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In many programming paradigms, some program entities are only valid within delimited regions of the
program, such as resources that might be automatically deallocated at the end of specific scopes. Outside their
live scopes, the corresponding entities are no longer valid – they are permanently invalidated. Sometimes, even
within the live scope of a resource, the use of that resource must become temporarily invalid, such as when
iterating over a mutable collection, as mutating the collection during iteration might lead to undefined behavior.
However, high-level general-purpose programming languages rarely allow this information to be reflected on
the type level. Most previously proposed solutions to this problem have relied on restricting either the aliasing
or the capture of variables, which can reduce the expressiveness of the language. In this paper, we propose a
higher-rank polymorphic type-and-effect system to statically track the permanent and temporary invalidation
of sensitive values and resources, without any aliasing or capture restrictions. We use Boolean-algebraic types
(unions, intersections, and negations) to precisely model the side effects of program terms and guarantee
they are invalidation-safe. Moreover, we present a complete and practical type inference algorithm, whereby
programmers only need to annotate the types of higher-rank and polymorphically-recursive functions. Our
system, nicknamed InvalML, has a wide range of applications where tracking invalidation is needed, including
stack-based and region-based memory management, iterator invalidation, data-race-free concurrency, mutable
state encapsulation, type-safe exception and effect handlers, and even scope-safe metaprogramming.
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1 Introduction

Motivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating exampleMotivating example. Consider the following Java program:
var xs = new java.util.ArrayList <String >();

xs.add("1"); xs.add("2"); xs.add("3");

for (var e : xs) { System.out.println(e); xs.clear (); }

This innocuous-looking code snippet creates a list of strings and then prints them in a for loop,
which is syntax sugar for using an iterator in Java. However, the code also does something wrong:
it tries to clear the mutable list while still iterating over it. This code crashes at runtime:

Exception in thread "main" java.util.ConcurrentModificationException

Authors’ Contact Information: Cunyuan Gao, cgaoan@connect.ust.hk, HKUST, Hong Kong, China; Lionel Parreaux,
parreaux@ust.hk, HKUST, Hong Kong, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART366
https://doi.org/10.1145/3763144

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 366. Publication date: October 2025.

https://orcid.org/0009-0002-6477-8623
https://orcid.org/0000-0002-8805-0728
https://doi.org/10.1145/3763144
https://orcid.org/0009-0002-6477-8623
https://orcid.org/0000-0002-8805-0728
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763144


366:2 Cunyuan Gao and Lionel Parreaux

The error occurs because in Java, the semantics of iterating on mutable collections while mutating
them is not well-defined. Java is nice enough to detect this error at runtime through sanity checks.
In a language like C++, similar code would likely cause undefined behavior, which could lead
to silent memory corruption and security vulnerabilities [97]. This problem is known as iterator
invalidation, and it is a common source of bugs in imperative languages.
It would be better if the error could be caught at compile time, avoiding the need for runtime

checks and the associated performance overhead. This would give us the best of both worlds: the
safety of a high-level language and the performance of a low-level one. The root problem to address
is that unrestricted uses of a mutable collection should be invalid while the collection is being
iterated over. To address this, we need to track mutation and invalidation in the type system, giving
us a way of preventing the mutation of certain values while they are being used – or “borrowed” –
by other parts of the code.
Previous workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious work. There is already a rich literature dedicated to this general idea, including:

Linearity and borrowing.A popular approach, originally advocated byWadler [92] and henceforth
by many others (e.g., [27, 54, 77]), is the use of linear type systems to prevent the sharing of mutable
values. Linearity on its own severely restricts the allowed programming styles. Borrowing is the
standard way of alleviating this restriction: by temporarily making the linear resource immutable,
we can allow its aliasing, provided that we can bound the lifetime of these aliases, so that they all
become unreachable or unusable when the resource becomes mutable again [54, 61, 77, 100]. We
refer to this problem as temporary invalidation. Rust [37, 54, 100] is a prominent example of a
language that uses linearity and borrowing to track temporary invalidation.
Type-and-effect systems. In another line of work, type systems have been used to track the

effects of program expressions [32, 48]. A historical use of this approach was to guarantee the
safety of region-based memory management, where objects are allocated inside growable regions
[1, 85, 90, 91]. When a region goes out of scope, it is deallocated altogether, and references to the
objects that were allocated withing that region must no longer be used. We refer to this problem as
permanent invalidation. By associating the uses of a region with an effect that mentions the
region, one can enforce its correct usage statically. Such effect systems typically work well with
type inference, being quite similar to a form of static analysis. Recent work by Elsman [24] in ReML
showed that this approach can be taken quite far: by adding disjointness constraints [7, 15] (called
disjunction constraints by Elsman), it is possible to guarantee that, e.g., the mutations performed by
two threads of computation will not interfere, avoiding data races.
Static capability systems. After the seminal works on type-and-effect systems, it was realized

that these could be viewed as special cases of static capability systems [10, 17, 19, 94]. In the latter,
performing certain operations, such as accessing the contents of regions, requires capabilities that
are passed around the program but do not have a runtime representation – they are erased, similar
to type parameters. By making some of these capabilities linear, one can connect the two schools of
thought (tracking linearity vs. tracking effects) inside a very powerful system, which can express
programming patterns like borrowing and forms of flow-sensitive reasoning [19, 29, 75].
Goals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this workGoals of this work. In this paper, we seek a lightweight type system for tracking permanent
and temporary invalidation. By “lightweight”, we mean that the system should be easy to use and
should not get in the way of the programmer, even if that translates into slightly less powerful
programming primitives. Concretely, we want our system to be amenable to practical type inference
with minimal type annotations and to avoid the use of disciplines that constrain the aliasing of
values or capabilities, such as linear types, uniqueness, or ownership disciplines.
Our approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approachOur approach. To achieve these goals, we propose to continue the pure type-and-effect systems
line of work that was most lately embodied by Elsman’s ReML language. While ReML is excellent
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at what it does, it does not fit our requirements: its use of unification makes it subject to effect
poisoning, where spurious effects are inferred due to a lack of directionality in the type system
(see App. A.3); it lacks higher-rank polymorphism to abstract over invalidation-aware interfaces,
making it unable to express the iterator invalidation example above; and it does not fully support
modular disjointness reasoning (see §6). While addressing these shortcomings, we adopt several
techniques that are already well-known, and in that sense, we stand on the shoulders of giants:

• It is well-known that subtyping can be used to avoid the infamous problem of effect poison-
ing [86] (see also App. A.3). This is a real problem in practice, in that it easily gets in the
way of programmers, preventing code from optimization [52] or leading to surprising type
annotations [11], so subtyping has to figure prominently in our design.

• We embrace Boolean-algebraic subtyping in particular [68], which supports union, intersection,
and negation type connectives. We will see that this allows us to express precise effect
specifications, including disjointness constraints, without needing additional machinery.

• Higher-rank polymorphism is a well-known and powerful abstraction mechanism. Here, it al-
lows us to describe complex invalidation-aware interfaces. Beyond iterator invalidation, these
include data-race-free concurrency (§2.4), type-safe exception and effect handlers (§5.2), stack-
based and region-based memory management (§5.3), and even scope-safe metaprogramming
(§5.4). This is a core feature making InvalML reusable.

• Higher-rank polymorphism and polymorphic recursion, which we need, are not amenable
to full type inference (for which they are both undecidable in general [36, 41]). Thankfully,
there is a standard way to deal with this problem: bidirectional typing [22] allows one to type
check higher-rank and polymorphically-recursive functions by simply providing their type
signatures, while using constraint-based type inference to deal with everything else [72].

• We use polymorphism levels to keep track of the degree of polymorphism in types [28, 42, 66,
76, 79], notably preventing lower-level type variables from being instantiated to types that
refer to higher-level type variables.

• We use lexically-scoped static regions along with region handles [11, 17, 24, 32, 48, 85]. Region
handles are used to perform allocations in a corresponding static region and are first-class
values that can be passed around and stored in data structures.

Main challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challengesMain challenges. While the techniques above are individually well known, their combination
has not been previously studied, and two major new challenges arise from it:

• How to deal with type extrusion arising from higher-rank polymorphism? Most previous
approaches simply return an error when a type of a higher polymorphic level flows into a
lower level. But we simply cannot do this in the presence of subtyping, as it would be overly
conservative, thwarting complete type inference [20], and would also prevent perfectly
legitimate programs from type checking, as we shall see later (§2.4). The original work
on Boolean-algebraic subtyping [68] did not support local ‘let’-polymorphism, let alone
higher-rank polymorphism. While the former can be dealt with by a lambda-lifting trick
[40, 73], the latter is fundamentally more difficult and requires what we call subtype extrusion.
Parreaux [66], Parreaux et al. [67] previously described simple forms of subtype extrusion,
but generalizing them to the Boolean-algebraic setting, where rigid type variables (a.k.a.
skolems) can have multiple bounds, is nontrivial. This is explained in §2.3 and §4.4.

• How to type check the region introduction construct while accounting for the disjointness
between the new region and yet-unknown outer regions? When a local region r is created
inside a function f, region r should be understood to be disjoint from all regions currently
installed on the stack. The main problem is that these outer regions are not statically known,
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as they will vary depending on the call sites of f1. To address this, we introduce a novel
mechanism: we attach a special “outer” type variable 𝜔 to polymorphic type schemes, using
it to represent the dynamic extent of all regions that will be live at each of the corresponding
call sites. This is explained in §2.4 and §3.2.

InvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalMLInvalML. We present our design as the InvalML language, which is implemented by extending
the existing programming language MLscript (anonymized for review), a multi-paradigm language
supporting both functional and imperative programming. A web demonstration of InvalML is
available online at https://github.com/hkust-taco/invalml.

Our motivating example can be rewritten in InvalML as follows:
region r in // This is used to delimit the scope of mutation

let xs = mkArrayList(r) in // Creates a new mutable list in region r

add(xs , "1"); add(xs, "2"); add(xs, "3");

iter(xs , it ⇒ foreach(it, e ⇒ println(e); clear(xs)))

This program now contains a type error, which complains that the expression clear(xs) has effect r,
which is forbidden from occurring in the corresponding scope. One way to fix this error is to call
clear(xs) outside the scope of it (but still inside the scope of r), which was probably the original
intent of the programmer who wrote the erroneous program2

ContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributions. Our core technical contributions are the following:
• We define a Boolean-algebraic subtyping system in the higher-rank setting (§3)
• We present an algorithm for complete type inference without backtracking in that type
system, using a novel subtype extrusion mechanism (§4).

• We propose a lightweight effect system built on top of this subtyping discipline, including a
novel outer-variable mechanism to deal with statically unknown outer regions. The system is
lightweight because:
– It requires few type annotations, thanks to our complete type inference algorithm: only
higher-rank and polymorphically-recursive functions need a type signature.

– It benefits from an economy of concepts: the same Boolean algebra of types is used to
describe the shapes of runtime values, the side effects of computations, the lifetimes of
stack-allocated variables, and the scopes of program fragments, among others; and all of
them can be subjected to disjointness reasoning and can be abstracted over by the same
higher-rank polymorphism mechanism.

• We demonstrate the wide range of applications of our system, including:
– Mutation-safe polymorphism (§3.2) and mutable state encapsulation (App. A.2).
– Data-race-free structured concurrency (§2.4).
– Permanent and temporary invalidation safety (§2.5).
– Scope-safe metaprogramming with statically-typed and analytic quasiquotes allowing the
manipulation of open code (§5.4).

– Type-safe exceptions and effect handlers (§5.2)
– Type-safe region-based and stack-based memory management (§5.3.2).

The appendices of this paper are available in the technical report version, which can be found
online at https://lptk.github.io/invalml-paper.

1We are not aware of any previous work that addresses this problem. In particular, static capability-based approaches encode
disjointness through linearity, which is sufficient but not always as flexible, and approaches like ReML do not typically
allow expressing disjointness predicates that mix abstract and concrete regions. (Both of these are discussed in §6.)
2Note that our type system is flow-insensitive, unlike other work by, e.g., DeLine and Fähndrich [19], Foster et al. [29], Gordon
[34], so it will not catch errors such as “calling clear too early”, for some definition of “too early” specified by a protocol.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 366. Publication date: October 2025.

https://github.com/hkust-taco/invalml
https://lptk.github.io/invalml-paper


A Lightweight Type-and-Effect System for Invalidation Safety 366:5

2 Lightweight Invalidation Tracking
In this section, we informally describe our methodology for invalidation tracking.

2.1 Core Type System of InvalML
InvalML uses a Boolean-algebraic subtyping approach inspired by MLstruct [68], albeit with a much
simpler soundness proof (see App. D.4). However, InvalML uses different typing rules than MLstruct.
For simplicity, it omits record types, which lets us devise a slightly more straightforward normal
forms and constraint-solving rules (in §4), although this omission is benign and could easily be
lifted. Also, whereas MLstruct is limited to top-level polymorphism, features a bidirectional higher-
rank-polymorphic type system. This is possible because MLstruct’s subtyping theory supports
abstract types (in the form of type variables with bounds). Like in MLstruct, we use polymorphic
types of the form ‘∀𝑉 {Ξ}. 𝜏 ’, called multi-bounded polymorphism by Parreaux et al. [67], which
consists in a set of quantified type variables 𝑉 = 𝛼1, 𝛼2, . . ., a set of upper and lower bounds Ξ on
these type variables, which must be consistent (i.e., all lower bounds must be subtypes of all upper
bounds of the same type variable), and a type body 𝜏 .

Boolean-algebraic subtyping uses union, intersection, and negation types. For example:
type ResCode = 200 ∨ 404; type Real = Num ∧ ¬NaN ∧ ¬Inf
type Inf = PositiveInfinity ∨ NegativeInfinity

In the above example, ∨ is the union type constructor. The values of type ResCode are 200 and 404,
which are associated with corresponding singleton literal types written identically. ∧ and ¬ are the
intersection and negation type constructors. An intersection type satisfies both sides of the ∧ sides
simultaneously. Negation type ¬𝑇 is the Boolean-algebraic negation of the subtyping relation with
∧ and ∨ as conjunction and disjunction and ⊤ and ⊥ as top and bottom, respectively. Intuitively,
one can think of ¬ 𝑇 as the type of all values that do not have type 𝑇 , although this is technically
only true in some situations, most importantly when 𝑇 is concrete type constructor.
Historically, programming languages with ML-style type inference (e.g., OCaml and Haskell)

avoided introducing implicit subtyping due to its complexity. Algebraic subtyping was proposed in
MLsub as to effectively deal with this complexity [20, 21]. However, in the original formulation of
algebraic subtyping, unions could occur only in positive (i.e., in output) positions and intersections
could occur only in negative (i.e., input) positions. This restriction did not reduce the expressiveness
of MLsub (which only had records, functions, and let bindings), but to allow more advanced features,
such as tag-based pattern matching, effect sets, and disjointness constraints, one needs unrestricted
unions and intersections. MLstruct removed this restriction:

let foo(x) = if x is { 0 then true , x then x }

// foo: (0 ∨ 'a ∧ ¬0) → (true ∨ 'a)

Function foo takes a parameter that can be either 0 or any other non-zero value of type 'a, i.e., (0 ∨
'a ∧¬0); it maps the former to true and the latter to itself, i.e., (true ∨ 'a).
As we shall see, principal type inference is achieved in this context notably by rewriting am-

biguous constraints like 𝜏 ≤ 𝛼 ∨ 𝜎 to bounds on type variables that are equivalent to the original
constraints (according to the rules of Boolean algebras) – here, 𝜏 ∧ ¬𝜎 ≤ 𝛼 .

In this paper, we extend Boolean-algebraic subtyping to higher-rank polymorphism, a major feature
that was not supported in previous work. We use bidirectional typing together with constraint-
based type inference to support higher-rank polymorphism while requiring relatively few type
annotations. Although this basic approach is standard [72], adapting it to our setting requires a new
level-based subtyping-aware type extrusion mechanism (see §4.4). This allows InvalML to support
complete type inference without backtracking, whereby only higher-rank and polymorphically-
recursive definitions need to be annotated, which is standard.
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2.2 A Lightweight Type-and-Effect System
All approaches that aim to track effects statically without requiring the likes of monad transformers
need a way of combining various effects 𝜑1, 𝜑2, . . . into a single type 𝜑1 ∨ 𝜑2 ∨ . . . and they need
such combinations to possibly be partially abstract in order to allow polymorphism and modularity.
This implies the use of extensible effect types with effect variables, as in 𝜑1 ∨ 𝜑2 ∨ 𝛼 . In previous
work, this was typically done through row polymorphism, a form of polymorphism allowing exactly
this kind of extensibility. However, traditional unification-based row polymorphism has severe
limitations which are exacerbated in the context of effect systems [52] and notably suffers from the
well-known poisoning problem [98]. ReML [24] adopts Tofte and Birkedal [88]’s region labels that
are similar to a simple form of row polymorphism. Row polymorphism was originally preferred
over subtyping to model extensible records [78, 80, 96], but more recent work showed that subtype
inference could be made more tractable by adopting an algebraic approach [20, 21, 66, 74], leading
Parreaux and Chau [68] to propose a new Boolean-algebraic subtyping system as powerful as the
row-polymorphic system of Rémy [80] but without requiring special row variables and without
the pitfalls of unification. In that system, a combination of effects 𝜑1 and 𝛼 (where 𝛼 is an abstract
type or type variable) would simply use the union type constructor 𝜑1 ∨ 𝛼 .

To illustrate our effect system, consider the mapi function below, which maps elements in a given
list with their index:3

fun mapi[A, B, E](xs: List[A])(f: (Int , A) →{E} B){E}: List[B] =

region r in let index = r.ref -1 in List.map(xs)(x ⇒
index := !index + 1; f(!index , x))

where function type syntax S →{E} T, formally written 𝑆
𝐸→ 𝑇 , stands for a function that takes

arguments of type S, has effects E, and returns values of type T. Regions are first-class values that
are assigned static scopes through the region construct and that are used to track scope safety
statically. The x ⇒ ... lambda captures the mutable reference index, passing it to List.map. InvalML
prevents the leakage of mutable state: it ensures that all mutations associated with the region r will
be unobservable outside of the scope of mapi; this is discussed in more detail in App. A.2.

2.3 Region Typing and Type Extrusion
When the user writes region r in e, where e is some expression or block, we introduce a new type
variable 𝛼 used to track the scope of the region. This variable is rigid, meaning that it cannot be
constrained or instantiated by any other type; in type inference jargon, this is referred to as a
skolem variable. This is like an abstract type about which nothing is known — or almost nothing, as
we shall see next. Note that the region r form, followed by the rest R of the current block, as in region

r; R, is desugared into the previous form: region r in R. When creating a new reference in a region
r, as done through the ‘r.ref value’ form, we assign to the result the type Ref [𝜏, out𝛼], where 𝜏
is the type of values stored in the reference, which is some supertype of the type of value. The
keyword out indicates reference types are covariant on the region types. Suppose two references
𝑟1 : Ref [𝜏, out𝛼] and 𝑟2 : Ref [𝜏, out 𝛽]. A function that needs to consume both 𝑟1 and 𝑟2 can be
declared with an argument type Ref [𝜏, out𝛼 ∨ 𝛽]. Since 𝛼 ≤ 𝛼 ∨ 𝛽 and 𝛽 ≤ 𝛼 ∨ 𝛽 , one can upcast
the types of 𝑟1 and 𝑟2 accordingly. We introduce subtyping formally in §3.2.

When a value that depends on region r leaves the scope of r, it is extruded, meaning that its type
is stripped of all references to r. When r occurs in positive positions, it is replaced by its known
upper bound (which is ⊤, the top type of the subtyping lattice, if r is the outermost region); when
r occurs in negative positions, it is replaced by ⊥, the bottom type. Moreover, we ensure that the
3Since this definition does not use higher-rank polymorphism or polymorphic recursion, all type and effect annotations
here could be removed, and the principal type would be inferred by InvalML.
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entry-point of the program (its “main” function) can only be typed with effect ⊥, which denotes the
absence of effects and expresses that all effects of the program are properly handled/encapsulated.
This ensures that any leaked region reference cannot be used outside of its scope. As an example,
the expression (region r in r.ref 0) := 1, which tries to update a reference after it has left its defining
region, can only be assigned effect ⊤, ensuring that it cannot be used in any meaningful way, as
that effect would propagate all the way to the entry point of the program and fail its type checking.4
Similar leakage can result from function captures, as exemplified below:

region r in let f = (x ⇒ r.ref (x + 1)) in f

This region expression returns a lambda function that captures the region instance r, yielding a
location referring to an integer. The allocation behavior is reflected on the effect type of f, thus
𝑓 : Int

𝛼→ Ref [Int, out𝛼] inside the region of r. When we exit the region, 𝛼 also leaves the
scope. Therefore, we also need to extrude the function type, and the whole program has type
Int

⊤→ Ref [Int, out⊤]. Even though the region is encapsulated by the function, it is fine if we
never call such a function that carries unsolvable effects.
The level-based mechanism by which we extrude region variables, described in §4.4, is in fact

the very same mechanism that is used to prevent polymorphic type variables from leaking out of
their scopes. While the basic idea of type extrusion is very old, a subtype extrusion mechanism that
works with Boolean-algebraic subtyping and higher-rank polymorphism is one of the important
technical contributions of this paper.

2.4 Disjointness with Negation Types
In §1, we presented the ability to reject temporary invalidations by using negations types, preventing
an iteration from runtime errors due to the improper clear behaviors. Partially freezing some regions
highly depends on the witness that two regions are disjoint from each other. If we don’t know
two regions are independent, there is no guarantee that manipulating one of them will not affect
the other one. Another example can be a function fork (a reminiscent of fork in many systems
[17, 24, 33, 82, 95, 102]) that would be used to run two computations in parallel. To guarantee
the absence of data races, we need to ensure that the two parallel computations cannot possibly
interfere with each other — that is, their effects must be disjoint. We can give such a function the
following type:

fork : ∀𝛼, 𝛽, 𝛾1, 𝛾2 {𝛽 ≤ ¬𝛼}. (( ) 𝛼→ 𝛾1, ( )
𝛽
→ 𝛾2)

𝛼∨𝛽
→ (𝛾1, 𝛾2)

whereby we require the second function to have an effect that subtypes the negation the effect the
first one carries. This is done through the bound {𝛽 ≤ ¬𝛼}, which is equivalent to 𝛽 ∧ 𝛼 ≤ ⊥, a
disjointness constraint. In InvalML, we track all regions that are live on the stack:

region r1 in region r2 in region r3 in ...

In this example, r1 is a top-level region with type Region[out𝛼], while r2 and r3 are two nested
regions with types Region[out 𝛽] and Region[out𝛿] respectively. When we enter the region r2,
we are aware of that r1 is already in the stack, so we track the type variable of r1, i.e., 𝛼 , and adopt
its negation as a upper bound of 𝛽 . Similarly, for r3, we know r1 and r2 are alive, so 𝛿 has both ¬𝛼
and ¬𝛽 as its upper bounds. We merge the alive regions’ type variables via unions, and 𝛿 ’s upper
bounds can be written as ¬(𝛼 ∨ 𝛽). If we are about to pass r1 and r3 to some function 𝑓 , where

4Of course, it would not be ideal for such errors manifest potentially far from their source, which is how a naive implementa-
tion would behave. Thankfully, we can store extra meta-information when skolems are extruded, so as to present users with
accurate error messages, taking inspiration from related work on tracing the causes of type errors with constraint-based
type inference [6]. We could also immediately produce a warning whenever a function’s effect is inferred to be ⊤.
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𝑓 : ∀𝛾1, 𝛾2 {𝛾2 ≤ ¬𝛾1}. Region[out𝛾1] → Region[out𝛾2]
𝛾1∨𝛾2→ Int, we can notice that 𝛿 ≤ ¬𝛼 by

the transitivity of subtyping. Nevertheless, the following expression does not type check (where ‘r
⇒ · · · ’ is the usual lambda syntax):

region r1 in

let g = (r ⇒ region r2 in f(r, r2)) in

region r3 in g(r3)

A lambda function that passes the parameter region r and a local region r2 to f is bound to g.
Similarly, r1 has type Region[out𝛼], while r2 and r3 are typed to Region[out 𝛽] and Region[out𝛿]
respectively. However, since r2 is inside a lambda function and will not be executed immediately,
we can only witness that r2 is separated from r1 and r3 is separated from r1! The type check for
g(r3) fails because g requires a region that is disjoint from r2. At runtime, r2 will be allocated inside
r3 so they should be separated from each other, but the system fails to track the information.

To overcome this problem, we propose the outer scope variable 𝜔 . An outer scope variable can
be declared as forall-quantified and used in the type annotations. When instantiating a polymorphic
type, InvalML will substitute 𝜔 with the union of the current alive regions’ type variables. In the
above example, if we annotate g with the type ∀𝛾, 𝜔. {𝛾 ≤ 𝜔} Region[out𝛾]

𝛾
→ Int, inside the

function body, r2 will be considered disjoint with the whole outer environment, and 𝛽 will have
¬(𝛼 ∨ 𝜔) as the upper bound. 𝜔 will be instantiated with 𝛼 ∨ 𝛿 on the call site of g (i.e., g(r3)) and
we can pick 𝛿 for 𝛾 .

The use of outer variables also brings out the reason why extrusions can be useful, and we do
not raise a type error when an extrusion happens. Let’s consider the following function bar that
defines a local region and freezes it while executing an unknown function passed in parameter,
where freeze is a function that takes a region and an argument function, preventing the given
region from being accessed by the argument function:

fun freeze: ∀ R, E, T {E ≤ ¬R}. (Region[out R], () →{E} T) →{R ∨ E} T

fun bar(f) = region r in freeze(r, () ⇒ f(123))

To type check this program, it requires the type system to automatically prove that any region f

accesses (including arbitrary regions at the call sites of bar) is disjoint from r. InvalML can infer

the type ∀𝛼, 𝛽, 𝜔{𝛽 ≤ 𝜔}.(Int
𝛽
→ 𝛼)

𝛽
→ 𝛼 for the bar function, thanks to the outer variable and a

useful extrusion: when we are constraining 𝛽 ≤ ¬𝛾 , where 𝛾 is the region skolem of r, we extrude
𝛾 to ¬𝜔 , which yields 𝛽 ≤ ¬¬𝜔 , and it is equivalent to 𝛽 ≤ 𝜔 .

2.5 Temporary Invalidation
To introduce the notion of temporary invalidation, it may be useful to relate that notion to the
better-known and closely related concept of borrowing, as in languages like Rust.

Rust-style borrowing refers to a typing discipline that essentially ensures that
(1) during the lifetime — or, equivalently, within the scope — of a mutable reference to some

resource, no other reference to the same resource can be used; and
(2) if there are multiple references to the same resource, the resource must be frozen: no mutation

can happen to it while these references are still in scope.5

Rust uses this discipline to ensure memory safety in the face of mutation. Another great use case
for this approach is to statically rule out iterator invalidation bugs.

Below is how we can express the API of the collections library alluded to in the introduction. It
leverages disjointness to prevent iterator invalidation bugs at compile time. First, we specify the
signatures of the ArrayList and Iter data types and operations:
5Rust actually ensures this by making all aliasing references explicitly immutable.
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class ArrayList[T, R] with constructor ArrayList(data: Ref[Array[T, R], R])

class Iter[T, R] with constructor Iter(next: () →{R} Option[T])

In InvalML, data types are defined using the class construct, which defines algebraic data types (in
this case, with a single constructor). Ref[R, T] is the type of mutable references in region R to values
of type T. Notice that these two mutable data types keep track not only of the element type T but
also of an extra parameter R that represents the region in which they can operate.

fun mkArrayList: ∀ R, T. (Region[R]) →{R} ArrayList[T, R]

fun add: ∀ R, T. (ArrayList[T, R], T) →{R} ()

fun clear: ∀ R, T. ArrayList[T, R] →{R} ()

fun foreach: ∀ E, R, T. (Iter[T, R], T →{E} ()) →{R ∨ E} ()

The add and clear functions are straightforward: they simply add an element to the list and clear
it, respectively, and obviously have the effect associated with the region R of their input mutable
list. The foreach function is more interesting: in addition to an iterator, it takes a function that is
allowed to perform any effect E, which is reflected in the resulting effect of the function itself, R ∨ E,
which expresses that the foreach performs the effect of its argument function in addition to the
effect attached to its iterator argument. In fact, due to the properties of implicit polymorphism
and subtyping [68], we could merge E and R, which are here undistinguishable, resulting in the
following simplified signature:6

fun foreach: ∀ E, T. (Iter[T, E], T →{E} ()) →{E} ()

The function used to create an iterator from an existing ArrayList is the most interesting, and we
give the type annotation as follows:

fun iter: ∀ Res , R, E, T {E ≤ ¬R}.
(ArrayList[T, R], ∀ S. Iter[T, S] →{S ∨ E} Res) →{E ∨ R} Res

This function has a higher-rank type: it makes use of a polymorphic argument function, which is
used to prevent the iterator passed to it from being used outside of its scope. Moreover, the effect E
is constrained to be a subtype of the negation of region R, which is denoted by {E ≤¬R}. This is what
crucially ensures that the original region R of the ArrayList cannot be used while the iterator is in
scope. Notice that the argument function is still allowed to use the iterator with type Iter[T, S].
Accessing the iterator yields effect S instead of R, so the argument function’s overall effect is the
union of S and E. Finally, the effect of the iter function is the union of E and R.

Below is an example correct usage of the above API.7 Notice howwe can create arbitrary amounts
of mutable regions, mutating and iterating on them without any issue:

region r in let a1 = mkArrayList(r) in add(a1, 12); add(a1, 34);

iter of a1 , it1 ⇒ region s in

let a2 = mkArrayList(s)

foreach of it1 , v1 ⇒ add(a2, v1)

iter of a2, it2 ⇒ foreach of it2 , v2 ⇒ println(v2)

clear(a2)

Below is an example incorrect usage of the same API, causing a type checking error:
region r in let a = mkArrayList(r); add(a, 12); add(a, 34);

iter of a, it ⇒ foreach of it, v ⇒ println(v); clear(a) // type error

3 Formalization of the Type System
We now present 𝜆!⊥, the declarative core type system of InvalML.

6To understand this equivalence, consider that all well-typed uses of one version would also be well-typed with the other.
7In MLscript, ‘f of a, b, c’ means ‘f(a, b, c)’ where ‘of’ is right-associative (like Haskell’s ‘$’).
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SyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntax

Type variable-like 𝜈 F 𝛼 | 𝜔 Monomorphic type 𝜏, 𝜎,𝜑 F 𝜈 | 𝜏 𝜏→ 𝜏 | A[𝑎] | ⊤± | 𝜏 ∨± 𝜏 | ¬𝜏

Type argument 𝑎,𝑏 F in𝜏 out𝜏 General type T F 𝜏 | ∀𝑉 {Σ} . T | T 𝜏→ T
Variables 𝑉 ,𝑊 F 𝜔 | 𝑉 𝛼 Region accumulation 𝜁 F ⊥ | 𝜁 ∨ 𝜈

Term 𝑡 F 𝜆𝑥. 𝑡 | 𝑡 𝑡 | 𝑥 | 𝑡 : T | let𝑥 = 𝑡 in 𝑡 | C( 𝑡 ) | if 𝑡 isC(𝑥 ) then 𝑡
| region𝑥 in 𝑡 | 𝑡 .ref 𝑡 | !𝑡 | 𝑡 := 𝑡

Constructor 𝑐 F C(T) | C[𝛽 ] (T) extends A[𝑎] Polarity ±, ⋄ F + | −
Top-level declaration d F class A[𝛼 ] with constructor 𝑐

ContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContexts
Declaration context D F 𝜖 | D d

Typing context Γ F 𝜖 | Γ (𝑥 : T) | Γ 𝜈 | Γ (𝛼 ≤± 𝜏 ) | Γ •
Bounds context Σ F 𝜖 | Σ (𝛼 ≤± 𝜏 ) | Σ 𝜈 | Σ • | Σ err

Subtyping context Ξ F 𝜖 | Ξ Σ | Ξ (𝜏 ≤ 𝜏 ) | Ξ �(𝜏 ≤ 𝜏 ) | Ξ err

ShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthandsShorthands in𝜏 ≡ in𝜏 out⊤ out𝜏 ≡ in⊥out𝜏 𝜏 ≡ in𝜏 out𝜏 A ≡ A[in⊥out⊤]

T1 → T2 ≡ T1
⊥→ T2 𝑡1; 𝑡2 ≡ let𝑥 = 𝑡1 in 𝑡2 (𝑥 fresh)

Fig. 1. Syntax of types, terms, and contexts.

3.1 Types and Syntax
The syntax of 𝜆!⊥ is given in Figure 1. Because 𝜆!⊥ is predicative, we split monomorphic types from
general types and allow type variables to range over only the former.

Monomorphic types includes type variables (written as lowercase Greek letters 𝛼 , 𝛽 , . . . ), outer
scope variables (written as 𝜔), function types, algebraic data types, ⊤, ⊥, and types formed by
Boolean algebraic connectives. Outer scope variables are forall-quantified, abstracting the outer en-
vironments where the corresponding polymorphic types will be instantiated. When a polymorphic
type is instantiated, we always substitute its 𝜔 with the current outer region accumulation 𝜁 , a
union of all living outer regions’ type variables. For instance, if we have two outer regions with
type Region[out𝛼] and Region[out 𝛽] respectively, then 𝜁 = 𝛼 ∨ 𝛽 . If we are at the top level (i.e.,
no outer region), then 𝜁 = ⊥. Function type 𝜏1

𝜏2→ 𝜏3 carries an effect type 𝜏2. When 𝜏2 = ⊥, the
function is considered pure. An algebraic data type consists of a type name and a series of type
arguments. 𝜆!⊥ supports use-site variance via keywords in and out, following the idea proposed by
Tate [87] and later adopted by Kotlin 8. Declaration-site variance can be considered a syntax sugar.
For example, type Foo[T] with declaration class Foo[out A] with constructor /*...*/ is equivalent to
type Foo[out T] with declaration class Foo[A] with constructor /*...*/. To avoid repetition, we use
polarity notations ± and ⋄ to treat ⊤/⊥, ∨/∧, and ≤ /≥ symmetrically [64, 68]. For example, ⊤+ is
⊤, while ⊤− is ⊥.

General types cover both monomorphic and polymorphic types. A polymorphic type ∀𝑉 {Σ}. T
involves a set of bounds Σ on quantified variables 𝑉 . A 𝑉 context maintains exactly one outer
variable without any bound. A polymorphic type, e.g., ∀𝜔, 𝛼. 𝛼 → 𝛼 , might not need its outer
scope variable. In this case, the outer scope variable can be omitted from the type annotation, as
in ∀𝛼. 𝛼 → 𝛼 . Each bound can be either an upper bound or a lower bound. A polymorphic type
∀𝑉 {Σ}. T is only well-formed when all elements of Σ are bounds. We also support higher-rank
polymorphic functions, given by T 𝜏→ T . Notice that the effect type is always monomorphic.

8https://rosstate.org/publications/mixedsite/
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Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 𝛿 F · | ⇓ Notation: Γ, 𝜁 ⊢⇓ 𝑡 : T ! 𝜑 means Γ, 𝜁 ⊢ (𝑡 : T) : T ! 𝜑

T-Var
Γ (𝑥 ) = T

Γ, 𝜁 ⊢ 𝑥 : T ! ⊥

T-Abs1
Γ (𝑥 : 𝜏 ), 𝜁 ⊢ 𝑡 : T ! 𝜑

Γ, 𝜁 ⊢ 𝜆𝑥. 𝑡 : 𝜏
𝜑
→ T ! ⊥

T-Abs2
Γ (𝑥 : T1 ), 𝜁 ⊢⇓ 𝑡 : T2 ! 𝜑

Γ, 𝜁 ⊢⇓ 𝜆𝑥. 𝑡 : T1
𝜑
→ T2 ! ⊥

T-App
Γ, 𝜁 ⊢ 𝑡1 : T

𝜑
→ S ! 𝜑 ′ Γ, 𝜁 ⊢⇓ 𝑡2 : T ! 𝜑 ′

Γ, 𝜁 ⊢ 𝑡1 𝑡2 : S ! 𝜑 ∨ 𝜑 ′

T-Let
Γ, 𝜁 ⊢ 𝑡1 : T1 ! 𝜑 Γ (𝑥 : T1 ), 𝜁 ⊢𝛿 𝑡2 : T2 ! 𝜑

Γ, 𝜁 ⊢𝛿 let𝑥 = 𝑡1 in 𝑡2 : T2 ! 𝜑

T-Asc
Γ, 𝜁 ⊢ 𝑡 : 𝜏 ! 𝜑

Γ, 𝜁 ⊢⇓ 𝑡 : 𝜏 ! 𝜑

T-Subs1
Γ, 𝜁 ⊢ 𝑡 : 𝜏1 ! 𝜑 sub(Γ) ⊢ 𝜏1 ≤ 𝜏2

Γ, 𝜁 ⊢ 𝑡 : 𝜏2 ! 𝜑

T-Subs2
Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑1 sub(Γ) ⊢ 𝜑1 ≤ 𝜑2

Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑2

T-Gen
Γ •𝑉 Σ, 𝜁 ∨𝜔 ⊢⇓ 𝑡 : T ! ⊥

𝜔 ∈ 𝑉 sub(Γ) ⊢ ∀𝑉 {Σ} cons.
Γ, 𝜁 ⊢⇓ 𝑡 : ∀𝑉 {Σ} . T ! ⊥

T-Inst
Γ, 𝜁 ⊢ 𝑡 : ∀𝑉 {Σ} . T ! 𝜑 sub(Γ) ⊨ 𝜌 (Σ)

dom(𝜌 ) =𝑉 𝜔 ∈ 𝑉 𝜌 (𝜔 ) = 𝜁

Γ, 𝜁 ⊢ 𝑡 : 𝜌 (T) ! 𝜑

T-Region
𝛼 ∉ FV (Γ) ∪ FV (𝜁 ) ∪ FV (𝜏 ) ∪ FV (𝜑 )

Γ • 𝛼 (𝛼 ≤ ¬𝜁 ) (𝑥 : Region[out𝛼 ] ), 𝜁 ∨ 𝛼 ⊢ 𝑡 : 𝜏 ! 𝜑 ∨ 𝛼

Γ, 𝜁 ⊢ region𝑥 in 𝑡 : 𝜏 ! 𝜑

Fig. 2. Typing rules.

