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Intersection and union types are becoming more popular by the day, entering the mainstream in programming
languages like TypeScript and Scala 3. Yet, no language so far has managed to combine these powerful types
with principal polymorphic type inference. We present a solution to this problem in MLstruct, a language
with subtyped records, equirecursive types, first-class unions and intersections, class-instance matching, and
ML-style principal type inference. While MLstruct is mostly structurally typed, it contains a healthy sprinkle
of nominality for classes, which gives it desirable semantics, enabling the expression of a powerful form of
extensible variants that does not need row variables. Technically, we define the constructs of our language
using conjunction, disjunction, and negation connectives, making sure they form a Boolean algebra, and we
show that the addition of a few nonstandard subtyping rules gives us enough structure to derive a sound
and complete type inference algorithm. With this work, we hope to foster the development of better type
inference for present and future programming languages with expressive subtyping systems.

CCS Concepts: » Software and its engineering — Functional languages; Polymorphism.
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1 INTRODUCTION

Programming languages with ML-style type inference have traditionally avoided subtyping because
of the complexities it brings over a simple unification-based treatment of type constraints. But
Dolan and Mycroft [2017] recently showed with MLsub that an algebraic account of subtyping
resolved many of these difficulties and enabled the inference of precise types that more accurately
reflect the flow of expressions in programs. Unfortunately, among other limitations, MLsub does
not support union and intersection types, which are emerging as important building blocks in the
design of structurally-typed programming languages like TypeScript, Flow, Scala 3, and others.
We close this gap with MLstruct, showing that MLsub-style type inference can be generalized

to include well-behaved forms of union and intersection types as well as pattern matching on
single-inheritance class hierarchies. As a first example, consider the following definitions:

class Some[A]: { value: A } def flatMap f opt = case opt of

class None: {} Some — f opt.value,

None — None{}

The type inferred by our system for flatMap is:

flatMap : Vo, B. (@ — ) — (Some[a] v None) — (B v None)

Interestingly, this is more general than the traditional type given to flatMap for Option types.
Indeed, our flatMap does not require the function passed in argument to return either a None or
a Some value, but allows it to return anything it wants (any f), which gets merged with the None
value returned by the other branch (yielding type f v None). For example,

let res = flatMap (fun x — x) (Some{value = 423})

is given type 42 v None' because the function may return either 42 or None. A value of this type
can later be inspected with an instance match expression of the form:

“This is version 8.0 of the paper; get the latest extended version at https://Iptk.github.io/mlstruct-paper.
IMLstruct supports singleton types for constant literals, e.g., 42 is both a value and a type, with 42 : 42 < Nat < Int.
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case res of Int — res, None — 0

which is inferred to be of type 42 v 0, a subtype of Nat. This is not the most general version

of flatMap either. We can also make the function open-ended, accepting either a some value or

anything else, instead of just Some or None, by using a default case (denoted by the underscore ‘_’):
def flatMap2 f opt = case opt of Some — f opt.value, _ — opt

This flatMap2 version has the following type inferred, where v and A have the usual precedence:
flatMap2 : Va, . (@ — f) — (Some[a] v f A —#Some) — f8

This type demonstrates a central aspect of our approach: the use of negation types (also called
complement types), written —z, which allows us to find principal type solutions in tricky typing
situations. Here, type #Some is the nominal tag of class Some. A nominal tag represents the identity
of a class, disregarding the values of its fields and type parameters: if a value v has type #Some,
this means v is an instance of Some, while if v has type —#Some, this means it is not. To showcase
different usages of this definition, consider the following calls along with their inferred types:?

ex1 = flatMap2 (fun x — x + 1) 42 : Int
ex2 = flatMap2 (fun x — Some{value = x}) (Some{value = 123}) : Some[lZ]
ex3 = flatMap2 (fun x — Some{value = x}) 42 : Some[J_] v 42

