int], so if e matches Lit(n), we
can deduce that A = Int. This allows n, which has type Int,
to agree with eval’s expected return type A. Second, in addi-
tion to refining A, the Fun and App cases uncover existential
types (unknown types that do not appear in the function’s
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enum Expr[A] {
case Var[A](a: A) extends Expr[A]
case Lit(n: Int) extends Expr[Int]
case Plus(lhs: Expr[Int], rhs: Expr[Int])
extends Expr[Int]
case Fun[A, BJ](fun: Expr[A] => Expr[B])
extends Expr[A => B]
case App[A, BI(fun: Expr[A => B], arg: Expr[Al)
extends Expr[B]
}
def eval[Al(e: Expr[Al): A = e match {
case Var(x) => x case Lit(n) =>n
case Plus(a,b) => eval(a) + eval(b)
case f: Fun[a,b] => (x: a) => eval(f.fun(Var(x)))
case App(fun,arg) => eval(fun)(eval(arg))
}

Figure 1. GADT in Scala, using Dotty’s new enum syntax
(https://dotty.epfl.ch/docs/reference/enums/enums.html).

signature); in the App case, which matches against patterns
of type App[X,A] <: Expr[Al, type X is unknown, but has to
be treated consistently as it appears in the two extracted
subexpressions fun and arg. In the Fun case, we have to use
a type pattern f: Fun[a,b] to bind the uncovered existential
type a so we can use it in a required type annotation.

Today, this specific example already works well in Dotty,
the future Scala 3 compiler. However, there are several lin-
gering unresolved issues with GADTs in Scala:

Subtle Soundness Issues. Scala GADTs have been plagued
with type soundness issues. The scalac compiler uses approx-
imate reasoning that easily leads to runtime crashes [15],
while Dotty GADTs are still unsound, despite some recent
substantial improvements, and are subject to ongoing work.!

Declaration-Site Variance. Scala supports declaration-site
variance, a convenient way of defining subtyping relation-
ships between parameterized types. For instance, in Figure 1
we could make Expr covariant to encode the A calculus with
subtyping. However, Dotty then rejects our definition of eval
as ill-typed, and requires adding unsafe casts. It is unclear
whether definitions like eval actually are unsafe, or whether
Dotty is overly conservative; indeed, sound typing rules for
pattern matching on open GADTs is an open problem [7].2

1 See pull requests #5736 and #6398 at https://github.com/lampepfl/dotty.

2 Scherer and Rémy [19] did consider the problem of GADTs with subtyping,
but in the context of OCaml, where they made simplifying assumptions
that are not necessary in Scala, such as the use of type equality constraints
only, as opposed to more precise subtyping constraints.
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To address these problems and to gain confidence in the
soundness of GADTs in Scala, we believe necessary to justify
them in terms of Scala’s core foundations, which have been
formalized as the Dependent Object Types calculus (DOT)
[1]. This short paper makes the following contributions:

e Drawing from the Expr motivating example, which
we believe to be quite representative, we informally
sketch how to encode closed GADTs, first in full Scala,
and then in a core Scala subset which can be mapped
to DOT. We show that eval actually is safe with a
covariant Expr, and thus argue Scala should improve
its support for closed variant GADTs (Section 2).

o We consider the more general case of open GADTs, and
sketch a minimal extension to core Scala that allows en-
coding them. We explain the mismatch between such
encoding and Scala’s treatment of type parameters,
and following that insight we propose improvements
to Scala usability which would allow sound pattern
matching on variant open GADTs (Section 3).

Our examples and our encodings are available in full at
https://github.com/Blaisorblade/scala19_gadt_code.

2 Closed GADTs in Scala Core and DOT

In this section, we focus on encoding closed GADTs. By
“closed,” we mean those GADTs which can be defined using
the new Dotty enum syntax. Slightly more generally, we mean
a flat class or trait hierarchy where (1) there is a single, sealed
parent; (2) each implementing case is final; (3) each case
extends the parent exactly once.