The syntax of lambda abstractions, applications, variables, ascriptions, let-bindings, and con-
structors is standard. We adopt keyword class, with, and constructor for ADT declarations. Pattern
matching is done through the if-is syntax. A pattern consists of a constructor’s name and a series
of bindings. Syntax region𝑥 in 𝑡 creates a new region instance with type Region[out𝛼] for some
𝛼 and binds it as 𝑥 in the body 𝑡 , similar to the region construct in Flix [49] and letregion from other
languages. Allocating a new reference cell requires a region instance, while reading !𝑡 and writing
𝑡 := 𝑡 don’t. Mutable cells have types of the form Ref [𝜏, out𝜎], where 𝜏 indicates the type of the
stored value and 𝜎 denotes the associated region(s). A reference cell belongs to only one region, but
one can upcast the second type argument to approximate this information. Region and Ref are not
included in Figure 1. Instead, we assume the existence of two “primitive” data types: Region[out𝛼]
and Ref [𝛼, out 𝛽]. Because they are primitives, Region and Ref should not be instantiated as a
user-defined ADT. We consider programs that contain such instantiations ill-formed. and assume
only well-formed instantiations in the rest of this paper.
We use polymorphism levels [28, 42, 66, 76, 79] to keep track of the scope in which types are

allowed to live, so that we can properly extrude those types that contain scope level violations
(explained in §4.4). We insert context separators • in context Γ and Σ. The level of a given 𝜈 is
implied by counting the number of • appearing ahead of 𝜈 in the context. We assume that all
contexts and types in the rest of this section are well-formed. The definitions of type and context
well-formedness are given in App. C; they require that type variables that appear in types can
always be found in the context and that if a type variable in positive/negative position can reach a
function type or data type via intersections/unions, this function type or data type should have level
0. The latter condition is not a requirement for soundness but is only assumed for the inference
algorithm to be complete. As usual, we use Barendregt’s convention [5] for bindings.

3.2 Typing Rules
Figure 2 presents the typing rules of 𝜆!⊥. Judgment Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 says that term 𝑡 can be typed as
T with effect 𝜑 in context Γ, where outer region accumulation is 𝜁 . Since complete type inference
for higher-rank systems is undecidable [72], we make use of user-provided type annotations when
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higher-rank polymorphism is needed but allow unannotated terms elsewhere. For simplicity, we
write ⇓ subscription to indicate the requirement of type annotations. For instance, T-Abs1 specifies
a way to type lambdas regardless of the presence of an expected type; it assumes that the parameter
type is monomorphic. On the other hand, T-Abs2 shows how the presence of an expected type
(in the form of a type annotation) can be used to type a lambda with polymorphic parameter and
result types. Notice that the general type T2 is propagated inwards. These rules overlap, which is
fine, as the type system is not meant to be algorithmic. Applications can leverage a known function
type to type the argument. We borrow the meta variable 𝛿 from the work of PEYTON JONES et al.
[72]. If 𝛿 =⇓, we switch to the check mode and make use of annotations. In T-Let, for example, if
the whole let-binging is annotated, we propagate the annotation T2 to the body. Otherwise, T-Let
still needs to infer the type of 𝑡2.
T-Asc is used when the current type annotation cannot be leveraged further and T-Subs1 is

used to widen monomorphic types. Similarly, T-Subs2 is used to widen the monomorphic effects,
regardless of the term type T . Function sub(Γ) drops variable bindings in the context Γ, returning
type variables, subtyping assumptions, and context separators. One might notice that in T-App,
we use 𝜑 ′ for 𝑡1’s and 𝑡2’s effects (and similarly in T-Let). This can be achieved, thanks to T-Subs2.
Assume that 𝑡1 yields effect 𝜑1, and 𝑡2 yields effect 𝜑2, we can upcast two effect types to 𝜑1 ∨ 𝜑2.
The subtyping rules are introduced in the next subsection. Contrary to much of the previous
work on bidirectional typing for higher-rank polymorphism, we do not present a polymorphic
subsumption rule, which would allow widening general types. Adding such a rule is possible
(following, for example, the approaches of Cui et al. [18], Dunfield and Krishnaswami [23], Odersky
and Läufer [62], Zhao and Oliveira [103]) but it would introduce vast amounts of complication
to the metatheory and type inference algorithm, so we feel that it would detract from the core
contributions of our paper.

Rule T-Gen checks and generalizes a given term 𝑡 with quantified type variables𝑉 and bounds Σ.
Although our implementation implicitly generalizes all fun-bound definitions (even those without
a type annotation), for simplicity of our presentation, here we only generalize a term when it
has a polymorphic type annotation; this restriction is easy to relax in practice. The premise
Γ •𝑉 Σ, 𝜁 ∨𝜔 ⊢⇓ 𝑡 : T ! ⊥ increases the level of𝑉 by inserting a separator •. It then propagates the
type T when typing the body. It also appends the outer variable𝜔 ∈ 𝑉 onto 𝜁 , which enables region
𝑟 : Region[out𝛼] allocated in 𝑡 to have 𝛼 ≤ ¬𝜔 (which is explained in §2.4). To ensure consistency,
this rule requires that there exist a substitution of 𝑉 such that the variable bounds Σ hold in the
current bounds context sub(Γ), written sub(Γ) ⊢ ∀𝑉 {Σ} cons.. Crucially, we forbid generalizing
terms that are not pure to ensure soundness with mutable references [46, 101]. Consider:

let foo: ∀ 𝛼 . 𝛼 → 𝛼 =

region x in let r = x.ref None() in y ⇒ let res = !r in r := Some(y); res

foo (42); not foo(true)

foo is not pure due to its use of mutable reference operations; generalizing it would break type
soundness, as the second call foo(true) would return Some(42), when it would be simultaneously
assigned type Option[Bool]. Thankfully, this example cannot be typed in 𝜆!⊥ because T-Gen requires
generalized terms to have the effect ⊥ (i.e., be pure). Rule T-Inst instantiates a polymorphic term
by a substitution 𝜌 . Notice that 𝜔 ∈ 𝑉 must be substituted with 𝜁 . The premise sub(Γ) ⊨ 𝜌 (Σ)
guarantees that all bounds in Σ can be derived by the current bound context after being substituted.
Both substitution 𝜌 and entailment ⊨ are formally defined in App. C.
T-Region allocates a new region instance with type Region[out𝛼], where 𝛼 is a new type

variable at a higher level (indicated by the separator) and binds the instance to 𝑥 . To make this
region disjoint from outer ones, we add an upper bound ¬𝜁 to the region type variable 𝛼 . Similarly,
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Table 1. Typing of Primitives
Desugaring Builtin Signature
𝑡1.ref 𝑡2 ⇝ ref 𝑡1 𝑡2 ref : ∀𝛼, 𝛽. Region[out𝛼 ] → 𝛽

𝛼→ Ref [𝛽, out𝛼 ]
!𝑡 ⇝ get 𝑡 get : ∀𝛼, 𝛽. Ref [out 𝛽, out𝛼 ] 𝛼→ 𝛽

𝑡1 := 𝑡2 ⇝ set 𝑡1 𝑡2 set : ∀𝛼, 𝛽. Ref [in 𝛽, out𝛼 ] → 𝛽
𝛼→ 𝛽

C(𝑡𝑖 ) ⇝ constructC 𝑡𝑖 constructC : ∀𝛼. T1 → . . . → T𝑛 → A[𝑏 ]

if 𝑡 is𝑝𝑖 then 𝑡𝑖 ⇝ matchA 𝑡 𝜆𝑥𝑖1 . . . . 𝜆𝑥𝑖𝑛 . 𝑡𝑖 matchA : ∀𝑎, 𝛿,𝛾 .A[𝑎] → (∀𝛽. T𝑖1 → . . . → T𝑖𝑛
𝛾
→ 𝛿

𝑖

)
𝛾
→ 𝛿

if 𝑡 is𝑝𝑖 then 𝑡𝑖 : T ⇝ pmatchA 𝑡 𝜆𝑥𝑖1 . . . . 𝜆𝑥𝑖𝑛 . 𝑡𝑖 pmatchA : ∀𝑎,𝛾 .A[𝑎] → (∀𝛽. T𝑖1 → . . . → T𝑖𝑛
𝛾
→ T

𝑖

)
𝛾
→ T

Ξ ⊢ 𝜏 ≤ 𝜏

S-Top±

Ξ ⊢ 𝜏 ≤± ⊤±

S-Refl

Ξ ⊢ 𝜏 ≤ 𝜏

S-Hyp
(𝜏 ≤ 𝜎 ) ∈ Ξ

Ξ ⊢ 𝜏 ≤ 𝜎

S-Assum
Ξ �(𝜏 ≤ 𝜎 ) ⊢ 𝜏 ≤ 𝜎

Ξ ⊢ 𝜏 ≤ 𝜎

S-Compl±

Ξ ⊢ ⊤± ≤± 𝜏 ∨± ¬𝜏

S-AndOrL±

Ξ ⊢ 𝜏1 ∧± 𝜏2 ≤± 𝜏1

S-AndOrR±

Ξ ⊢ 𝜏1 ∧± 𝜏2 ≤± 𝜏2

S-AndOr±
Ξ ⊢ 𝜏 ≤± 𝜎1 Ξ ⊢ 𝜏 ≤± 𝜎2

Ξ ⊢ 𝜏 ≤± 𝜎1 ∧± 𝜎2

S-Trans
Ξ ⊢ 𝜏0 ≤ 𝜏1 Ξ ⊢ 𝜏1 ≤ 𝜏2

Ξ ⊢ 𝜏0 ≤ 𝜏2

S-Distrib±

Ξ ⊢ 𝜏 ∧± (𝜏1 ∨± 𝜏2 ) ≤± (𝜏 ∧± 𝜏1 ) ∨± (𝜏 ∧± 𝜏2 )

S-FunMrg±

Ξ ⊢ 𝜏1
𝜏5→ 𝜏2 ∧± 𝜏3

𝜏6→ 𝜏4 ≤± (𝜏1 ∨± 𝜏3 )
𝜏5∧±𝜏6→ (𝜏2 ∧± 𝜏4 )

S-Fun
�Ξ ⊢ 𝜏1 ≤ 𝜏2
�Ξ ⊢ 𝜏3 ≤ 𝜏4
�Ξ ⊢ 𝜏5 ≤ 𝜏6

Ξ ⊢ 𝜏2
𝜏5→ 𝜏3 ≤ 𝜏1

𝜏6→ 𝜏4

S-Ctor
�Ξ ⊢ 𝜎𝑖 ≤ 𝜏𝑖 , 𝜏

′
𝑖
≤ 𝜎 ′

𝑖

𝑖

Ξ ⊢ A[in𝜏𝑖 out𝜏 ′𝑖
𝑖 ] ≤ A[in𝜎𝑖 out𝜎 ′

𝑖

𝑖 ]

S-CtorBot
A1 ≠ A2

Ξ ⊢ A1 [𝑎] ∧ A2 [𝑏 ] ≤ ⊥

S-CFBot

Ξ ⊢ A[𝑎] ∧ (𝜏
𝜑
→ 𝜎 ) ≤ ⊥

S-CtorMrg±

Ξ ⊢ A[in𝜏𝑖 out𝜏 ′𝑖
𝑖 ] ∧± A[in𝜎𝑖 out𝜎 ′

𝑖

𝑖 ] ≤± A[in (𝜏𝑖 ∨± 𝜎𝑖 ) out (𝜏 ′𝑖 ∧± 𝜎 ′
𝑖
)𝑖 ]

Fig. 3. Subtyping rules.

to ensure nested regions are disjoint from this one, we append 𝛼 to 𝜁 . The body 𝑡 is allowed to
refer to local region variable 𝑥 to manipulate mutable cells, which is reflected in the effect type
of 𝑡 , 𝜑 ∨ 𝛼 . We explicitly show and highlight the premise 𝛼 ∉ FV (Γ) ∪ FV (𝜁 ) ∪ FV (𝜏) ∪ FV (𝜑)
in 𝑔𝑟𝑎𝑦 to emphasize that the overall effect of the region 𝜑 does not include 𝛼 (which would be
out of scope), which reflects that all corresponding mutable operations are encapsulated inside the
region’s local scope and are not observable from the outside. If a region or a location is leaked we
must widen types involving local type variable 𝛼 (i.e., extrusion, which will be explained in §4.4) to
get rid of it before exiting the region, or the result type 𝜏 or effect 𝜑 will be ill-formed since 𝛼 ∉ Γ.
Instead of adding specific typing rules for the constructs related to mutable references and

data types, we encode these term forms as built-in functions, listed in Table 1. To allocate a new
reference cell, a region instance is required, but no region is needed to dereference and set mutable
references. For each constructor C, we can generate a construction function constructC. For each
data type A, we also generate a pattern matching function matchA based on its type parameters
and constructors. For the last function pmatchA, we propagate the type annotation T into each
branch function since we cannot instantiate a type variable to non-monomorphic types.

3.3 Subtyping Rules
Figure 3 presents the subtyping rules of 𝜆!⊥. The first part of the rules, ranging from S-Top± to
S-Distrib±, is essentially the same as in 𝜆¬, the core language of MLstruct. Readers might want
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Values and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and ContextsValues and Contexts
Region label r ∈ 𝑅 Location ℓ ∈ 𝐿

Value 𝑣 F ℓr | r | ⟨𝜆𝑥. 𝑡, 𝛾 ⟩ | C(𝑣) Runtime context 𝛾 F 𝜖 | 𝛾 (𝑥 ↦→ 𝑣)
Store 𝜓 F 𝜖 | 𝜓 (r ↦→ 𝜇 ) Memory 𝜇 F 𝜖 | 𝜇 (ℓr ↦→ 𝑣)

Store typing context Ψ F 𝜖 | Ψ (ℓr : 𝜏 ) | Ψ (r : 𝛼 ) Result R F val(𝜓, 𝑣) | err | kill
Fig. 4. Values and contexts.

to refer to the original material for further explanations [13, 68], with the most detailed account
recently provided by Chau and Parreaux [14], as we only give a brief overview here. Rules S-Top±,
S-Refl, and S-Trans are fundamental properties of subtyping. The addition of rules S-Compl±,
S-AndOrL±, S-AndOrR±, S-AndOr±, and S-Distrib± make the subtyping lattice a Boolean lattice
(or Boolean algebra). Rule S-Hyp leverages the type bounds in the current context. 𝜆!⊥ supports
recursive types via bounds on quantified variables. However, it is impossible to derive subtyping
relation on recursive types only with S-Hyp, We then borrow S-Assum and later modality � from
previous work [2, 66, 68] to store subtyping assumptions in the context. The later modality prevents
the assumptions that possibly do not hold yet until recursive types are expanded from immediate
use by S-Hyp. The dual notation � makes assumptions available for S-Hyp, which can be observed
in S-Fun and S-Ctor. It reflects that we must prevent forall-quantified type variables from being
used recursively before entering a type constructor. Example 3.1 further demonstrates the subtyping
derivation of two recursive types using later modality.
Rules S-Fun and S-Ctor are standard depth subtyping rules. S-FunMrg± and S-CtorMrg±

are algebraic rules that merge two functions or data types. S-CtorBot is used to show that the
intersection A1 [𝑎] ∧A2 [𝑏] of two distinct data types A1 and A2 is empty (i.e., subtypes ⊥). Note that
this implies A1 [𝑎] ≤ ¬A2 by the Boolean rules and by taking 𝑏 = in⊥out⊤. All these rules are
essentially similar to the rules found 𝜆¬, although the syntax of data and function types is slightly
different. We additionally require that a data type is disjoint with a function type in rule S-CFBot,
which can also prevent the inference algorithm from backtracking. The subtyping relations of
region and mutable reference types simply follow the rules for normal data types.

Example 3.1. To better exemplify the subtyping rules and use of later modality, let’s consider to
derive a subtyping 𝛼 ≤ 𝛽 , where 𝛼 ≤ A[out𝛼] ∈ Ξ and A[out 𝛽] ≤ 𝛽 ∈ Ξ. Let Ξ′ = Ξ�(𝛼 ≤ 𝛽),
the derivation is demonstrated as follows:

S-Assum
S-Trans

S-Ctor
S-Hyp �Ξ′ ⊢ 𝛼 ≤ 𝛽

Ξ′ ⊢ A[out𝛼] ≤ A[out 𝛽] S-Hyp Ξ
′ ⊢ 𝛼 ≤ A[out𝛼]

Ξ′ ⊢ A[out 𝛽] ≤ 𝛽

Ξ′ ⊢ 𝛼 ≤ 𝛽

Ξ ⊢ 𝛼 ≤ 𝛽

Notice that S-Assum must guard the assumption 𝛼 ≤ 𝛽 , or we can append arbitrary subtyping
relations to Ξ and use them immediately, which breaks the soundness of the system. To make use
of �(𝛼 ≤ 𝛽), we need to go through a type constructor. S-Ctor eliminates the � guardness by
prepending the dual notation �. Then 𝛼 ≤ 𝛽 is available for S-Hyp. Finally, we apply S-Trans
twice to conclude Ξ′ ⊢ 𝛼 ≤ 𝛽 .

3.4 Values and Operational Semantics
The values and extra contexts of 𝜆!⊥ are presented in Figure 4. Values are either locations, regions,
closures, or data type instances. A location also carries the region label to which it belongs. 𝛾
stands for value substitution contexts, mapping identifiers to values, while𝜓 stands for runtime
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SyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntax Skolem-like 𝛼 F 𝛼 | 𝜔 Type variable-like 𝜈 F 𝛼𝑛 | 𝛼
Skolem context Σ̂ F 𝜖 | Σ̂ 𝑉 | Σ̂ (𝛼 ≤± 𝜏 ) | Σ̂ •

Non-function type 𝜏 ̸→ F 𝜈 | A[𝑎] | ⊤± | 𝜏 ∨± 𝜏 | ¬𝜏

Non-function term 𝑡 ̸→ F 𝑡 𝑡 | 𝑥 | 𝑡 : T | let𝑥 = 𝑡 in 𝑡 | C( 𝑡 ) | region𝑥 in 𝑡
Fig. 5. Syntax extension for type inference. All other syntactic forms are as in Figure 1.

stores, mapping regions to memory pages 𝜇 that further map locations to values. The value typing
judgment Γ | Ψ, 𝜁 ⊢ 𝑣 : T says a value can be typed as T in typing context Γ with storing typing
context Ψ and region accumulation 𝜁 . Most value typing rules are standared except we type a dead
region instance r ∉ dom(Ψ) to Region[out¬𝜁 ] that can be later upcasted to Region[out⊤]. We
give the formal definition of value typing in App. C.3.

We give our big-step semantics in the functional style of Radanne et al. [77]. eval 𝛾 𝜓 𝑘 𝑡 evaluates
a term 𝑡 with a runtime environment 𝛾 , a store𝜓 , and a fuel 𝑘 , yielding a result R. A result can be
either a pair of store and value, an error err, or a timeout kill. If a given term yields some value
successfully, the eval function returns both the value and the store context updated by the term.
If a runtime error happens due to, for example, reading a deallocated mutable reference, the eval
function returns err. Finally, if the fuel 𝑘 runs out and the evaluation has not finished, a kill will
be returned. Since evaluation rules are standard, the formal definition is given in App. C.4 due to
lack of space.

3.5 Metatheory
In this section, we present the metatheory of 𝜆!⊥.
The soundness of subtyping guarantees that we never derive an ill-formed subtyping relation

(e.g., 𝜏1
𝜑
→ 𝜏2 ≤ A[𝜎1, 𝜎2]) from a consistent subtyping context, which is crucial to the soundness of

𝜆!⊥. The subtyping consistency proof in 𝜆¬ [68] is comprehensive but quite complex. We propose a
simpler proof by constructing homomorphisms from the Boolean algebra of types to some other
Boolean algebras. The formal definition of subtyping soundness and the proof are presented in
App. D.2.

The soundness of 𝜆!⊥ is given in Theorem 3.2. We adopt the methodology of Ernst et al. [25]: if a
term is well-typed, given any step 𝑘 , the evaluation will not produce an error and the yielded value
has the same type if it terminates. Besides, we also need to ensure a well-typed term’s effect can
accurately reflect this term’s operations on heaps (i.e., effect soundness): if the term 𝑡 manipulates
some region 𝑟 : Region[out𝛼], then 𝛼 is a subtype of the effect type of 𝑡 . Then by restricting
effects to be a subtype of current alive region accumulation 𝜁 , we can wipe out all operations on
dead regions and locations statically. We require the whole program to be pure to guarantee the
absence of memory leakage. This ⊥ effect can be easily extended to primitive effects like io in the
implementation.

Theorem 3.2 (Soundness). Given D wf, if ⊢ 𝑡 : T ! ⊥, for all 𝑘 , if R = eval 𝜖 𝜖 𝑘 𝑡 and R ≠ kill,
then R = val(𝜖, 𝑣) and ⊢ 𝑣 : T .

We present the full soundness proofs in App. D.

4 Type Inference
In this section, we present the type inference algorithm of InvalML.

We first adapt the syntax of Figure 1 for type inference in Figure 5. We introduce skolems, a special
kind of type variables that are too polymorphic to be further constrained. Skolems correspond to
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type variables in the declarative system, so we keep their syntax unchanged. We write 𝛼 for either
a skolem or an outer scope variable. 𝜈 is extended with type variables 𝛼𝑛 . These type variables
are generated on the fly and can be constrained further. Since they will not appear in the typing
context and be delimited by the context separators •, we track their polymorphic level 𝑛 in the
superscript. The skolem context Σ̂maintains skolems and their bounds. To preserve the determinism
of our algorithmic rules, We use 𝜏 ̸→ and 𝑡 ̸→ to denote non-function types and non-function terms
respectively. Polymorphic types are considered equal modulo renaming and level changes of their
quantified type variables, so we will for instance be able to rename the quantified variables of the
same polytype on the fly and instantiate it to different fresh variables at different levels each time,
without needing an explicit substitution. We assume that all type annotations are well-formed for
the sake of simplicity.

4.1 Type Inference Rules
The type inference rules are presented in Figure 6. The rules are now algorithmic as the never guess
types and instead infer constraints. The type inference judgment produces constraints Ξ (written as
⇒ Ξ). I-Var is standard. Rules I-Abs1 and I-App1 show that even in the absence of type annotation,
we are still able to type check abstractions and applications, albeit with monomorphic types. When
creating a new fresh type variable in I-Abs1 and I-App1, we pick the level as the typing context Γ
implies, written as lv(Γ). Rules I-Abs2 and I-App2 are almost standard for a bidirectional system,
except we generate a constraint 𝜑 ′ ≤ 𝜑 to check if the effect raised by 𝑡 satisfies the requirement of
the given annotation 𝜑 in I-Abs2. Notice that in I-App2 and I-Let, we use unions to bring the effects
from subterms and functions together, instead of implicitly upcasting them in T-App and T-Let.
I-Asc1 and I-Asc2 constrain inferred monomorphic type 𝜎 with a given monomorphic annotation.
We used two separate ascription rules to preserve the determinism of our algorithmic rules. If a
lambda term is given a function type annotation, we can only use the I-Abs2 rule, rather than an
ascription rule.

Example 4.1. Consider the following term 𝑓 𝑎. If the type of 𝑓 is a function type in the context,
for example Int → Int, the algorithm will pick I-App2 to reuse the type information, and 𝑎 will
be checked against type Int. However, for the term 𝜆𝑓 . 𝑓 42, 𝑓 ’s type is a fresh type variable 𝛼𝑛
allocated by I-Abs1. Then we must pick I-App1 to generate the constraint 𝛼𝑛 ≤ Int → 𝛽𝑛 .

The Ξ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ judgment (presented in §4.3) solves constraint 𝜏 ≤ 𝜎 , yielding new
bounds Σ as an output, while Ξ, Σ̂ ⊢ Σ ⇒ Σ′ judgment solves all constraints given in Σ one by
one. It is notably used to ensure the consistency of the bounds of the ascribed polymorphic type
in I-Gen, producing bounds Σ0, which are discarded (as they only serve to witness consistency).
I-Gen then solves Ξ and 𝜑 ≤ ⊥ immediately to wipe out type level violations. I-Inst implicitly
substitutes all quantified type variables with fresh ones (except the outer scope variable 𝜔 that
should be substituted with 𝜁 ) and uses the underlying type. This rule will only trigger when the
current inferred type is polymorphic but a monomorphic type or a higher-ranked function type
is expected (and it may result in further uses of instantiation down the line). Rule I-Region is
similar to I-Gen: it solves Ξ, 𝜑 ≤ 𝛾𝑛 ∨ 𝛼 , and 𝜏 ≤ 𝛽𝑛 immediately to prevent polymorphism leakage.
Notably, solving 𝜑 ≤ 𝛾𝑛 ∨ 𝛼 will eliminate positive 𝛼 and widen negative 𝛼 to ⊥ in 𝜑 . The former
ensures that 𝛾𝑛 will only maintain effects whose levels do not exceed 𝑛 (a reminiscent of effect
masking in other systems), the latter will widen unexpected effects to ⊤.

Example 4.2. Consider the following term: region𝑥 in 𝑡 . Assume that I-Region allocates 𝛼 for 𝑥
and the effect of 𝑡 is 𝜑 = 𝛼 ∨ 𝛼0 for some 𝛼0 allocated by an outer region. 𝛼 now is in a positive
position. Then I-Region will generate and solve the constraint 𝜑 ≤ 𝛾𝑛 ∨ 𝛼 . Solving this constraint
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Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 ⇒ Ξ 𝛿 F · | ⇓ Notation: Γ, 𝜁 ⊢⇓ 𝑡 : T ! 𝜑 ⇒ Ξ means Γ, 𝜁 ⊢ (𝑡 : T) : T ! 𝜑 ⇒ Ξ

I-Var
Γ (𝑥 ) = T

Γ, 𝜁 ⊢ 𝑥 : T ! ⊥ ⇒ 𝜖

I-Abs1
𝛼𝑛 fresh 𝑛 = lv(Γ)

Γ (𝑥 : 𝛼𝑛 ), 𝜁 ⊢ 𝑡 : T ! 𝜑 ⇒ Ξ

Γ, 𝜁 ⊢ (𝜆𝑥. 𝑡 ) : 𝛼𝑛
𝜑
→ T ! ⊥ ⇒ Ξ

I-Abs2
Γ (𝑥 : T1 ), 𝜁 ⊢⇓ 𝑡 : T2 ! 𝜑 ′ ⇒ Ξ

Γ, 𝜁 ⊢⇓ 𝜆𝑥. 𝑡 : T1
𝜑
→ T2 ! ⊥ ⇒ Ξ (𝜑 ′ ≤ 𝜑 )

I-App1
Γ, 𝜁 ⊢ 𝑡1 : 𝜏 ̸→1 ! 𝜑1 ⇒ Ξ1 𝑛 = lv(Γ)
Γ, 𝜁 ⊢ 𝑡2 : 𝜏2 ! 𝜑2 ⇒ Ξ2 𝛽𝑛, 𝛾𝑛 fresh

Γ, 𝜁 ⊢ 𝑡1 𝑡2 : 𝛽𝑛 ! 𝛾𝑛 ∨ 𝜑1 ∨ 𝜑2 ⇒ Ξ1 Ξ2 (𝜏 ̸→1 ≤ 𝜏2
𝛾𝑛

→ 𝛽𝑛 )

I-App2
Γ, 𝜁 ⊢ 𝑡1 : T

𝜑
→ S ! 𝜑1 ⇒ Ξ1

Γ, 𝜁 ⊢⇓ 𝑡2 : T ! 𝜑2 ⇒ Ξ2

Γ, 𝜁 ⊢ 𝑡1 𝑡2 : S ! 𝜑 ∨ 𝜑1 ∨ 𝜑2 ⇒ Ξ1 Ξ2

I-Let
Γ, 𝜁 ⊢ 𝑡1 : T1 ! 𝜑1 ⇒ Ξ1 Γ (𝑥 : T1 ), 𝜁 ⊢𝛿 𝑡2 : T2 ! 𝜑2 ⇒ Ξ2

Γ, 𝜁 ⊢𝛿 let𝑥 = 𝑡1 in 𝑡2 : T2 ! 𝜑1 ∨ 𝜑2 ⇒ Ξ1 Ξ2

I-Asc1
Γ, 𝜁 ⊢ 𝑡 : 𝜎 ! 𝜑 ⇒ Ξ

Γ, 𝜁 ⊢⇓ 𝑡 : 𝜏 ̸→ ! 𝜑 ⇒ Ξ (𝜎 ≤ 𝜏 ̸→ )

I-Asc2
Γ, 𝜁 ⊢ 𝑡 ̸→ : 𝜎 ! 𝜑 ⇒ Ξ

Γ, 𝜁 ⊢⇓ 𝑡 ̸→ : 𝜏 ! 𝜑 ⇒ Ξ (𝜎 ≤ 𝜏 )

I-Gen
𝜖, sub(Γ) ⊢ Σ ⇒ Σ0 Γ •𝑉 Σ, 𝜁 ∨𝜔 ⊢⇓ 𝑡 : T ! 𝜑 ⇒ Ξ
err ∉ Σ0 𝜔 ∈ 𝑉 𝜖, sub(Γ •𝑉 Σ) ⊢ Ξ (𝜑 ≤ ⊥) ⇒ Σ1

Γ, 𝜁 ⊢⇓ 𝑡 : ∀𝑉 {Σ} . T ! ⊥ ⇒ Σ1

I-Inst
𝜔 ∈ 𝑉 𝜌 (𝜔 ) = 𝜁 𝑉 \𝜔 fresh

Γ, 𝜁 ⊢ 𝑡 : ∀𝑉 {Σ} . T ! 𝜑 ⇒ Ξ

Γ, 𝜁 ⊢ 𝑡 : 𝜌 (T) ! 𝜑 ⇒ Ξ 𝜌 (Σ)

I-Region
𝑛 = lv(Γ) 𝛼, 𝛽𝑛, 𝛾𝑛 fresh

Γ • 𝛼 (𝛼 ≤ ¬𝜁 ) (𝑥 : Region[out𝛼 ] ), 𝜁 ∨ 𝛼 ⊢ 𝑡 : 𝜏 ! 𝜑 ⇒ Ξ
𝜖, sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 ) ) ⊢ Ξ (𝜑 ≤ 𝛾𝑛 ∨ 𝛼 ) (𝜏 ≤ 𝛽𝑛 ) ⇒ Σ

Γ, 𝜁 ⊢ region𝑥 in 𝑡 : 𝛽𝑛 ! 𝛾𝑛 ⇒ Σ

Fig. 6. Type inference rules.

will wipe out 𝛼 in 𝜑 and yield 𝛼0 ≤ 𝛾𝑛 . However, if 𝜑 = ¬𝛼 , which means we are trying to access a
dead region and 𝛼 now is in a negative position, solving the constraint will finally yield ⊤ ≤ 𝛾𝑛 ,
which will be rejected.

4.2 Normal Forms
To solve constraints, we follow Pearce’s approach [70] to solve a constraint 𝜏1 ∧ ¬𝜏2 ≤ ⊥ that is
equivalent to 𝜏1 ≤ 𝜏2. In order to solve constraints without backtracking, we need to first put the
involved types into normal form. We adopt a reduced disjunctive normal form (RDNF) inspired by
that of 𝜆¬ [68]:

DF ⊥ | C | D ∨ C CF 𝐼 ∧ ¬𝑈 | C ∧ 𝜈 | C ∧ ¬𝜈

𝐼 F ⊤ | D D→ D | A[inDoutD] 𝑈 F ⊥ | D D→ D | 𝑈 ∨ A[inDoutD]

We sort conjunctive forms (i.e., C) internally so that type variables with higher polymorphic levels
will be picked first, while skolems and outer scope variables will be picked last when we solve
the constraints. For example, a conjunctive form A ∧ ¬⊥ ∧ 𝛼1 ∧ ¬𝛽 ∧ ¬𝛾3 will be reordered to
A ∧ ¬⊥ ∧ ¬𝛾3 ∧ 𝛼1 ∧ ¬𝛽 . This can reduce the number of unnecessary extrusions, as we shall see
later in Example 4.5. We define the function dnf (𝜏) = D in App. C, which constructs a disjunctive
normal form from a given type 𝜏 . Take 𝜏 = (A[𝛼1] → A[𝛼1]) ∧ ¬𝛽1 as an example. dnf (𝜏) yields
(A[⊤ ∧ ¬⊥ ∧ 𝛼1] ∧ ¬⊥ → A[⊤ ∧ ¬⊥ ∧ 𝛼1] ∧ ¬⊥) ∧ ¬⊥ ∧ ¬𝛽1. dnf also reduces intersections (or
unions) that have no useful information to ⊥ (or ⊤). For instance, 𝛼 ∧ ¬𝛼 will be simplified to ⊥.
The algorithm is also inspired by 𝜆¬ [68] but simpler.
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𝜚±
Σ̂
(𝜏 ) : 𝜏 𝜚 Σ̂ (𝜏 ) = 𝜚+

Σ̂
(𝜏 )

𝜚±
Σ̂
(𝛼 ) = 𝛼 ∧± 𝜚±

Σ̂
(ub±

Σ̂
(𝛼 ) ) 𝜚±

Σ̂
(𝜏1 ∧⋄ 𝜏2 ) = 𝜚±

Σ̂
(𝜏1 ) ∧⋄ 𝜚±

Σ̂
(𝜏2 ) 𝜚±

Σ̂
(¬𝜏 ) = ¬𝜚∓

Σ̂
(𝜏 )

𝜚±
Σ̂
(𝜏 ) = 𝜏 Otherwise

Fig. 7. Definition of skolem bound inlining 𝜚 Σ̂ function.

4.3 Constraint Solving Rules
The constraint-solving rules are presented in Figure 8. Judgment Ξ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ constrains
𝜏1 ≤ 𝜏2 given skolem bounds Σ̂, assuming subtyping relationships Ξ, and producing new bounds
Σ. Most rules straightforwardly follow those of 𝜆¬ [68], decomposing disjunctive normal forms
into conjunctive ones and solving conjunctive normal forms by (1) matching type constructors in
positive positions against those in negative positions, and (2) checking the new bounds of type
variables against existing bounds to guarantee consistency of the output. We highlight the crucial
differences in 𝑔𝑟𝑎𝑦 . Once a constraint cannot be found in the assumptions, C-Assum appends it
into Ξ with a later guard to prevent the immediate use and construct the corresponding RNDF
by calling dnf function. Notably, we expand top-level skolems’ bounds to propagate them. The
function 𝜌Σ̂ (𝜏), defined in Figure 7, substitutes top-level skolems with either intersection with their
upper bounds or union with their lower bounds, depending on the position. The upper bounds and
lower bounds are stored in the Σ̂ context and can be retrieved by functions ub and lb, defined as
follows:

Definition 4.3 (Upper and lower bounds). We use the following upper and lower bounds functions.
For simplicity, we also use ± to treat ub/lb symmetrically.

lb±Ξ (𝜈) : 𝜏 ub±Ξ (𝜈) : 𝜏 lbΞ (𝜈) = lb+Ξ (𝜈) ubΞ (𝜈) = ub+Ξ (𝜈) ub±Ξ (𝜈) = lb∓Ξ (𝜈)
lb𝜖 (𝜈) = ⊥ lb±Ξ 𝜏≤±𝜈 (𝜈) = 𝜏 ∨± lb±Ξ (𝜈) lb±Ξ 𝜏≤±𝜎 (𝜈) = lb±Ξ (𝜈) if 𝜎 ≠ 𝜈

lb±Ξ err (𝜈) = lb±Ξ �(𝜏≤𝜎 ) (𝜈) = lb±Ξ •(𝜈) = lb±Ξ 𝜈 (𝜈) = lb±Ξ (𝜈)

After inlining, we can drop top-level skolems when solving constraints without losing any
information, as shown in C-Sk.

Example 4.4. Consider the following constraint: 𝛼 ≪ A[out⊤] for some 𝛼 and A, where (𝛼 ≤
A[out⊥]) ∈ Σ̂. Then 𝜚 Σ̂ (𝛼 ∧¬A[out⊤]) = 𝛼 ∧A[out⊥] ∧¬A[out⊤]. C-Sk will drop 𝛼 and yield
A[out⊥] ∧ ¬A[out⊤], which is equivalent to A[out⊥] ≤ A[out⊤]. This constraint can later be
handled by C-Ctor1. Without inlining, one can only get A[out⊤] ≤ ⊥ after dropping 𝛼 , which is
impossible and will be rejected.