It is easy to see that instantiating f§ to Int and Some[12] respectively allows ex1 and ex2 to type
check. In ex3, both types Some[y] and 42 flow into the result, for some type inference variable y,
but y is never constrained and only occurs positively so it can be simplified, yielding Some[ L] v 42.
We can convert ex3 to 42 through a case expression using the impossible helper function:

def impossible x = case x of {} 1l -1

case ex3 of Int — ex3, Some — impossible ex3.value : 42

One may naively think that the following type could fit flatMap2 as well:
flatMap2_wrong : Va, B,y. (@ — ) — (Some[a] vy) = (B Vv y)

but this type does not work. To see why, consider what happens if we instantiate the type variables
to @ = Int, § = Int, and y = Some[Bool]. This yields the type:

flatMap2_wrong’ : (Int — Int) — (Some[Int] v Some[Bool]) — (Int v Some[Bool])

which would allow the call f1atMap2 (fun x — x + 1) (Some{value = false}) because Some[Bool] <
Some[Int] v Some[Bool]. This expression, however, would crash with a runtime type mismatch!
Indeed, the shape of the Some argument matches the first branch of flatMap2’s case expression,
and therefore false is passed to our argument function, which tries to add 1 to it as though it was
an integer... So we do need the negation that appears in the correct type of flatMap2, as it prevents
passing in arguments that are also of the some shape, but with the wrong type arguments.
Finally, let us push the generality of our function further yet, to demonstrate the flexibility of
the system. Consider this last twist on flatMap for optional values, which we will call mapSome:

def mapSome f opt = case opt of Some — f opt, _ — opt

The difference with the previous function is that this one does not unwrap the some value received
in argument, but simply passes it unchanged to its function argument. Its inferred type is:

mapSome : Va, . (¢ — f) — (@ A #Some v f A —#Some) — f

2Notice that only ex3 features a union of two distinct type constructors ‘Some[ L] v 42’ because in ex1 and ex2 only one
concrete type constructor statically flows into the result of the expression (42 and Some, respectively).
30ne may expect Some[ L] = L, but this does not hold in MLstruct, as it would prevent effective principal type inference.
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This type shows that it does not matter what specific subtype of Some we have in the first branch:
as long as the argument has type a when it is a Some instance, then « is the type the argument
function should take, without loss of generality. This demonstrates that our type system can tease
apart different flows of values based on the nominal identities of individual matched classes.

As an example of the additional flexibility afforded by this new function, consider the following:

class SomeAnd[A, P]: Some[A] A { payload: P }

let arg = if (arbitrary conditiony then SomeAnd{value = 42, payload = 23}

else None{}

in mapSome (fun x — x.value + x.payload) arg
of inferred type Int v None. Here, we define a new subclass of Some containing an additional payload
field, and we use this class instead of Some, allowing the payload field to be used from within the
function argument we pass to mapSome. This is not expressible in OCaml polymorphic variants
[Garrigue 2001] and related systems [Ohori 1995]. More powerful systems with row variables
[Pottier 2003; Rémy 1994] would still fail here because of their use of unification: mapSome merges
its opt parameter with the result, so these systems would yield a unification error at the mapSome
call site, because the argument function returns an integer instead of a value of the same type as
the input:* subtyping makes MLstruct more flexible than existing systems based on row variable.

MLscript is a new programming language developed at the Hong Kong University of Science
and Technology® featuring first-class unions, intersections, negations, and ML-style type inference,
among other features. For simplicity, this paper focuses on a core subset of MLscript referred to as
MLstruct, containing only the features relevant to principal type inference in a Boolean algebra of
structural types, used in all examples above. An MLstruct implementation is provided as an artifact
[Parreaux et al. 2022] and available at github.com/hkust-taco/mlstruct, with a web demonstration
at hkust-taco.github.io/mlstruct. The specific contributions we make are the following:

o We present MLstruct (Section 2), which subsumes both the original ML type system and
the newer MLsub [Dolan 2017], extending the latter with simple class hierarchies and class-
instance matching based on union, intersection, and negation type connectives.

e We describe our approach to type inference based on the Boolean-algebraic properties of
MLstruct’s types (Section 3). To the best of our knowledge, MLstruct is the first language to
support principal polymorphic type inference with union and intersection types. Moreover,
it does not rely on backtracking and yields types that are amenable to simplification.

o We formalize the declarative semantics of MLstruct in the A7 calculus (Section 4), making
sure to establish the Boolean-algebraic properties of its subtyping lattice (Section 4.4.4). We
state the standard soundness properties of progress and preservation, whose complete proofs
are given in Appendix B.

e We formally describe our type inference algorithm (Section 5). We state its soundness and
completeness theorems. Again, the proofs can be found in Appendix B.