2.1 Encoding of ADTs and Pattern Matching

It is well-known that structurally-recursive pattern-matching
on sealed hierarchies of data types can be emulated using
fold functions. This technique allows encoding algebraic data
types in System F through the Church/B6hm-Berarducci en-
coding [3, 10]; however, recursion that is not structural be-
comes awkward to expres and inefficient [12]. On the other
hand, in a setting with general recursion and recursive types,
such as Scala (and its foundation DOT), we can instead ex-
press pattern matching through the Scott/Parigot encoding,
which supports unrestricted recursion. In object-oriented lan-
guages, this encoding is equivalent to using external visitors
[9]: one simply defines a “visitor” method in the superclass,
which will be implemented by each subclass of the hierarchy.
For instance, we can encode the Option data type as follows:

abstract class Option[+A] { def visit[R]
(_Some: Some[A] => R, _None: None.type => R): R }
class Some[+A](a: A) extends Option[A] {
def visit[R](_Some: Some[A] => R,
_None: None.type => R): R = _Some(this) }
object None extends Option[Nothing] {
def visit[R](_Some: Some[Nothing] => R,
_None: None.type => R): R = _None(this) }
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2.2 GADTs and Object-Oriented Languages

As we have seen, GADTs are essentially ADTs with both ex-
istential types and type (in)equality® proofs to be uncovered
via pattern matching [4, 19, 21]. It is also well-understood
that GADT-like type hierarchies can be defined in object-
oriented languages [5, 11]. The attentive reader will have
guessed where we are going with this. We will encode GADTs
in Scala using visitor methods. But first, we need to deter-
mine how we will encode existentials and subtyping proofs.

2.3 Existentials and Subtyping Proof’s

In Scala, the primary way of representing existential types
is via abstract type members, which are denoted using path-
dependent types. However, an alternative encoding of exis-
tential types is to use higher-rank polymorphism [3], which
we will use in our first encoding approach.

Moreover, Scala has first-class subtyping proofs thanks
to bounded abstract type members. For instance, getting
hold of an object ev of type ev: { type Ev >: S <: T }is
equivalent to having a proof, evidence, or witness thats <: T.
Though DOT does not require explicit usage of ev to leverage
such proof, that is known to make type checking in DOT
undecidable [13, 17]. In practice, Scala users normally have
to explicitly apply these proofs; for example, if one wishes
to “upcast” a value s of type S to a type T where S <: T does
not hold syntactically, one has to write s: ev.Ev (a type as-
cription). We can make this approach more convenient by
defining the following data type, used for manipulating sub-
typing proofs, which also doubles as an implicit conversion:

import scala.language.implicitConversions

abstract class <:< [-A,+B] extends Conversion[A,BI{
type Ev >: A <: B; def apply(a: A): B = a: Ev }

implicit def Refl[A]: A <:< A = new { type Ev = A }

This is the same as the data type of the same name defined
in the standard library, except that we have an additional
Ev type member, which can be leveraged when the apply
function is not enough (for example, we can convert a list 1s:
List[S]into a List[T] given some ev: S <:<T at no runtime
cost, by writing 1s: List[ev.Ev]).

2.4 Closed GADT Encoding in Scala

Figure 2 shows the encoding of a covariant version of Expr in
Scala — that is, we show how to encode pattern matching on
covariant GADTs using other mechanisms. Thanks to this
encoding, the soundness of closed GADTs with declaration-
site variance reduces to the soundness of the rest of Scala.
While the encoding is elegant and intuitive, it is not fully
satisfactory since full Scala is known to still have soundness
holes (see e.g., [2]). Therefore, we now propose an encoding
into Core Scala, a Scala subset we describe next.

3 These are subtyping proofs, in the case of languages with subtyping.
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2.5 Core Scala and DOT

We define Core Scala as the specific subset of Scala that can
be translated into DOT in a straightforward manner. Since
we make use of singleton types, which are not supported in
DOT, we target in particular the pDOT dialtect of DOT [16],
which soundly extends DOT with singleton types (and with
paths, a feature we do not use).

DOT and pDOT do not directly support classes, but there
are several examples in the literature on how to encode them
[1, 8, 16]. Essentially, a class is represented as an abstract
type whose upper bound specifies the class API, along with
some constructors for building instances of the class.

Building on top of non-generic classes, we translate generic
classes to non-generic classes using abstract type members:
each class type parameter is turned into an abstract type
member of the class, and applications of the class’ type con-
structor to some arguments are represented as refinements
of the class type (with type intersections). We refer to the
literature for more concrete examples [1, 14, 16].