Judgment Ξ, Σ̂ ⊢ D ⇒ Σ solves a RDNF-normalized constraint D ≤ ⊥. Most rules follow
those of 𝜆¬ [68] and are straightforward, except C-Var3/4. We define the function lv(𝜏, Σ̂) for the
polymorphic level of 𝜏 , according to the context Σ̂. The level of a type is taken to be the maximum
level of its parts. When using a more polymorphic type 𝜏 to bind a less polymorphic type variable
𝛼𝑚 , we will make sure to extrude the excessively-polymorphic type variables of 𝜏 to prevent any

polymorphism leakage. Take C-Var3 as an example. The extrusion (Σ̂,¬C)
(−,𝑚)
⇝ (Σ′, 𝜏) widens

those excessively-polymorphic type variables to their bounds in ¬C to ensure 𝜏 ’s level is at most𝑚.
A recursive call Ξ, Σ̂ ⊢ Σ′ ⇒ Σ′′ is necessary for further extruding too polymorphic type variables
in widened types. Then C-Var3 propagates the new upper bound 𝜏 to existing lower bounds of 𝛼𝑚
to guarantee the output is consistent, similarly to the process in C-Var1. Notice that the new upper
bound 𝛼𝑚 ≤ 𝜏 is appended to the context to ensure new lower bounds generated by the recursive
call can also be checked against 𝜏 , and our algorithm can terminate when there are bound cycles.
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Ξ, Σ̂ ⊢ Ξ ⇒ Σ
C-Done

Ξ, Σ̂ ⊢ 𝜖 ⇒ 𝜖

C-NotDone
Ξ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ0 Σ0 Ξ, Σ̂ ⊢ Ξ0 ⇒ Σ1

Ξ, Σ̂ ⊢ Ξ0 (𝜏1 ≤ 𝜏2 ) ⇒ Σ0 Σ1

Ξ, Σ̂ ⊢ 𝜏 ≪ 𝜏 ⇒ Σ

C-Hyp
(𝜏1 ≤ 𝜏2 ) ∈ Ξ Σ̂

Ξ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ 𝜖

C-Assum
(𝜏1 ≤ 𝜏2 ) ∉ Ξ Σ̂ Ξ �(𝜏1 ≤ 𝜏2 ), Σ̂ ⊢ dnf ◦ 𝜚 Σ̂ (𝜏1 ∧ ¬𝜏2 ) ⇒ Σ

Ξ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ

Ξ, Σ̂ ⊢ D ⇒ Σ

C-Or
Ξ, Σ̂ ⊢ D ⇒ Σ Σ Ξ, Σ̂ ⊢ C ⇒ Σ′

Ξ, Σ̂ ⊢ D ∨ C ⇒ Σ Σ′

C-NotBot

Ξ, Σ̂ ⊢ 𝐼 ∧ ¬⊥ ⇒ err

C-Bot

Ξ, Σ̂ ⊢ ⊥ ⇒ 𝜖

C-Ctor1

�Ξ Σ 𝑗
𝑗 ∈1...𝑖−1

, Σ̂ ⊢ D𝑖2 ≪ D𝑖1 ⇒ Σ𝑖
𝑖

�Ξ Σ 𝑗
𝑗
Σ′
𝑘

𝑘∈1...𝑖−1
, Σ̂ ⊢ D𝑖3 ≪ D𝑖4 ⇒ Σ′

𝑖

𝑖

Ξ, Σ̂ ⊢ A[inD𝑖1 outD𝑖3
𝑖 ] ∧ ¬(𝑈 ∨ A[inD𝑖2 outD𝑖4

𝑖 ] ) ⇒ Σ𝑖 Σ′𝑖

C-Ctor2
Ξ, Σ̂ ⊢ A1 [inDoutD′ ] ∧ ¬𝑈 ⇒ Σ A1 ≠ A2

Ξ, Σ̂ ⊢ A1 [inDoutD′ ] ∧ ¬(𝑈 ∨ A2 [inDoutD′ ] ) ⇒ Σ

C-Ctor3
Ξ, Σ̂ ⊢ (D D→ D) ∧ ¬𝑈 ⇒ Σ

Ξ, Σ̂ ⊢ (D D→ D) ∧ ¬(𝑈 ∨ A[inDoutD′ ] ) ⇒ Σ

C-Ctor4
Ξ, Σ̂ ⊢ ⊤ ∧ ¬𝑈 ⇒ Σ

Ξ, Σ̂ ⊢ ⊤ ∧ ¬(𝑈 ∨ A[inDoutD′ ] ) ⇒ Σ

C-Fun1
�Ξ, Σ̂ ⊢ D3 ≪ D1 ⇒ Σ Σ �Ξ, Σ̂ ⊢ D2 ≪ D4 ⇒ Σ′

Σ Σ′ �Ξ, Σ̂ ⊢ D5 ≪ D6 ⇒ Σ′′

Ξ, Σ̂ ⊢ (D1
D5→ D2 ) ∧ ¬(D3

D6→ D4 ) ⇒ Σ Σ′ Σ′′

C-Fun2

Ξ, Σ̂ ⊢ A[inDoutD′ ] ∧ ¬(D1
D3→ D2 ) ⇒ err

C-Fun3

Ξ, Σ̂ ⊢ ⊤ ∧ ¬(D1
D3→ D2 ) ⇒ err

C-Sk
Ξ, Σ̂ ⊢ C ⇒ Σ

Ξ, Σ̂ ⊢ C ∧ ¬±𝛼 ⇒ Σ

C-Var1
lv(C, Σ̂) ≤ 𝑚 Ξ (𝛼𝑚 ≤ ¬C), Σ̂ ⊢ lbΞ (𝛼𝑚 ) ≪ ¬C ⇒ Σ

Ξ, Σ̂ ⊢ C ∧ 𝛼 ⇒ Σ (𝛼𝑚 ≤ ¬C)

C-Var2
lv(C, Σ̂) ≤ 𝑚 Ξ (C ≤ 𝛼𝑚 ), Σ̂ ⊢ C ≪ ubΞ (𝛼𝑚 ) ⇒ Σ

Ξ, Σ̂ ⊢ C ∧ ¬𝛼𝑚 ⇒ Σ (C ≤ 𝛼𝑚 )

C-Var3
𝑚 < lv(C, Σ̂) (Σ̂,¬C)

(−,𝑚)
⇝ (Σ′, 𝜏 ) Ξ, Σ̂ ⊢ Σ′ ⇒ Σ′′

Ξ Σ′′ (𝛼𝑚 ≤ 𝜏 ), Σ̂ ⊢ lbΞ (𝛼𝑚 ) ≪ 𝜏 ⇒ Σ

Ξ, Σ̂ ⊢ C ∧ 𝛼𝑚 ⇒ Σ Σ′′ (𝛼𝑚 ≤ 𝜏 )

C-Var4
𝑚 < lv(C, Σ̂) (Σ̂,C)

(+,𝑚)
⇝ (Σ′, 𝜏 ) Ξ, Σ̂ ⊢ Σ′ ⇒ Σ′′

Ξ Σ′′ (𝜏 ≤ 𝛼𝑚 ), Σ̂ ⊢ 𝜏 ≪ ubΞ (𝛼𝑚 ) ⇒ Σ

Ξ, Σ̂ ⊢ C ∧ ¬𝛼𝑚 ⇒ Σ Σ′′ (𝜏 ≤ 𝛼𝑚 )

Fig. 8. Normal form constraining rules.

4.4 Extrusion Rules
Intuitively, it would seem that a type variable 𝛼𝑚 cannot be constrained by a higher-level type 𝜏 ,
because the higher-level type variables and skolems in 𝜏 cannot be referred to by 𝛼𝑚 at all. However,
consider a constraint 𝛾𝑚 ≤ ¬𝛽 , where 𝛽 ≤ ¬𝛼 , lv(𝛼, Σ̂) =𝑚, and lv(𝛽, Σ̂) =𝑚 + 1. It could happen
when we are handling two regions 𝑟1 : Region[out𝛼] and 𝑟2 : Region[out 𝛽], where 𝑟2 is nested
inside 𝑟1. The constraint says 𝛾𝑚 should represent an outer region that is not indicated by 𝛽 , which
can be easily satisfied by having subtyping relation 𝛾𝑚 ≤ 𝛼 , and then the constraint 𝛾𝑚 ≤ ¬𝛽 can
hold by S-Trans since 𝛽 ≤ ¬𝛼 implies 𝛼 ≤ ¬𝛽 . Instead of summarily rejecting constraints with
level violations, extrusion widens such higher-level types to seek the proper intermediate types that
can bridge both lower-level type variables and higher-level types via the transitivity of subtyping.
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(Σ̂, 𝜏 )
(±,𝑛)
⇝ (Σ, 𝜏 )

X-AndOr⋄
(Σ̂, 𝜏1 )

(±,𝑛)
⇝ (Σ1, 𝜏

′
1 ) (Σ̂, 𝜏2 )

(±,𝑛)
⇝ (Σ2, 𝜏

′
2 )

(Σ̂, 𝜏1 ∨⋄ 𝜏2 )
(±,𝑛)
⇝ (Σ1 Σ2, 𝜏

′
1 ∨⋄ 𝜏 ′2 )

X-Neg
(Σ̂, 𝜏 )

(∓,𝑛)
⇝ (Σ′, 𝜏 ′ )

(Σ̂,¬𝜏 )
(±,𝑛)
⇝ (Σ′,¬𝜏 ′ )

X-Fun
(Σ̂, 𝜏1 )

(∓,𝑛)
⇝ (Σ1, 𝜏

′
1 )

(Σ̂, 𝜏2 )
(±,𝑛)
⇝ (Σ2, 𝜏

′
2 ) (Σ̂, 𝜑 )

(±,𝑛)
⇝ (Σ3, 𝜑

′ )

(Σ̂, 𝜏1
𝜑
→ 𝜏2 )

(±,𝑛)
⇝ (Σ1 Σ2 Σ3, 𝜏

′
1
𝜑′
→ 𝜏 ′2 )

X-Ctor

(Σ̂, 𝜏𝑖 )
(∓,𝑛)
⇝ (Σ𝑖 , 𝜏 ′𝑖 ) (Σ̂, 𝜎𝑖 )

(±,𝑛)
⇝ (Σ′

𝑖
, 𝜎 ′

𝑖
)

(Σ̂,A[in 𝜏𝑖 out 𝜎𝑖 ] )
(±,𝑛)
⇝ (Σ𝑖 Σ′𝑖 ,A[in 𝜏 ′

𝑖
out 𝜎 ′

𝑖
] )

X-Var
𝑛 <𝑚 (𝛼𝑚,±, 𝛽𝑛 ) X-fresh

(Σ̂, 𝛼𝑚 )
(±,𝑛)
⇝ (𝛼𝑚 ≤± 𝛽𝑛, 𝛽𝑛 )

X-Skolem
𝑛 < lv(𝛼, Σ̂) (𝛼,±, 𝛽𝑛 ) X-fresh

(Σ̂, 𝛼 )
(±,𝑛)
⇝ (ub±

Σ̂
(𝛼 ) ≤± 𝛽𝑛, 𝛽𝑛 )

X-Skip
lv(𝜏, Σ̂) ≤ 𝑛

(Σ̂, 𝜏 )
(±,𝑛)
⇝ (𝜖, 𝜏 )

Fig. 9. Extrusion rules.

Notice that 𝜆-lifting cannot address this level violation problem in its full generality since it does
not deal with level-mismatched skolems.
The extrusion rules are presented in Figure 9. The computation (Σ̂, 𝜏)

(±,𝑛)
⇝ (Σ, 𝜎) takes four

inputs: skolem context Σ̂, the type 𝜏 to be extruded, the polarity of 𝜏 , and the target level 𝑛. It
generates two outputs: an extruded type 𝜎 , where lv(𝜎, Σ̂) = 𝑛, and a new context Σ, maintaining
the subtyping relations between the extruded fresh variables and original ones. X-AndOr⋄, X-Neg,
X-Fun, and X-Ctor simply propagate the extrusion to the subterms. We write ∓ to flip a polarity
indicated by ±. For example, if ± = +, then ∓ = −. X-Var and X-Skolem allocate fresh type variables
by using (𝜈,±, 𝛽𝑛) X-fresh, which ensures that for a given 𝜈 , a polarity ±, and a polymorphic level
𝑛, 𝜈 is extruded to the same type variable 𝛽𝑛 . This is crucial for the termination of the algorithm.
Since skolems cannot be further constrained, X-Skolem directly assigns the upper (or lower) bounds
of the skolem to the lower (or upper) bound of 𝛽𝑛 . By contrast, X-Var assigns 𝛽𝑛 as a new bound of
the original type variable. Finally, X-Skip filter subterms whose levels are not higher than 𝑛.

Example 4.5. Suppose we have a constraint 𝛼42 → 𝛼42 → 𝛼42 ≪ 𝛽1. It can be yielded by the
first sub-derivation of I-App2. The corresponding normal form is (𝛼42 → 𝛼42 → 𝛼42) ∧ ¬𝛽1. Only
C-Var4 is available for this constraint and 𝛼42 → 𝛼42 → 𝛼42 must be extruded. X-Fun decomposes
the function type and X-Var extrudes each 𝛼42 individually. We extrude the first 𝛼42 to a fresh
type variable 𝛾1 and we have 𝛾1 ≤ 𝛼42. Similarly, we can get another fresh type variable 𝛿1 and
𝛼42 ≤ 𝛿1 for the third 𝛼42. Notice that for the second 𝛼42, it will not be extruded to a fresh type
variable because the extrusion for 𝛼42 in negative position to level 1 has been cached and X-Var
will directly return 𝛾1 for it. The re-constraining process Ξ, Σ̂ ⊢ {𝛾1 ≤ 𝛼42, 𝛾1 ≤ 𝛼42} ⇒ Σ′′ will
not extrude 𝛼42 again, thanks to the order of RDNF, as we mentioned in §4.2. If we placed 𝛾1 or
𝛿1 first, we would end up constraining a low-leveled type variable with a higher-level one, which
would lead to extrusion to prevent 𝛼42 from leaking. The re-constraining will assign 𝛾1 to 𝛼42’s
lower bound 𝛿1 to 𝛼42’s upper bound, and check 𝛿1 against 𝛾1, which finally yields 𝛾1 ≤ 𝛿1. Assume
that 𝛽1 has an upper bound Int → Int → Bool. We solve the constraint by propagating it to the
extruded type 𝛾1 → 𝛾1 → 𝛿1. Therefore, Int ≤ 𝛾1 by the first sub-derivation of C-Fun1. However,
when solving 𝜎1 ≤ Bool, we get Int ≤ Bool by C-Var1. Finally, our algorithm throws an err by
C-NotBot with Bool ∧ ¬⊥.

4.5 Soundness and Completeness of Type Inference
In this section, we present the soundness and completeness metatheoretic results of our algorithm.
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Theorem 4.6 (Soundness of type inference). Given definitionsD wf, if ⊢ 𝑡 : T ⇒ Ξ, ⊢ Ξ ⇒ Σ,
and err ∉ Σ, then Σ ⊢ 𝑡 : T and Σ cons..

Lemma 4.7 (Soundness of constraining). If Σ Σ̂ cons., Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ′, and err ∉ Σ′, then
Σ Σ̂ Σ′ cons. and Σ Σ̂ Σ′ ⊢ 𝜏 ≤ 𝜎 .

Theorem 4.8 (Constraining termination). For all D wf, Σ Σ̂ wf, 𝜏 , and 𝜎 , Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ′

for some Σ′.

In the result below, we use the ≤∀ relation, a slight (and harmless) extension of ≤ to general
types, defined in App. C (Figure 11). This is not a polymorphic subtyping relation. We use fresh(𝐷)
to indicate the fresh variables generated by the derivation 𝐷 .

Theorem 4.9 (Completeness of type inference). Given definitions D wf, if ⊢ 𝑡 : T ! ⊥, then
⊢ 𝑡 : S ! 𝜑 ⇒ Ξ, ⊢ Ξ ⇒ Σ, and there exists some type variable substitution 𝜌 , such that 𝜖 ⊨ 𝜌 (Σ),
⊢ 𝜌 (S) ≤∀ T , and ⊢ 𝜌 (𝜑) ≤ ⊥.

Lemma 4.10 (Completeness of constraining). If Σ Σ̂ cons., Σ Σ̂ ⊢ 𝜌 (𝜏1) ≤ 𝜌 (𝜏2) for some type
variable substitution 𝜌 , Σ Σ̂ ⊨ 𝜌 (Σ0), then Σ0, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ1 (denoted as 𝐷), where err ∉ Σ1,
Σ Σ̂ ⊨ 𝜌 ′ (Σ1), 𝜌 ′ extends 𝜌 , and dom(𝜌 ′) \ dom(𝜌) = fresh(𝐷).

We present the proofs of the above theorems and lemmas in App. D.

5 Applications and Extensions
We now present some additional applications and extensions of InvalML.

5.1 Case Studies
We have implemented several applications, including a dynamic programing example and a con-
straint solver, to demonstrate InvalML can correctly infer the types reject erroneous uses of mutable
collections. In these two case studies, InvalML properly reasons about the disjointness among
regions, including local regions inside function bodies and outer unkown regions. Unexpected
mutable operations, e.g., modifying ArrayList during the iteration, are rejected to prevent the pro-
grams from runtime errors. These case studies justify the need for features like useful extrusion we
mentioned in §2. We leave the detailed case studies for App. B due to the lack of space.

5.2 Effect and Exception Handlers
We now discuss how to encode general type-safe exceptions and effect handlers in InvalML. We
define two functions, throw and handle as follows, to encode the exceptions and handlers:

fun throw: ∀ P, Q : (e: Exc[P, Q], payload: P) →{Q} ⊥
fun handle: ∀ P, Res , E : ( body: ∀ Q : (e: Exc[P, Q]) →{Q ∨ E} Res ,

catch: P →{E} Res ) →{E} Res

The throw function takes an instance of exception and a payload. A function throwing an exception
will carry the corresponding effect Q. The function handle has two parameters. The first one is a
higher-ranked function that may throw an exception by using e, and the second one will catch the
exception, process the payload and return a value. The body function can also have its own effect E
and it is reflected in both the catch’s effects and the final effects of the function handle. Notice that
the exception handler cannot be leaked outside the handler scope and does not appear in either
catch’s or handle’s type. Assume println has type ‘Str →{io} ()’ and e has type ‘Exc[Str, Q]’.

handle(e ⇒ ... throw(e, "oops") ... , msg ⇒ { println(msg); 42 })

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 366. Publication date: October 2025.



366:22 Cunyuan Gao and Lionel Parreaux

In the above example, even though the lambda function e ⇒ . . . has effect Q, Q will not be reflected
in the whole term’s effect, which is io. Leaking e would extrude its type to Exc[Str, ⊤], which would
make it impossible to handle, making the program ill-typed.

5.3 Region-Based and Stack-Based Memory Management
It is well known that type-and-effect systems with static regions can be used to implement region-
based memory management. Here, we review how region-based as well as stack-based memory
management can be encoded in InvalML.

5.3.1 Region-Based Memory Management. The regions presented in this paper can readily be used
to implement type-safe region-based memory management [84]. Notice that in our operational
semantics, when a region that was allocated with region r goes out of scope, the region and all the
references allocated in it are immediately removed from the heap𝜓 , even when there are leftover
references to these objects still reachable from live values (meaning that a garbage collector would
keep these objects alive, increasingmemory usage). Our type systemmakes sure that these reachable
but dead objects can never be accessed (Lemma D.45). In practice, on the type level, any reference
of type Ref [𝜏, out𝛼] that outlive its region of type Region[out𝛼] is extruded to a “useless” type
like Ref [𝜏, out⊤], ensuring memory safety. Indeed, using that reference would produce effect ⊤,
but we require that programs never have the ⊤ effect by forcing the main function to be pure (i.e.,
to have effect ⊥). Based on this insight, we plan to eventually implement region-based memory
management as part of a future version of MLscript.

5.3.2 Stack-Based Memory Management. The difference between region-based and stack-based
memory management is that the latter is strictly more restrictive: since there is a single stack instead
of a multitude of independently growable regions, all stack allocations and deallocations must be
performed in strict “last in, first out” order. The upshot is that stack-based memory management
can often be implemented more easily and more efficiently. We can encode this more restrictive
API using an approach analogous to invalidation-safe iterators (§2.5):

fun allocStack: ∀ E, Res. (∀ S, R. Stack[S, R] →{S ∨ R ∨ E} Res) →{E} Res

fun alloc: ∀ S, R, A. (Stack[S, R], A) →{R} StackRef[A, R]

fun read: ∀ R, A. (StackRef[A, R]) →{R} A

fun write: ∀ R, A. (StackRef[A, R], A) →{R} ()

fun push: ∀ Res , R, E, S {E ≤ ¬S}.
(Stack[S, R], ∀ U. Stack[U, R] →{U ∨ R ∨ E} Res) →{S ∨ R ∨ E} Res

To create a new stack, one uses allocStack, and to create a new stack frame, one uses push. While a
stack frame is pushed (i.e., while the continuation argument to push is executing), no other stack
frame can be pushed onto the same original stack, due to the ‘E ≤¬R’ bound.

5.4 Scope-Safe Metaprogramming
Last but not least, we show how to add scope-safe analytic quasiquotes to 𝜆!⊥. Quasiquotes allow
users to construct and inspect abstract syntax trees using quoted code templates [30, 69]. Scope-safe
quasiquotes must prevent open code fragments (i.e., code fragments with free variables) from being
executed. 𝜆!⊥ achieves scope-safe metaprogramming essentially the same as how we guarantee
memory safety in §3. Each code fragment type contains a type argument for the contextual
requirement. If the contextual requirement is ⊥, the quoted term contains no free variable. Each
next-stage variable is allocated, assigned a fresh skolem as the contextual requirement, and passed
to a higher-ranked function that uses this variable to assemble a quoted function body. We use
unions to bring different free variables’ contextual requirements in a code fragment together. An
escaped next-stage variable will have a contextual requirement ⊤ due to the extrusion.
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Table 2. Comparison Table. Each row indicates whether a feature is supported (✓) or not (✕). A feature is
partially supported (◦) if it is restricted to some special cases. “CL” stands for “Capability Language”, “CT”
stands for “Capturing Types”, “RT” stands for “Reachability Types”, and “MC” stands for “Mode Calculus”.
Feature/Approach InvalML ReML [24] Flix [50] CL [94] Mezzo [75] Effekt [11] CT [102] Rust [3] RT [4] MC [47]
Subtyping ✓ ◦ ✕ ◦ ✓ ◦ ✓ ✓ ✓ ◦
Type Inference Principal Principal Principal ✕ ◦ Local Local Local Local Principal
Permanent Invalidation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Temporary Invalidation ✓ ◦ ◦ ✓ ✓ ◦ ◦ ✓ ✓ ✓

Region System ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✕ ✓

Disjointness Reasoning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No Separation-Default ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓

Use-Mention Distinction ✓ ✓ ✓ ✓ ✕ ✓ ✕ ✕ ✓ ✕

Reusability ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Uniqueness ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✓

This can be done without modifying the type system at all, by simply adding a few primitives,
thanks to the use of abstract type variables and higher-ranked polymorphism, inspired by the
runST approach in Haskell [44]. Both abstract type variables and higher-ranked polymorphism are
simply type system features and less related to the concrete features like memory management or
metaprogramming. Boolean algebraic subtyping with type inference further provides the ability
to encode and infer contextual requirements by using union and complementary types. We leave
more discussions for App. A.5 due to the lack of space.

6 Related Work
This section reviews the related work. Table 2 presents a comparison between InvalML and relevant
systems. The row “Subtyping” indicates if implicit subtyping is supported. Partially supported
subtyping can only be applied to effect or capability sets. The next row specifies if type inference
is supported. “Permanent Inval” and "Temporary Inval" stand for “Permanent Invalidation” and
"Temporary Invalidation" respectively, and are described in §2. Notably, some systems can only
support some forms of temporary invalidation (e.g., freeze a given region temporarily), but cannot
support a more general form like iterator invalidation safety that rely on higher-rank interfaces.
The row “Region System” specifies if the system supports regions or similar concepts like bags or
lifetimes. “Disjointness Reasoning” indicates the ability to reason about interference (or separation)
between two elements or operations [81]. “No Sep-Default” means a system does not require two
elements to be separated from each other by default. A callSeq example that will be rejected by
a “Separation-Default” system defaultly is given in Linearity and Uniqueness part. “Use-mention
distinction” denotes the ability to clarify whether a variable is actually used or merely mentioned,
instead of conflating them [33]. “Reusability” means the ability to reuse the same system to define
interfaces that check other sorts of language features, beyond memory safety and resource man-
agement, such as scope-safe metaprogramming. Finally, the row “Uniqueness” denotes the ability
to track the uniqueness of mutable references. It is a critical property to support powerful features
like strong updates that allow one to change the type of a unique object [29, 75]. We leave detailed
discussions on Table 2 in App. A.1. Due to a lack of space, we cannot list all systems or features in
Table 2. More systems and features are discussed below.
Effect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect SystemsEffect Systems. The idea of effect checking dates back to Gifford and Lucassen [32]’s work. Lu-
cassen and Gifford [48] later improved the idea of effect systems by using effect masking. Side effects
are delimited by regions. When exiting a region, one can erase the effects indicated by this region if
the region descriptor is not leaked. The idea of effect masking is also adopted by many consequent
systems (e.g., ReML [24]). InvalML supports effect masking via subtype extrusion, marking leaked
region descriptors and mutable references invalid instead of rejecting the code directly. DPJ [7]
makes use of effect disjointness for parallel programming, but only supports monomorphic methods.
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Another approach, Boolean unification [50–52], also proposes effect disjointness reasoning and
is implemented in Flix language. Flix does not support subtyping but guarantees that it is free
from the poisoning problem [86, 98]. Nevertheless, it is still acknowledged that the effect cast
is required in some cases 9. Lacking subtyping also makes type annotations hard to understand.
Finally, Algebraic effects [16, 45] have gained considerable popularity recently. They provide a
flexible and powerful mechanism to encode effect handing and control-flow abstraction [45]. We
do not include Algebraic effects in this paper and consider algebraic effects a future work.
ReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReMLReML. Recent work ReML [24] equips the traditional region- and effect systems with explicit
effect constraints for effect inclusion and disjunction. However, such effect constraints are not
sufficient to encode temporary invalidation safety like borrowing semantics or iterator invalidation
safety, which can be provided by InvalML thanks to the higher-ranked polymorphism. ReML
also requires access to implementations since it sticks with SML type signatures. Furthermore,
ReML’s implementation struggles with cases where we need to reason about the disjointness of
yet-unknown outer regions. This problem is addressed by the outer variable 𝜔 in 𝜆!⊥. Local regions
inside function bodies are separated from all yet-unknown outer regions abstracted by 𝜔 .
CapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilitiesCapabilities. Capability Calculus [17] (and consequent Capability Language [94]) specifies the
capabilities of the effects that can occur in expressions. Compared with traditional effect systems,
Capability Calculus provides more flexible controls like explicit deallocation. A capability-based
approach can also easily encode temporary invalidation like borrow semantics [10]. It is widely
adopted by low-level and system languages like Cyclone [35], Vault [19], Sing# [26]. However,
relying on the linearity of capabilities still puts restrictions on programmers:

fun foo1(r1 , r2) = freeze(r1, () ⇒ /* code that does not use r2 */); bar(r2)

fun foo2(r1 , r2) = freeze(r1, () ⇒ bar(r2))

To freeze r1, Capability Calculus requires the corresponding capabilities to be unique, which prevents
r1 and r2 from aliasing. In above example, an application foo1(r, r) will not introduce any problem,
but it is rejected by Capability Calculus because foo1’s type and foo2’s type cannot be distinguished
from each other by Capability Calculus. Recently, the idea of effects-as-capabilities [11, 12, 55]
has gained a lot of popularity. It allows users to omit some effect annotations to provide a more
lightweight surface language. To ensure scope safety statically, they adopt second-class values,
formalized by Osvald et al. [65] and used in various languages, such as C# with its references.
Second-class values can be passed to callees but cannot be returned and cannot be stored or captured
as part of returned values (e.g., closures). Brachthäuser et al. [11] later relaxes this restriction by
introducing boxes to lift second-class values to first-class ones. However, this is still a very strong
restriction, as it curtails expressiveness and imposes a language-wide segregation between first-class
and second-class values, which can be cumbersome and lead to code duplication. Capturing types
[8, 9, 102] follow a similar approach to provide a lightweight effect polymorphism with disjointness
reasoning. Capturing types track not only the types of the given terms, but also parameters or
local variables that are captured by the given terms. Once local variables are leaked, corresponding
capabilities will be widened to a top-level capability cap, which is similar to our extrusion process.
Xu et al. [102] further distinguish reading capabilities from writing ones, allowing two reading
operations to be executed in parallel, which is not supported in our system yet and can be considered
as future work. Nevertheless, Capturing types are still not as fine-grained as 𝜆!⊥. Consider the
following program:

let ys = in xs.map(x ⇒ throw(e, "oops"); x + 1) // xs: LazyList[Int , ⊥]

9https://doc.flix.dev/casts.html

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 366. Publication date: October 2025.

https://doc.flix.dev/casts.html


A Lightweight Type-and-Effect System for Invalidation Safety 366:25

In Capturing Types, the type of ys has the capability e and cannot be treated as a pure term, even
though it is a lazy list and will not be executed immediately. If a function captures ys without
actually using it (e.g., a function simply returns ys), the function will be treated as impure by
Capturing Types due to the lack of use-mention distinction [33]. An effect system can accurately
tell whether an effectful term is used or just mentioned and compute precise effects. On the other
hand, capability systems are more compatible with object-oriented features [33], which is not our
focus in this paper. We consider such object-oriented extensions as future work.
Linearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and UniqenessLinearity and Uniqeness. Linear values must be used exactly once and cannot be duplicated
or destroyed [92]. However, linearity puts heavy restrictions on aliasing. Approaches like adoption
[27] are proposed to allow temporary aliases. Rust [37, 54, 100] is one of the most popular languages
relying on ownership, linearity, and borrowing semantics to achieve memory safety and data-race-
free concurrency. Immutable (or shared) borrows can be duplicated, while mutable (or exclusive)
ones must be unique. Once a variable is borrowed, it must be frozen until the lifetime of the
borrow ends. We have not distinguished between shared borrows and exclusive ones and leave it as
future work. Such linearity (or uniqueness) properties are also required by some capability-based
approaches, as we mentioned in the previous subsection. However, such substructural-type systems
put a lot of restrictions on programmers. Assume some mutable reference r, the following program
is rejected by Rust due to the non-unique exclusive borrow, even though it is actually memory-safe
since callSeq invokes f and g one by one, instead of calling them in parallel:

fun callSeq(f, g) = f(0); g(1) in callSeq(x ⇒ r := x, y ⇒ r := y)

Pottier and Protzenko [75] presented Mezzo with permissions, inspired by Alias Types [82, 95], to
enable features like gradual initialization and strong updates. But Mezzo only supports a limited
form of type inference and requires existential types to encode affine functions that capture non-
duplicable permissions. Radanne et al. [77] later proposed a principal type inference algorithm for
shared and exclusive borrowing based onHM(𝑋 ) [63], making it an extension of ML-like languages.
However, HM(𝑋 ) is unwieldy, compared to Parreaux [66]’s approach we follow, where all one
has to do is duplicate constraint sets. Reachability types [4, 99] track reachability sets of terms to
achieve better aliasing control and separation across higher-order functions. The callSeq function
can be implemented in their system, but it still requires explicit type annotations to permit the
aliases. Lorenzen et al. [47] proposed a mode-based approach for manual memory management in
OCaml based on uniqueness and locality. Once a pair is splited, one can reuse the space credit for a
new pair. We also consider similar memory management features as future work.
Scope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for MetaprogrammingScope Safety for Metaprogramming. One of the contributions of InvalML is the extensibility
for other language features like scope-safe metaprogramming. Environment classifiers approaches
[38, 43, 83] are also known to have abilities to encode both scope-safe metaprogramming and effect
systems. Compared with our approach, their system is less fine-grained and difficult to support
analytic-style quasiquotes. It also needs more annotations for classifier upcasting due to the lack of
implicit subtyping. Another area of scope safety for metaprogramming is contextual types [39, 56–
58, 69, 104], inspired by contextual modal type theory [59]. It is also adapted for Algebraic effects
[56] recently. InvalML mainly follows Gao and Parreaux [30]’s approach to adopt higher-ranked
polymorphism and constraint-based type inference, which requires fewer type annotations.

7 Conclusion
In this paper, we described a powerful type-and-effect system to express invalidation and scope
safety through disjointness constraints in a lightweight manner. We have demonstrated the versa-
tility of this system by presenting various applications such as memory management, exception
handling, data-race-free concurrency, metaprogramming, and modular Rust-style borrowing.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 366. Publication date: October 2025.



366:26 Cunyuan Gao and Lionel Parreaux

Data-Availability Statement
The implementation of our system, based on the existing programming language MLscript, was
submitted for Artifact Evaluation [31]. The extension consists of only 1570 lines of code on top of
the existing MLscript implementation, which already handles parsing and code generation. A web
demonstration is available at https://hkust-taco.github.io/invalml-web-demo/.
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A Additional Discussions & Examples
In this appendix, we provide additional discussions and examples.

A.1 Discussions on the Comparison Table
In this section, we justify some non-trivial cells in Table 2.

Type Inference.

• CL [94] focuses on type checking instead of type inference. Explicit type annotations also
make type checking for first-class polymorphism straightforward.

• Mezzo’s [75] prototype only supports a limited form of type inference, which is not discussed
in their paper.

Temporary Invalidation.

• ReML [24], Flix [50], Effekt [11], and CT [102] can encode the freeze example discussed in §6
by making use of effect disjointness. However, it is not clear how these systems can support
the iteration example in §2 due to the lack of higher-ranked polymorphism.

• It is possible for Mezzo [75] to encode both examples by suspending the given unique
permission. For the iteration example, one still needs to allocate a new non-duplicable
permission and require the argument function to return it.

Disjointness Reasoning.

• Effekt [11] has not mentioned disjointness (or separation, interference). But we believe it can
be achieved by computing the disjointness of capability sets on boxed types.

No Separation-Default.

• Mezzo [75] requires exclusive permissions for writing, and functions in Mezzo can only
capture duplicable permissions by default.

• RT [4] must annotate the parameters’ reachability sets to allow aliases.

Use-Mention Distinction.

• CL [94] supports the use-mention distinction since only mutable operations require capabili-
ties. By contrast, Mezzo [75] mixes types and permissions. Therefore, accessing a variable
requires a corresponding capability in the context.

• Rust [3] and MC [47] do not have the use-mention distinction since they do not track effects
at all.

Reusability.

• No system in Table 2 mentioned reusability for other language features. Even though Effekt
[11], CT [102], and MC [47] adopt modal types, which are also widely used for scope-safe
metaprogramming, it is not clear how their systems can encode metaprogramming interfaces
without changing the core type systems. On the one hand, modes in these systems are
handled separately from types. On the other hand, these modes are more related to effects or
uniqueness and are not general enough.

A.2 Mutable State Encapsulation
Consider the function below, written in some imaginary ML dialect, which implements the mapi

function using List.map, where mapi is the same as map except that it also provides to its argument
function the current element index along with the element itself:
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fun mapi[A, B](xs: List[A])(f: (Int , A) → B): List[B] =

let index = ref -1

List.map(xs)(x ⇒ index := !index + 1; f(!index , x))

This function allocates a mutable reference index through the ref constructor and updates it through
the ! (read) and := (write) operators as the underlying list mapping process progresses. While
mapi uses mutable state internally, this state is encapsulated within the function’s scope and is not
observable from the outside. This is referred to as referential transparency: mapi always returns
the same outputs given the same inputs and does not have any side effects. As a consequence, for
example, if a program uses an expression like mapi(ls)(foo) several times, it can always let-bind that
expression and thereby avoid recomputing it each time, with the guarantee provided by referential
transparency that the overall program result will not change.

Now, consider the following slight variations on mapi:
fun mapi2[A, B](xs: Seq[A])(f: (Int , A) → B): Seq[B] =

let index = ref -1

Seq.map(xs)(x ⇒ index := !index + 1; f(!index , x))

fun mapi3[A, B](xs: List[A]): ((Int , A) → B) → List[B] =

let index = ref -1

f ⇒ List.map(xs)(x ⇒ index := !index + 1; f(!index , x))

On one hand, map2 uses a sequence data structure instead of a list. Sequences are lazy and only
compute new elements on demand. Like in OCaml, we assume that sequences are not memorized
by default, such that map will be recomputed every time the returned sequence is queried.10 This
mapi2 function is no longer referentially transparent, as demonstrated by the two programs below
returning different results:
// Program P1:

let s2 = mapi2(s2)((i, x) ⇒ x * i)

let size = Seq.count(s2)

Seq.sum(s2) / size

// Program P2:

let size =

Seq.count(mapi2(s2)((i, x) ⇒ x * i))

Seq.sum(mapi2(s2)((i, x) ⇒ x * i)) / size

Indeed, for the sequence 1, 2, 3, program P1 returns (1 * 3) + (2 * 4) + (3 * 5) / 3 = 26/3, while
P2 returns (1 * 0) + (2 * 1) + (3 * 2) / 3 = 8/3. What happened in P1 is that the counter mutable
state captured by the returned sequence retained its old value from the first call to mapi2 at the time
Seq.sum was called, therefore producing incorrect indices.
On the other hand, mapi3 instantiates its mutable state before returning a closure that performs

the mapping computation. Although it manipulates eagerly-computed lists and has the same type
as mapi, it still leaks its mutable state through the returned closure, and has similar referential
transparency problems as mapi2 when partially applied.

In both cases, the mutable state has leaked through the returned value, a violation of scope safety
that was not caught because languages like OCaml do not guarantee scope safety statically (though
some recent work has been pushing in that direction [47]). Mutable state leakage does not lead to
unsoundness of the type system — it merely makes programs harder to reason about. But in many
(if not most) other domains, violating scope safety routinely leads to unsoundness and crashes at
runtime. For instance, it can lead to exceptions being thrown outside of their handlers, pointer
being dereferenced after their memory has been deallocated, metaprogram fragments being run in
the wrong environments, runtime type mismatches, etc.
Many approaches have been proposed over the years for ensuring scope safety statically in

various domains. One way is to rely on higher-rank polymorphic types, as these types naturally

10Like in OCaml, we assume that to memorize a call to Seq.map(xs)(f) so that the function f is only applied at most once
per element, one needs to write Seq.memorize(Seq.map(xs)(f)).
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come with a notion of scope — i.e., quantified type variables are only available within the scope
of the polymorphic type and should not leak to the outside. For instance, consider Haskell’s well-
known “runST trick” [44], which uses higher-rank polymorphism to prevent local mutable state
from being observable. In Haskell, the runST function has the following type:

runST: ∀ A . (∀ S . ST[S, A]) → A

where ST is the state monad and ST[S, A] denotes a (delayed) computation returning a value of
type A and restricted to some scope marked as S. This approach requires the entire function to be
converted to monadic style [93]. While this programming style does the job, rejecting programs like
mapi2 and mapi3 with the compiler complaining that the locally-quantified type S escapes its scope,11
it is quite inconvenient. Beyond the syntactic clutter, which can largely be alleviated through do

or let! notations [71], it requires all combinators like map to have a monadic version like mapM, and
intermixing various effects requires heavyweight scaffolding such as monad transformers. Various
approaches try to avoid monad transformers by using a single monad along with an effect system
to parameterize the monad type. By contrast, direct-style approaches use type-and-effect systems
[53, 60, 84] to let users mix various effects in their non-monadic (i.e., direct-style) programs while
keeping track of them in the type system. In such systems, function types are typically augmented
with an effect annotation 𝜑 , as in Int

𝜑
→ Int, the type of integer-to-integer functions with effect 𝜑 .

We focus on that approach in this paper.

A.3 Subtyping, Polymorphism, and Effect Poisoning
Unlike approaches based on unification, and thanks to subtyping, our type system does not suffer
from the poisoning problem [98] and does not require extraneous polymorphism ormanual coercions.