2 PRESENTATION OF MLSTRUCT

MLstruct subsumes Dolan’s MLsub, the previous state of the art in type inference with subtyping,
which itself subsumes traditional ML typing: all ML terms are typeable in MLsub and all MLsub
terms are typeable in MLstruct. On top of this fertile ML substrate pollinated with MLsub’s rich
subtyping theory of records and equirecursive types, MLstruct grows structurally-typed abstractions

“Wrapping the result in Some would not work either (as Some Int doesn’t unify with Some {value: Int, payload: Int}).
>The GitHub repository of the full MLscript language is available at https://github.com/hkust-taco/mlscript.
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in the form of unions, intersections, negations, structural class types, and class-instance matching.
We now present these features along with some examples.

2.1 Overview of MLscript Features

An MLstruct program is made of top-level statements followed by an expression, the program’s
body. A statements can be either a type declaration (class or type alias) or a top-level function
definition, written def f = t or rec def f = t when f is recursive. MLstruct infers polymorphic
types for def bindings, allowing them to be used at different type instantiations in the program.

2.1.1  Polymorphism. Polymorphic types include a set of type variables with bounds, such as
V(a < Int). List[ar] — List[«]. The bounds of polymorphic types are allowed to be cyclic, which
can be interpreted as indirectly describing recursive types. For example, V(a < T — «). a is the
principal type scheme of rec def f = fun a — f which accepts any argument and returns itself.
To simplify the presentation of inferred polymorphic types with recursive bounds, such as V(a <
a — B), B. &« — B, we may use an equivalent ‘as’ shorthand, as follows: V. ((a« — f) as a) — S.
MLstruct applies aggressive simplification on inferred types, removing redundant type variables
and inlining simple type variable bounds (see Section 3.5), so that they are usually fairly concise.

2.1.2  Classes, Inheritance, and Type Aliases. Because object orientation is not the topic of this
paper, which focuses on functional-style use cases, the basic OO constructs of MLstruct presented
here are intentionally bare-bone. Classes are declared with the following syntax:

class C[A, B, ...J: D[S, T, ...1 A { x: X, y: Y, ...}
where A, B, etc. are type parameters, S, T, X, Y, etc. are arbitrary types and D is the parent class of c,

which can be left out if the class has no parents. Along with a type constructor C[A, B, ...], such a
declaration also introduces a data constructor C of type:

C:Vp B2, (ar<m)(ee<n)..{x:a,x:a,...} >C[fr.f2.. ] r{x1:1, x2: 2, ... }

where x; are all the fields declared by C[f1, fs, .. .] or by any of its ancestors in the inheritance
hierarchy, and 7; are the corresponding types — if a field is declared in several classes of the hierarchy,
we take the intersection of all the declared types for that field. To retain as precise typing as possible,
we let the types of the fields taken in parameters to be arbitrary subtypes ; of the declared z;, so
we can refine the result type C[f1, B2 ...] A {x1 : a1, x2 : &z, ...} to retain these precise types. For
instance, assuming class C: { x: Int },term C { x = 1 } is given the precise type C A {x:1}.