2.6 Closed GADT Encoding in Core Scala

Figure 3 shows an encoding of covariant Expr in Core Scala.
The parameterized type alias Expr[+A@] is not definable in
DOT but can be inlined at its call sites before translation.
Indeed, we have encoded by hand the full Figure 3 in pDOT
syntax following the class encoding mentioned earlier. We
have not mechanically verified that this code can be type-
checked in (p)DOT, due to the lack of an implementation.

abstract class Expr[+A] { def visit[R](
Lit: given (Int <:< A) => Lit => R,
Plus: given (Int <:< A) => Plus => R,
App: [B] => App[B,A] => R,
Fun: [B,C] => given ((B => C) <:< A) =>
Fun[B,C] => R,
Var: Var[A] => R ): R }
final case class Lit(n:Int) extends Expr[Int]{ s =>
override def visit[R](
Lit: given (Int <:< Int) => Lit & s.type => R,
Plus... /* as in Expr */) = Lit.apply(this) }
// other cases similarly defined...
def evall[Al(e: Expr[A]l): A = e.visit[A](
Lit =1 =>1.n,
Plus = p => eval(p.lhs) + eval(p.rhs),
App = [B] => a => eval(a.fun).apply(eval(a.arg)),
Fun = [B,C] => f => ((x: B) =>
eval[C](f.fun(Var(x)))),
Var = v => v.a)

Figure 2. An encoding of the closed, covariant GADT in
Figure 1. This code currently (2019.06.06) compiles in Dotty,
and leverages polymorphic function types (see pull request at
https://github.com/lampepfl/dotty/pull/4672), which use the
[X1 => F[X] syntax, analogous to system F’s A/V binders.
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One central insight of this encoding is that we do not
need separate <:< witnesses, nor do we need polymorphic
function types. This is because (1) we now use an abstract
type A to represent the type parameter of the same name,
and A is now visible from the outside; (2) A is refined in each
subclass of Expr (see the definition of type A in class Fun);
and (3) in the visitor method, we intersect the types of the
extracted objects with the self-type s of the current instance.
Thus, following normal DOT rules for type intersections, we
are able to define eval by simply using the abstract type A
itself as subtyping proof. Interestingly, to represent GADTs
in Core Scala, we did not need to add any of the typical
mechanisms commonly used to type check GADTs, such as
special type equality proofs and coercions [6, 20].

2.7 Summary

We argue that Scala should handle closed GADTs well, ir-
relevant of variance. Indeed, we have shown that they can
be encoded in a straightforward way, using a representa-
tive Expr example. Of course, one should properly develop a
general formal explanation of this process — here we have
merely tried to give an intuition about what that process
could be. We reserve that formalization for future work.

3 Open GADTs

We now show an encoding of “open” GADTs — GADTs that
are not sealed or do not have a flat hierarchy. These are useful
because they can be extended with new constructors in a
modular way, providing a solution to the expression problem
[18]. Our previous encoding does not readily generalize to
open GADTs, as the visit method received handlers for a

type Expr[+A@] = ExprBase { type A <: AQ }
abstract class ExprBase { s => type A
def visit[R]( Lit: Lit & s.type => R,
Plus:Plus & s.type => R, App:App & s.type => R,
Fun: Fun & s.type => R,
Var: Var & s.type => R ): R }
abstract class Fun extends ExprBase {
type B; type C; type A=B =>C
val fun: Expr[B] => Expr[C]
override def visit[R](...) = Fun(this) }
// other cases similarly defined...
def eval[Al(e: Expr[Al): A = e.visit[A](
Lit =1 =>1.n: 1.A,
Plus = p => (eval(p.lhs) + eval(p.rhs)): p.A,
App = a => eval(a.fun).apply(eval(a.arg)): a.A,
Fun = f => ((x: f.B) =>
eval[f.CI(f.fun(Var(x)))): f.A,
Var = v => v.a: V.A)

Figure 3. An encoding of the closed GADT in Figure 1 in
Core Scala. Currently (2019.06.06) compiles in Dotty.
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fixed list of constructors, while open GADTs would require
different lists of constructors for different extensions.