Madsen and van de Pol [52] report one problem of systems that suffer from the poisoning problem
is that the sub-expressions are required to have the same effects. Consider the following contrived
example:

fun foo(xs , f) = foreach of map(xs, f), x ⇒ println(x)

Given println : Str
console→ ( ), Koka will infer effect <console|_e> for the argument function f, where

_e is a wildcard effect for effect polymorphism. Notice that f is polluted by the println invocation
inside the function body and has effect console. In Madsen and van de Pol [52]’s system, it will
prevent the sub-expression map(xs, f) from being optimized when we pass a pure function f to foo.
Furthermore, assume that Koka can support effect disjointness like Flix does [50]. It is impossible to
pass f to another function that requires an argument function involving no console effect unless the
type annotation for f is given. Brachthäuser et al. [11] also find that even though in such systems
with row polymorphism which largely alleviate the problem one still gets surprising types (e.g.,
duplicable effect entries) in some situations. InvalML can correctly infer the effect-polymorphic
type for foo, thanks to Boolean-algebraic subtyping:

fun foo(xs , f) = foreach of map(xs, f), x ⇒ println(x)

// foo: ∀ T, E. (List[T], T →{E} Str) →{E ∨ console} ()

Notice that only foo carries console effect, while f’s effect is only denoted by E.
ReML [24] relies on Tofte and Birkedal [89]’s region inference algorithm, adopting latent effect 𝜖.𝜑

that is similar to row-polymorphism, where 𝜑 is a known effect and 𝜖 is an effect variable that can be
used to extend the effect𝜑 . Thanks to the effect subsumption, ReML can avoid unexpected pollutions
in the above example. However, its implementation still fails to propagate effect constraints in
some cases:
11To encode the type of effectful sequences in this approach, we would need to use a monad transformer stack where S
would be reflected in the sequence type.
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fun foo(r, f) = fork of () ⇒ f(1), () ⇒ r.ref 2

In the above definition, ReML’s implementation will complain that it cannot ensure that r’s effect
will not appear in f’s effect variable:

The effect e26 contains the atomic effect put(`r_23),
which I cannot conclude does not appear in e28 , which contains e22

Flix [50] addresses the poisoning problem by using Boolean unification. However, due to the
lack of subtyping, it usually produces confusing results:

fun print: Str →{console} ()

fun foo: ∀ E. (Int →{E ∧ ¬console} ()) →{E} ()

fun foo(f) = f(42)

In this example, foo accepts an argument function that cannot print anything. Flix compiler fails to
unify effect E ∧ ¬ console and effect E, even though E ∧ ¬ console is a smaller effect than E. For the
same reason, the following program is also rejected by Flix:

fun doPotentialConsoleTwice: ∀ T. (() →{console} T) →{console} T

doPotentialConsoleTwice of () ⇒ print("foo")

doPotentialConsoleTwice of () ⇒ 42 // Flix cannot unify pure and console!

Besides the poisoning problem, unification-based approaches also require more annotations for
polymorphism and coercions. For example, auxiliary type constructors and upcasting functions are
highly demanded in <NJ> [43] to ensure the scope-safety in metaprograms and upcast classifiers
to pass code fragments somewhere else. In InvalML, these are automatically done thanks to the
subtyping and type propagations.

A.4 Modularity and Non-Lexicality
Because our approach is type-based, it is naturally modular, in that any parts of an implementation
can be reasoned about independently and moved to an externally-defined helper function. This is
not the case in Rust, whose borrowing system needs to inspect the syntax of functions in a way
that cannot be completely abstracted in types.
One interesting consequence of this is that while deep modifications were required in order to

accommodate so-called non-lexical lifetimes in Rust, the corresponding pattern naturally falls out
of our type-and-effect system without any additional effort. Consider the following example:

region r; let a = mkArrayList(r)

iter of a, it ⇒ if next(it) is

None then println("none")

Some(v) then println(v); clear(a)

This code is ill-typed due to the effect of clear(a), but it can be fixed by simply moving the clearing
of the vector to a function that delays it. This now type checks because the effect is delayed to after
the iteration is done:

region r; let a = mkArrayList(r)

let k = iter of a, it ⇒ if next(it) is

None then println("none"); () ⇒ ()

Some(v) then println(v); () ⇒ clear(a)

k()

A.5 Scope-Safe Metaprogramming
We first show how to add scope-safe analytic quasiquotes to 𝜆!⊥. As we shall see, this can be done
without modifying the type system at all, by simply adding a few primitives.
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SyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntax
Term 𝑡 F . . . | run 𝑡 | 𝜆𝑥. 𝑡 | 𝑡 @ 𝑡 | try 𝑦 = 𝑡 \ 𝑡 in 𝑡 else 𝑡 | subst 𝑡 𝑡 in 𝑡

Pattern 𝑝 F 𝑥 | 𝜆𝑥. 𝑥 | 𝑥 @ 𝑥 | C(𝑥 )

Fig. 10. Quasiquotes syntax.

A.5.1 Informal presentation. The syntax of code quotation is inspired by Lisp and environment
classifiers [43]. We use the notation ` to quote each literal value (e.g., `42, `"hello"), keyword (e.g.,
`if, `let, `⇒), and global identifier (e.g., , `*, `+, `id) to be part of the residual program. Quoted
applications are denoted as f`(a). For convenience, quotes can be distributed over subexpressions.
For instance, `2 `+ `2 can be written as `(2 + 2) for short.
Passing staged code to the run function moves it to the current stage for execution. To ensure

both the type- and scope-safety of generated code statically, we adapt the typing approach of Squid
[69]. Each staged code fragment has type Code[out𝜏, out𝜎], where 𝜏 indicates the type of the
quoted term and 𝜎 states its context requirement. Only closed code (i.e., code without free variables)
can be executed, which is done by making run take a parameter of type Code[out𝜏, out⊥].

run(`(x ⇒ x)) // ok! x ⇒ x is closed

x `⇒ run(x) // error! x is open

y ⇒ `y // error! y is unbound at this stage

We don’t support unquotes explicitly, but current-stage code inside a quoted abstraction or
application can execute normally, working as unquoting in other systems:

x `⇒ id(x) `* x // id executes immediately

To type check this term, we first deduced that the type of x as used in the next stage is Int
and so the type assigned to the x variable in the metaprogram is Code[out Int, out𝛼], where
type variable 𝛼 is a fresh locally-quantified rigid type variable (or skolem), whose scope extends
over the lambda’s body. This notably ensures x cannot be executed within the function body.
Non-quoted identifier id refers to a current-stage function that returns its argument unchanged
at code generation time, so that the code above is equivalent to `(x ⇒ x * x). The Code type
constructor is covariant in both of its type parameters. Moreover, a quoted identifier like `* has type
∀𝛼. (Code[out Int, out𝛼], Code[out Int, out𝛼]) → Code[out Int, out𝛼]. Thanks to subtyping,
this means that given 𝑥 : Code[out Int, out𝜏] and 𝑦 : Code[out 0 ∨ 1, out𝜎], expression 𝑥 `* 𝑦
has type Code[out Int, out𝜏 ∨ 𝜎].

A.5.2 Formal development. We introduce a staged code typeCode[out𝜏, out𝜎], where 𝜏 represents
the type of the quoted term and 𝜎 represents its context requirements. The syntax of quasiquotes
is given in Figure 10. No unquoting syntax is provided, as we prefer to use a more lightweight
notation instead. We use 𝜆𝑥 . 𝑡 to create a staged lambda function and 𝑡 @ 𝑡 for staged application.
To support code inspection, we use 𝑥 to match quoted bindings. The remaining patterns correspond
to the introduction syntax. Type Var[𝜏, 𝜎] is introduced for the quoted variables and can be used
in try and subst. The try𝑦 = 𝑡1 \ 𝑡2 in 𝑡3 else 𝑡4 construct checks if a given fragment 𝑡1 contains
no free variable 𝑥 yielded by 𝑡2. If 𝑥 is not detected in 𝑡1, then we re-assign 𝑡1 to the variable 𝑦
and execute the branch 𝑡3. Otherwise, the fallback branch 𝑡4 will be executed. subst 𝑡1 𝑡2 in 𝑡3
substitutes the variable yielded by 𝑡1 appearing in the 𝑡3 with the term 𝑡2. Similarly to Ref and
Region, we define Code and Var as built-in primitive classes:
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Table 3. Typing of Quasiquotes
Desugaring Builtin Signature

𝜆𝑥. 𝑡 ⇝ abs (𝜆𝑥. 𝑡 )
abs : ∀𝛼, 𝛽, 𝛾1, 𝛿 .

(∀𝛾2 .Var[𝛼, 𝛾2 ]
𝛿→ Code[out 𝛽, out𝛾1 ∨ 𝛾2 ] )

𝛿→ Code[out𝛼 → 𝛽, out𝛾1 ]
run 𝑡 run : ∀𝛼.Code[out𝛼, out⊥] → 𝛼

try 𝑦 = 𝑡1 \ 𝑡2 in 𝑡3 else 𝑡4
⇝ close 𝑡1 𝑡2 (𝜆𝑦. 𝑡3 ) (𝜆_. 𝑡4 )

close : ∀𝛼, 𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛿 .
Code[out 𝛽1, out𝛾1 ∨ 𝛾2 ] → Var[𝛽2, 𝛾2 ] → (Code[out 𝛽1, out𝛾1 ]

𝛿→ 𝛼 ) → (⊤ 𝛿→ 𝛼 ) 𝛿→ 𝛼

subst 𝑡1 𝑡2 in 𝑡3 ⇝ subst 𝑡1 𝑡2 𝑡3
subst : ∀𝛽1, 𝛽2, 𝛾1, 𝛾2 .

Var[𝛽1, 𝛾1 ] → Code[out 𝛽1, out𝛾2 ] → Code[out 𝛽2, out𝛾1 ∨ 𝛾2 ] → Code[out 𝛽2, out𝛾2 ]

Definition A.1 (Primitive Definition for Quasiquotes).

class CodeBase[𝛼, 𝛽, 𝛾] with constructor
Var[𝛼, 𝛽] (Str) extends CodeBase[𝛼, 𝛽, out⊥]
Abs[𝛼, 𝛽, 𝛾, 𝛿] (Var[𝛼, 𝛿], Code[out 𝛽, out𝛾 ∨ 𝛿])

extends CodeBase[out𝛼 → 𝛽, out𝛾, out⊤]
App[𝛼, 𝛽, 𝛾] (Code[out𝛼 → 𝛽, out𝛾],Code[out𝛼, out𝛾])

extends CodeBase[out 𝛽, out𝛾, out⊤]

We use the shorthand Code[out𝜏, out𝜎] for CodeBase[out𝜏, out𝜎, out⊤] and Var[𝜏, 𝜎] for
CodeBase[𝜏, 𝜎, out⊥] for simplicity.

All typing rules for quasiquotes can also be encoded as built-in functions. We can directly
construct an App instance via the construct function. The remaining functions are shown in Table 3.
𝜆𝑥 . 𝑡 creates a fresh next-stage variable and passes it to the continuation. The continuation is a
higher-ranked function to ensure the next-stage variable will not be compiled inside the body. It
finally yields a quoted term that represents the body of the lambda function. run 𝑡 compiles and
executes the quoted program fragments. The contextual requirement of 𝑡 must be ⊥, which reflects
that 𝑡 is closed. This is essentially the same as the approach we guarantee a term is pure in §3: if
the effect is ⊥, we show that the term will not modify the heap; if the contextual requirement is ⊥,
the quoted term contains no free variable. try𝑦 = 𝑡1 \ 𝑡2 in 𝑡3 else 𝑡4 checks if a given next-stage
variable, indicated by 𝑡2, is actually free in the quoted term 𝑡1. If it is, we rebind the term to 𝑦

and evaluate the first branch. Otherwise, the fallback branch will be executed. subst 𝑡1 𝑡2 in 𝑡3
substitutes the given next-stage variable with another quoted term. Notice that both functions
requires a next-stage variable that is still in the scope. An escaped one, typed as Var[𝜏, in⊥ out⊤]
for some 𝜏 , will be rejected.

B Case Studies
B.1 A Dynamic Programming Example
Let’s study a practical example of InvalML. We first show some necessary builtin functions as
follows. iter function iterates over the given ArrayList and has the same type as we introduced
in §2, while revIter does the iteration in the reversal direction. next function checks if the given
iteratror reaches the end of the corresponding ArrayList, returning a Some object with the data if
there are still remaining data and returning None if the iteration is over. Since we do not introduce
do-while syntax, we encode it as a function whileDo that terminates the loop if the argument function
returns false. push function appends a new element into the given ArrayList. init, update, get are
used for Array2D’s initialization, modification, and data accessing, respectively. Finally, max function
is provided to pick the larger one from the given two integers.

fun iter , revIter: ∀ Res , R, T {E extends ¬R}.
(ArrayList[T, R], ∀ S. Iter[T, S] →{S ∨ E} Res) →{E ∨ R} Res

fun next: ∀ T, S. Iter[T, S] →{S} Option[T]
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fun whileDo: ∀ R. (() →{R} Bool) →{R} ()

fun push: ∀ A, R. (ArrayList[A, R], A) →{R} ()

fun init: [A, R] → (Region[out R], Int , Int , A) →{R} Array2D[A, R]

fun update: [A, R] → (Array2D[A, R], Int , Int , A) →{R} ()

fun get: [A, R] → (Array2D[A, R], Int , Int) →{R} A

fun max: (Int , Int) → Int

Our task is to select some interviewees from the candidate list within a limited budget, such that
the sum of the selected interviewees’ estimation scores is highest, which is a classical Knapsack
problem. Suppose dp[i][j] indicates the maximum score we can get for the first i-th candidates
and the budget j. Then consider having one more candidate. For any budget k, either we ignore
the candidate (i.e., dp[i][k] = dp[i - 1][k]) or we pick the candidate (i.e., dp[i][k] = dp[i - 1][k -

salary] + score). We demonstrate the implementation of select function as follows:
class Interv with constructor Interv(score: Int , salary: Int)

fun select(candidates , budget , results) =

region r

let size = len(interviewees), let i = r.ref 1

let dp = init(r, size + 1, budget + 1, 0)

iter of interviewees , it ⇒
whileDo of () ⇒ if next(it) is

Some(Interv(score , salary )) then

let j = r.ref 0

whileDo of () ⇒
if !j < salary then update(dp, !i, !j, get(dp, !i - 1, !j))

else

let p = get(dp, !i - 1, !j - salary), let np = get(dp, !i - 1, !j)

update(dp, !i, !j, max of np, p + score)

j := !j + 1; !j ≤ budget

i := !i + 1; true

None then false

// ... (continued below) ...

Recall that iter prevents the original region from being used while the provided argument function
executes. Notice that we have several mutable reference operations during the iteration. We must
reason that the local region r is separated from all possible outer regions. InvalML can infer the
type of candidates, thanks to the outer variable 𝜔 . Assume that candidates : ArrayList[Interv, 𝛼1]
for some fresh type variable 𝛼1 and r : Region[out 𝛽], where 𝛽’s level is 2. InvalML will assign ¬𝜔
to 𝛽’s upper bound. For any operation on r, our algorithm will ensure 𝛽 is different from 𝛼1 by
solving constraint 𝛼1 ≤ ¬𝛽 , which leads to an expected extrusion that widens 𝛽 to ¬𝜔 . Therefore,
we can get 𝛼1 ≤ ¬¬𝜔 , and it is equivalent to 𝛼1 ≤ 𝜔 . This tells us that candidates is an ArrayList

that is stored in an outer region, and any operation on local regions will not break the iteration.
Finally, we want to copy all selected candidates into another ArrayList. We traverse the candidate

list in reversal direction. If for the i-th interviewee and remaining budget rest, the maximum score
is derived from dp[i - 1][rest - salary], then we know this interviewee should be put into the
results list: 12

i := size , let rest = r.ref budget

revIter of interviewees , it ⇒
whileDo of () ⇒

if next(it) is

Some(Interv(score , salary )) then

12‘if e1 do e2’ is a syntax sugar for ‘if e1 then e2; () else ()’.
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if get(dp, !i, !rest) == get(dp, !i - 1, !rest - salary) + score

do push(results , Interv(score , salary )); rest := !rest - salary

i := !i - 1; true

None then false

get(dp , size , budget)

This program can be correctly type checked by InvalML. If users wrongly wrote the code push(

candidates, Interv(score, salary)), InvalML would reject all applications of select since we cannot
modify candidates when iterating over it. Finally, our algorithm will infer the following type for
select function: ∀𝛼, 𝛿, 𝜔{𝛼 ≤ 𝜔, 𝛿 ≤ ¬𝛼}. (ArrayList[Interv, 𝛼], Int,ArrayList[Interv, 𝛿]) 𝛼∨𝛿→ Int.

B.2 A Constraint Solver Example
In this section, let’s implement the constraint solver algorithm proposed by Parreaux [66]. We first
show some necessary builtin functions as follows. Most functions are the same as we have seen in
the previous section. We further introduce foreach function that takes an iterator and an argument
function. It checks if the iterator reaches the end of the ArrayList by calling next. If there exists a
value, it passes the value to the argument function.

fun empty: ∀ A, R. Region[out R] →{R} ArrayList[A, R]

fun push: ∀ A, R. (ArrayList[A, R], A) →{R} ()

fun iter: ∀ Res , R, T {E extends ¬R}.
(ArrayList[T, R], ∀ S. Iter[T, S] →{S ∨ E} Res) →{E ∨ R} Res

fun next: ∀ T, S. Iter[T, S] →{S} Option[T]

fun whileDo: ∀ R. (() →{R} Bool) →{R} ()

fun foreach: foreach E, R, T. (Iter[T, R], T →{E} ()) →{R ∨ E} ()

We now define Type as follows. Type takes a type argument to indicate which region it makes use
of to store the mutable lower bounds and upper bounds of type variables. For simplicity, we omit
other constructors. A simplified solve function is given. It takes an immutable list of constraints to
be solved. If the list is empty, the function does nothing. Otherwise, it matches the left-hand side of
the constraint against constructors. Let’s focus on the most interesting case, where the constraint
has a shape like 𝛼 ≤ 𝜏 for some type variable 𝛼 and some type 𝜏 . If 𝜏 has a higher level, we must
extrude 𝜏 to get rid of level violations. Otherwise, we can append rhs into the upper bound list
of the current type variable and propagate rhs by constrain all lower bounds of the current type
variable to be less than rhs. Notably, we create a local region and a reference storing the constraint
list. During the iteration, we keep pushing new constraints into ncs. The recursive call happens
when the iteration over.

class Type[R] with

constructor

IntType ()

/* other constructors */

TypeVariable(id: Str , lvl: Int ,

lowerBds: ArrayList[Type[out R], R], upperBds: ArrayList[Type[out R], R])

fun solve(constraints) = if constraints is

Nil() then ()

Cons(Pair(lhs , rhs), cs) then if lhs is

/* other cases */

TypeVariable(name , level , lb, ub) then

if levelOf(rhs) ≤ level then

push(ub , rhs)

region r in
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Ξ ⊢ T ≤∀ T
S-PTop

Ξ ⊢ T ≤∀ ⊤

S-PRefl

Ξ ⊢ T ≤∀ T

S-Mono
Ξ ⊢ 𝜏 ≤ 𝜎

Ξ ⊢ 𝜏 ≤∀ 𝜎

S-Forall
Σ = 𝛼𝑖 ≤±𝑖 𝜏𝑖

𝑖
Σ′ = 𝛼𝑖 ≤±𝑖 𝜎𝑖

𝑖

Ξ Σ′ ⊢ T ≤∀ S Ξ ⊢ ∀𝑉 {Σ′ } cons. Ξ ⊢ 𝜎𝑖 ≤±𝑖 𝜏𝑖
𝑖

Ξ ⊢ ∀𝑉 {Σ} . T ≤∀ ∀𝑉 {Σ′ } . S

S-PFun
Ξ ⊢ T1 ≤∀ T2 Ξ ⊢ T3 ≤∀ T4 Ξ ⊢ 𝜏5 ≤ 𝜏6

Ξ ⊢ T2
𝜏5→ T3 ≤∀ T1

𝜏6→ T4
Fig. 11. General subtyping rules.

let ncs = r.ref cs

iter(lb, it ⇒ foreach(it, b ⇒ ncs := Cons(Pair(b, rhs), !ncs); ()))

solve (!ncs)

else /* extrusion */

Again, iter prevents the original region from being used while the provided argument function
executes. Due to themutable operations on the region r and reference ncs, wemust know that all type
information is stored in another region that has no interference with r. Thanks to the outer variable
and subtype extrusion, InvalML can infer type List[outPair[out Type[out𝛼], out Type[out𝛼]]]
for constraints, where 𝛼 ≤ 𝜔 .
Finally, if we propagate the new upper bound and solve corresponding constraints on the fly,

shown as follows, it is possible that these new constraints might introduce new upper bounds
to the current type variable, which can break the iteration and lead to wong propagation. In this
case, InvalML can infer type List[outPair[out Type[out⊥], out Type[out⊥]]] for constraints. It
is only useful when there is no type variable in the given constraints.

fun solve(constraints) = if constraints is

Nil() then ()

Cons(Pair(lhs , rhs), cs) then if lhs is

/* other cases */

TypeVariable(name , level , lb, ub) then

if levelOf(rhs) ≤ level then

push(ub , rhs)

iter(lb , it ⇒ foreach(it, b ⇒ solve(Cons(Pair(b, rhs), Nil ()))))

solve(cs)

else /* extrusion */

C Additional Definitions
This appendix lists the missing definitions of 𝜆!⊥ which did not fit in the main body of the paper.

C.1 General Subtyping and Entailment
Though merely monomorphic subtyping is allowed in T-Subs1 and T-Subs2, one can still partially
upcast monomorphic types nested in polymorphic types via data types. Assume that we have
class A[𝛼] with constructor 𝐶 (∀𝛽. 𝛽 → 𝛼) ∈ D and Γ(𝑥) = A[outNat]. In the declarative
system, T-Subs1 can be arbitrarily used to upcast 𝑥 , for example, to A[out Int] with the assumption
Nat ≤ Int. After the upcasting operation, extracting the field of 𝑥 via pattern matching will be
typed to ∀𝛽. 𝛽 → Int, instead of the original ∀𝛽. 𝛽 → Nat. This will not introduce any problem to
the system’s soundness but bring inconvenience when we discuss the value typing and inference
algorithm. Therefore, we define general subtyping relations in Figure 11. We also define the
entailment judgment Ξ1 ⊨ Ξ2 in Figure 12 to ensure that all subtyping relations in Ξ2 hold in Ξ1.
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Ξ ⊨ Ξ
S-Empty

Ξ ⊨ 𝜖

S-Cons
Ξ1 ⊨ Ξ2 Ξ1 ⊢ 𝜏 ≤ 𝜎

Ξ1 ⊨ Ξ2 (𝜏 ≤ 𝜎 )

S-Cons�
Ξ1 ⊨ Ξ2 �Ξ1 ⊢ 𝜏 ≤ 𝜎

Ξ1 ⊨ Ξ2 �(𝜏 ≤ 𝜎 )

Fig. 12. Subtyping context entailment rules.

C.2 Well-Formedness, Substitution, and Consistency
The well-formedness rules are given in Figure 13. All well-formed types can only refer to other
well-formed types, declared type variables, and well-defined classes. For any generalized type, the
well-formedness also checks the bound context Σ to ensure the absence of recursive occurrences of
type variables, such as 𝛼 ≤ 𝛼 ∨ 𝛽 and 𝛼 ≤ 𝛽 , 𝛽 ≤ 𝛼 . We give the formal definition of guarded check
in Figure 15. As we mentioned in §2, we check the intersections and unions 𝜏1 ∧± 𝜏2 to prevent a
type variable from being composed with a function type or a data type that contains a nested type
variable. The reason we need this well-formedness check, and the ‘gd’ function in particular, is
that without them, there would be some terms that would be typeable in the declarative system
but that our algorithm would reject. Thankfully, these are mostly corner cases that do not arise in
practice for a system like InvalML.
The substitution 𝜌 = [𝜏/𝜈] is formally defined in Figure 16. The subtyping context consistency

rules are given in Figure 17. They largely follow those of Chau and Parreaux [14]. Notice that we
write ⋄ = pol(𝛼𝑖 ) to retrieve the polarity of 𝛼𝑖 . If 𝛼𝑖 is only in a positive position, then 𝜏𝑖 is required
to be well-formed in a positive positions. If 𝛼𝑖 appears in both positive and negative positions, we
require Γ ⊢ 𝜏 wf + and Γ ⊢ 𝜏 wf − .

Lemma C.1. If Γ wf, then Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 implies Γ ⊢ 𝜑 wf +, Γ ⊢ T wf +, and Γ ⊢ 𝜁 wf +.

Lemma C.2. If Γ wf, then sub(Γ) ⊢ T1 ≤∀ T2 implies both Γ ⊢ T1 wf + and Γ ⊢ T2 wf − .

Example C.3. Consider the term 𝑓 (𝑎) (𝑔), where 𝑓 : ∀𝛼. 𝛼 → (∀𝛽. (𝐶 [out 𝛽] ∧ 𝛼) → 𝛽) → Int,
𝑔 : ∀𝛿.𝐶 [in Int out𝛿] → 𝛿 , and 𝑎 : 𝐶 [in Int]. If we didn’t have the ‘gd’ well-formedness condition,
the term below would be typable in the declarative system:

(2)

𝑓 : ∀𝛼. 𝛼 → . . .

𝑓 : 𝐶 [in Int] → . . . 𝑎 : 𝐶 [in Int]
𝑓 (𝑎) : (∀𝛽. (𝐶 [out 𝛽] ∧𝐶 [in Int]) → 𝛽) → Int

(1)

𝑔 : ∀𝛿.𝐶 [in Int out𝛿] → 𝛿

𝑔 : 𝐶 [in Int out 𝛽] → 𝛽

𝑔 : (𝐶 [out 𝛽] ∧𝐶 [in Int]) → 𝛽

𝑔 : ∀𝛽. (𝐶 [out 𝛽] ∧𝐶 [in Int]) → 𝛽

𝑓 (𝑎) (𝑔) : Int

Notice that the step (1) is done via T-Subs1 with S-Fun, S-CtorMrg+, and S-Refl. However,
the inference algorithm will reject this program. In step (2), the algorithm will allocate a fresh
variable 𝛼 ′ for 𝛼 instead of guessing a type for 𝛼 , and 𝛼 ′ has a lower bound 𝐶 [in Int]. In step (1),
the algorithm will try to constrain 𝐶 [out 𝛽] ∧ 𝛼 ′ ≪ 𝐶 [in Int out𝛿 ′], where 𝛿 ′ is a fresh variable
for 𝛿 . Later 𝛿 ′ will be constrained to 𝛽 , which leads to a new upper bound 𝐶 [in Int out 𝛽] of 𝛼 ′.
This cannot hold, since we cannot assert that ⊤ ≤ 𝛽 .

Notice how we pick 𝐶 [in Int] for 𝛼 and 𝛽 for 𝛿 and S-CtorMrg+ is applicable since 𝛽 ∧ 𝜏 ≤ 𝛽

always holds for any 𝜏 . By contrast, the algorithm can only solve the constraints by C-Var3, which
yields a bad constraint ⊤ ≤ 𝛽 .

C.3 Value Typing and Context Conformance
We define the value typing rules and context conformance in Figure 18. As we explained in §C.1, we
allow a more flexible but harmless form of subtyping in T-VSubs. Rule T-RegA is standard. We use
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D wf

W-Dec
d wf

d∈D

D wf
d wf

W-ADT
A, {𝛼 } ⊢ 𝑐 wf

class A[𝛼 ] with constructor 𝑐 wf
Γ ⊢ 𝑎 wf ±

W-Arg
Γ ⊢ 𝜏 wf ∓ Γ ⊢ 𝜎 wf ±

Γ ⊢ in𝜏 out𝜎 wf ±

A, {𝛼 } ⊢ 𝑐 wf

W-Ctor1
{𝛼 } ⊢ T wf +

A, {𝛼 } ⊢ C(T) wf

W-Ctor2
{𝛽 } ⊢ T wf + {𝛽 } ⊢ 𝑏 wf + |𝑏 | = |𝛼 |

A, {𝛼 } ⊢ C[𝛽 ] (T) extends A[𝑏 ] wf

Γ ⊢ T wf ±
W-Top⋄

Γ ⊢ ⊤⋄ wf ±

W-Var
𝜈 ∈ Γ

Γ ⊢ 𝜈 wf ±

W-AndOr⋄
Γ ⊢ 𝜏1 wf ± Γ ⊢ 𝜏2 wf ± gd±sub(Γ) (𝜏1 ∧

⋄ 𝜏2 )
Γ ⊢ 𝜏1 ∧⋄ 𝜏2 wf ±

W-Neg
Γ ⊢ 𝜏 wf ∓

Γ ⊢ ¬𝜏 wf ±

W-Fun
Γ ⊢ T1 wf ∓ Γ ⊢ T2 wf ±

Γ ⊢ 𝜑 wf ±

Γ ⊢ T1
𝜑
→ T2 wf ±

W-Ctor
Γ ⊢ 𝑎 wf ± class A[𝛼 ] ∈ D |𝑎 | = |𝛼 |

Γ ⊢ A[𝑎] wf ±

W-Forall
Γ •𝑉 ⊢ Σ wf guarded (Σ)

𝜈, err, • ∉ Σ Γ •𝑉 Σ ⊢ T wf ±

Γ ⊢ ∀𝑉 {Σ} .T wf ±

Γ ⊢ Σ wf
W-Empty

Γ ⊢ 𝜖 wf

W-Bound
Γ ⊢ Σ wf

Γ ⊢ 𝛼 wf ± Γ ⊢ 𝜏 wf ∓

Γ ⊢ Σ (𝛼 ≤± 𝜏 ) wf

W-TV
Γ ⊢ Σ wf 𝛼 ∈ Γ

Γ ⊢ Σ 𝛼 wf

W-Sep
Γ ⊢ Σ wf Γ •𝑉 ⊢ Σ′ wf

Γ ⊢ Σ •𝑉 Σ′ wf

Γ ⊢ Ξ wf
W-Empty

Γ ⊢ 𝜖 wf

W-Hyp
Γ ⊢ Ξ wf Γ ⊢ 𝜏 wf ± Γ ⊢ 𝜎 wf ∓

Γ ⊢ Ξ (𝜏 ≤± 𝜎 ) wf

W-Assum
Γ ⊢ Ξ wf Γ ⊢ 𝜏 wf + Γ ⊢ 𝜎 wf −

Γ ⊢ Ξ �(𝜏 ≤ 𝜎 ) wf

Γ wf
Γ ⊢ T wf +

(𝑥 :T) ∈Γ
sub(Γ) wf

Γ wf
Γ ⊢ Ψ wf

W-Reg
Γ ⊢ Ψ wf Γ ⊢ 𝛼 wf +

Γ ⊢ Ψ (r : 𝛼 ) wf

W-Loc
Γ ⊢ Ψ wf Γ ⊢ 𝜏 wf +

Γ ⊢ Ψ (ℓ : 𝜏 ) wf

Fig. 13. Well-formedness rules.

gd±Σ (𝜏 ) ≜ for all𝐶 s.t. 𝜏 ⇝± 𝐶, if 𝛼 ∈ 𝐶 for some 𝛼, then for all 𝜎 ∈ 𝐶 s.t. 𝜎 ≠ 𝜈, lv(𝜎, Σ) = 0
⊤⋄ ⇝± ∅

𝜏
𝜑
→ 𝜎 ⇝± {𝜏

𝜑
→ 𝜎 } A[𝑎] ⇝± {A[𝑎] } 𝜈 ⇝± {𝜈 }

ub±Σ (𝛼 ) ⇝± 𝐶

𝛼 ⇝± 𝐶

𝜏 ⇝∓ 𝐶

¬𝜏 ⇝± 𝐶

𝜏 ⇝± 𝐶1 𝜎 ⇝± 𝐶2 mgd±Σ (𝜏 ∧± 𝜎 )
(𝜏 ∧± 𝜎 ) ⇝± 𝐶1 ∪𝐶2

𝜏 ⇝± 𝐶

(𝜏 ∨± 𝜎 ) ⇝± 𝐶

𝜎 ⇝± 𝐶

(𝜏 ∨± 𝜎 ) ⇝± 𝐶

gd∓Σ (𝜏1 ∨± 𝜎1 ) gd±Σ (𝜏2 ∧± 𝜎2 ) gd±Σ (𝜑 ∧± 𝜑 ′ )

mgd±Σ ( (𝜏1
𝜑
→ 𝜏2 ) ∧± (𝜎1

𝜑′
→ 𝜎2 ) )

gd∓Σ (𝜏𝑖 ∨± 𝜎𝑖 ) gd±Σ (𝜏 ′𝑖 ∧± 𝜎 ′
𝑖
)

mgd±Σ (A[in𝜏𝑖 out𝜏 ′𝑖 ] ∧
± A[in𝜎𝑖 out𝜎 ′

𝑖
] )

lv(Σ, 𝜏1
𝜑
→ 𝜏2 ) × lv(Σ, 𝜎1

𝜑′
→ 𝜎2 ) = 0

mgd±Σ ( (𝜏1
𝜑
→ 𝜏2 ) ∧± ¬(𝜎1

𝜑′
→ 𝜎2 ) )

lv(Σ,A[in𝜏𝑖 out𝜏 ′𝑖 ] ) × lv(Σ,A[in𝜎𝑖 out𝜎 ′
𝑖
] ) = 0

mgd±Σ (A[in𝜏𝑖 out𝜏 ′𝑖 ] ∧
± ¬A[in𝜎𝑖 out𝜎 ′

𝑖
] )

Fig. 14. Well-formed intersections and unions checking.

T-RegD to type a dead region. Since a closure may encapture a dead region, passing it to another
function that requires a region with the same in and out parameters, we cannot directly widen it
to Region[out in⊥ out¬𝜁 ]. T-Ctor instantiates the polymorphic construction function first and
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guarded (Σ) ≜ for all 𝛼 ∈ FV (Σ), , if lbΣ (𝛼 ) ≻− 𝐶1𝑎𝑛𝑑ubΣ (𝛼 ) ≻+ 𝐶2, then 𝛼 ∉ 𝐶1 ∪𝐶2 ⊤⋄ ≻± ∅

𝜏
𝜑
→ 𝜎 ≻± ∅ A[𝑎] ≻± ∅

ub±Σ (𝜈 ) ≻± 𝐶

𝜈 ≻± 𝐶 ∪ {𝜈 }
𝜏 ≻∓ 𝐶

¬𝜏 ≻± 𝐶

𝜏 ≻± 𝐶1 𝜎 ≻± 𝐶2

(𝜏 ∧⋄ 𝜎 ) ≻± 𝐶1 ∪𝐶2

Fig. 15. Guarded bound context checking.

𝜌 (𝜈 ) =
{

𝜏 if [𝜏/𝜈 ] ∈ 𝜌

𝛼 if 𝜈 ∉ dom(𝜌 ) 𝜌 (𝜏
𝜑
→ 𝜎 ) = 𝜌 (𝜏 )

𝜌 (𝜑 )
→ 𝜌 (𝜎 )

𝜌 (A[𝑎𝑖 ] ) = A[𝜌 (𝑎𝑖 ) ] 𝜌 (⊤± ) = ⊤±

𝜌 (𝜏 ∨± 𝜎 ) = 𝜌 (𝜏 ) ∨± 𝜌 (𝜎 ) 𝜌 (¬𝜏 ) = ¬(𝜌 (𝜏 ) )

𝜌 (∀𝑉 {Σ} . T) = ∀𝑉 {𝜌 (Σ) } . 𝜌 (T) 𝜌 (T
𝜑
→ S) = 𝜌 (T)

𝜌 (𝜑 )
→ 𝜌 (S)

𝜌 (in𝜏 out𝜎 ) = in 𝜌 (𝜏 ) out 𝜌 (𝜎 ) 𝜌 (𝜏 ≤ 𝜎 ) = 𝜌 (𝜏 ) ≤ 𝜌 (𝜎 )

dom( [ ] ) = ∅ dom( [𝜏/𝜈 ] ◦ [𝜎/𝜈 ′ ] ) = dom( [𝜏/𝜈 ] ) ∪ {𝜈 ′ }
Fig. 16. Formal definition of type substitution

Γ cons.
𝜖 ⊢ sub(Γ) cons.

Γ cons.

Ξ ⊢ Ξ cons.
𝜌 = [𝜏𝑖/𝛼𝑖 ]

𝑖
Ξ1 ⊢ 𝜏𝑖 wf ⋄ ⋄ = pol (𝛼𝑖 )

𝑖
�Ξ2 𝜌 (Ξ1 ) ⊨ 𝜌 (Ξ2 )

Ξ1 ⊢ Ξ2 cons.

Ξ ⊢ ∀𝑉 {Σ} cons.
Ξ ⊢ Σ cons.

Ξ ⊢ ∀𝑉 {Σ} cons.

Fig. 17. Consistency of subtyping and typing contexts.

then checks each parameter. We merge the alive location typing and dead location typing rules into
T-Loc, which says we need to find a store typing context Ψ′ that can witness the existence of ℓ𝜁
and a typing context Γ′, such that Γ′ ⊢ 𝜏 wf +. We immediately upcast 𝜏 to 𝜏 ′, such that Γ ⊢ 𝜏 ′ wf +
and make use of region typing rules to retrieve the region types. Finally, T-VGen and T-Clos are
standard.

C.4 Semantics of 𝜆!⊥

The big-step semantics of 𝜆!⊥ are presented in Figure 19. We give our big-step semantics in the
functional style of Radanne et al. [77]. The function eval, written in OCaml-inspired syntax, requires
an initial runtime environment 𝛾 and an initial store𝜓 , manipulating term 𝑒 with fuel 𝑖 , and finally
returns a result R. A result can be either a pair of store and value, an error err, or a timeout kill.
The function firstly checks if time is up (i.e., runs out of fuel) and returns kill if so. Otherwise,
it starts handling the term 𝑒 by pattern matching. We borrow the let* expression from Radanne
et al. [77]’s interpretation. It works as a monadic mapping function, evaluating the body only if
the binding right-hand-side yields a correct value instead of err or kill. Evaluations for variables,
ascriptions, lambda abstractions, and let-bindings are standard. For the Construct case, we retrieve
the constructor function 𝑐𝑡𝑜𝑟 and the length of parameters 𝑠 by function getdef. If the length of
parameters is not matched, we return err directly. fold_left* is a folding function that terminates
immediately if the intermediate result is either err or kill. Evaluation for Region allocates a fresh
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Γ | Ψ, 𝜁 ⊢ 𝑣 : T

T-VSubs
Γ | Ψ, 𝜁 ⊢ 𝑣 : T1 sub(Γ) ⊢ T1 ≤∀ T2

Γ | Ψ, 𝜁 ⊢ 𝑣 : T2

T-RegA
Ψ(r) = 𝛼

Γ | Ψ, 𝜁 ⊢ r : Region[out𝛼 ]

T-RegD
r ∉ dom(Ψ)

Γ | Ψ, 𝜁 ⊢ r : Region[out¬𝜁 ]

T-Ctor
Γ ⊢ constructC : T𝑖 →

𝑖∈1...𝑛
A[𝑎] Γ | Ψ, 𝜁 ⊢ 𝑣𝑗 : T𝑗

𝑗 ∈1...𝑛

Γ | Ψ, 𝜁 ⊢ C(𝑣𝑗 𝑗 ∈1...𝑛 ) : A[𝑎]

T-Loc
Ψ′ (ℓr ) = 𝜏 sub(Γ′ ) ⊢ 𝜏 ≤ 𝜏 ′ Γ | Ψ, 𝜁 ⊢ r : Region[out𝜎 ]

Γ | Ψ, 𝜁 ⊢ ℓr : Ref [𝜏 ′, out𝜎 ]

T-VGen
Γ 𝑉 Σ | Ψ, 𝜁 ∨𝜔 ⊢ 𝑣 : T 𝜔 ∈ 𝑉 sub(Γ) ⊢ ∀𝑉 {Σ} cons.