Classes are restricted to single-inheritance hierarchies. Like in the work of Muehlboeck and Tate
[2018], this has the nice property that it allows union types to be refined by reducing types like
(Co v 1) ACitoCy A Cy v T A Cy by distributivity and to just 7 A C; when Cy and C; are unrelated
(Co A C; = 1). But MLstruct can easily be extended to support traits, which are not subject to this
restriction, by slightly adapting the definition of type normal forms (our artifact [Parreaux et al.
2022] implements this). Thanks to their use of negation types (described in Section 4.3), the typing
rules for pattern matching do not even have to change, and traits can also be pattern-matched. In
fact, the full MLscript language supports mixin trait composition [Schérli et al. 2003] similar to Scala
[Odersky et al. 2004], whereby traits can be inherited alongside classes, and method overriding is
resolved in so-called “linearization order.”

2.1.3 Shadowing. Non-recursive defs use shadowing semantics,® so they can simulate the more
traditional field initialization and overriding semantics of traditional class constructors. For instance:

class Person: {name: Str, age: Nat, isMajor: Bool}
def Person n a = Person{name = capitalize n, age = a, isMajor = a >= 18}

%Type names, on the other hand, live in a different namespace and are not subject to shadowing.
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in which the def, of inferred type Person; : V(a < Nat). Str — a — Person A {age : a},
shadows the bare constructor of the Person class (of type Persong : V(a < Str), (f < Nat), (y <
Bool). { name : a, age : f, isMajor : y} — Person A {name : «, age : f, isMajor : y }), forcing
users of the class to go through it as the official Person constructor. Function capitalize returns a
Str, so no ‘name’ refinement is needed (Person A { age : @, name : Str } = Person A {age: a }).

2.1.4 Nominality. Classes are not equivalent to their bodies. Indeed, they include a notion of
“nominal identity”, which means that while a class type is a subtype of its body, it is not a supertype
of it. So unlike TypeScript, it is not possible to use a record {x = 1} as an instance of a class declared
as class C: {x: Int}. To obtain a C, one must use its constructor, as in ¢{x = 13}. This nominality
property is a central part of our type system and is much demanded by users in practice.” It comes
at no loss of generality, as type synonyms can be used if nominality is not wanted.

2.1.5 Type Aliases. Arbitrary types can be given names using the syntax type X[A, B, ...1=T.
Type aliases and classes can refer to each other freely and can be mutually recursive.

2.1.6  Guardedness Check. Classes and type aliases are checked to ensure they do not inherit or
refer to themselves immediately without going through a “concrete” type constructor first (i.e., a
function or record type). For instance, the recursive occurrence of A in type ALX] = Id[A[X1] v Int
where type Id[Y] = Y is unguarded and thus illegal, but type ALX1 = { x: A[X] } v Int is fine.

2.1.7 Class-Instance Matching. As presented in the introduction, one can match values against
class patterns in a form of primitive pattern matching. Consider the following definitions:
class Cons[A]: Some[A] A { tail: List[A] } type List[A] = Cons[A] v None
rec def mapList f ls = case 1ls of
Cons — Cons{value = f ls.value, tail = mapList f 1s.tail},
None — None{}

of inferred type:®  maplList : Va, . (@ — B) — (Cons[a] A {tail : y } v None) as y —
(Cons[f] A {tail : 5§} v None) as §

We define a List type using None as the “nil” list and whose cons constructor extends some (from
the introduction). A list in this encoding can be passed to any function that expects an option in
input — if the list is a Cons instance, it is also a Some instance, and the value field representing the
head of the list will be used as the value wrapped by the option. This example demonstrates that
structural typing lets us mix and match as well as refine different constructors in a flexible way.
As a slightly bigger motivating example, the List type thus defined can then be used as follows,
defining the classical unzip combinator:
def Cons head tail = Cons { value = head, tail = tail } def None = None{}
rec def unzip xs = case xs of
None — { fst = None, snd = None },
Some — let tmp = unzip xs.tail in { fst = Cons xs.value.fst tmp.fst ,
snd = Cons xs.value.snd tmp.snd }
Below are two possible types that may be annotated explicitly by the user for these definitions,
and which will be automatically checked by MLstruct for conformance (a.k.a., subsumption, see
Section 3.4) against their inferred types.’