3.1 Class Instance Matching

To achieve our new encoding, we assume Scala Core and
(p)DOT are extended with a primitive runtime-class instance
matching mechanism, which mirrors type matches in Scala:

s match { case x_1: C_1 => t1; case x_2: C_2 ... }

This construct branches on the runtime class of s, comparing
it with classes C1, €2, etc. and evaluating the corresponding
branch t1, t2, etc. To keep the extension simple, we only
allow matching against simple class names, not arbitrary
types, avoiding the complexities of Scala’s type matching
syntax. Since Scala Core has no class type parameters, we
also avoid soundness problems due to the erasure of type pa-
rameters. In each branch, we bind x_i to the scrutinee, with
type C_i & s.type (similarly to Figure 3). In terms of opera-
tional semantics, we must tag class instances with their class
at run time, as is done in Java runtime systems. Formalizing
this extension is out of scope for this paper.

With this extension, encoding an open version of Expr
becomes as simple as dropping the visit method from the
previous encoding of Figure 3, using type matches instead:

def eval[Al(e: Expr[Al): A = e match {
case 1: Lit => 1.n: 1.A; /% other cases... */ }

3.2 Understanding an Old Paradox

Giarrusso [7] first noticed that certain desirable typing rules
on covariant open GADTs are in fact unsound. Given:

trait Expr[+A]; class Const[+A] extends Expr[A]

the type checker would assume that if e: Expr[A] and e is
an instance of Const, then e: Const[A]. But this assumption
is false. One can extend covariant types like Expr multiple
times with different type arguments. We can then break
our assumption and define object Unsound, which extends
Expr[Int] and is an instance of Const, but not of Const[Int]:

object Unsound extends Const[Any] with Expr[Int]

Viewing type parameters as type members not only makes
the problem obvious, but also suggests how to make the as-
sumption true without allowing definitions such as Unsound.
The classes from the paradox would be translated as follows:

type Expr[+A] = ExprBase { type A$0 <: A }
type Const[+A] = ConstBase { type A$1 <: A }
trait ExprBase { type A$0 }
class ConstBase extends ExprBase {

type A$0 <: A$1; type A$1 }

Notice that while translating the type parameters of each
class, it is crucial to pick different type member names, so
they do not conflict with each other. The subtyping rela-
tionship arising from inheritance of a variant base class is
expressed via refinements of these abstract type members.
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With the above definition, the assumption from the para-
dox is obviously false: given e: Expr[A] and e: ConstBase, we
cannot conclude that e: Const[A]. Moreover, the assumption
actually becomes true if we use a different interpretation of
inheritance from variant base classes: if we instead declared
type A$0 = A$1 in ConstBase, this would prevent further ex-
tending Expr with incompatible type arguments, and would
allow us to derive the required type equality proofs.

3.3 Solution: Invariant Inheritance

Giarrusso [7] also proposes a solution to the paradox: a
syntax for “invariant inheritance,” class Const[+T] extends
Expr[=T], which forbids definitions such as Unsound by sim-
ply forbidding further instantiation of Expr in children of
Const. Following our new insights into the paradox, we pro-
pose this syntax to instead behave consistently with our en-
coding of type parameters as type members, translating those
type argument marked with = to type equalities rather than
subtype refinements. This interpretation still forbids defini-
tions like Unsound while also allowing further extensions of
Expr, as long as they conform in their type arguments.

For example, in the code below, Z should be able to extend
Expr via both Valued and Const, as they are compatible:

trait Valued extends Expr[Int] { def v: Int }
object Z extends Const[@] with Valued { def v = 0 }

Remark that if we had written Valued extends Expr[=Int]
above, the code of Z would have not compiled, as it would
have had conflicting definitions for the parameter to Expr.
Interestingly, Dotty already has partial support for invari-
ant inheritance (implemented specifically to counter Giar-
russo’s paradox in common cases), but it is restricted to case
classes and not expressible otherwise. This makes the feature
somewhat irregular and “magical” as it is not expressible in
terms of regular features, unlike all other case class features.

4 Conclusions and Future Work

GADTs in Scala have historically been poorly understood.
In this paper, we showed that they can be explained in terms
of simpler features already present in Scala’s core type sys-
tem. We sketched different encodings of GADTs, demon-
strating the tight correspondence between, on one hand, the
(sub)type proofs and existential types that normally underlie
GADT reasoning and, on the other hand, bounded abstract
type members and intersection types, which are core to Scala.
It would be desirable to formalize GADT semantics by
elaboration into pDOT following our sketches, which we
leave for future work. In any case, the insights presented
in this paper can already be used to guide future GADT
developments in upcoming versions of the Scala compiler.
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