Γ | Ψ, 𝜁 ⊢ 𝑣 : ∀𝑉 {Σ} . T

T-Clos
Γ′ | Ψ ⊨𝜁 𝛾 |𝜓 Γ′ (𝑥 : T), 𝜁 ⊢ (𝑡 : S) : S ! 𝜑

Γ | Ψ, 𝜁 ⊢ ⟨𝜆𝑥. 𝑡, 𝛾 ⟩ : T
𝜑
→ S

Γ | Ψ ⊨𝜁 𝛾 |𝜓
CF-Empty

𝜖 | 𝜖 ⊨⊥ 𝜖 | 𝜖

CF-Var
Γ | Ψ ⊨𝜁 𝛾 |𝜓 Γ | Ψ, 𝜁 ⊢ 𝑣 : T
Γ (𝑥 : T) | Ψ ⊨𝜁 𝛾 (𝑥 ↦→ 𝑣) |𝜓

CF-Reg
Γ | Ψ ⊨𝜁 𝛾 |𝜓 𝜏 = ¬𝜁

Γ • 𝛼 (𝛼 ≤ 𝜏 ) | Ψ (r : 𝛼 ) ⊨𝜁∨𝛼 𝛾 |𝜓 (r ↦→ 𝜖 )

CF-Loc
Γ | Ψ ⊨𝜁 𝛾 |𝜓 Γ | Ψ, 𝜁 ⊢ 𝑣 : 𝜏 𝜓 (r) = 𝜇

Γ | Ψ (ℓr : 𝜏 ) ⊨𝜁 𝛾 |𝜓 (r ↦→ (𝜇 (ℓr ↦→ 𝑣) ) )

CF-Forall
Γ | Ψ ⊨𝜁 𝛾 |𝜓 𝜔 ∈ 𝑉 sub(Γ) ⊢ ∀𝑉 {Σ} cons.

Γ •𝑉 Σ | Ψ ⊨𝜁∨𝜔 𝛾 |𝜓

Fig. 18. Typing rules for values and context conformance.

region instance r and an empty memory area 𝜇. newreg returns both the region instance r and the
new store context𝜓1, where𝜓1 =𝜓 (r ↦→ 𝜇). It then evaluates the body 𝑡 with the region instance
bound to 𝑥 and the store context𝜓1. All locations belonging to the region r will be discarded when
we exit this region, written as 𝜓2 \ r. Ref requires 𝑡1 to yield a region instance (checked by the
getreg function) and updates the Heap𝜓 ′′ with a fresh location. Evaluations for Deref and Set are
standard. Case Match accepts a scrutinee 𝑠 and a series of branches 𝑏𝑠 . Function fold_left*? works
like fold_left*, but wrapping everything in an Option monad, continuing iteration only if the result
is still none. If the instance matches the current branch, we zip the binders and the extracted values
(i.e., [𝑥 ↦→ 𝑝]𝑥𝑠 ·𝑝𝑠 ) and then evaluate the branch body.

C.5 RDNF Construction Functions
We define the dnf function in Figure 20. The algorithm is also inspired by 𝜆¬ [68] but much simpler.

Lemma C.4 (Correctness of dnf ). For all 𝜏 and D = dnf (𝜏), ⊢ 𝜏 ≡ D.13

C.6 Semantics ofQuasiquotes
The runtime semantics of quasiquotes is shown in Figure 21. We adopt 𝜋 to store the next-satge
variables to ensure the generated code is hygienic. Evaluations for terms mentioned in §3 and
notions for stores are omitted for simplicity.

D Full Metatheory
We now provide the proofs of the main theorems and lemmas stated in the main text.

13We use the standard notion of type equivalence as mutual subtyping 𝜏1 ≡ 𝜏2
def
= 𝜏1 ≤ 𝜏2 and 𝜏2 ≤ 𝜏1
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let rec eval(𝛾 : ctx)(𝜓 : st) 𝑖 𝑒: R = | Ref(𝑡1, 𝑡2) →
if 𝑖 = 0 then kill else let* (𝜓1, 𝑣1) =

let 𝑖′ = 𝑖 - 1 in eval 𝛾 𝜓 𝑖′ 𝑡1 in

match 𝑒 with let* (𝜓2, 𝑣2) =

| Var(𝑥) → let* 𝑣 = 𝛾 (𝑥) eval 𝛾 𝜓1 𝑖′ 𝑡2 in

in val(𝜓 , 𝑣) let* r = getreg 𝜓2 𝑣1 in

| Asc(𝑒, _) → eval 𝛾 𝜓 𝑖′ 𝑒 let* (𝜓3, ℓr) =

| Let(𝑥 , 𝑡1, 𝑡2) → alloc 𝜓2 r 𝑣2

let* (𝜓1, 𝑣1) = in val(𝜓3, ℓr)

eval 𝛾 𝜓 𝑖′ 𝑡1 | Deref(𝑡 ) →
in eval (𝛾 [x ↦→ 𝑣1]) 𝜓1 𝑖′ 𝑡2 let* (𝜓1, 𝑣1) =

| Abs(𝑥 , 𝑒) →val(𝜓 , ⟨𝜆𝑥. 𝑒, 𝛾 ⟩) eval 𝛾 𝜓 𝑖′ 𝑡 in

| App(𝑓 , 𝑎) → let* ℓr = getloc 𝜓1 𝑣1 in

let* (𝜓1, 𝑣1) = let* 𝑣2 = read 𝜓1 ℓr in

eval 𝛾 𝜓 𝑖′ 𝑓 in val(𝜓1, 𝑣2)

let* (𝜓2, 𝑣2) = | Set(𝑡1, 𝑡2) →
eval 𝛾 𝜓1 𝑖′ 𝑎 in let* (𝜓1, 𝑣1) =

let* (𝑥 , 𝑒, 𝛾 ′) = getclos 𝑣1 eval 𝛾 𝜓 𝑖′ 𝑡 in

in eval (𝛾 ′ [𝑥 ↦→ 𝑣2]) 𝜓2 𝑖′ 𝑒 let* ℓr = getloc 𝜓1 𝑣1 in

| Construct(𝑐, 𝑥𝑠) → let* (𝜓2, 𝑣2) =

let* (𝑐𝑡𝑜𝑟 , 𝑠) = getdef 𝑐 in eval 𝛾 𝜓1 𝑖′ 𝑡2 in

if List.length 𝑥𝑠 <> 𝑠 let* 𝜓3 = write 𝜓2 ℓr 𝑣2 in

then err else let* (𝜓 ′, 𝑣𝑠) = val(𝜓3, 𝑣2)

fold_left* fun (𝜓0, 𝑟 ) 𝑥 → | Match(𝑠, 𝑏𝑠) →
let* (𝜓 ′, 𝑣) = eval 𝛾 𝜓0 𝑖′ 𝑥 let* (𝜓1, 𝑣1) =

in (𝜓 ′, 𝑣 :: 𝑟 ) eval 𝛾 𝜓 𝑖′ 𝑠 in

(𝜓 , []) 𝑥𝑠 let* (𝑐, 𝑝𝑠) = getctor 𝑣1 in

in val(𝜓 ′, 𝑐𝑡𝑜𝑟 (rev 𝑣𝑠)) let* (𝜓 ′, 𝑣2) = fold_left *?

| Region(𝑥 , 𝑡 ) → fun 𝑟 (𝑐′, 𝑥𝑠, 𝑡 ) →
let (r, 𝜓1) = newreg 𝜓 in if 𝑐 <> 𝑐′ then 𝑟 else

let* (𝜓2, 𝑣) = let 𝛾 ′ = 𝛾 [𝑥 ↦→ 𝑝 ]𝑥𝑠 ·𝑝𝑠

eval (𝛾 [𝑥 ↦→ 𝑟 ]) 𝜓1 𝑖′ 𝑡 in some eval 𝛾 ′ 𝜓 𝑖′ 𝑡

in val(𝜓2 \ r, 𝑣) none 𝑏𝑠 in val(𝜓 ′, 𝑣2)

Fig. 19. Big-step operational semantics.

D.1 Some Lemmas on Subtyping
We start by reviewing a few important lemmas on subtyping.

Theorem D.1 (Swapping). For all type 𝜏1, 𝜏2, and 𝜏3:
(1) If Ξ ⊢ 𝜏1 ∧ 𝜏2 ≤ 𝜏3, then Ξ ⊢ 𝜏1 ≤ 𝜏3 ∨ ¬𝜏2.
(2) If Ξ ⊢ 𝜏3 ≤ 𝜏1 ∨ 𝜏2, then Ξ ⊢ 𝜏3 ∧ ¬𝜏2 ≤ 𝜏1.

Proof. See the proof by Parreaux and Chau [68]. □

Theorem D.2 (Duality of Extrema). Ξ ⊢ ⊤± ≡ ¬⊥±.

Proof. See the proof by Parreaux and Chau [68]. □

Theorem D.3 (De Morgan’s laws). Ξ ⊢ ¬(𝜏1 ∨± 𝜏2) ≡ ¬𝜏1 ∧± ¬𝜏2.
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dnf : 𝜏 → D

dnf (⊤) = dnf (¬⊥) = ⊤ ∧ ¬⊥
dnf (⊥) = dnf (¬⊤) = ⊥

dnf (𝜈 ) = ⊤ ∧ ¬⊥ ∧ 𝜈

dnf (𝜏1
𝜑
→ 𝜏2 ) = (dnf (𝜏1 )

dnf (𝜑 )
→ dnf (𝜏2 ) ) ∧ ¬⊥

dnf (A[in𝜏𝑖 out𝜎𝑖
𝑖 ] ) = A[in dnf (𝜏𝑖 ) out dnf (𝜎𝑖 )

𝑖 ] ∧ ¬⊥
dnf (𝜏1 ∧ 𝜏2 ) = inter (dnf (𝜏1 ), dnf (𝜏2 ) )
dnf (𝜏1 ∨ 𝜏2 ) = union(dnf (𝜏1 ), dnf (𝜏2 ) )

dnf (¬𝜈 ) = ⊤ ∧ ¬⊥ ∧ ¬𝜈

dnf (¬(𝜏1
𝜑
→ 𝜏2 ) ) = ⊤ ∧ ¬(dnf (𝜏1 )

dnf (𝜑 )
→ dnf (𝜏2 ) )

dnf (¬A[in𝜏𝑖 out𝜎𝑖
𝑖 ] ) = ⊤ ∧ ¬(⊥ ∨ A[in dnf (𝜏𝑖 ) out dnf (𝜎𝑖 )

𝑖 ] )
dnf (¬(𝜏1 ∧ 𝜏2 ) ) = union(dnf (¬𝜏1 ), dnf (¬𝜏2 ) )
dnf (¬(𝜏1 ∨ 𝜏2 ) ) = inter (dnf (¬𝜏1 ), dnf (¬𝜏2 ) )

union : (D, D) → D

union(⊥, D) = union(D, ⊥) = D

union(D, C) =
{
D if C ∈ D

D ∨ C otherwise

union(D1, D2 ∨ C) = union(union(D1, C), D2 )
inter : (D, D) → D

inter (D, ⊥) = inter (⊥, D) = ⊥
inter (D ∨ C1, C2 ) = inter (C2, D ∨ C1 ) = union(inter (D, C2 ), inter (C1, C2 ) )

inter (D1 ∨ C, D2 ) = union(inter (D1, D2 ), inter (C, D2 ) )
inter : (C, C) → C | ⊥

inter (C1, C2 ∧ ¬±𝜈 ) =

⊥ if ∓𝜈 ∈ C1

inter (C1, C2 ) if ¬±𝜈 ∈ C1

inter (C1 ∧ ¬±𝜈, C2 ) otherwise

inter (𝐼1 ∧ ¬𝑈1∧¬±𝜈, 𝐼2 ∧ ¬𝑈2 ) =
{⊥ if mrg+ (𝐼1, 𝐼2 ) = ⊥

mrg+ (𝐼1, 𝐼2 ) ∧ ¬mrg− (𝑈1, 𝑈2 )∧¬±𝜈 otherwise

mrg+ : (𝐼 , 𝐼 ) → 𝐼 | ⊥
mrg+ (𝐼 , ⊤) =mrg+ (⊤, 𝐼 ) = 𝐼

mrg+ (D1
D3→ D2, D4

D6→ D5 ) = union(D1, D4 )
inter (D3,D6 )→ inter (D2, D5 )

mrg+ (A[inD𝑖1 outD𝑖2
𝑖 ], A[inD𝑖3 outD𝑖4

𝑖 ] ) = A[in union(D𝑖1, D𝑖3 ) out inter (D𝑖2, D𝑖4 )
𝑖 ]

mrg+ (𝐼1, 𝐼2 ) = ⊥ otherwise

mrg− : (𝑈 , 𝑈 ) → 𝑈

mrg− (𝑈 , ⊥) =mrg− (⊥, 𝑈 ) =𝑈

mrg− (D1
D3→ D2, D4

D6→ D5 ) = inter (D1, D4 )
union(D3,D6 )→ union(D2, D5 )

mrg− (𝑈 ∨ A[inDoutD], D1
D3→ D2 ) =mrg− (𝑈 , D1

D3→ D2 ) ∨ A[inDoutD]

mrg− (𝑈 ∨ A[inD𝑖1 outD𝑖2
𝑖 ], 𝑈 ′ ∨ A[inD𝑖3 outD𝑖4

𝑖 ] ) =mrg− (𝑈 , 𝑈 ′ ) ∨ A[in inter (D𝑖1, D𝑖3 ) out union(D𝑖2, D𝑖4 )
𝑖 ]

mrg− (𝑈 , 𝑈 ′ ∨ A[inDoutD] ) =mrg− (𝑈 , 𝑈 ′ ) ∨ A[inDoutD] if A ∉ 𝑈

Fig. 20. RDNF construction functions.
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let rec eval (𝛾 : env) | Try(𝑡1, 𝑡2, 𝑡3, 𝑡4) ⇒
(𝜋 : syms) 𝑖 𝑒: R = let* (𝜋1, 𝑣1) =

if 𝑖 = 0 then kill else eval 𝛾 𝜋 𝑖′ 𝑡1

let 𝑖′ = 𝑖 - 1 in in let* (𝜋2, 𝑣2) =

match 𝑒 with eval 𝛾 𝜋1 𝑖′ 𝑡2

| . . . in let* 𝑏 = test 𝜋 𝑣1 𝑣2 in

| QAbs(𝑓 ) ⇒ if not 𝑏 then

let* (𝜋1, 𝑣1) = eval 𝛾 · [𝑦 ↦→ 𝑣1 ] 𝜋 𝑖′ 𝑡3

eval 𝛾 𝜋 𝑖′ 𝑓 in else eval 𝛾 𝜋 𝑖′ 𝑡4

let* (𝑥 , 𝑒, 𝛾 ′) = getclos 𝑣1 in | Subst(𝑡1, 𝑡2, 𝑡3) ⇒
let (𝑠, 𝜋2) = freshVar 𝜋1 in let* (𝜋1, 𝑣1) =

let* (𝜋3, 𝑣2) = eval 𝛾 𝜋 𝑖′ 𝑡1

eval 𝛾 ′ ·[𝑥 ↦→ 𝑠] 𝜋2 𝑖′ 𝑒 in let* (𝜋2, 𝑣2) =

in val(𝜋3, Abs(𝑠, 𝑣2)) eval 𝛾 𝜋1 𝑖′ 𝑡2

| Run(𝑡 ) ⇒ in let* (𝜋3, 𝑣3) =

let* (𝜋1, 𝑣) = eval 𝛾 𝜋2 𝑖′ 𝑡3

eval 𝛾 𝜋 𝑖′ 𝑡 in let* 𝑟 = substs 𝜋3 𝑣1 𝑣2 𝑣3

in eval 𝛾 𝜋1 𝑖′ (compile 𝑣) in val(𝜋3, 𝑟 )

Fig. 21. Quasiquotes semantics.

Proof. See the proof by Parreaux and Chau [68]. □

Theorem D.4 (Absorption). Ξ ⊢ 𝜏1 ∨± (𝜏1 ∧± 𝜏2) ≡ 𝜏1.

Proof. See the proof by Parreaux and Chau [68]. □

D.2 Soundness of Subtyping
We now show that subtyping is sound (Theorem D.31 below). We first need a few definitions and
lemmas.

Definition D.5 (Function data types). For the sake of simplicity, in the rest of this subsection, we
define the function data type F[in𝜏1, out𝜏2, out𝜑] ≡ 𝜏1

𝜑
→ 𝜏2, where F is different from all other

data types. All subtyping rules in Figure 3 preserve under this new definition.

Definition D.6. The Boolean homomorphism ⟦·⟧E from the Boolean algebra of types to 𝑃 (𝑈 )
orderred by inclusion, where𝑈 = {A} is the set of all data types, is defined as:

⟦A[𝑎]⟧E = A

Lemma D.7 (Monotonicity of ⟦·⟧E). ⟦·⟧E is monotonic.

Proof. We show that the subtyping relation is compatible with ⟦·⟧E. The only non-trivial cases
are S-CtorBot and S-CFBot. For any two different data types A1 and A2 where A1 ≠ A2, we have
{A1} ∩ {A2} = ∅. We conclude by ∅ ⊆ ∅. Similarly, we have F ≠ A′ for any other data types by
Definition D.5. □

Definition D.8. The Boolean homomorphism ⟦·⟧+𝑖A from the Boolean algebra of types ordered
by subtyping under the context Ξ to the Boolean algebra of types ordered by subtyping under the
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context �Ξ is defined as:

⟦A′ [𝑎]⟧+𝑖A = ⊥ if A′ ≠ A

⟦A[in𝜏 𝑗 out𝜎 𝑗

𝑗 ]⟧+𝑖A = 𝜎 𝑗 where 𝑖 = 𝑗

Lemma D.9 (Monotonicity of ⟦·⟧+𝑖A ). ⟦·⟧+𝑖A is monotonic.

Proof. We show that the subtyping relation is compatible with ⟦·⟧+𝑖A . The only non-trivial cases
are S-Fun, S-Ctor, S-CtorBot and S-CFBot.
Case S-Fun. Then Ξ ⊢ 𝜏2

𝜏5→ 𝜏3 ≤ 𝜏1
𝜏6→ 𝜏4. If A ≠ F, then we conclude by S-Refl. Consider ⟦·⟧+𝑖F .

By premises, we have �Ξ ⊢ 𝜏5 ≤ 𝜏6 and �Ξ ⊢ 𝜏3 ≤ 𝜏4. For 𝑖 = 1, we have �Ξ ⊢ ⊤ ≤ ⊤ and
we conclude by S-Refl. For 𝑖 = 2 and 𝑖 = 3, we conclude by the premises above.

Case S-Ctor. Similar to the case S-Fun.
Case S-CtorBot. By the premise, A1 ≠ A2. Then at least one of A1 ≠ A and A2 ≠ A holds.

Therefore, at least one of ⟦A1 [𝑎]⟧+𝑖A = ⊥ and ⟦A2 [𝑏]⟧+𝑖A = ⊥ holds. We conclude by S-
AndOrL+ or S-AndOrR+.

Case S-CFBot. Similar to the case S-CtorBot.
□

Definition D.10. The Boolean homomorphism ⟦·⟧−𝑖A from the Boolean algebra of types ordered
by subtyping under the context Ξ to the Boolean algebra of types ordered by subtyping under the
context �Ξ is defined as:

⟦A′ [𝑎]⟧−𝑖A = ⊥ if A′ ≠ A

⟦A[in𝜏 𝑗 out𝜎 𝑗

𝑗 ]⟧−𝑖A = ¬𝜏 𝑗 where 𝑖 = 𝑗

Lemma D.11 (Monotonicity of ⟦·⟧−𝑖A ). ⟦·⟧−𝑖A is monotonic.

Proof. We show that the subtyping relation is compatible with ⟦·⟧−𝑖A . The only non-trivial cases
are S-Fun, S-Ctor, S-CtorBot and S-CFBot.
Case S-Fun. Then Ξ ⊢ 𝜏2

𝜏5→ 𝜏3 ≤ 𝜏1
𝜏6→ 𝜏4. If A ≠ F, then we conclude by S-Refl. Consider ⟦·⟧−𝑖F .

By premises, we have �Ξ ⊢ 𝜏1 ≤ 𝜏2. By Theorem D.1 twice, �Ξ ⊢ ¬𝜏2 ≤ ¬𝜏1. For 𝑖 = 1, we
conclude by the premise above. For 𝑖 = 2 and 𝑖 = 3, we have �Ξ ⊢ ⊤ ≤ ⊤ and we conclude
by S-Refl.

Case S-Ctor. Similar to the case S-Fun.
Case S-CtorBot. By the premise, A1 ≠ A2. Then at least one of A1 ≠ A and A2 ≠ A holds.

Therefore, at least one of ⟦A1 [𝑎]⟧+𝑖A = ⊥ and ⟦A2 [𝑏]⟧+𝑖A = ⊥ holds. We conclude by S-
AndOrL+ or S-AndOrR+.

Case S-CFBot. Similar to the case S-CtorBot.
□

Lemma D.12. If �Σ ⊢ 𝜏 ≤ 𝜎 , where

𝜏 ∈ {⊤, ⊥, 𝜏1
𝜑1→ 𝜏2, A[in 𝜏𝑖 out 𝜏 ′𝑖

𝑖 ]}

𝜎 ∈ {⊤, ⊥, 𝜎1
𝜑2→ 𝜎2, A[in 𝜎𝑖 out 𝜎 ′

𝑖

𝑖 ]}
then exactly one of the following is true:

• 𝜏 = ⊥ or 𝜎 = ⊤;
• 𝜏 = 𝜏1

𝜑1→ 𝜏2, 𝜎 = 𝜎1
𝜑2→ 𝜎2, Σ ⊢ 𝜎1 ≤ 𝜏1, Σ ⊢ 𝜑1 ≤ 𝜑2, and Σ ⊢ 𝜏2 ≤ 𝜎2;
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• 𝜏 = A1 [in 𝜏𝑖 out 𝜎𝑖
𝑖∈1...𝑚], 𝜎 = A2 [in 𝜏 ′

𝑗
out 𝜎 ′

𝑗

𝑗∈1...𝑛], A1 = A2, 𝑚 = 𝑛, Σ ⊢ 𝜏 ′
𝑖
≤ 𝜏𝑖

𝑖
, and

Σ ⊢ 𝜎𝑖 ≤ 𝜎 ′
𝑖

𝑖
.

Proof. By case analysis on 𝜎 .
Case 𝜎 = ⊤. Immediately.
Case 𝜎 = ⊥. Consider the Boolean homomorphism ⟦·⟧E in Definition D.6. Then ⟦𝜎⟧E = ∅. By

case analysis on 𝜏 . The only possible case is 𝜏 = ⊥ and we have ∅ ⊆ ∅. For other cases, it is
impossible since {A} ⊈ ∅ for all A and𝑈 ⊈ ∅.

Case 𝜎 = 𝜎1
𝜑2→ 𝜎2. First, consider the Boolean homomorphism ⟦·⟧E in Definition D.6. Then ⟦𝜎⟧E =

{F}. By case analysis on 𝜏 . The only possible cases are 𝜏 = ⊥ and 𝜏 = 𝜏1
𝜑1→ 𝜏2. For other cases,

it is impossible since {A} ⊈ {F} for any other A and 𝑈 ⊈ {F}. Then consider �Σ ⊢ 𝜏1
𝜑1→

𝜏2 ≤ 𝜎1
𝜑2→ 𝜎2. and the Boolean homomorphism ⟦·⟧+𝑖F in Definition D.8. We have Σ ⊢ 𝜏2 ≤ 𝜎2

and Σ ⊢ 𝜑1 ≤ 𝜑2. Similarly, by the Boolean homomorphism ⟦·⟧−𝑖F in Definition D.10 and
Theorem D.1, we have Σ ⊢ 𝜎1 ≤ 𝜏1.

Case 𝜎 = A[in 𝜎𝑖 out 𝜎 ′
𝑖

𝑖 ]. Similar to the case 𝜎 = 𝜎1
𝜑2→ 𝜎2.

□

Lemma D.13. Ξ ⊢ 𝛼 ≡ 𝛼 ∧± ub±Ξ (𝛼).

Proof. We prove the case where ± = +. The proof for ± = − is symmetric. By S-AndOr+,
Ξ ⊢ 𝛼 ≤ ubΞ (𝛼). By S-Refl, Ξ ⊢ 𝛼 ≤ 𝛼 . Then by S-AndOr+, Ξ ⊢ 𝛼 ≤ 𝛼 ∧± ub±Ξ (𝛼). By S-AndOrL+,
Ξ ⊢ 𝛼 ∧± ub±Ξ (𝛼) ≤ 𝛼 . □

Corollary D.14. Ξ ⊢ 𝛼 ≡ 𝛼 ∧ ubΞ (𝛼) ∨ lbΞ (𝛼).

Proof. By Lemma D.13. □

Theorem D.15 (Subtyping context weakening). If Ξ ⊢ 𝜏 ≤ 𝜎 and Ξ′ ⊨ Ξ, then Ξ′ ⊢ 𝜏 ≤ 𝜎 .

Proof. By induction on the subtyping derivations. □

Lemma D.16 (Reflexivity and weakening of subtyping context). For all Ξ and Ξ′, Ξ Ξ′ ⊨ Ξ
and Ξ Ξ′ ⊨ �Ξ.

Proof. By repeated applications of S-Cons and S-Cons� on S-Hyp. □

Lemma D.17 (Transitivity). If Ξ1 ⊨ Ξ2 and Ξ2 ⊨ Ξ3, then Ξ1 ⊨ Ξ3.

Proof. By induction on the entailment derivations with Theorem D.15. □

Lemma D.18 (Merging). If Ξ1 ⊨ Ξ′
1 and Ξ2 ⊨ Ξ′

2, then Ξ1 Ξ2 ⊨ Ξ′
1 Ξ

′
2.

Proof. By induction on the entailment derivations with Lemma D.16, Lemma D.17, and Theo-
rem D.15. □

Lemma D.19 (Unguarding). If Ξ ⊨ Ξ′, then �Ξ ⊨ �Ξ′.

Proof. By induction on the entailment derivations. □

Lemma D.20 (Preservation of subtyping under substitution). If Ξ ⊢ 𝜏 ≤ 𝜎 , then 𝜌 (Ξ) ⊢
𝜌 (𝜏) ≤ 𝜌 (𝜎).

Proof. By induction on the subtyping derivations. □

Corollary D.21. If Ξ ⊢ T ≤∀ S, then 𝜌 (Ξ) ⊢ 𝜌 (T ) ≤∀ 𝜌 (S).
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Proof. By induction on the general subtyping derivations and Lemma D.20. □

Lemma D.22. If Σ ⊢ 𝜎 ≡ 𝜎 ′ and 𝛼 ∉ TTV (𝜏), then �Σ ⊢ [𝜎/𝛼]𝜏 ≡ [𝜎 ′/𝛼]𝜏 .

Proof. By induction on the syntax of 𝜏 .
Case 𝜏 = 𝛼 , 𝜏 = 𝜔 . Impossible.
Case 𝜏 = 𝜏1

𝜑
→ 𝜏2. By Lemma D.16 and Theorem D.15, �Σ ⊢ 𝜎 ≡ 𝜎 ′. By IH, �Σ ⊢ [𝜎/𝛼]𝜏1 ≡

[𝜎 ′/𝛼]𝜏1, �Σ ⊢ [𝜎/𝛼]𝜏2 ≡ [𝜎 ′/𝛼]𝜏2, and �Σ ⊢ [𝜎/𝛼]𝜑 ≡ [𝜎 ′/𝛼]𝜑 . We conclude by S-Fun.
Case 𝜏 = A[𝑎]. Similar to the case 𝜏 = 𝜏1

𝜑
→ 𝜏2.

Case 𝜏 = ⊤±
. Immediately.

Case 𝜏 = 𝜏1 ∨± 𝜏2. We prove the case where ± = +. For ± = −, the proof is symmetric. By IH,
�Σ ⊢ [𝜎/𝛼]𝜏1 ≡ [𝜎 ′/𝛼]𝜏1 and �Σ ⊢ [𝜎/𝛼]𝜏2 ≡ [𝜎 ′/𝛼]𝜏2. We conclude by S-AndOrL−,
S-AndOrR−, and S-AndOr−.

Case 𝜏 = ¬𝜏 ′. Then by IH, �Σ ⊢ [𝜎/𝛼]𝜏 ′ ≡ [𝜎 ′/𝛼]𝜏 ′. We conclude by using Theorem D.1 twice.
□

Lemma D.23 (Inlining of consistent bounds). If Ξ ⊢ Σ cons., witnessed by some substitution 𝜌 ,
and Ξ Σ ⊢ 𝜏 ≤ 𝜎 , then 𝜌 (Ξ) �Σ ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝜎).

Proof. By the definition of consistency, Ξ ⊢ Σ cons. implies 𝜌 (Ξ) �Σ ⊨ 𝜌 (Σ) for some substitu-
tion 𝜌 . By Lemma D.20, 𝜌 (Ξ Σ) ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝜎). By Lemma D.16, 𝜌 (Ξ) �Σ ⊨ 𝜌 (Ξ). By Lemma D.18,
𝜌 (Ξ) �Σ ⊨ 𝜌 (Ξ Σ). We conclude by Theorem D.15. □

Corollary D.24. If Σ cons., witnessed by some substitution 𝜌 , and Σ ⊢ 𝜏 ≤ 𝜎 , then �Σ ⊢ 𝜌 (𝜏) ≤
𝜌 (𝜎).

Proof. A special case of Lemma D.23. □

Corollary D.25. If Ξ ⊢ Σ cons., witnessed by some substitution 𝜌 , and Ξ Σ ⊨ Ξ′, then 𝜌 (Ξ) �Σ ⊨
𝜌 (Ξ′).

Proof. By induction on the entailment derivations.
Case S-Empty. Immediately.
Case S-Cons. Then Ξ′ = Ξ′′ (𝜏 ≤ 𝜎). By IH, Ξ Σ ⊨ Ξ′′ and 𝜌 (Ξ) �Σ ⊨ 𝜌 (Ξ′′). By the second

premise, Ξ Σ ⊢ 𝜏 ≤ 𝜎 . Then by Lemma D.23, 𝜌 (Ξ) �Σ ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝜎). We conclude by
S-Cons.

Case S-Cons�. Then Ξ′ = Ξ′′ �(𝜏 ≤ 𝜎). By IH, Ξ Σ ⊨ Ξ′′ and 𝜌 (Ξ) �Σ ⊨ 𝜌 (Ξ′′). By the second
premise, �(Ξ Σ) ⊢ 𝜏 ≤ 𝜎 . Since Ξ ⊢ Σ cons. implies �Σ 𝜌 (Ξ) ⊨ 𝜌 (Σ) for some substitution
𝜌 , by Lemma D.19, Σ 𝜌 (�Ξ) ⊨ 𝜌 (�Σ), which implies �Ξ ⊢ �Σ cons.. Then by Lemma D.23,
�(𝜌 (Ξ) �Σ) ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝜎). We conclude by S-Cons�.

□

Lemma D.26. If Σ cons., witnessed by some substitution 𝜌 , Σ ⊢ 𝜏 ≤ 𝜎 , and TTV (𝜏) ∪ TTV (𝜎) = ∅,
then �Σ ⊢ 𝜏 ≤ 𝜎 .

Proof. By Corollary D.14, we can let 𝜌 = [𝛼 ∧ ubΣ (𝛼) ∨ lbΣ (𝛼)/𝛼] and Σ ⊢ 𝛼 ≡ 𝜌 (𝛼). By
Lemma D.24, �Σ ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝜎). Then by Lemma D.22, �Σ ⊢ 𝜏 ≤ 𝜌 (𝜏) and �Σ ⊢ 𝜌 (𝜎) ≤ 𝜎 . We
conclude by S-Trans. □

Lemma D.27. If Ξ ⊢ 𝜏 ≤ 𝜎 , then Ξ Σ ⊢ 𝜏 ≤ 𝜎 .

Proof. By Lemma D.29, Ξ Σ ⊨ Ξ. We conclude by Theorem D.15. □
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Corollary D.28. If Γ, 𝜁 ⊢ 𝑡 :𝜑 T , then Γ Σ, 𝜁 ⊢ 𝑡 :𝜑 T .

Proof. For each T-Subs1 and T-Subs2 in the typing derivations, we conclude by Lemma D.27. □

Lemma D.29 (Preservation of subtyping entailment under substitution). Ξ ⊨ Ξ′ implies
𝜌 (Ξ) ⊨ 𝜌 (Ξ′).

Proof. By induction on the derivations of Ξ ⊨ Ξ′ with Corollary D.21. □

Lemma D.30 (Weakening of Subtyping Contexts in Consistent Judgements). If Ξ ⊢ Σ cons.
and Ξ′ Σ ⊨ Ξ, then Ξ′ ⊢ Σ cons. witnessed by the same substitution 𝜌 .

Proof. By induction on the size of Σ.
Case Σ = 𝜖. We conclude by Theorem D.15 immediately.
Case Σ = Σ′ (𝛼 ≤± 𝜏). Then Ξ ⊢ Σ′ (𝛼 ≤± 𝜏) cons. and Ξ′ Σ′ (𝛼 ≤± 𝜏) ⊨ Ξ. By IH, Ξ ⊢ Σ′ cons.,

Ξ′ Σ′ ⊨ Ξ, and Ξ′ ⊢ Σ′ cons.. By the definition of consistency, Ξ ⊢ Σ′ (𝛼 ≤± 𝜏) cons. im-
plies �(Σ′ (𝛼 ≤± 𝜏)) 𝜌 (Ξ) ⊨ 𝜌 (Σ′ (𝛼 ≤± 𝜏)) for some substitution 𝜌 . By Corollary D.25,
�Σ′ 𝜌 (Ξ′) ⊨ 𝜌 (Ξ). Then by Lemma D.16, �(Σ′ (𝛼 ≤± 𝜏)) 𝜌 (Ξ′) ⊨ 𝜌 (Ξ). By Lemma D.16
and Lemma D.18, �(Σ′ (𝛼 ≤± 𝜏)) 𝜌 (Ξ′) ⊨ 𝜌 (Ξ) �(Σ′ (𝛼 ≤± 𝜏)). By Lemma D.17, we have
�(Σ′ (𝛼 ≤± 𝜏)) 𝜌 (Ξ′) ⊨ 𝜌 (Σ′ (𝛼 ≤± 𝜏)), which implies Ξ′ ⊢ Σ cons..

□

Theorem D.31 (Subtyping consistency). If Σ cons. and Σ ⊢ 𝜏 ≤ 𝜎 , where

𝜏 ∈ {⊤, ⊥, 𝜏1
𝜑1→ 𝜏2, A[in 𝜏𝑖 out 𝜏 ′𝑖

𝑖 ]}

𝜎 ∈ {⊤, ⊥, 𝜎1
𝜑2→ 𝜎2, A[in 𝜎𝑖 out 𝜎 ′

𝑖

𝑖 ]}
then exactly one of the following is true:

• 𝜏 = ⊥ or 𝜎 = ⊤;
• 𝜏 = 𝜏1

𝜑1→ 𝜏2, 𝜎 = 𝜎1
𝜑2→ 𝜎2, Σ ⊢ 𝜎1 ≤ 𝜏1, Σ ⊢ 𝜑1 ≤ 𝜑2, and Σ ⊢ 𝜏2 ≤ 𝜎2;

• 𝜏 = A1 [in 𝜏𝑖 out 𝜎𝑖
𝑖∈1...𝑚], 𝜎 = A2 [in 𝜏 ′

𝑗
out 𝜎 ′

𝑗

𝑗∈1...𝑛], A1 = A2, 𝑚 = 𝑛, Σ ⊢ 𝜏 ′
𝑖
≤ 𝜏𝑖

𝑖
, and

Σ ⊢ 𝜎𝑖 ≤ 𝜎 ′
𝑖

𝑖
.

Proof. By Lemma D.12 and Lemma D.26. □

Lemma D.32 (General Subtyping Consistency). If Σ cons. and Σ ⊢ T ≤∀ S, where

T ∈ {𝜏 ̸→, T1
𝜑
→ T2, ∀𝑉 {Σ′}. T ′}

S ∈ {𝜎 ̸→, S1
𝜑
→ S2, ∀𝑉 {Σ′}.S′}

then exactly one of the following is true:
• S = ⊤;
• T = 𝜏 ̸→, S = 𝜎 ̸→, and Σ ⊢ 𝜏 ≤ 𝜎 ;
• T = T1

𝜑1→ T2, S = S1
𝜑2→ S2, Σ ⊢ S1 ≤∀ T1, Σ ⊢ T2 ≤∀ S2, and Σ ⊢ 𝜑1 ≤ 𝜑2;

• T = ∀𝑉 {Σ1}. T ′, S = ∀𝑉 {Σ2}.S′, Σ1 = {𝛼𝑖 ≤±𝑖 𝜏𝑖
𝑖 }, Σ2 = {𝛼𝑖 ≤±𝑖 𝜎𝑖

𝑖 }, Σ ⊢ 𝜎𝑖 ≤±𝑖 𝜏𝑖
𝑖
Σ Σ2 ⊢

T ′ ≤∀ S′, and Σ ⊢ ∀𝑉 {Σ2} cons..

Proof. For the third case, suppose T1, T2, S1, and S2 are all monomorphic, we can conclude
by Theorem D.31. Otherwise, we conclude by induction on each impossible form of subtyping
derivation. For an impossible subtyping form Σ ⊢ T ≤∀ S, it can be derived by none of the
subtyping rules. □
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Lemma D.33. If Σ cons., Σ ⊢ T1 ≤∀ S, and Σ ⊢ S ≤∀ T2, then Σ ⊢ T1 ≤∀ T2.

Proof. By induction on the first general subtyping derivations.
Case S-PTop. We conclude it immediately by Lemma D.32 and Theorem D.31.
Case S-PRefl. Immediately.
Case S-Mono. Then S = 𝜎 for some 𝜎 and T1 = 𝜏1 for some 𝜏1. If T2 = ⊤ or 𝜎 = ⊤, it is the same

as the case S-PTop. Otherwise, by Lemma D.32, and T2 = 𝜏2 for some 𝜏2. We conclude by
S-Trans.

Case S-Forall. Then T1 = ∀𝑉 {Σ1}. T ′
1 , S = ∀𝑉 {Σ′}.S′, Σ1 = 𝛼𝑖 ≤±𝑖 𝜏𝑖

𝑖 , Σ′ = 𝛼𝑖 ≤±𝑖 𝜎𝑖
𝑖 ,

Σ Σ′ ⊢ T ′
1 ≤∀ S′, Σ ⊢ 𝑉 {Σ′} cons., and Σ ⊢ 𝜎𝑖 ≤±𝑖 𝜏𝑖

𝑖 . By Lemma D.32, T2 = ∀𝑉 {Σ2}. T ′
2 for

some Σ2 and T ′
2 , where Σ2 = 𝛼𝑖 ≤±𝑖 𝜏 ′

𝑖

𝑖
, Σ Σ2 ⊢ S′ ≤∀ T ′

2 , and Σ ⊢ 𝜏 ′
𝑖
≤±𝑖 𝜎𝑖

𝑖
. By S-Trans,

Σ ⊢ 𝜏 ′
𝑖
≤±𝑖 𝜏𝑖

𝑖
. Notice that Σ Σ2 ⊨ Σ′. Therefore, Σ Σ2 ⊢ T ′

1 ≤∀ S′. By IH, Σ Σ2 ⊢ T ′
1 ≤∀ T ′

2 .
We conclude by S-Forall.

Case S-PFun. Similarly, we conclude by IH and Lemma D.32.
□

Lemma D.34. If Ξ ⊢ 𝜏+ ≤ 𝜎+ and Ξ ⊢ 𝜎− ≤ 𝜏− , then Ξ ⊢ [𝑎/𝛼±]T ≤∀ [𝑏/𝛼±]T and Ξ ⊢
[𝑏/𝛼∓]T ≤∀ [𝑎/𝛼∓]T , where 𝑎 = in𝜏− out𝜏+ and 𝑏 = in𝜎− out𝜎+.

Proof. By induction on the shape of T . If 𝛼 ∉ TV (T ), we conclude by S-Refl and S-PRefl. □

D.3 Auxiliary Lemmas
Lemma D.35. If Γ | Ψ, 𝜁 ⊢ r : 𝜏 , then
(1) Ψ(r) = 𝛼 and sub(Γ) ⊢ Region[out𝛼] ≤ 𝜏 , or
(2) r ∉ dom(Ψ) and sub(Γ) ⊢ Region[out¬𝜁 ] ≤ 𝜏 .

Proof. By induction on value typing derivations. It holds immediately by T-RegA for the first
case and by T-RegD for the second case. For T-VSubs, it holds by IH and S-Trans. □

Lemma D.36. If Γ | Ψ, 𝜁 ⊢ ℓr : 𝜏 , then there exists Γ′, Ψ′, 𝜏1, 𝜏2, and 𝜎 ′, such that Ψ′ (ℓr) = 𝜏1,
sub(Γ′) ⊢ 𝜏1 ≤ 𝜏2, Γ | Ψ, 𝜁 ⊢ r : Region[out𝜎 ′], and sub(Γ) ⊢ Ref [𝜏2, out𝜎 ′] ≤ 𝜏 .

Proof. By induction on the location typing judgment. It holds immediately by T-Loc. For T-
VSubs, it holds by IH and S-Trans. □

Lemma D.37. If Γ | Ψ, 𝜁 ⊢ ⟨𝜆𝑥. 𝑡, 𝛾⟩ : T , then there exists Γ′, where Γ′ | Ψ ⊨𝜁 𝛾 |𝜓 , Γ′ (𝑥 : T1), 𝜁 ⊢
(𝑡 : T2) : T2 ! 𝜑 , and sub(Γ) ⊢ T1

𝜑
→ T2 ≤∀ T .

Proof. By induction on the closure typing judgment. It holds immediately by T-Clos. For T-
VSubs, it holds by IH and Lemma D.33 when T1

𝜑
→ T2 is a higher-ranked polymorphic function

type, and it holds by IH, S-Mono, and S-Trans when T1
𝜑
→ T2 is monomorphic. □

Lemma D.38. If Γ | Ψ, 𝜁 ⊢ C(𝑣) : 𝜏 , then there exist 𝑎, such that Γ ⊢ constructC : T1 → . . . → T𝑛 →
A[𝑎], Γ | Ψ, 𝜁 ⊢ 𝑣 𝑗 : T𝑗

𝑗
, and sub(Γ) ⊢ A[𝑎] ≤ 𝜏 .

Proof. By induction on the class typing judgment. It holds immediately by T-Ctor. For T-VSubs,
it holds by IH and S-Trans. □

Lemma D.39. If Γ | Ψ, 𝜁 ⊢ 𝑣 : ∀𝑉 {Σ}. T , then there exist S and Σ′, such that Γ •𝑉 Σ′ | Ψ, 𝜁 ∨ 𝜔 ⊢
𝑣 : S, 𝜔 ∈ 𝑉 , sub(Γ) ⊢ ∀𝑉 {Σ′} cons., and sub(Γ) ⊢ ∀𝑉 {Σ′}.S ≤∀ ∀𝑉 {Σ}. T .
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Proof. By induction on the forall typing judgment. It holds immediately by T-VGen. For T-VSubs,
it holds by IH and Lemma D.33. □

Lemma D.40 (Context weakening). If Γ | Ψ, 𝜁 ⊢ 𝑣 : T , Γ | Ψ ⊨𝜁 𝛾 |𝜓 for some 𝜁 ,𝛾 ,𝜓 , val(𝜓 ′, _) =
eval 𝛾 𝜓 𝑘 𝑡 for some 𝑘 and 𝑡 , Γ | Ψ′ ⊨𝜁 𝛾 |𝜓 ′, and Ψ ⊆ Ψ′, then Γ | Ψ′, 𝜁 ⊢ 𝑣 : T .

Proof. By induction on the value typing derivations. □

Definition D.41. We define Ψ′ = cleanΓ, 𝜁 (Ψ) to clean up type variables in Ψ, such that Γ ⊢ Ψ′ wf.

Formally, cleanΓ, 𝜁 (Ψ) ≜ 𝜌 (Ψ), where 𝜌 = [¬𝜁 /𝛼]𝛼∈TV (Ψ),𝛼∉Γ
. Notice that such type variables can

only be introduced by regions, since generalization requires the terms to be pure.

Lemma D.42. If Γ • 𝛼 (𝛼 ≤ ¬𝜁 ) | Ψ, 𝜁 ∨ 𝛼 ⊢ 𝑣 : 𝜏 , sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 )) ⊢ 𝜏 ≤ 𝜏 ′, where Γ ⊢ 𝜏 ′ wf +,
and Ψ′ = cleanΓ, 𝜁 (Ψ), then Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜎 for some 𝜎 and sub(Γ) ⊢ 𝜎 ≤ 𝜏 ′.

Proof. By induction on the value typing derivations. □

Lemma D.43. If Γ wf, Γ cons., and Γ | Ψ ⊨𝜁 𝛾 |𝜓 , then 𝜁 = ⊥∨𝜈𝜈∈𝑉 for some 𝑉 , where 𝜈 satisfies:
(1) 𝜈 = 𝜔 for some 𝜔 ∈ Γ, or,
(2) 𝜈 = 𝛼 for some 𝛼 ∈ Γ, where lbsub(Γ) (𝛼) = ⊥, ubsub(Γ) (𝛼) = ¬𝜁 ′, where 𝜁 ′ = ⊥∨𝛼𝛼∈𝑉 ′

, for all
𝛼 ′ ∈ 𝑉 ′, lv(𝛼 ′, Γ) < lv(𝛼, Γ), and Ψ(r) = 𝛼 for some r,

Proof. By induction on the conformance derivations. □

Lemma D.44. If Γ wf, Γ cons., and Γ | Ψ ⊨𝜁 𝛾 |𝜓 , then sub(Γ) ⊢ ¬𝜁 ≤ 𝜁 is false.

Proof. By induction on the conformance derivations.
Case CF-Empty. Then 𝜁 = ⊥. sub(Γ) ⊢ ⊤ ≤ ⊥ contradicts Theorem D.31.
Case CF-Var, CF-Loc. By IH.
Case CF-Reg. Then 𝜁 = 𝜁 ′ ∨ 𝛼 . By IH, sub(Γ) ⊢ ¬𝜁 ′ ≤ 𝜁 ′ is false. If sub(Γ) ⊢ ¬𝜁 ′ ∧ ¬𝛼 ≤ 𝜁 ′ ∨ 𝛼

holds, then sub(Γ) ⊢ ¬𝜁 ′ ≤ 𝜁 ′ ∨ 𝛼 by Theorem D.1. By S-AndOrR−, sub(Γ) ⊢ 𝛼 ≤ 𝜁 ′ ∨ 𝛼 .
Then by S-AndOr−, sub(Γ) ⊢ ¬𝜁 ′ ∨ 𝛼 ≤ 𝜁 ′ ∨ 𝛼 . By Theorem D.1, sub(Γ) ⊢ ¬𝜁 ′ ≤ 𝜁 ′ ∧ ¬𝛼 .
Then by S-AndOrL+, sub(Γ) ⊢ ¬𝜁 ′ ≤ 𝜁 ′, which contradicts sub(Γ) ⊢ ¬𝜁 ′ ≤ 𝜁 ′ is false.

Case CF-Forall. Similar to case CF-Reg.
□

D.4 Declarative Soundness
Lemma D.45 (Effect Soundness). Given D wf, Γ wf, Γ ⊢ Ψ wf, Γ cons., and Γ | Ψ ⊨𝜁 𝛾 |𝜓 ,

if Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 and for all 𝑘 , R = eval 𝛾 𝜓 𝑘 𝑡 and R ≠ kill, then for all region r so that
Γ | Ψ, 𝜁 ⊢ r : Region[out𝜏], if there is an operation on r in eval 𝛾 𝜓 𝑘 𝑡 , then sub(Γ) ⊢ 𝜏 ≤ 𝜑 .

Proof. By induction on the evaluation eval 𝛾 𝜓 𝑘 𝑡 . For the basic case where 𝑘 = 0, we conclude
immediately. For possitive 𝑘 , by induction on the typing derivations (IH). We only show the
interesting cases.
Case T-Region. Then 𝑡 = region𝑥 in 𝑡 ′. We have, Γ • 𝛼 (𝛼 ≤ ¬𝜁 ) | Ψ (r : 𝛼) ⊨𝜁∨𝛼 𝛾 |𝜓 (r ↦→ 𝜖)

by CF-Reg. Let Γ1 = Γ • 𝛼 (𝛼 ≤ ¬𝜁 ), Ψ1 = Ψ (r : 𝛼), and 𝜓1 = 𝜓 (r ↦→ 𝜖). Then By CF-Var,
Γ1 (𝑥 : Region[𝛼]) | Ψ1 ⊨𝜁∨𝛼 𝛾 (𝑥 ↦→ r) |𝜓1. If eval (𝛾 (𝑥 : Region[out𝛼])) 𝜓1 (𝑘 − 1) 𝑡 ′ = err,
then we conclude by IH. Otherwise, we have eval (𝛾 (𝑥 : Region[out𝛼])) 𝜓1 (𝑘 − 1) 𝑡 ′ =
val(𝜓2, 𝑣). By IH, for all region r′ such that Γ1 | Ψ1, 𝜁 ∨ 𝛼 ⊢ r′ : Region[out𝜏], if there is
an operation on r′, then sub(Γ1) ⊢ 𝜏 ≤ 𝜑 ∨ 𝛼 . If r′ = r, then all operations on r′ are in
eval (𝛾 (𝑥 : Region[out𝛼])) 𝜓1 (𝑘 − 1) 𝑡 ′. Therefore, there is no operation on r′ after𝜓2 \ r′.
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Then consider r′ ≠ r. By Theorem D.1, sub(Γ1) ⊢ 𝜏 ∧ ¬𝛼 ≤ 𝜑 . Then by S-AndOr+ and
S-Trans, sub(Γ1) ⊢ 𝜏 ∧ 𝜁 ≤ 𝜑 . If r′ ∈ dom(𝜓1), we have sub(Γ1) ⊢ 𝜏 ≤ 𝜁 by CF-Reg. Therefore,
sub(Γ1) ⊢ 𝜏 ≤ 𝜏 ∧ 𝜁 by S-AndOr+. Then we have sub(Γ) ⊢ 𝜏 ≤ 𝜑 . Otherwise, sub(Γ1) ⊢ ¬𝜁 ≤
𝜑 ∨ 𝛼 . By S-AndOrR−, sub(Γ1) ⊢ 𝛼 ≤ 𝜑 ∨ 𝛼 . By S-AndOr−, sub(Γ1) ⊢ ¬𝜁 ∨ 𝛼 ≤ 𝜑 ∨ 𝛼 . Then
by Theorem D.1, sub(Γ1) ⊢ ¬𝜁 ≤ 𝜑 ∧ ¬𝛼 . Therefore, sub(Γ1) ⊢ ¬𝜁 ≤ 𝜑 by S-AndOrL+ and
S-Trans. Since 𝛼 ∉ 𝜁 and 𝛼 ∉ 𝜑 , we have sub(Γ) ⊢ ¬𝜁 ≤ 𝜑 .

Case ref 𝑡1 𝑡2. By inversion on the polymorphic type ∀𝛼, 𝛽. Region[out𝛼] → 𝛽
𝛼→ Ref [𝛽, out𝛼],

we have Γ, 𝜁 ⊢ 𝑡1 : Region[out𝜎] ! 𝜑 ′ for some 𝜎 and 𝜑 ′, and Γ, 𝜁 ⊢ 𝑡2 : 𝜏 ! 𝜑 ′ for some 𝜏 . By
inversion of value typing, the evaluation of 𝑡1 yields a region r and the evaluation of 𝑡2 yields
some value 𝑣 . For any region r′, we do the case analysis on r′.
Case T-RegA. Then Ψ(r′) = 𝛼 for some 𝛼 . If r′ = r, then sub(Γ) ⊢ Region[out𝛼] ≤
Region[out𝜎]. By Theorem D.31, sub(Γ) ⊢ 𝛼 ≡ 𝜎 . we conclude by S-AndOrR− with
𝜑 = 𝜑 ′ ∨ 𝜎 for r. For any other region r′ ≠ r, we have sub(Γ) ⊢ 𝛼 ≤ 𝜑 ′ by IH. We conclude
by S-AndOrL− and S-Trans.

Case T-RegD. Then r′ ∉ dom(Ψ). If r′ = r, then sub(Γ) ⊢ Region[out¬𝜁 ] ≤ Region[out𝜎].
By Theorem D.31, sub(Γ) ⊢ ¬𝜁 ≡ 𝜎 . In this case, getreg will throw an err. We conclude by
S-AndOrR− with 𝜑 = 𝜑 ′ ∨ 𝜎 for r. For any other region r′ ≠ r, we have sub(Γ) ⊢ ¬𝜁 ≤ 𝜑 ′

by IH. We conclude by S-AndOrL− and S-Trans.
Case get 𝑡 , set 𝑡1 𝑡2. Similar to the case ref 𝑡1 𝑡2.

□

Lemma D.46 (Purity). If Γ, 𝜁 ⊢ 𝑡 : T ! ⊥, Γ | Ψ ⊨𝜁 𝛾 |𝜓 , and val(𝜓 ′, 𝑣) = eval 𝛾 𝜓 𝑘 𝑡 , then𝜓 ′ =𝜓 .

Proof. By Lemma D.45 applied to all regions in Ψ, there are no operations on any region in Ψ.
It is easy to see that this implies the new heap𝜓 ′ is the same as the old heap𝜓 . □

Lemma D.47 (General Soundness of the Declarative System). Given D wf, Γ wf, Γ ⊢ Ψ wf,
Γ cons., and Γ | Ψ ⊨𝜁 𝛾 |𝜓 , if Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 and sub(Γ) ⊢ 𝜑 ≤ 𝜁 , then for all 𝑘 , if R = eval 𝛾 𝜓 𝑘 𝑡

and R ≠ kill, then R = val(𝜓 ′, 𝑣) and Γ | Ψ′, 𝜁 ⊢ 𝑣 : T for some Ψ′, where Γ | Ψ′ ⊨𝜁 𝛾 |𝜓 ′, Γ ⊢ Ψ′ wf,
and Ψ ⊆ Ψ′.

Proof. By induction on the evaluation eval 𝛾 𝜓 𝑘 𝑡 . For the basic case where 𝑘 = 0, we conclude
immediately. For possitive 𝑘 , by induction on the typing derivations (IH).
Case T-Var. Then Γ(𝑥) = T by the premise. Since Γ | Ψ ⊨𝜁 𝛾 |𝜓 , there exists (𝑥 ↦→ 𝑣) ∈ 𝛾 , where

Γ | Ψ, 𝜁 ⊢ 𝑣 : T , by CF-Var. Therefore, 𝛾 (𝑥) = 𝑣 and R = val(𝜓, 𝑣).
Case T-Abs1. Then 𝑡 = 𝜆𝑥 . 𝑡 ′, and R = val(𝜓, ⟨𝜆𝑥. 𝑡 ′, 𝛾⟩). Since Γ | Ψ ⊨𝜁 𝛾 |𝜓 , we conclude by

T-Clos. For the effect, since 𝑡 ′ is not executed immediately, the abstraction is pure.
Case T-Abs2. Similar to T-Abs1.
Case T-Asc. We conclude by IH.
Case T-App1. Then 𝑡 = 𝑡1 𝑡2. By evaluations,

val(𝜓1, 𝑣1) = eval 𝛾 𝜓 𝑘 − 1 𝑡1 (1)
val(𝜓2, 𝑣2) = eval 𝛾 𝜓1 𝑘 − 1 𝑡2 (2)

By IH on (1) and (2),
Γ | Ψ1 ⊨𝜁 𝛾 |𝜓1 (3)
Γ | Ψ2 ⊨𝜁 𝛾 |𝜓2 (4)

Γ | Ψ1, 𝜁 ⊢ ⟨𝜆𝑥 . 𝑡 ′, 𝛾 ′⟩ : 𝜏1
𝜑1→ 𝜏2 (5)

Γ | Ψ2, 𝜁 ⊢ 𝑣2 : 𝜏1 (6)
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for some Ψ1 and Ψ2, where 𝑣1 = ⟨𝜆𝑥 . 𝑡 ′, 𝛾 ′⟩ and Ψ ⊆ Ψ1 ⊆ Ψ2. Notice that 𝑣1 must be closure,
or it contradicts the Theorem D.31. By Lemma D.40 on (5),

Γ | Ψ2, 𝜁 ⊢ ⟨𝜆𝑥. 𝑡 ′, 𝛾 ′⟩ : 𝜏1
𝜑1→ 𝜏2 (7)

By Lemma D.37 on (7),

sub(Γ) ⊢ 𝜎1
𝜑2→ 𝜎2 ≤ 𝜏1

𝜑1→ 𝜏2 (8)
Γ′ | Ψ2 ⊨𝜁 𝛾

′ |𝜓2 (9)
Γ′ (𝑥 : 𝜎1), 𝜁 ′ ⊢ 𝑡 ′ : 𝜎2 ! 𝜑2 (10)

for some Γ′, 𝛾 ′, 𝜎1, 𝜎2, and 𝜑2. By Theorem D.31 on (8),

sub(Γ) ⊢ 𝜏1 ≤ 𝜎1 (11)
sub(Γ) ⊢ 𝜎2 ≤ 𝜏2 (12)
sub(Γ) ⊢ 𝜑2 ≤ 𝜑1 (13)

By T-VSubs on (6) and (11),

Γ | Ψ2, 𝜁 ⊢ 𝑣1 : 𝜎1 (14)

By CF-Var on (14),

Γ′ (𝑥 : 𝜎1) | Ψ2 ⊨𝜁 𝛾
′ (𝑥 ↦→ 𝑣2) |𝜓2 (15)

By S-Trans, sub(Γ) ⊢ 𝜑2 ≤ 𝜁 . Therefore, val(𝜓 ′, 𝑣) = eval 𝛾 ′ (𝑥 ↦→ 𝑣2) 𝜓2 𝑘 − 1 𝑡1, and
Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜎2 holds by IH for some Ψ′, where Γ | Ψ′ ⊨𝜁 𝛾 |𝜓 ′ and Ψ2 ⊆ Ψ′. Then
Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜏2 holds by T-VSubs.

Case T-App2. Similar to the case T-App1.
Case T-Subs1, T-Subs2. Immediately by IH and T-VSubs.
Case T-Let. Then 𝑡 = let𝑥 = 𝑡1 in 𝑡2. By the first evaluation, val(𝜓1, 𝑣1) = eval 𝛾 𝜓 𝑘 − 1 𝑡1.

By IH, Γ | Ψ1, 𝜁 ⊢ 𝑣1 : T1, Γ | Ψ1 ⊨𝜁 𝛾 |𝜓1 for some Ψ1, where Ψ ⊆ Ψ1. Then by CF-Var,
Γ (𝑥 : T1) | Ψ1 ⊨𝜁 𝛾 (𝑥 ↦→ 𝑣1) |𝜓1. We conclude by IH and the second evaluation.

Case T-Gen. By premises, Γ cons. and sub(Γ) ⊢ ∀𝑉 {Σ} cons., which implies Γ𝑉 Σ cons.. Then by
CF-Forall, Γ •𝑉 Σ | Ψ ⊨𝜁∨𝜔 𝛾 |𝜓 , where 𝜔 ∈ 𝑉 . Therefore, by IH, val(𝜓 ′, 𝑣) = eval 𝛾 𝜓 𝑘 −
1 (𝑡 : T), Γ •𝑉 Σ ⊢ Ψ′ wf, Γ •𝑉 Σ | Ψ′, 𝜁 ∨ 𝜔 ⊢ 𝑣 : T , and Γ | Ψ′ ⊨𝜁∨𝜔 𝛾 |𝜓 ′. By Lemma D.46,
𝜓 ′ =𝜓 , which implies Ψ′ = Ψ. We conclude by T-VGen.

Case T-Inst. By IH,

val(𝜓 ′, 𝑣) = eval 𝛾 𝜓 𝑘 𝑡 (16)
Γ | Ψ′ ⊨𝜁 𝛾 |𝜓 ′ (17)

Γ | Ψ′, 𝜁 ⊢ 𝑣 : ∀𝑉 {Σ}.T (18)

for some Ψ′, where Ψ ⊆ Ψ′. By Lemma D.39 on (18),

Γ𝑉 Σ′ | Ψ′, 𝜁 ∨ 𝜔 ⊢ 𝑣 : T ′ (19)
sub(Γ) ⊢ ∀𝑉 {Σ′} cons. (20)

sub(Γ) ⊢ ∀𝑉 {Σ′}. T ′ ≤∀ ∀𝑉 {Σ}. T (21)
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for some Σ′ and T ′, where 𝜔 ∈ 𝑉 . Then by Lemma D.32 and T-VGen on (21),

Σ′ = 𝛼𝑖 ≤±𝑖 𝜏𝑖
𝑖 (22)

Σ = 𝛼𝑖 ≤±𝑖 𝜎𝑖
𝑖 (23)

sub(Γ) Σ ⊢ T ′ ≤∀ T (24)
sub(Γ) ⊢ ∀𝑉 {Σ} cons. (25)

sub(Γ) ⊢ 𝜎𝑖 ≤±𝑖 𝜏𝑖
𝑖

(26)

By premise, sub(Γ) ⊨ 𝜌 (Σ). Then by Corollary D.21 and Theorem D.15 on (24),

sub(Γ) ⊢ 𝜌 (T ′) ≤∀ 𝜌 (T ) (27)

Notice that sub(Γ) ⊨ 𝜌 (Σ), (22), (23) and (26) imply sub(Γ) ⊨ 𝜌 (Σ′). By T-VSubs on (19) and
(27),

Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜌 (T ) (28)

Notice that by Lemma D.46, 𝜌 (Ψ′) = Ψ′.
Case constructC 𝑡𝑖 . By induction on the number of parameters 𝑗 with IH and T-Ctor.
Case T-Region. By CF-Reg, Γ1 | Ψ1 ⊨𝜁∨𝛼 𝛾 |𝜓1, where Γ1 = Γ • 𝛼 (𝛼 ≤ ¬𝜁 ), Ψ1 = Ψ (r : 𝛼), and

𝜓1 =𝜓 (r ↦→ 𝜖). By CF-Var, Γ1 (𝑥 : Region[𝛼]) | Ψ1 ⊨𝜁∨𝛼 𝛾 (𝑥 ↦→ r) |𝜓1. By IH on the evalua-
tion, Γ1 (𝑥 : Region[𝛼]) | Ψ2, 𝜁 ∨ 𝛼 ⊢ 𝑣 : 𝜏 . for some Ψ2, where Ψ1 ⊆ Ψ2 and Γ1 | Ψ2 ⊨𝜁∨𝛼 𝛾 |𝜓2.
Let𝜓 ′ =𝜓2 \ r and Ψ′ = cleanΓ, 𝜁 (Ψ) \ r\ℓr. By Lemma D.42, Γ | Ψ′ ⊨𝜁 𝛾 |𝜓 ′, Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜎 ,
and sub(Γ) ⊢ 𝜎 ≤ 𝜏 . We conclude by T-VSubs.

Case ref 𝑡1 𝑡2. By inversion on the polymorphic type ∀𝛼, 𝛽. Region[out𝛼] → 𝛽
𝛼→ Ref [𝛽, out𝛼],

we have Γ, 𝜁 ⊢ 𝑡1 : Region[out𝜎] ! 𝜑 ′ for some 𝜎 and 𝜑 ′, and Γ, 𝜁 ⊢ 𝑡2 : 𝜏 ! 𝜑 ′ for some 𝜏 .
Then by evaluations,

val(𝜓1, 𝑣1) = eval 𝛾 𝜓 𝑘 − 1 𝑡1 (29)
val(𝜓2, 𝑣2) = eval 𝛾 𝜓1 𝑘 − 1 𝑡2 (30)

By IH on (29) and (30),

Γ | Ψ1 ⊨𝜁 𝛾 |𝜓1 (31)
Γ | Ψ2 ⊨𝜁 𝛾 |𝜓2 (32)

Γ | Ψ1, 𝜁 ⊢ 𝑣1 : Region[out𝜎] (33)
Γ | Ψ2, 𝜁 ⊢ 𝑣2 : 𝜏 (34)

for some Ψ1 and Ψ2, where

Ψ ⊆ Ψ1 ⊆ Ψ2 (35)

By getreg, 𝑣1 = r for some r. By Lemma D.40 on (33) and (35),

Γ | Ψ2, 𝜁 ⊢ r : Region[out𝜎] (36)

By Lemma D.35 on (36),

sub(Γ) ⊢ Region[𝜏0] ≤ Region[𝜎] (37)

for some 𝜏0. Then by Lemma D.35 on (33), either r ∉ dom(Ψ1) or Ψ1 (r) = 𝛼 for some 𝛼 . Notice
that we never reintroduce a region, so r ∉ dom(Ψ2). If the first case holds, then Γ | Ψ2, 𝜁 ⊢
r : Region[out¬𝜁 ]. By Theorem D.31, we have sub(Γ) ⊢ ¬𝜁 ≤ 𝜎 . Then sub(Γ) ⊢ ¬𝜁 ≤ 𝜑 by
Lemma D.45 on the allocation. It contradicts sub(Γ) ⊢ 𝜑 ≤ 𝜁 and Lemma D.44. Therefore,
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Ψ1 (r) = 𝛼 for some 𝛼 and (r ↦→ 𝜇) ∈ 𝜓1 for some 𝜇 by CF-Reg and CF-Loc. By Theorem D.31
on (37),

sub(Γ) ⊢ 𝜎 ≡ 𝛼 (38)

Let Ψ′ = Ψ2 (ℓr : 𝜏). Then Γ | Ψ′, 𝜁 ⊢ ℓr : Ref [𝜏, out𝜎] by T-VSubs and T-Loc, and Γ | Ψ′ ⊨
𝛾 |𝜓 ′ by CF-Loc with (38), where𝜓 ′ =𝜓2 (r ↦→ (𝜇 (ℓr ↦→ 𝑣))).

Case get 𝑡 . By inversion on the polymorphic type ∀𝛼, 𝛽. Ref [out 𝛽, out𝛼] 𝛼→ 𝛽 , we have Γ, 𝜁 ⊢
𝑡 : Ref [out𝜏, out𝜎] ! 𝜑 ′ for some 𝜏 , 𝜎 , and 𝜑 ′. Then val(𝜓 ′, 𝑣1) = eval 𝛾 𝜓 𝑘 − 1 𝑡 . By
IH, Γ | Ψ′, 𝜁 ⊢ 𝑣1 : Ref [out𝜏, out𝜎] and Γ | Ψ′ ⊨𝜁 𝛾 |𝜓 ′ for some Ψ′, where Ψ ⊆ Ψ′. By
getloc, 𝑣1 = ℓr for some r. By Lemma D.36, Ψ′′ (ℓr) = 𝜏1, sub(Γ′) ⊢ 𝜏1 ≤ 𝜏2, Γ | Ψ′, 𝜁 ⊢ r :
Region[out𝜎 ′], and sub(Γ) ⊢ Ref [𝜏2, out𝜎 ′] ≤ Ref [out𝜏, out𝜎] for some Γ′, Ψ′′, 𝜏1, 𝜏2,
and 𝜎 ′. Then by a similar reasoning in ref 𝑡1 𝑡2, Γ | Ψ, 𝜁 ⊢ r : Region[out𝜎 ′], sub(Γ) ⊢ 𝜎 ′ ≡ 𝛼

for some 𝛼 . which implies Ψ′ = Ψ′′, Γ = Γ′, and 𝜏1 = 𝜏2. By CF-Loc, (ℓr ↦→ 𝑣) ∈ 𝜇,𝜓 ′ (r) = 𝜇

for some 𝜇, and Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜏2. Therefore sub(Γ) ⊢ 𝜏2 ≤ 𝜏 and sub(Γ) ⊢ 𝜎 ′ ≤ 𝜎 by
Theorem D.31. Then Γ | Ψ′, 𝜁 ⊢ 𝑣 : 𝜏 by read and T-VSubs.

Case set 𝑡1 𝑡2. Similar reasoning to the case of ref 𝑡1 𝑡2 and deref 𝑡 .
CasematchA 𝑡 𝜆𝑥𝑖1 . . . . 𝜆𝑥𝑖𝑛 . 𝑡𝑖 . By inversion on the polymorphic type, we have Γ, 𝜁 ⊢ 𝑡 : A[𝑎𝑖 ] !𝜑 ′

for some A, 𝑎𝑖 , and 𝜑 ′; and for each pattern branch, we have polymorphic function types
∀𝑏.T𝑖1 → . . . → T𝑖𝑛

𝛾
→ 𝛽 . By the first evaluation,

val(𝜓1, 𝑣) = eval 𝛾 𝜓 𝑘 − 1 𝑡 (39)

By IH on (39),

Γ | Ψ1 ⊨𝜁 𝛾 |𝜓1 (40)
Γ | Ψ1, 𝜁 ⊢ 𝑣 : A[𝑎] (41)

By getctor, 𝑣 = C(𝑣 𝑗 𝑗 ) for one of Cs of A. By Lemma D.38 on (41),

Γ ⊢ constructC : T1 → · · · → T𝑛 → A[𝑎′] (42)

Γ | Ψ, 𝜁 ⊢ 𝑣 𝑗 : T𝑗
𝑗∈1...𝑛

(43)

sub(Γ) ⊢ A[𝑎′] ≤ A[𝑎] (44)

for some 𝑎′s. By Theorem D.31 on (44),

sub(Γ) ⊢ 𝛼 𝑗 ≤ 𝛾 𝑗 (45)

sub(Γ) ⊢ 𝛿 𝑗 ≤ 𝛽 𝑗 (46)

where 𝑎𝑖 = in𝛼𝑖 out 𝛽𝑖
𝑖
and 𝑎′

𝑖
= in𝛾𝑖 out𝛿𝑖 . By Lemma D.34 on (42), (45), and (46),

Γ ⊢ constructC : S1 → · · · → S𝑛 → A[𝑎] (47)

sub(Γ) ⊢ T𝑗 ≤∀ S𝑗 (48)

Therefore, Γ (𝑥 𝑗 : S𝑗 ) | Ψ1 ⊨𝜁 𝛾 (𝑥 𝑗 ↦→ 𝑣 𝑗 ) |𝜓1 by CF-Var and T-VSubs. Then we conclude by
IH on the corresponding evaluation.

Case pmatchA 𝑡 𝜆𝑥𝑖1. . . . 𝜆𝑥𝑖𝑛 . 𝑡𝑖 . Similar reasoning to matchA 𝑡 𝜆𝑥𝑖1 . . . . 𝜆𝑥𝑖𝑛 . 𝑡𝑖 .
□

Theorem D.48 (Soundness of the Declarative System). Given D wf, if ⊢ 𝑡 : T ! ⊥, for all 𝑘 ,
if R = eval 𝜖 𝜖 𝑘 𝑡 and R ≠ kill, then R = val(𝜖, 𝑣) and ⊢ 𝑣 : T .
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Proof. By Lemma D.47. □

D.5 Soundness of Type Inference

Lemma D.49 (Soundness of Extrusion). If (Σ̂, 𝜏)
(±,𝑚)
⇝ (Σ′, 𝜎), then Σ̂ Σ′ ⊢ 𝜏 ≤± 𝜎 .

Proof. By induction on the extrusion derivations.
Case X-AndOr⋄. Then by IH, Σ̂ Σ1 ⊢ 𝜏1 ≤± 𝜏 ′1 and Σ̂ Σ2 ⊢ 𝜏2 ≤± 𝜏 ′2. By Theorem D.15, Σ̂ Σ′ ⊢ 𝜏1 ≤±

𝜏 ′1 and Σ̂ Σ′ ⊢ 𝜏2 ≤± 𝜏 ′2, where Σ
′ = Σ1 Σ2. Then we discuss the case when ± = +. The proof is

symmetric when ± = −. By case analysis on ⋄.
Case ⋄ = +. By S-Trans, S-AndOrL−, and S-AndOrR−, Σ̂ Σ′ ⊢ 𝜏1 ≤ 𝜏 ′1 ∨ 𝜏 ′2 and Σ̂ Σ′ ⊢ 𝜏2 ≤
𝜏 ′1 ∨ 𝜏 ′2. By S-AndOr−, Σ̂ Σ′ ⊢ 𝜏1 ∨ 𝜏2 ≤ 𝜏 ′1 ∨ 𝜏 ′2.

Case ⋄ = −. By S-Trans, S-AndOrL+, and S-AndOrR+, Σ̂ Σ′ ⊢ 𝜏1 ∧ 𝜏2 ≤ 𝜏 ′1 and Σ̂ Σ′ ⊢
𝜏1 ∧ 𝜏2 ≤ 𝜏 ′2. By S-AndOr+, Σ̂ Σ′ ⊢ 𝜏1 ∧ 𝜏2 ≤ 𝜏 ′1 ∧ 𝜏 ′2.

Case X-Neg. Then by IH, Σ̂ Σ′ ⊢ 𝜏 ≤∓ 𝜏 ′. By Theorem D.1, Σ̂ Σ′ ⊢ 𝜏 ∧ ¬𝜏 ′ ≤∓ ⊥. By Theorem D.1
again, Σ̂ Σ′ ⊢ ¬𝜏 ′ ≤∓ ¬𝜏 . i.e., Σ̂ Σ′ ⊢ ¬𝜏 ≤± ¬𝜏 ′.

Case X-Fun, X-Ctor. Similar to the case X-AndOr⋄.
Case X-Var. Immediately by S-Hyp.
Case X-Skolem. By S-Hyp and S-AndOr±, Σ̂ ⊢ 𝛼 ≤± ub±

Σ̂
(𝛼). By S-Hyp, Σ̂ Σ′ ⊢ ub±

Σ̂
(𝛼) ≤± 𝛽𝑛 .

We conclude by Lemma D.27 and S-Trans.
Case X-Skip. Immediately by S-Refl.

□

Lemma D.50 (Sufficiency of constraining). Given subtyping context Ξ and polymorphic quan-
tifier bounds Σ̂:
(1) If Ξ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ and err ∉ Σ, then Σ Ξ Σ̂ ⊢ 𝜏 ≤ 𝜎 .
(2) If Ξ, Σ̂ ⊢ D ⇒ Σ and err ∉ Σ, then Σ Ξ Σ̂ ⊢ D ≤ ⊥.

Proof. By induction on the constraining derivations.
Case C-Hyp. Immediately by S-Hyp.
Case C-Assum. Then

Ξ�(𝜏1 ≤ 𝜏2), Σ̂ ⊢ dnf ◦ 𝜚 Σ̂ (𝜏1 ∧ ¬𝜏2) ⇒ Σ (1)

By IH, Lemma D.13, and Lemma C.4 on (1),

Σ Ξ Σ̂�(𝜏1 ≤ 𝜏2) ⊢ 𝜏1 ∧ ¬𝜏2 ≤ ⊥ (2)

By Theorem D.1 on (2),

Σ Ξ Σ̂�(𝜏1 ≤ 𝜏2) ⊢ 𝜏1 ≤ 𝜏2 (3)

We conclude by S-Assum on (3).
Case C-Or. Then D = D′ ∨ C. By IH,

Σ0 Ξ Σ̂ ⊢ D′ ≤ ⊥ (4)

Σ′ Σ0 Ξ Σ̂ ⊢ C ≤ ⊥ (5)
By Lemma D.16,

Σ′ Σ0 Ξ Σ̂ ⊨ Σ0 Ξ Σ̂ (6)

By Theorem D.15 on (4) and (6),

Σ′ Σ0 Ξ Σ̂ ⊢ D′ ≤ ⊥ (7)
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We conclude by S-AndOr− on (5) and (7).
Case C-Bot. Immediately by S-Refl.
Case C-NotBot, C-Fun2, C-Fun3. Contradiction.
Case C-Ctor1. Then D = A[inD𝑖1 outD𝑖3

𝑖 ] ∧ ¬(𝑈 ∨ A[inD𝑖2 outD𝑖4
𝑖 ]). By premises

�Ξ Σ 𝑗
𝑗∈1...𝑖−1

, Σ̂ ⊢ D𝑖2 ≪ D𝑖1 ⇒ Σ𝑖
𝑖

(8)

�Ξ Σ 𝑗
𝑗
Σ′
𝑘

𝑘∈1...𝑖−1
, Σ̂ ⊢ D𝑖3 ≪ D𝑖4 ⇒ Σ′

𝑖

𝑖

(9)

By IH on (8) and (9),

�Ξ Σ̂ Σ 𝑗
𝑗∈1...𝑖 ⊢ D𝑖2 ≤ D𝑖1

𝑖

(10)

�Ξ Σ̂ Σ 𝑗
𝑗
Σ′
𝑘

𝑘∈1...𝑖 ⊢ D𝑖3 ≤ D𝑖4

𝑖

(11)

By Lemma D.16 and Theorem D.15 on (10), (11),

�Ξ Σ̂ Σ ⊢ D𝑖2 ≤ D𝑖1
𝑖

(12)

�Ξ Σ̂ Σ ⊢ D𝑖3 ≤ D𝑖4
𝑖

(13)

where Σ = Σ𝑖
𝑖
Σ′
𝑖

𝑖
. By S-Ctor on (12) and (13),

Ξ Σ Σ̂ ⊢ A[inD𝑖1 outD𝑖3] ≤ A[inD𝑖2 outD𝑖4] (14)

By S-AndOrR− and S-Trans on (14),

Ξ Σ Σ̂ ⊢ A[inD𝑖1 outD𝑖3] ≤ 𝑈 ∨ A[inD𝑖2 outD𝑖4] (15)

We conclude by Theorem D.1 on (15).
Case C-Ctor2. Then D = A1 [inD𝑖1 outD𝑖3

𝑖 ] ∧ ¬(𝑈 ∨ A2 [inD𝑗2 outD𝑗4
𝑗 ]). By IH,

Σ Ξ Σ̂ ⊢ A1 [inD𝑖1 outD𝑖3
𝑖 ] ≤ 𝑈 (16)

By S-AndOrL− and S-Trans on (16),

Σ Ξ Σ̂ ⊢ A1 [inD𝑖1 outD𝑖3
𝑖 ] ≤ 𝑈 ∨ A2 [inD𝑗2 outD𝑗4

𝑗 ] (17)

We conclude by Theorem D.1 on (17).
Case C-Ctor3, C-Ctor4. Similar to C-Ctor2.
Case C-Fun1. Then D = D1

D5→ D2 ∧ ¬(D3
D6→ D4). By IH,

�Ξ Σ̂ Σ0 ⊢ D3 ≤ D1 (18)

�Ξ Σ̂ Σ0 Σ
′ ⊢ D2 ≤ D4 (19)

�Ξ Σ̂ Σ0 Σ
′ Σ′′ ⊢ D5 ≤ D6 (20)

Let Σ = Σ0 Σ
′ Σ′′, by Lemma D.16 and Theorem D.15 on (18) and (19),

�Ξ Σ̂ Σ ⊢ D3 ≤ D1 (21)

�Ξ Σ̂ Σ ⊢ D2 ≤ D4 (22)

By S-Fun on (20), (21), and (22),

Ξ Σ̂ Σ ⊢ D1
D5→ D2 ≤ D3

D6→ D4 (23)

We conclude by Theorem D.1 on (23).
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Case C-Sk. We prove the case where D = C ∧ ¬𝛼 . For D = C ∧ 𝛼 , the proof is symmetric. By IH
on the premise, Ξ Σ̂ Σ ⊢ C ≤ ⊥. Then by S-Top−, Ξ Σ̂ Σ ⊢ ⊥ ≤ 𝛼 . We conclude by S-Trans
and Theorem D.1.

Case C-Var1. Then D = C ∧ 𝛼𝑚 . By premises, err ∉ Σ. By S-Hyp, Σ Ξ (𝛼𝑚 ≤ ¬C) Σ̂ ⊢ 𝛼𝑚 ≤ ¬C.
We conclude by Theorem D.1.

Case C-Var2. Similar to C-Var1.
Case C-Var3. Then D = C ∧ 𝛼𝑚 . By premises,

(Σ̂,¬C)
(−,𝑚)
⇝ (Σ′, 𝜏) (24)

Ξ, Σ̂ ⊢ Σ′ ⇒ Σ′′ (25)

Ξ Σ′′ (𝛼𝑚 ≤ 𝜏), Σ̂ ⊢ lbΞ (𝛼𝑚) ≪ 𝜏 ⇒ Σ0 (26)

By IH on (25),

Ξ Σ′′ Σ̂ ⊨ Σ′ (27)

By Lemma D.49 on (24),

Ξ Σ′ Σ̂ ⊢ 𝜏 ≤ ¬C (28)

By Theorem D.15 on (27) and (28),

Ξ Σ′′ Σ̂ ⊢ 𝜏 ≤ ¬C (29)

Therefore, by S-Hyp and S-Trans on (29),

Ξ Σ′′ Σ̂ (𝛼𝑚 ≤ 𝜏) ⊢ 𝛼𝑚 ≤ ¬C (30)

By premises, err ∉ Σ, where Σ = Σ0 Σ
′′. By Lemma D.16,

Ξ Σ̂ Σ (𝛼𝑚 ≤ 𝜏) ⊨ Ξ Σ̂ Σ′′ (𝛼𝑚 ≤ 𝜏) (31)

We conclude by Theorem D.15 on (30) and (31), and then Theorem D.1.
Case C-Var4. Similar to C-Var3.

□

In the rest of paper, we adopt the reformulated constraining rules presented in Figure 22. We
always start derivations with an empty Ξ that only maintains constraints, a Σ̂ containing all skolem
bounds, and a Σ containing all general bounds. These rules are equivalent to those defined in
Figure 8.

Lemma D.51 (Consistency of constraining). Given �Ξ ⊢ Σ Σ̂ cons.,
(1) If Ξ, Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ′, and err ∉ Σ′, then �Ξ ⊢ Σ′ Σ Σ̂ cons..
(2) If Ξ, Σ, Σ̂ ⊢ D ⇒ Σ′ and err ∉ Σ′, then �Ξ ⊢ Σ′ Σ Σ̂ cons..

Proof. By induction on the constraining derivations.
Case C-Hyp, C-Bot. Immediately since Σ′ = 𝜖 .
Case C-NotBot, C-Fun2, C-Fun3. Contradiction.
Case C-Assum. Then

Ξ�(𝜏 ≤ 𝜎), Σ, Σ̂ ⊢ dnf ◦ 𝜚 Σ̂ (𝜏 ∧ ¬𝜎) ⇒ Σ′ (32)

�Ξ ⊢ Σ Σ̂ cons. (33)

By Lemma D.16,

�(Ξ Σ̂�(𝜏 ≤ 𝜎)) Σ ⊨ �Ξ (34)
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Ξ, Σ, Σ̂ ⊢ Ξ ⇒ Σ
C-Done

Ξ, Σ, Σ̂ ⊢ 𝜖 ⇒ 𝜖

C-NotDone
Ξ, Σ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ1 Ξ, Σ Σ1, Σ̂ ⊢ Ξ0 ⇒ Σ2

Ξ, Σ, Σ̂ ⊢ Ξ0 (𝜏1 ≤ 𝜏2 ) ⇒ Σ1 Σ2

Ξ, Σ, Σ̂ ⊢ 𝜏 ≪ 𝜏 ⇒ Σ

C-Hyp
(𝜏1 ≤ 𝜏2 ) ∈ Ξ Σ Σ̂

Ξ, Σ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ 𝜖

C-Assum
(𝜏1 ≤ 𝜏2 ) ∉ Ξ Σ Σ̂

Ξ �(𝜏1 ≤ 𝜏2 ), Σ, Σ̂ ⊢ dnf ◦ 𝜌Σ̂ (𝜏1 ∧ ¬𝜏2 ) ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ D ⇒ Σ

C-Or
Ξ, Σ, Σ̂ ⊢ D ⇒ Σ1 Ξ, Σ Σ1, Σ̂ ⊢ C ⇒ Σ2

Ξ, Σ, Σ̂ ⊢ D ∨ C ⇒ Σ1 Σ2

C-NotBot

Ξ, Σ, Σ̂ ⊢ 𝐼 ∧ ¬⊥ ⇒ err

C-Bot

Ξ, Σ, Σ̂ ⊢ ⊥ ⇒ 𝜖

C-Ctor1

�Ξ, Σ Σ 𝑗
𝑗 ∈1...𝑖−1

, Σ̂ ⊢ D𝑖2 ≪ D𝑖1 ⇒ Σ𝑖
𝑖

�Ξ, Σ Σ 𝑗
𝑗
Σ′
𝑘

𝑘∈1...𝑖−1
, Σ̂ ⊢ D𝑖3 ≪ D𝑖4 ⇒ Σ′

𝑖

𝑖

Ξ, Σ, Σ̂ ⊢ A[inD𝑖1 outD𝑖3 ] ∧ ¬(𝑈 ∨ A[inD𝑖2 outD𝑖4 ] ) ⇒ Σ𝑖 Σ′𝑖

C-Ctor2
Ξ, Σ, Σ̂ ⊢ A1 [inDoutD′ ] ∧ ¬𝑈 ⇒ Σ′ A1 ≠ A2

Ξ, Σ, Σ̂ ⊢ A1 [inDoutD′ ] ∧ ¬(𝑈 ∨ A2 [inDoutD′ ] ) ⇒ Σ′

C-Ctor3
Ξ, Σ, Σ̂ ⊢ (D D→ D) ∧ ¬𝑈 ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ (D D→ D) ∧ ¬(𝑈 ∨ A[inDoutD′ ] ) ⇒ Σ′

C-Ctor4
Ξ, Σ, Σ̂ ⊢ ⊤ ∧ ¬𝑈 ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ ⊤ ∧ ¬(𝑈 ∨ A[inDoutD′ ] ) ⇒ Σ′

C-Fun1
�Ξ, Σ, Σ̂ ⊢ D3 ≪ D1 ⇒ Σ1 �Ξ, Σ Σ1, Σ̂ ⊢ D2 ≪ D4 ⇒ Σ2

�Ξ, Σ Σ1 Σ2, Σ̂ ⊢ D5 ≪ D6 ⇒ Σ3

Ξ, Σ, Σ̂ ⊢ (D1
D5→ D2 ) ∧ ¬(D3

D6→ D4 ) ⇒ Σ1 Σ2 Σ3

C-Fun2

Ξ, Σ, Σ̂ ⊢ A[inDoutD′ ] ∧ ¬(D1
D3→ D2 ) ⇒ err

C-Fun3

Ξ, Σ, Σ̂ ⊢ ⊤ ∧ ¬(D1
D3→ D2 ) ⇒ err

C-Sk
Ξ, Σ, Σ̂ ⊢ C ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ C ∧ ¬±𝛼 ⇒ Σ′

C-Var1
lv(C, Σ̂) ≤ 𝑚

Ξ, Σ (𝛼𝑚 ≤ ¬C), Σ̂ ⊢ lbΣ (𝛼𝑚 ) ≪ ¬C ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ C ∧ 𝛼𝑚 ⇒ Σ′ (𝛼𝑚 ≤ ¬C)

C-Var2
lv(C, Σ̂) ≤ 𝑚

Ξ, Σ (C ≤ 𝛼𝑚 ), Σ̂ ⊢ C ≪ ubΣ (𝛼𝑚 ) ⇒ Σ′

Ξ, Σ, Σ̂ ⊢ C ∧ ¬𝛼𝑚 ⇒ Σ′ (C ≤ 𝛼𝑚 )

C-Var3
𝑚 < lv(C, Σ̂) (Σ̂,¬C)

(−,𝑚)
⇝ (Σ′, 𝜏 ) Ξ, Σ, Σ̂ ⊢ Σ′ ⇒ Σ1 Ξ, Σ Σ1 (𝛼𝑚 ≤ 𝜏 ), Σ̂ ⊢ lbΣ Σ1 (𝛼

𝑚 ) ≪ 𝜏 ⇒ Σ2

Ξ, Σ, Σ̂ ⊢ C ∧ 𝛼𝑚 ⇒ Σ1 Σ2 (𝛼𝑚 ≤ 𝜏 )

C-Var4
𝑚 < lv(C, Σ̂) (Σ̂,C)

(+,𝑚)
⇝ (Σ′, 𝜏 ) Ξ, Σ, Σ̂ ⊢ Σ′ ⇒ Σ1 Ξ, Σ Σ1 (𝜏 ≤ 𝛼𝑚 ), Σ̂ ⊢ 𝜏 ≪ ubΣ Σ1 (𝛼

𝑚 ) ⇒ Σ2

Ξ, Σ, Σ̂ ⊢ C ∧ ¬𝛼𝑚 ⇒ Σ1 Σ2 (𝜏 ≤ 𝛼𝑚 )

Fig. 22. Reformulated Normal form constraining rules.

By Lemma D.30 on (33) and (34),

�(Ξ�(𝜏 ≤ 𝜎)) ⊢ Σ Σ̂ cons. (35)

By IH on (32) and (35),

�Ξ (𝜏 ≤ 𝜎) ⊢ Σ Σ′ Σ̂ cons. (36)
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Then by Lemma D.50 on (32),

Ξ Σ̂�(𝜏 ≤ 𝜎) Σ Σ′ ⊢ dnf ◦ 𝜌Σ̂ (𝜏 ∧ ¬𝜎) ≤ ⊥ (37)

By Lemma C.4, Lemma D.13, Theorem D.1, and S-Assum on (37),

Ξ Σ̂ Σ Σ′ ⊢ 𝜏 ≤ 𝜎 (38)

Therefore, by Lemma D.16 and S-Cons on (38),

�Ξ Σ̂ Σ Σ′ ⊨ �Ξ Σ̂ (𝜏 ≤ 𝜎) (39)

We conclude by Lemma D.30 on (36) and (39).
Case C-Or. Then by premises,

Ξ, Σ, Σ̂ ⊢ D′ ⇒ Σ0 (40)

Ξ, Σ Σ0, Σ̂ ⊢ C ⇒ Σ1 (41)

By IH on (40),

�Ξ ⊢ Σ Σ0 Σ̂ cons. (42)

By IH on (41) and (42),

�Ξ ⊢ Σ Σ′ Σ̂ cons. (43)

where Σ′ = Σ0 Σ1.
Case C-Ctor1, C-Fun1. Similar to case C-Or,
Case C-Ctor2, C-Ctor3, C-Ctor4, C-Sk. Immediately by IH.
Case C-Var1. Then

Ξ, Σ (𝛼𝑚 ≤ ¬C), Σ̂ ⊢ lbΣ (𝛼𝑚) ≪ ¬C ⇒ Σ0 (44)

�Ξ ⊢ Σ Σ̂ cons. (45)

By Lemma D.16,

�Ξ Σ̂ Σ (𝛼𝑚 ≤ ¬C) ⊨ �Ξ (46)

By Lemma D.30 on (45) and (46),

�Ξ (𝛼𝑚 ≤ ¬C) ⊢ Σ Σ̂ cons. (47)

for some substitution 𝜌 . Therefore, by the definition of consistency,

�(Σ Σ̂) 𝜌 (�Ξ (𝛼𝑚 ≤ ¬C)) ⊨ 𝜌 (Σ Σ̂) (48)

By S-Hyp and S-Cons on (48),

�(Σ Σ̂) 𝜌 (�Ξ (𝛼𝑚 ≤ ¬C)) ⊨ 𝜌 (Σ Σ̂ (𝛼𝑚 ≤ ¬C)) (49)

(49) implies,

�Ξ (𝛼𝑚 ≤ ¬C) ⊢ Σ Σ̂ (𝛼𝑚 ≤ ¬C) cons. (50)

By Lemma D.16,

�Ξ Σ̂ Σ (𝛼𝑚 ≤ ¬C) ⊨ �Ξ (𝛼𝑚 ≤ ¬C) (51)

Then by Lemma D.30 on (50) and (51),

�Ξ ⊢ Σ Σ̂ (𝛼𝑚 ≤ ¬C) cons. (52)

We conclude by IH on (44) and (52).
Case C-Var2. Similar to C-Var1.
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Case C-Var3. Then

Ξ, Σ Σ′′ (𝛼𝑚 ≤ 𝜏), Σ̂ ⊢ lbΣ (𝛼𝑚) ≪ 𝜏 ⇒ Σ1 (53)

�Ξ ⊢ Σ Σ̂ cons. (54)

where

(Σ̂,¬C)
(−,𝑚)
⇝ (Σ0, 𝜏) (55)

Ξ, Σ, Σ̂ ⊢ Σ0 ⇒ Σ′′ (56)

By IH on (54) and (56),

�Ξ ⊢ Σ Σ′′ Σ̂ cons. (57)

By Lemma D.16,

�Ξ Σ′′ Σ̂ Σ (𝛼𝑚 ≤ 𝜏) ⊨ �Ξ (58)

By Lemma D.30 on (57) and (58),

�Ξ (𝛼𝑚 ≤ 𝜏) ⊢ Σ Σ′′ Σ̂ cons. (59)

for some substitution 𝜌 . Therefore, by the definition of consistency,

�(Σ Σ′′ Σ̂) 𝜌 (�Ξ (𝛼𝑚 ≤ 𝜏)) ⊨ 𝜌 (Σ Σ′′ Σ̂) (60)

By S-Refl and S-Cons on (60),

�(Σ Σ′′ Σ̂) 𝜌 (�Ξ (𝛼𝑚 ≤ 𝜏)) ⊨ 𝜌 (Σ Σ′′ Σ̂ (𝛼𝑚 ≤ 𝜏)) (61)

By Lemma D.18 on (61) and �({𝛼𝑚 ≤ 𝜏}) ⊨ 𝜖 ,
�Ξ (𝛼𝑚 ≤ 𝜏) ⊢ Σ Σ′′ Σ̂ (𝛼𝑚 ≤ 𝜏) cons. (62)

By Lemma D.16,

�Ξ Σ′′ Σ̂ Σ (𝛼𝑚 ≤ 𝜏) ⊨ �Ξ (𝛼𝑚 ≤ 𝜏) (63)

Then by Lemma D.30 on (62) and (63),

�Ξ ⊢ Σ Σ′′ Σ̂ (𝛼𝑚 ≤ 𝜏) cons. (64)

We conclude by IH on (53) and (64).
Case C-Var4. Similar to C-Var3.

□

Lemma D.52 (Soundness of constraining). If Σ Σ̂ cons., Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ′, and err ∉ Σ′, then
Σ Σ̂ Σ′ cons. and Σ Σ̂ Σ′ ⊢ 𝜏 ≤ 𝜎 .

Proof. By Lemma D.50 and Lemma D.51. □

Lemma D.53 (General soundness of type inference). Given definitions D wf and Γ Σ0 cons.,
if Γ, 𝜁 ⊢ 𝑡 : T ! 𝜑 ⇒ Ξ, 𝜖, Σ0, sub(Γ) ⊢ Ξ ⇒ Σ, and err ∉ Σ, then Γ Σ0 Σ, 𝜁 ⊢ 𝑡 : T ! 𝜑 , and
Γ Σ Σ0 cons..

Proof. By induction on the type inference derivations.
Case I-Var. Since Ξ = 𝜖 , we conclude by T-Var.
Case I-Abs1. Then 𝑡 = 𝜆𝑥. 𝑡 ′. By premises, Γ (𝑥 : 𝛼𝑛), 𝜁 ⊢ 𝑡 ′ : T ′ ! 𝜑 ′ ⇒ Ξ. Since sub(Γ) =

sub(Γ (𝑥 : 𝛼𝑛)), Γ Σ0 (𝑥 : 𝛼𝑛) Σ, 𝜁 ⊢ 𝑡 ′ : T ′ ! 𝜑 ′ and Γ Σ0 Σ cons. by IH. Then by T-Abs1,

Γ Σ0 Σ, 𝜁 ⊢ 𝑡 : 𝛼𝑛
𝜑 ′

→ T ′ ! ⊥.
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Case I-Abs2. Similar to thecase I-Abs1. For the effect constraint 𝜑 ′ ≤ 𝜑 , we can conclude by
Lemma D.52.

Case I-Let. Then 𝑡 = let𝑥 = 𝑡1 in 𝑡2. By premises and IH,

Γ, 𝜁 ⊢ 𝑡1 : T1 ! 𝜑1 ⇒ Ξ1 (65)
𝜖, Σ0, sub(Γ) ⊢ Ξ1 ⇒ Σ1 (66)
Γ Σ0 Σ1, 𝜁 ⊢ 𝑡1 : T1 ! 𝜑1 (67)

Γ Σ0 Σ1 cons. (68)

Then by the definition of Γ consistency and (68),

Γ Σ0 Σ1 (𝑥 : T1) cons. (69)

Therefore, by IH on the premises and (69),

Γ (𝑥 : T1), 𝜁 ⊢ 𝑡2 :𝜑2 T2 ⇒ Ξ2 (70)
𝜖, Σ0 Σ1, sub(Γ) ⊢ Ξ2 ⇒ Σ2 (71)

Γ (𝑥 : T1) Σ′, 𝜁 ⊢ 𝑡2 : T2 ! 𝜑2 (72)
Γ (𝑥 : T1) Σ′ cons. (73)

where Σ′ = Σ1 Σ2. By Corollary D.28 on (67),

Γ Σ′, 𝜁 ⊢ 𝑡1 : T1 ! 𝜑1 (74)

By T-Subs2 on (72) and (74),

Γ (𝑥 : T1) Σ′, 𝜁 ⊢ 𝑡2 : T2 ! 𝜑 (75)
Γ Σ′, 𝜁 ⊢ 𝑡1 : T1 ! 𝜑 (76)

where 𝜑 = 𝜑1 ∨ 𝜑2. We conclude by T-Let on (75) and (76).
Case I-Asc1, I-Asc2. Then 𝑡 = 𝑡 ′ : 𝜏 . By premises and IH,

Γ, 𝜁 ⊢ 𝑡 ′ : 𝜎 ! 𝜑 ⇒ Ξ′ (77)
𝜖, Σ0, sub(Γ) ⊢ Ξ′ ⇒ Σ′ (78)

Γ Σ0 Σ
′, 𝜁 ⊢ 𝑡 ′ : 𝜎 ! 𝜑 (79)

Γ Σ0 Σ
′ cons. (80)

Let,

𝜖, Σ0 Σ
′, sub(Γ) ⊢ 𝜎 ≤ 𝜏 ⇒ Σ′′ (81)

By Lemma D.52 on (80) and (81),

Γ Σ cons. (82)
sub(Γ) Σ ⊢ 𝜎 ≤ 𝜏 (83)

where Σ = Σ′ Σ0 Σ
′′. By Corollary D.28 on (79),

Γ Σ, 𝜁 ⊢ 𝑡 ′ : 𝜎 ! 𝜑 (84)

We conclude by T-Subs1 on (84).
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Case I-App1. Then 𝑡 = 𝑡1 𝑡2. By premises and IH,

Γ, 𝜁 ⊢ 𝑡1 : 𝜏1 ! 𝜑1 ⇒ Ξ1 (85)
𝜖, Σ0, sub(Γ) ⊢ Ξ1 ⇒ Σ1 (86)
Γ Σ0 Σ1, 𝜁 ⊢ 𝑡1 : 𝜏1 ! 𝜑1 (87)

Γ Σ0 Σ1 cons. (88)

Therefore, by IH on premises and (88),

Γ, 𝜁 ⊢ 𝑡2 : 𝜏2 ! 𝜑2 ⇒ Ξ2 (89)
𝜖, Σ0 Σ1, sub(Γ) ⊢ Ξ2 ⇒ Σ2 (90)

Γ Σ0 Σ1 Σ2, 𝜁 ⊢ 𝑡2 : 𝜏2 ! 𝜑2 (91)
Γ Σ0 Σ1 Σ2 cons. (92)

Assume that

sub(Γ) Σ0 Σ1 Σ2 ⊢ 𝜏1 ≪ 𝜏2
𝛾𝑛

→ 𝛽𝑛 ⇒ Σ3 (93)

where 𝑛 = lv(Γ). Let Ξ = Ξ1 Ξ2 (𝜏1 ≤ 𝜏2
𝛾𝑛

→ 𝛽𝑛) and Σ = Σ1 Σ2 Σ3 Σ0. Since err ∉ Σ, by
Lemma D.52 on (93),

Γ Σ cons. (94)

sub(Γ) Σ ⊢ 𝜏1 ≤ 𝜏2
𝛾𝑛

→ 𝛽𝑛 (95)

By Corollary D.28 on (87), (91),

Γ Σ, 𝜁 ⊢ 𝑡1 : 𝜏1 ! 𝜑1 (96)
Γ Σ, 𝜁 ⊢ 𝑡2 : 𝜏2 ! 𝜑2 (97)

By T-Subs1 and T-Subs2 on (95), (96), and (97),

Γ Σ, 𝜁 ⊢ 𝑡1 : 𝜏2
𝛾𝑛

→ 𝛽𝑛 ! 𝜑 (98)
Γ Σ, 𝜁 ⊢ 𝑡2 : 𝜏2 ! 𝜑 (99)

where 𝜑 = 𝛾𝑛 ∨ 𝜑1 ∨ 𝜑2. We conclude by T-App.
Case I-App2. Similar to the case I-App1 but no additional constraints are required.
Case I-Gen. Then 𝑡 = 𝑡 ′ : ∀𝑉 {Σ1}.S. By premises,

𝜖, 𝜖, sub(Γ) ⊢ Σ1 ⇒ Σ2 (100)
Γ •𝑉 Σ1, 𝜁 ∨ 𝜔 ⊢ (𝑡 ′ : S) : S ! 𝜑 ′ ⇒ Ξ′ (101)

𝜖, 𝜖, sub(Γ •𝑉 Σ1) ⊢ Ξ′ (𝜑 ′ ≤ ⊥) ⇒ Σ′ (102)

where 𝜔 ∈ 𝑉 . Since err ∉ Σ2, by Lemma D.52 on Γ cons. and (100),

Γ •𝑉 Σ1 cons. (103)

Notice that 𝜌 will not break the consistency. By IH on (101), (102), and (103),

Γ Σ′ •𝑉 Σ1, 𝜁 ∨ 𝜔 ⊢ (𝑡 ′ : S) : S ! 𝜑 ′ (104)
Γ Σ′ •𝑉 Σ1 cons. (105)

By Lemma D.50 on (102),

sub(Γ •𝑉 Σ1) Σ′ ⊢ 𝜑 ′ ≤ ⊥ (106)
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By T-Subs2 on (104) and (106),

Γ Σ′ •𝑉 Σ1, 𝜁 ∨ 𝜔 ⊢ (𝑡 : S) : S ! ⊥ (107)

Assume that

𝜖, Σ0, sub(Γ) ⊢ Σ′ ⇒ Σ (108)

Since err ∉ Σ, by Lemma D.52 on (108),

Γ Σ0 Σ cons. (109)

We conclude by T-Gen on (103) and (107).
Case I-Inst. By premises,

Γ, 𝜁 ⊢ 𝑡 : ∀𝑉 {Σ′}.S ! 𝜑 ⇒ Ξ (110)

𝛽𝑛𝛼 fresh
𝛼𝑛∈𝑉 \𝜔

(111)

𝜌 =[𝛽𝑛𝛼/𝛼𝑛
𝛼𝑛∈𝑉 \𝜔 ] [𝜁 /𝜔] (112)

where 𝑛 = lv(Γ) and 𝜔 ∈ 𝑉 . By IH on (110),

𝜖, Σ0, sub(Γ) ⊢ Ξ ⇒ Σ (113)
Γ Σ0 Σ, 𝜁 ⊢ 𝑡 : ∀𝑉 {Σ′}.S ! 𝜑 (114)

Γ Σ0 Σ cons. (115)

Assume that

𝜖, Σ0, sub(Γ) ⊢ 𝜌 (Σ′) ⇒ Σ′′ (116)

Then by Lemma D.50 on (116),

sub(Γ) Σ0 Σ
′′ ⊨ 𝜌 (Σ′) (117)

By Lemma D.18 on (117) and Σ ⊨ 𝜖 ,

sub(Γ) Σ0 Σ Σ′′ ⊨ 𝜌 (Σ′) (118)

We conclude by T-Inst on (112), (114), and (118).
Case I-Region. Then 𝑡 = region𝑥 in 𝑡 ′. Since 𝛼 is fresh, by premises and IH,

Γ • 𝛼 (𝑥 : 𝛼) (𝛼 ≤ ¬𝜁 ), 𝜁 ∨ 𝛼 ⊢ 𝑡 ′ : 𝜏 ! 𝜑 ′ ⇒ Ξ′ (119)
𝜖, 𝜖, sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 )) ⊢ Ξ′ ⇒ Σ′ (120)
Γ Σ′ • 𝛼 (𝑥 : 𝛼) (𝛼 ≤ ¬𝜁 ), 𝜁 ∨ 𝛼 ⊢ 𝑡 ′ : 𝜏 ! 𝜑 ′ (121)

Γ Σ′ cons. (122)

Assume that

𝜖, 𝜖, sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 )) ⊢ (𝜑 ′ ≤ 𝛾𝑛 ∨ 𝛼) (𝜏 ≤ 𝛽𝑛) ⇒ Σ′′ (123)

Then by Lemma D.50 on (122) and (123),

sub(Γ) (𝛼 ≤ ¬𝜁 ) Σ′ Σ′′ ⊢ 𝜑 ′ ≤ 𝛾 ∨ 𝛼 (124)
sub(Γ) (𝛼 ≤ ¬𝜁 ) Σ′ Σ′′ ⊢ 𝜏 ≤ 𝛽 (125)

By Corollary D.28, T-Subs1, and T-Subs2 on (121), (124), and (125),

Γ Σ′ Σ′′ • 𝛼 (𝑥 : 𝛼) (𝛼 ≤ ¬𝜁 ), 𝜁 ∨ 𝛼 ⊢ 𝑡 : 𝛽 ! 𝛾 ∨ 𝛼 (126)
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Assume that

𝜖, Σ0, sub(Γ) ⊢ Σ′ Σ′′ ⇒ Σ (127)

By Lemma D.50 on (127),

sub(Γ) Σ0 Σ ⊨ Σ′ Σ′′ (128)

By Theorem D.15 on (128) and (126),

Γ Σ0 Σ • 𝛼 (𝑥 : 𝛼) (𝛼 ≤ ¬𝜁 ), 𝜁 ∨ 𝛼 ⊢ 𝑡 : 𝛽 ! 𝛾 ∨ 𝛼 (129)

We conclude by T-Region on (129).

□

Theorem D.54 (Soundness of type inference). Given definitions D wf, if ⊢ 𝑡 : T ⇒ Ξ,
⊢ Ξ ⇒ Σ, and err ∉ Σ, then Σ ⊢ 𝑡 : T and Σ cons..

Proof. A special case of Lemma D.53. □

D.6 Termination of Constraining Algorithm
Theorem D.55 (Constraining termination). For allD wf, Σ Σ̂ wf, 𝜏 , and 𝜎 , 𝜖, Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒

Σ′ for some Σ′.

Proof. We define 𝑇𝑖 as the set of type pairs constrained at recursive depth 𝑖 of the constraining
algorithm with the subtyping hypotheses. If we start from 𝜖, Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 ⇒ Σ′, then 𝑇0 = {𝜏 ≤
𝜎} ∪ Σ ∪ Σ̂. We define 𝑇𝑖 as follows:
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𝑇0 = {𝜏 ≤ 𝜎} ∪ Σ ∪ Σ̂

𝑇𝑖+1 = {D𝑗2 ≤ D𝑗1 | A[inD𝑗1 outD𝑗3
𝑗 ] ∧ ¬(𝑈 ∨ A[inD𝑗2 outD𝑗4

𝑗 ]) ∈ 𝑆𝑖 }
𝑗

∪ {D𝑗3 ≤ D𝑗4 | A[inD𝑗1 outD𝑗3
𝑗 ] ∧ ¬(𝑈 ∨ A[inD𝑗2 outD𝑗4

𝑗 ]) ∈ 𝑆𝑖 }
𝑗

∪ {D2 ≤ D1 | (D1
D5→ D3) ∧ ¬(D2

D6→ D4) ∈ 𝑆𝑖 }

∪ {D3 ≤ D4 | (D1
D5→ D3) ∧ ¬(D2

D6→ D4) ∈ 𝑆𝑖 }

∪ {D5 ≤ D6 | (D1
D5→ D3) ∧ ¬(D2

D6→ D4) ∈ 𝑆𝑖 }

∪ {
∨
𝜏∈𝑆

𝜏 ≤ ¬C | C ∧ 𝛼𝑚 ∈ 𝑆𝑖 , 𝑆 = 𝑃 ({𝜎 | (𝜎 ≤ 𝛼𝑚) ∈
⋃
𝑗≤𝑖

𝑇𝑗 }), lv(Σ̂,C) ≤𝑚}

∪ {
∨
𝜏∈𝑆

𝜏 ≤ ¬𝜏 ′, 𝛽 𝑗 ≤ 𝛾 𝑗
𝑗 | C ∧ 𝛼𝑚 ∈ 𝑆𝑖 , 𝑆 = 𝑃 ({𝜎 | (𝜎 ≤ 𝛼𝑚) ∈

⋃
𝑗≤𝑖

𝑇𝑗 }),

𝑚 < lv(Σ̂,C), (
⋃
𝑗≤𝑖

𝑇𝑗 ,¬C)
(−,𝑚)
⇝ (Σ, 𝜏 ′), 𝛽 𝑗 ≤ 𝛾 𝑗 ∈ Σ

𝑗 }

∪ {C ≤
∧
𝜏∈𝑆

𝜏 | C ∧ ¬𝛼𝑚 ∈ 𝑆𝑖 , 𝑆 = 𝑃 ({𝜎 | (𝛼𝑚 ≤ 𝜎) ∈
⋃
𝑗≤𝑖

𝑇𝑗 }), lv(Σ̂,C) ≤𝑚}

∪ {𝜏 ′ ≤
∧
𝜏∈𝑆

𝜏, 𝛽 𝑗 ≤ 𝛾 𝑗
𝑗 | C ∧ 𝜏 ∈ 𝑆𝑖 , 𝑆 = 𝑃 ({𝜎 | (𝛼𝑚 ≤ 𝜎) ∈

⋃
𝑗≤𝑖

𝑇𝑗 }),

𝑚 < lv(Σ̂,C), (
⋃
𝑗≤𝑖

𝑇𝑗 ,C)
(+,𝑚)
⇝ (Σ, 𝜏 ′), 𝛽 𝑗 ≤ 𝛾 𝑗 ∈ Σ

𝑗 }

∪ {𝛼𝑚 ≤ ¬C | 𝛼𝑚 ∧ C ∈ 𝑆𝑖 }
∪ {C ≤ 𝛼𝑚 | C ∧ ¬𝛼𝑚 ∈ 𝑆𝑖 }

𝑆𝑖 = {C | (𝜏 ≤ 𝜎) ∈ 𝑇𝑖 , dnf ◦ 𝜚 Σ̂ (𝜏 ∧ ¬𝜎) =
∨
𝑗

C𝑗 ,C ∈ {C𝑗

𝑗 }}

In the above definition, 𝑆𝑖 invokes the dnf function and skolem bound inlining function to trans-
late the given constraint into RNDF, which is done by C-Assum. For 𝑇𝑖+1, the first five components
are provided by C-Ctor1 and C-Fun1. The remaining components contain the premises from
C-Var1, C-Var2, C-Var3, C-Var4, and C-Hyp respectively. Note that some hypotheses created by
C-Assum may not appear as a bound of a type variable at the end. We simply overapproximate by
using the power set function 𝑃 to consider all the possibilities. Therefore, (⋃𝑖 𝑇𝑖 ) ∪ {err} covers all
constraints that are reachable by Ξ, Σ, Σ̂ ⊢ 𝜏 ≪ 𝜎 and Ξ ∪ Σ ∪ Σ̂ itself, where Ξ = 𝜖 initially. Since
C-Hyp prevents generating duplicate constraints and the recursive algorithm always increases the
size of Ξ ∪ Σ, So it suffices to show that

⋃
𝑖 𝑇𝑖 is finite.

If D wf, then for all 𝜏 , the number of ADTs appearing in 𝜏 is finite, and TV (𝜏) is also finite. The
maximum type constructor depth is bound by some number 𝑡𝑐 , which is equivalent to that of types
in𝑇0. Notice that dnf ◦ 𝜚 Σ̂ will not introduce new ADTs or type variables. dnf will not increase the
type constructor depth. Althogh 𝜚 Σ̂ might increase the type constructor depth, we merely inline the
bounds for skolems at the first level, which means the whole type constructor depth is still bound
by 𝑡𝑐 . For all C ∈ 𝑆𝑖 , it can be constructed by using ADTs and existing type variables, plus extruded
variables, within the constructor depth 𝑡𝑐 . Notice that X-fresh makes sure each type variable can
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be extruded to a level only once. Since there is a finite number of reachable polymorphic levels
from a given set of constraints, the number of extruded variables is also finite. Therefore, the size
of 𝑆𝑖 is bound. Derived from 𝑆𝑖 , 𝑇𝑖+1 is then finite. Thus, the size of

⋃
𝑖 𝑇𝑖 is bound. □

D.7 Completeness of Type Inference
Definition D.56. We write fresh(𝐷) to denote all the type variables that are taken as fresh in the

given derivation 𝐷 and are not skolems.

Definition D.57. A fresh type variable substitution 𝜌 is well-formed with context Σ (written as
(Σ, 𝜌) wf), if for all 𝛼𝑚 ∈ dom(𝜌), we have lv(𝜌 (𝛼𝑚), Σ) ≤𝑚.

Definition D.58. D =
∨

C𝑖 is well-formed, written as (Σ,D) wf, if for all C𝑖 , the following
conditions are false:

(1) C𝑖 = (D1
D2→ D3) ∧ ¬((D4

D5→ D6) ∨ . . . ) ∧ . . . ∧¬⋄𝛼𝑚 ∧ . . . , where𝑚 < lv(D1
D2→ D3, Σ) and

𝑚 < lv(D4
D5→ D6, Σ),

(2) C𝑖 = A1 [inD𝑖1 outD′
𝑖1] ∧ ¬(A2 [inD𝑖2 outD′

𝑖2] ∨ 𝑈 ) ∧ . . . ∧ ¬⋄𝛼𝑚 ∧ . . . , where A1 = A2,
𝑚 < lv(A1 [inD𝑖1 outD′

𝑖1], Σ) and𝑚 < lv(A2 [inD𝑖2 outD′
𝑖2], Σ).

Lemma D.59 (Completeness of Extrusion). If Σ Σ̂ cons., (Σ̂, 𝜌) wf, Σ Σ̂ ⊨ 𝜌 (Σ0),𝑚 < lv(D, Σ̂),
lv(𝜏, Σ̂) ≤ 𝑚, Σ Σ̂ ⊢ 𝜌 (𝜏) ≤± 𝜌 (D), (Σ̂, dnf (¬∓ (𝜏 ∧± ¬D))) wf, (Σ̂,D)

(∓,𝑚)
⇝ (Σ′, 𝜎) (denoted as 𝐷),

then Σ Σ̂ ⊢ 𝜌 ′ (𝜏) ≤± 𝜌 ′ (𝜎) and Σ Σ̂ ⊨ 𝜌 ′ (Σ′), where 𝜌 ′ extends 𝜌 , (Σ̂, 𝜌 ′) wf, and dom(𝜌 ′) \dom(𝜌) =
fresh(𝐷).

Proof. We prove the case where ± = +. For ± = −, the proof is symmetric.
By induction on the syntax of D.

Case D = ⊥, D = ⊤. Impossible since lv(D, Σ̂) = 0.
Case D = 𝛼 . Then𝑚 < lv(𝛼, Σ̂). The premise Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝛼) implies Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ 𝜎 for some

𝜎 , where Σ Σ̂ ⊢ 𝜎 ≤ 𝜌 (lb
Σ̂
(𝛼)) and lv(𝜎, Σ̂) ≤𝑚. Consider (𝛼,−, 𝛽𝑚) X-fresh. We conclude

by 𝜌 ′ = [𝜎/𝛽𝑚] ◦ 𝜌 .
Case D = 𝛼𝑛 . Then𝑚 < 𝑛. Σ Σ̂ ⊨ 𝜌 (Σ0) implies Σ Σ̂ ⊢ 𝜌 (lbΣ0 (𝛼

𝑛)) ≤ 𝜌 (𝛼𝑛). The premise Σ Σ̂ ⊢
𝜌 (𝜏) ≤ 𝜌 (𝛼𝑛) implies Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ 𝜎 for some 𝜎 , where Σ Σ̂ ⊢ 𝜎 ≤ 𝜌 (lbΣ0 (𝛼

𝑛)) and
lv(𝜎, Σ̂) ≤𝑚. Consider (𝛼𝑛,−, 𝛽𝑚) X-fresh. We conclude by 𝜌 ′ = [𝜎/𝛽𝑚] ◦ 𝜌 .

Case D = D1
D2→ D3. By case analysis on the subtyping judgment Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ 𝜌 (D).

Case S-Top−. Then Σ Σ̂ ⊢ ⊥ ≤ 𝜌 (D). We conclude by IH.
Case S-Refl, S-AndOrL+, S-AndOrR−, S-AndOr−, S-FunMrg+. Impossible due to the
level requirement.

Case S-Fun. Then 𝜌 (𝜏) = 𝜌 (𝜏1
𝜑
→ 𝜏2) for some 𝜏1, 𝜏2, and 𝜑 . By Theorem D.31, Σ Σ̂ ⊢

𝜌 (D1) ≤ 𝜌 (𝜏1), Σ Σ̂ ⊢ 𝜌 (𝜏2) ≤ 𝜌 (D3), and Σ Σ̂ ⊢ 𝜌 (𝜑) ≤ 𝜌 (D2). We conclude by IH and
S-Fun.

Case D = A[inD𝑖 outD′
𝑖
]. Similar to the case D = D1

D2→ D3.
Case D = ¬𝑈 . Then Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ ¬𝜌 (𝑈 ). If 𝜏 = ¬𝜎 , then by Theorem D.1, Σ Σ̂ ⊢ 𝜌 (𝑈 ) ≤ 𝜌 (𝜏).

For each component 𝜏𝑈 of 𝑈 , we can directly rewrite it into normal form D′. By S-AndOr−,
Σ Σ̂ ⊢ 𝜏𝑈 ≤ 𝜌 (𝜏). We conclude by IH. Otherwise, by Theorem D.1, Σ Σ̂ ⊢ 𝜌 (𝜏 ∧𝑈 ) ≤ ⊥. The
only possible subtyping derivation is either S-CtorBot or S-CFBot. We conclude by IH.
Notice that S-Compl− is impossible due to the level requirement.
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Case D = 𝐼 ∧ ¬𝑈 . By premise (Σ̂, dnf (𝜏 ∧ ¬D)) wf, the subtyping judgment cannot be derived
from S-Compl±, S-FunMrg±, or S-CtorMrg±. Then by S-AndOr+, Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ 𝜌 (𝐼 ) and
Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ ¬𝜌 (𝑈 ). We conclude by IH and S-AndOr+.

Case D = 𝐼 ∧ ¬𝑈 ∧ ¬⋄𝜈 . Similar to the case D = 𝐼 ∧ ¬𝑈 .
Case D = D′ ∨ C. By S-AndOrL− and S-AndOrR−, either Σ Σ̂ ⊢ 𝜌 (𝜏) ≤ 𝜌 (D′) or Σ Σ̂ ⊢ 𝜌 (𝜏) ≤

𝜌 (C). We conclude by IH.
□

Lemma D.60. Given Σ̂,
(1) If 𝜏1 ∧ ¬𝜏2 wf, then (Σ̂, dnf (𝜏1 ∧ ¬𝜏2)) wf.
(2) IfA[in𝜏𝑖 out𝜎𝑖 ] ∧ ¬A[in𝜏 ′

𝑖
out𝜎 ′

𝑖
] wf, then (Σ̂, dnf (𝜏 ′

𝑖
∧ ¬𝜏𝑖 )) wf and (Σ̂, dnf (𝜎𝑖 ∧ ¬𝜎 ′

𝑖
)) wf.

(3) If (𝜏1
𝜑
→ 𝜏2) ∧ ¬(𝜎1

𝜑 ′

→ 𝜎2) wf, then (Σ̂, 𝜎1 ∧ ¬𝜏1) wf, (Σ̂, 𝜏2 ∧ ¬𝜎2) wf, and (Σ̂, 𝜑 ∧ ¬𝜑 ′) wf.

Proof. By induction on the syntax of 𝜏1 ∧ ¬𝜏2. □

Lemma D.61 (Necessity of constraining). Given Σ Σ̂ cons. and (Σ̂, 𝜌) wf,
(1) If Σ Σ̂ ⊢ 𝜌 (𝜏1) ≤ 𝜌 (𝜏2), (Σ̂, dnf (𝜏1 ∧ ¬𝜏2)) wf, Σ Σ̂ ⊨ 𝜌 (Σ0), and Ξ, Σ0, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ′

(denoted as 𝐷), then Σ Σ̂ ⊨ 𝜌 ′ (Σ′).
(2) If Σ Σ̂ ⊢ 𝜌 (∨𝑖 C𝑖 ) ≤ ⊥, (Σ̂,∨𝑖 C𝑖 ) wf, Σ Σ̂ ⊨ 𝜌 (Σ0), and Ξ, Σ0, Σ̂ ⊢ ∨𝑖 C𝑖 ⇒ Σ′ (denoted as 𝐷),

then Σ Σ̂ ⊨ 𝜌 ′ (Σ′).
where 𝜌 ′ extends 𝜌 , (Σ̂, 𝜌 ′) wf, and dom(𝜌 ′) \ dom(𝜌) = fresh(𝐷).

Proof. By induction on the constraining derivations.
Case C-Hyp, C-Bot. Immediately by S-Empty.
Case C-Assum. Then Σ Σ̂ ⊢ 𝜌 (𝜏1) ≤ 𝜌 (𝜏2). By the premise, Ξ�(𝜏1 ≤ 𝜏2), Σ0, Σ̂ ⊢ dnf ◦ 𝜚 Σ̂ (𝜏1 ∧

¬𝜏2) ⇒ Σ′. By Theorem D.1, Σ Σ̂ ⊢ 𝜌 (𝜏1) ∧ ¬𝜌 (𝜏2) ≤ ⊥. Therefore, Σ Σ̂ ⊢ 𝜌 (𝜏1 ∧ ¬𝜏2) ≤ ⊥.
By Lemma C.4 and Lemma D.13, Σ Σ̂ ⊢ 𝜌 (𝜏1 ∧ ¬𝜏2) ≡ 𝜌 (dnf ◦ 𝜚 Σ̂ (𝜏1 ∧ ¬𝜏2)). We conclude by
S-Trans and IH.

Case C-Or. Then Σ Σ̂ ⊢ 𝜌 (D′ ∨ C) ≤ ⊥. By premises,

Ξ, Σ0, Σ̂ ⊢ D′ ⇒ Σ1 (1)

Ξ, Σ0 Σ1, Σ̂ ⊢ C ⇒ Σ2 (2)

Let Σ′ = Σ1 Σ2. By S-AndOrL− and S-AndOrR−,

Σ Σ̂ ⊢ 𝜌 (D′) ≤ 𝜌 (D′ ∨ C) (3)

Σ Σ̂ ⊢ 𝜌 (C) ≤ 𝜌 (D′ ∨ C) (4)

Then by S-Trans on (3) and (4),

Σ Σ̂ ⊢ 𝜌 (D′) ≤ ⊥ (5)

Σ Σ̂ ⊢ 𝜌 (C) ≤ ⊥ (6)

By IH on (1) and (5),

Σ Σ̂ ⊨ 𝜌1 (Σ1) (7)

where 𝜌1 extends 𝜌 . By Lemma D.18 on (7) and the premise Σ̂ ⊨ 𝜌 (Σ0),

Σ Σ̂ ⊨ 𝜌1 (Σ1 Σ0) (8)
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By IH on (4), (6), and (8),

Σ Σ̂ ⊨ 𝜌 ′ (Σ2) (9)

where 𝜌 ′ extends 𝜌1. We conclude by Lemma D.18 on (8) and (9).
Case C-NotBot. Then Σ Σ̂ ⊢ 𝜌 (𝐼 ) ∧ ¬⊥ ≤ ⊥. By Theorem D.1, Σ Σ̂ ⊢ 𝜌 (𝐼 ) ≤ ⊥. No matter which

case is picked, it contradicts Theorem D.31.
Case C-Fun2, C-Fun3. Similar to C-NotBot.
Case C-Ctor1. Then

Σ Σ̂ ⊢ 𝜌 (A[inD𝑖1 outD𝑖3] ∧ ¬(𝑈 ∨ A[inD𝑖2 outD𝑖4])) ≤ ⊥ (10)

By premises,

�Ξ, Σ0 Σ 𝑗
𝑗∈1...𝑖−1

, Σ̂ ⊢ D𝑖2 ≪ D𝑖1 ⇒ Σ𝑖
𝑖

(11)

�Ξ, Σ0 Σ 𝑗
𝑗
Σ′
𝑘

𝑘∈1...𝑖−1
, Σ̂ ⊢ D𝑖3 ≪ D𝑖4 ⇒ Σ′

𝑖

𝑖

(12)

By Theorem D.3 and then Theorem D.1 on (10),

Σ Σ̂ ⊢ ¬𝜌 (𝑈 ) ≤ ¬𝜌 (A[inD𝑖1 outD𝑖3]) ∨ 𝜌 (A[inD𝑖2 outD𝑖4]) (13)

By S-Top− and S-Trans on (13),

Σ Σ̂ ⊢ ⊥ ≤ ¬𝜌 (A[inD𝑖1 outD𝑖3]) ∨ 𝜌 (A[inD𝑖2 outD𝑖4]) (14)

By Theorem D.1 on (14),

Σ Σ̂ ⊢ 𝜌 (A[inD𝑖1 outD𝑖3]) ≤ 𝜌 (A[inD𝑖2 outD𝑖4]) (15)

By Theorem D.31 on (15),

Σ Σ̂ ⊢ 𝜌 (D𝑖2) ≤ 𝜌 (D𝑖1)
𝑖

(16)

Σ Σ̂ ⊢ 𝜌 (D𝑖3) ≤ 𝜌 (D𝑖4)
𝑖

(17)

Let Σ′ = Σ𝑖 Σ′
𝑖
, we conclude by IH and Lemma D.18 and Lemma D.60 on (11), (12), (16), and

(17).
Case C-Ctor2, C-Ctor3, C-Ctor4. Similar to C-Ctor1.
Case C-Fun1. Then

Σ Σ̂ ⊢ 𝜌 ((D1
D5→ D2) ∧ ¬(D3

D6→ D4)) ≤ ⊥ (18)

By premises,

�Ξ, Σ0, Σ̂ ⊢ D3 ≪ D1 ⇒ Σ1 (19)

�Ξ, Σ0 Σ1, Σ̂ ⊢ D2 ≪ D4 ⇒ Σ2 (20)

�Ξ, Σ0 Σ1 Σ2, Σ̂ ⊢ D5 ≪ D6 ⇒ Σ3 (21)

By Theorem D.1 on (18),

Σ Σ̂ ⊢ 𝜌 ((D1
D5→ D2) ≤ 𝜌 (D3

D6→ D4)) (22)
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By Theorem D.31 on (22),

Σ Σ̂ ⊢ 𝜌 (D3) ≤ 𝜌 (D1) (23)

Σ Σ̂ ⊢ 𝜌 (D2) ≤ 𝜌 (D4) (24)

Σ Σ̂ ⊢ 𝜌 (D5) ≤ 𝜌 (D6) (25)

Then we conclude by IH and Lemma D.60 on (19), (20), (21), (23), (24), and (25).
Case C-Sk. We prove the case where ± = −. The proof for ± = + is symmetric.

Then
Σ Σ̂ ⊢ 𝜌 (C ∧ 𝛼) ≤ ⊥ (26)

By premises,

Ξ, Σ0, Σ̂ ⊢ C ⇒ Σ′ (27)

By Theorem D.1 on (26),

Σ Σ̂ ⊢ 𝛼 ≤ ¬𝜌 (C) (28)
Notice that skolems cannot be further bound and all bounds are already inlined by 𝜚 Σ̂.
Therefore, (14) implies

Σ Σ̂ ⊢ ⊤ ≤ ¬𝜌 (C) (29)

Then by Theorem D.1 on (29),

Σ Σ̂ ⊢ 𝜌 (C) ≤ ⊥ (30)

We conclude by IH on (30).
Case C-Var1. Then

Σ Σ̂ ⊢ 𝜌 (C ∧ 𝛼𝑚) ≤ ⊥ (31)
By premises,

Ξ, Σ0 (𝛼𝑚 ≤ ¬C), Σ̂ ⊢ lbΣ0 (𝛼𝑚) ≪ ¬C ⇒ Σ1 (32)

By Theorem D.1 on (31),

Σ Σ̂ ⊢ 𝜌 (𝛼𝑚) ≤ ¬𝜌 (C) (33)
By S-AndOr− and S-Hyp,

Σ0 ⊢ lbΣ0 (𝛼𝑚) ≤ 𝛼𝑚 (34)

Then by S-Hyp and S-Trans on (34),
Σ0 (𝛼𝑚 ≤ ¬C) ⊢ lbΣ0 (𝛼𝑚) ≤ ¬C (35)

Therefore, by Corollary D.21 on (35),
𝜌 (Σ0 (𝛼𝑚 ≤ ¬C)) ⊢ 𝜌 (lbΣ0 (𝛼𝑚)) ≤ 𝜌 (¬C) (36)

Then by S-Cons on (33) and the premise Σ Σ̂ ⊨ 𝜌 (Σ0),
Σ Σ̂ ⊨ 𝜌 (Σ0 (𝛼𝑚 ≤ ¬C)) (37)

By Theorem D.15 on (36) and (37),

Σ Σ̂ ⊢ 𝜌 (lbΣ0 (𝛼𝑚)) ≤ 𝜌 (¬C) (38)

By IH on (38), (37), and (32),

Σ Σ̂ ⊨ 𝜌 ′ (Σ1) (39)
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where 𝜌 ′ extends 𝜌 . Let Σ′ = Σ1 (𝛼𝑚 ≤ ¬C). We conclude by S-Cons on (38) and (39).
Case C-Var2. Similar to C-Var1.
Case C-Var3. Then

Σ Σ̂ ⊢ 𝜌 (C ∧ 𝛼𝑚) ≤ ⊥ (40)

By premises,

(Σ̂,¬C)
(−,𝑚)
⇝ (Σ′, 𝜏) (41)

Ξ, Σ0, Σ̂ ⊢ Σ′ ⇒ Σ′′ (42)

Ξ, Σ0 Σ
′′ (𝛼𝑚 ≤ 𝜏), Σ̂ ⊢ lbΣ0 (𝛼𝑚) ≪ 𝜏 ⇒ Σ1 (43)

By Theorem D.1 on (40),

Σ Σ̂ ⊢ 𝜌 (𝛼𝑚) ≤ ¬𝜌 (C) (44)

By Lemma D.59 on (41), (44), and (Σ̂, 𝛼𝑚 ∧ C) wf,
Σ Σ̂ ⊢ 𝜌0 (𝛼𝑚) ≤ 𝜌0 (𝜏) (45)

Σ Σ̂ ⊨ 𝜌0 (Σ′) (46)

where 𝜌0 extends 𝜌 . By IH on (42) and (46),

Σ Σ̂ ⊨ 𝜌1 (Σ′′) (47)

where 𝜌1 extends 𝜌0. Then by S-Cons on (45), (46), and (47), and the premise Σ Σ̂ ⊨ 𝜌 (Σ0),
Σ Σ̂ ⊨ 𝜌1 (Σ0 Σ

′′ (𝛼𝑚 ≤ 𝜏)) (48)

By S-AndOr− and S-Hyp,

Σ0 ⊢ lbΣ0 (𝛼𝑚) ≤ 𝛼𝑚 (49)

Then by S-Hyp and S-Trans on (49),

Σ0 (𝛼𝑚 ≤ 𝜏) ⊢ lbΣ0 (𝛼𝑚) ≤ 𝜏 (50)

Therefore, by Corollary D.21 on (50),

𝜌1 (Σ0 (𝛼𝑚 ≤ 𝜏)) ⊢ 𝜌1 (lbΣ0 (𝛼𝑚)) ≤ 𝜌1 (𝜏) (51)

By Theorem D.15 on (48) and (51),

Σ Σ̂ ⊢ 𝜌1 (lbΣ0 (𝛼𝑚)) ≤ 𝜌1 (𝜏) (52)

By IH on (43), (46), and (52),

Σ Σ̂ ⊨ 𝜌 ′ (Σ1) (53)

where 𝜌 ′ extends 𝜌0. We conclude by S-Cons on (48) and (53).
Case C-Var4. Similar to C-Var3.

□

Lemma D.62 (Completeness of constraining). If Σ Σ̂ cons., Σ Σ̂ ⊢ 𝜌 (𝜏1) ≤ 𝜌 (𝜏2) for some type
variable substitution 𝜌 , (Σ̂, 𝜌) wf, Σ Σ̂ ⊨ 𝜌 (Σ0), then 𝜖, Σ0, Σ̂ ⊢ 𝜏1 ≪ 𝜏2 ⇒ Σ1 (denoted as 𝐷), where
err ∉ Σ1, Σ Σ̂ ⊨ 𝜌 ′ (Σ1), 𝜌 ′ extends 𝜌 , (Σ̂, 𝜌 ′) wf, and dom(𝜌 ′) \ dom(𝜌) = fresh(𝐷).

Proof. By Theorem D.55, Lemma D.60, and Lemma D.61. □

Lemma D.63. If Γ (𝑥 : 𝜏) ⊢ 𝑡 : T ! 𝜑 , then Γ (𝑥 : 𝛼) (𝛼 ≤ 𝜏) ⊢ 𝑡 : S ! 𝜑 ′, sub(Γ) ⊢ [𝜏/𝛼]S ≤∀ T ,
and sub(Γ) ⊢ [𝜏/𝛼]𝜑 ′ ≤ 𝜑 for any 𝛼 fresh and some S and 𝜑 ′.
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Proof. By induction on the typing derivations. □

Lemma D.64 (General completeness of type inference). Given definitions D wf, if Γ Σ cons.,
where sub(Γ) only maintains skolem bounds, Γ Σ, 𝜁 ⊢ 𝑡 : T !𝜑 , sub(Γ) Σ ⊨ 𝜌 (Σ0) for some substitution
𝜌 , and (Σ̂, 𝜌) wf, then Γ, 𝜁 ⊢ 𝑡 : S ! 𝜑 ′ ⇒ Ξ (denoted as 𝐷1), 𝜖, Σ0, sub(Γ) ⊢ Ξ ⇒ Σ′ (denoted as
𝐷2), sub(Γ) Σ ⊢ 𝜌 ′ (S) ≤∀ T , sub(Γ) Σ ⊢ 𝜌 ′ (𝜑 ′) ≤ 𝜑 , and sub(Γ) Σ ⊨ 𝜌 ′ (Σ0 Σ

′), where 𝜌 ′ extends 𝜌 ,
(Σ̂, 𝜌 ′) wf, and dom(𝜌 ′) \ dom(𝜌) = fresh(𝐷1) ∪ fresh(𝐷2).

Proof. By induction on the typing derivations (IH).
Case T-Var. Then 𝑡 = 𝑥 . By premise, Γ(𝑥) = T . By I-Var, Γ, 𝜁 ⊢ 𝑡 : T ! ⊥ ⇒ 𝜖 . We conclude by

S-PRefl.
Case T-Abs1. Then 𝑡 = 𝜆𝑥. 𝑡 ′. By the premise,

Γ Σ (𝑥 : 𝜏), 𝜁 ⊢ 𝑡 ′ : S ! 𝜑1 (54)

By Lemma D.63 on (54),

Γ Σ (𝛼 ≤ 𝜏) (𝑥 : 𝛼), 𝜁 ⊢ 𝑡 ′ : S′ ! 𝜑2 (55)

sub(Γ) Σ ⊢ [𝜏/𝛼]S′ ≤∀ S (56)
sub(Γ) Σ ⊢ [𝜏/𝛼]𝜑 ′

2 ≤ 𝜑1 (57)

By IH on (55),

Γ (𝑥 : 𝛼𝑛), 𝜁 ⊢ 𝑡 ′ : S′′ ! 𝜑3 ⇒ Ξ (58)
𝜖, Σ0, sub(Γ) ⊢ Ξ ⇒ Σ′ (59)

sub(Γ) Σ (𝛼 ≤ 𝜏) ⊢ 𝜌1 (S′′) ≤∀ S′ (60)
sub(Γ) Σ (𝛼 ≤ 𝜏) ⊢ 𝜌1 (𝜑3) ≤ 𝜑2 (61)
sub(Γ) Σ (𝛼 ≤ 𝜏) ⊨ 𝜌1 (Σ0 Σ

′) (62)

for some 𝜌1 and 𝑛, where 𝜌1 extends 𝜌 and 𝑛 = lv(Γ). By I-Abs1 on (58),

Γ (𝑥 : 𝛼𝑛), 𝜁 ⊢ (𝜆𝑥. 𝑡 ′) : 𝛼
𝜑3→ S′′ ! ⊥ ⇒ Ξ (63)

By Corollary D.21 and S-Refl on (60), (61), and (62),

sub(Γ) Σ ⊢ 𝜌 (S′′) ≤∀ [𝜏/𝛼]S′ (64)
sub(Γ) Σ ⊢ 𝜌 (𝜑3) ≤ [𝜏/𝛼]𝜑2 (65)
sub(Γ) Σ ⊨ 𝜌 (Σ0 Σ

′) (66)

where 𝜌 = [𝜏/𝛼] ◦ 𝜌1. Notice that 𝛼 is fresh, so 𝛼 ∉ dom(𝜌1) ∪ TV (Σ) ∪ TV (Σ0) ∪ TV (Γ). By
Lemma D.33 on (64), (65), (56), and (57),

sub(Γ) Σ ⊢ 𝜌 (S′′) ≤∀ S (67)
sub(Γ) Σ ⊢ 𝜌 (𝜑3) ≤ 𝜑1 (68)

We conclude by S-PFun on (67), (68) and sub(Γ) Σ ⊢ 𝜌 (𝛼) ≤ 𝜏 .
Case T-Abs2. Then 𝑡 = (𝜆𝑥. 𝑡 ′) : T1

𝜑
→ T2. By premises,

Γ Σ (𝑥 : T1), 𝜁 ⊢ (𝑡 ′ : T2) : T2 ! 𝜑 (69)
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By IH on (69),

Γ (𝑥 : T1), 𝜁 ⊢ (𝑡 ′ : T2) : T2 ! 𝜑1 ⇒ Ξ1 (70)
𝜖, Σ0, sub(Γ) ⊢ Ξ1 ⇒ Σ1 (71)

sub(Γ) Σ ⊢ 𝜌1 (𝜑1) ≤ 𝜑 (72)
sub(Γ) Σ ⊨ 𝜌1 (Σ0 Σ1) (73)

where 𝜌1 extends 𝜌 . Assume that 𝜖, Σ0 Σ1, sub(Γ) ⊢ 𝜑1 ≤ 𝜑 ⇒ Σ2. By Lemma D.62 and
Lemma D.60 on (73),

sub(Γ) Σ ⊨ 𝜌2 (Σ2) (74)

where err ∉ Σ2 and 𝜌2 extends 𝜌1. We can rewrite (72) and (73),

sub(Γ) Σ ⊢ 𝜌2 (𝜑1) ≤ 𝜑 (75)
sub(Γ) Σ ⊨ 𝜌2 (Σ0 Σ1) (76)

Let Σ′ = Σ1 Σ2. By Lemma D.18 on (74) and (76),

sub(Γ) Σ ⊨ 𝜌2 (Σ0 Σ
′) (77)

We conclude by I-Asb2 on (70) and S-PFun on (75).
Case T-App. Then 𝑡 = 𝑡1 𝑡2. By premises,

Γ Σ, 𝜁 ⊢ 𝑡1 : T1
𝜑
→ T2 ! 𝜑 (78)

Γ Σ, 𝜁 ⊢ 𝑡2 : T1 ! 𝜑 (79)

By IH on (78),

Γ, 𝜁 ⊢ 𝑡1 : S ! 𝜑1 ⇒ Ξ1 (80)
𝜖, Σ0, sub(Γ) ⊢ Ξ1 ⇒ Σ1 (81)

sub(Γ) Σ ⊢ 𝜌1 (S) ≤ T1
𝜑
→ T2 (82)

sub(Γ) Σ ⊢ 𝜌1 (𝜑1) ≤ 𝜑 (83)
sub(Γ) Σ ⊨ 𝜌1 (Σ0 Σ1) (84)

where 𝜌1 extends 𝜌 . We prove the case where T1 = 𝜏1, T2 = 𝜏2, and S = 𝜏 ̸→ for some 𝜏 ̸→.

The proof for higher-ranked functions and S = S1
𝜑 ′

→ S2 is similar but requires no further
constraints. Similarly, by IH on (79),

Γ, 𝜁 ⊢ 𝑡2 : 𝜏 ′1 ! 𝜑2 ⇒ Ξ2 (85)
𝜖, Σ0 Σ1, sub(Γ) ⊢ Ξ2 ⇒ Σ2 (86)

sub(Γ) Σ ⊢ 𝜌2 (𝜏 ′1) ≤ 𝜏1 (87)
sub(Γ) Σ ⊢ 𝜌2 (𝜑2) ≤ 𝜑 (88)
sub(Γ) Σ ⊨ 𝜌2 (Σ0 Σ1 Σ2) (89)

where 𝜌2 extends 𝜌1. We introduce fresh type variables 𝛽 and 𝛾 . By I-App1 on (80) and (85),

Γ, 𝜁 ⊢ 𝑡1 𝑡2 : 𝛽 ! 𝜑1 ∨ 𝜑2 ∨ 𝛾 ⇒ Ξ (90)
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where Ξ = Ξ1 Ξ2 (𝜏 ̸→ ≤ 𝜏 ′1
𝛾
→ 𝛽). Let 𝜌3 = [𝜏2/𝛽, 𝜑/𝛾] ◦ 𝜌2. Therefore, we can rewrite (82),

(83), (84), (87), (88), and (89) by Corollary D.21,

sub(Γ) Σ ⊢ 𝜌3 (𝜏 ̸→) ≤ 𝜏1
𝜑
→ 𝜏2 (91)

sub(Γ) Σ ⊢ 𝜌3 (𝜑1) ≤ 𝜑 (92)
sub(Γ) Σ ⊢ 𝜌3 (𝜏 ′1) ≤ 𝜏1 (93)
sub(Γ) Σ ⊢ 𝜌3 (𝜑2) ≤ 𝜑 (94)
sub(Γ) Σ ⊨ 𝜌3 (Σ0 Σ1 Σ2) (95)

By S-Trans and S-Fun on (91) and (93)

sub(Γ) Σ ⊢ 𝜌3 (𝜏 ̸→) ≤ 𝜌3 (𝜏 ′1
𝛾
→ 𝛽) (96)

By Lemma D.62 and Lemma D.60 on (95), (96) and the constraint 𝜖, Σ0 Σ1 Σ2, sub(Γ) ⊢ 𝜏 ̸→ ≪
𝜏 ′1

𝛾
→ 𝛽 ⇒ Σ3,

sub(Γ) Σ ⊨ 𝜌 (Σ3) (97)

for some 𝜌 ′, where 𝜌 ′ extends 𝜌3. We conclude by Lemma D.18 on (95) and (97).
Case T-Gen. Then 𝑡 = 𝑡 ′ : ∀𝑉 {Σ′′}.S. By premises,

Γ Σ •𝑉 Σ′′, 𝜁 ∨ 𝜔 ⊢ (𝑡 ′ : S) : S ! ⊥ (98)
sub(Γ) Σ ⊢ ∀𝑉 {Σ′′} cons. (99)

where 𝜔 ∈ 𝑉 . Then by IH on (98) and (99),

Γ •𝑉 Σ′′, 𝜁 ∨ 𝜔 ⊢(𝑡 ′ : 𝜌 ′ (S)) : 𝜌 ′ (S) ! 𝜑 ⇒ Ξ′ (100)
𝜖, 𝜖, sub(Γ •𝑉 Σ′′) ⊢ Ξ′ ⇒ Σ′ (101)

sub(Γ) Σ Σ′′ ⊢ 𝜌1 (𝜑) ≤ ⊥ (102)
sub(Γ) Σ Σ′′ ⊨ 𝜌1 (Σ′) (103)

where 𝜌1 extends 𝜌 . Assume that 𝜖, Σ′, sub(Γ •𝑉 Σ′′) ⊢ 𝜑 ≤ ⊥ ⇒ Σ1. By Lemma D.62 and
Lemma D.60 on (102) and (103),

sub(Γ) Σ Σ′′ ⊨ 𝜌2 (Σ′ Σ1) (104)

where 𝜌2 extends 𝜌1. Since (99) implies 𝜖, 𝜖, sub(Γ) ⊢ Σ′′ ⇒ Σ′′′ for some Σ′′′ and err ∉ Σ′′′,
by I-Gen on (100) and (102),

Γ, 𝜁 ⊢ (𝑡 : ∀𝑉 {Σ′′}.S) : ∀𝑉 {Σ′′}.S ! ⊥ ⇒ Σ′ Σ1 (105)

Assume that

𝜖, Σ0, sub(Γ) ⊢ Σ′ Σ1 ⇒ Σ (106)

Since for all 𝛼 at level 𝑛 + 1, it is fresh. Then 𝛼𝑛+1 ∈ dom(𝜌2). Therefore, (104) implies

sub(Γ) Σ ⊨ 𝜌2 (Σ′ Σ1) (107)

We conclude by Lemma D.62 and Lemma D.60 on (106) and (107).
Case T-Inst. By premises,

Γ Σ, 𝜁 ⊢ 𝑡 : ∀𝑉 {Σ′}. T ′ ! 𝜑 (108)
sub(Γ) Σ ⊨ 𝜌 ′ (Σ′) (109)
dom(𝜌 ′) =𝑉 (110)
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for some 𝜌 ′, where 𝜔 ∈ 𝑉 and 𝜌 ′ (𝜔) = 𝜁 . By IH on (108),

Γ, 𝜁 ⊢ 𝑡 : S′ ! 𝜑1 ⇒ Ξ′ (111)
𝜖, Σ0, sub(Γ) ⊢ Ξ′ ⇒ Σ′′ (112)

sub(Γ) Σ ⊢ 𝜌1 (S′) ≤∀ ∀𝑉 {Σ′}. T ′ (113)
sub(Γ) Σ ⊢ 𝜌1 (𝜑1) ≤ 𝜑 (114)
sub(Γ) Σ ⊨ 𝜌1 (Σ0 Σ

′′) (115)

where 𝜌1 extends 𝜌 . By Lemma D.32 on (113),

sub(Γ) Σ ⊢ 𝜌1 (∀𝑉 {Σ1}.S′′) ≤∀ ∀𝑉 {Σ′}. T ′ (116)

sub(Γ) Σ 𝜌1 (Σ′) ⊢ 𝜌1 (S′′) ≤∀ T ′ (117)

For some S′′ and sub(Γ) ⊢ ∀𝑉 {Σ1} cons., where Σ1 = {𝛼𝑖 ≤±𝑖 𝜏𝑖
𝑖 }, Σ′ = {𝛼𝑖 ≤±𝑖 𝜎𝑖

𝑖 }, and
Σ ⊢ 𝜎𝑖 ≤±𝑖 𝜏𝑖

𝑖 . Let 𝜌2 =𝑉 fresh and 𝜌3 = 𝜌2 ◦ 𝜌1. By I-Inst on (111),

Γ, 𝜁 ⊢ 𝑡 : 𝜌3 (S′′) ! 𝜑1 ⇒ Ξ′ 𝜌3 (Σ1) (118)

Assume that

𝜖, Σ0 Σ
′′, sub(Γ) ⊢ 𝜌3 (Σ1) ⇒ Σ′′′ (119)

By Lemma D.62 and Lemma D.60 on (111) and (119),

sub(Γ) Σ ⊨ 𝜌4 (Σ0 Σ
′′ Σ′′′) (120)

where 𝜌4 extends 𝜌3. Noice that dom(𝜌4) ∩ dom(𝜌2) = ∅. Let 𝜌5 = 𝜌 ′′ ◦ 𝜌4, where 𝜌 ′′

maps 𝑉 fresh to corresponding types in 𝜌 ′. Notice that (109) implies sub(Γ) Σ ⊨ 𝜌 ′′ (Σ′). By
Corollary D.21 on (117),

sub(Γ) Σ ⊢ 𝜌5 (S′′) ≤∀ 𝜌 ′′ ◦ 𝜌2 (T ′) (121)

Since 𝜌 ′′ ◦ 𝜌2 is equivalent to 𝜌 ′, (121) implies sub(Γ) Σ ⊢ 𝜌5 (S′′) ≤∀ 𝜌 ′ (T ′).
Case T-Subs1. By premises,

Γ Σ, 𝜁 ⊢ 𝑡 : 𝜏1 ! 𝜑 (122)
sub(Γ) Σ ⊢ 𝜏1 ≤ 𝜏2 (123)

By IH on (122),

Γ, 𝜁 ⊢ 𝑡 : 𝜎 ! 𝜑0 ⇒ Ξ (124)
𝜖, Σ0, sub(Γ) ⊢ Ξ ⇒ Σ′ (125)

sub(Γ) Σ ⊢ 𝜌 (𝜎) ≤ 𝜏1 (126)
sub(Γ) Σ ⊢ 𝜌 (𝜑) ≤ 𝜑1 (127)
sub(Γ) Σ ⊨ 𝜌 (Σ0 Σ

′) (128)

where 𝜌 extends 𝜌0. We conclude by S-Trans on (126) and (123).
Case T-Subs2, T-Asc. Similar to the case T-Subs1.
Case T-Let. Similar to case T-Abs2.
Case T-Region. Then 𝑡 = region𝑥 in 𝑡 ′. By the premise,

Γ Σ • 𝛼 (𝛼 ≤ ¬𝜁 ) (𝑥 : Region[out𝛼]), 𝜁 ∨ 𝛼 ⊢ 𝑡 ′ : 𝜏 ! 𝜑 ∨ 𝛼 (129)
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Then by IH on (129),
Γ • 𝛼 (𝛼 ≤ ¬𝜁 ) (𝑥 : Region[out𝛼]), 𝜁 ∨ 𝛼 ⊢ 𝑡 ′ : 𝜎 ! 𝜑 ′ ⇒ Ξ1 (130)

𝜖, 𝜖, sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 )) ⊢ Ξ1 ⇒ Σ1 (131)
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊢ 𝜌1 (𝜎) ≤ 𝜏 (132)
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊢ 𝜌1 (𝜑 ′) ≤ 𝜑 ∨ 𝛼 (133)
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊨ 𝜌1 (Σ1) (134)

where 𝜌1 extends 𝜌 . Assume that
𝜖, Σ1, sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 )) ⊢ 𝜑 ′ ≤ 𝛾𝑛 ∨ 𝛼 ⇒ Σ2 (135)

𝜖, Σ1 Σ2, sub(Γ • 𝛼 (𝛼 ≤ ¬𝜁 )) ⊢ 𝜎 ≤ 𝛽𝑛 ⇒ Σ3 (136)

Let 𝜌2 = [𝜑/𝛾𝑛, 𝜏/𝛽𝑛] ◦ 𝜌1, where 𝑛 = lv(Γ). By Corollary D.21 on (132) and (133),
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊢ 𝜌2 (𝜎) ≤ 𝜌2 (𝛽) (137)
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊢ 𝜌2 (𝜑 ′) ≤ 𝜌2 (𝛾 ∨ 𝛼) (138)

By Lemma D.62 and Lemma D.60 on (135), (138), and (134),
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊨ 𝜌3 (Σ1 Σ2) (139)

where 𝜌3 extends 𝜌2. Similarly, by Lemma D.62 and Lemma D.60 on (136), (137), and (139),
sub(Γ) Σ (𝛼 ≤ ¬𝜁 ) ⊨ 𝜌4 (Σ1 Σ2 Σ3) (140)

where 𝜌4 extends 𝜌3. By I-Region on (130), (131), (135), and (136),

Γ, 𝜁 ⊢ region𝑥 in 𝑡 ′ :𝛾𝑛 𝛽𝑛 ⇒ Σ1 Σ2 Σ3 (141)

Let 𝜌 ′ = [¬𝜁 /𝛼] ◦ 𝜌4. (140) implies sub(Γ) Σ ⊨ 𝜌 ′ (Σ1 Σ2 Σ3). Assume that 𝜖, Σ0, sub(Γ) ⊢
Σ1 Σ2 Σ3 ⇒ Σ′, we conclude by Lemma D.62 and Lemma D.60.

□

Theorem D.65 (Completeness of type inference). Given definitions D wf, if ⊢ 𝑡 : T ! ⊥, then
⊢ 𝑡 : S ! 𝜑 ⇒ Ξ, ⊢ Ξ ⇒ Σ, and there exists some type variable substitution 𝜌 , such that 𝜖 ⊨ 𝜌 (Σ),
⊢ 𝜌 (S) ≤∀ T , and ⊢ 𝜌 (𝜑) ≤ ⊥.

Proof. A special case of Lemma D.64. □
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