"The lack of nominal typing for classes has been a major pain point in TypeScript. The issue requesting it, created in 2014
and still not resolved, has accumulated more than 500 “thumbs up”. See: https://github.com/Microsoft/ Typescript/issues/202.
8The where keyword is used to visually separate the specification of type variable bounds, making them more readable.

9 Annotating the types of public functions, while not required by MLstruct, is seen as good practice in some communities.
Moreover, the subsumption mechanism can be used to provide and check module signatures in an ML-style module system.
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def Cons: a — (f A Listlal) — (Conslal A { value: «, tail: g })
def unzip: List[{ fst: a, snd: g }1 — { fst: List[al, snd: List[f] }

2.2 Constructing the Lattice of Types

The algebraic subtyping philosophy of type system design is to begin with the subtyping of data
types (records, functions, etc.) and to define the order connectives to fit this subtyping order, rather
than to follow set-theoretic intuitions. We follow this philosophy and aim to design our subtyping
order to tackle the following design constraints:

(A) The order connectives A, v, and — should induce a Boolean algebra, so that we can manipulate
types using well-known and intuitive Boolean-algebraic reasoning techniques.

(B) Nominal tags and their negations specifically should admit an intuitive set-theoretic under-
standing, in the sense that for any class C, type #C should denote all instances of C while
type —#C should correspondingly denote all instances that are not derived from class C.!°

(C) The resulting system should admit principal types as well as an effective polymorphic type
inference strategy, where “effective” means that it should not rely on backtracking.

2.2.1 Lattice Types. Top, written T, is the type of all values, a supertype of every other type. Its
dual bottom, written L, is the type of no values, a subtype of every other type. For every 7, we have
1 < 7 < T.Intersection A and union v types are the respective meet and join operators in the
subtyping lattice. It is worth discussing possible treatments one can give these connectives:

(1) We can axiomatize them as denoting the intersection N and union U of the sets of values
that their operands denote, which is the approach taken by semantic subtyping.

(2) We can axiomatize them as greatest lower bound (GLB) and least upper bound (LUB) operators,
usually written M and u, whose meaning is given by following the structure of a preexisting
lattice of simple types (types without order connectives). In this interpretation, we can
calculate the results of these operators when their operands are concretely known.

(3) Finally, we can view A and v as type constructors in their own right, with dedicated subtyping
derivation rules. Then unions and intersections are not “computed away” but instead represent
proper constructed types, which may or may not be equivalent to existing simple types.

2.2.2  Subtyping. We base our approach primarily on (3) but we do include a number of subtyping
rules whose goal is to make the order connectives behave like (2) in some specific cases:

e We posit #C; A #C, < | whenever classes C; and C, are unrelated.!' This makes sense
because there are no values that can be instances of both classes at the same time, due
to single inheritance. We obviously also have #C; A #C; > L, meaning the two sides are
equivalent (they subtype each other), which we write #C; A #C; = L. On the other hand,
#C < #D for all C, D where C inherits from D; so when #C; and #C, are related then either
#Cy; A #Cy, = #Cy or #C; A #Cy = #C,. Overall, we can always “reduce” intersections of
nominal class tags to a single non-intersection type, making A behave like a GLB operator in
the class inheritance sublattice, made of nominal tags, T, L, and v, evocative of (2).

e We also posit the nonstandard rule (r; — 72) A (13 > 7)) < (11 v 13) — (72 A 74). The other
direction holds by function parameter contravariance and result covariance, so again the two
sides are made equivalent. A behaves like a GLB operator on function types in a lattice which
does not contain subtyping-based overloaded functions types, such as those of Dolan [2017];
Pottier [1998b]. This rule is illogical from the set-theoretic point of view: a function that can
be viewed as returning a 7, when given a 7; and returning a 7, when given a 73 cannot be

10By contrast, we have no specific requirements on the meaning of negated function and record types, which are uninhabited.
1This class intersection annihilation rule is not novel; for example, Ceylon has a similar one [Muehlboeck and Tate 2018].
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viewed as always returning a 7, A 74. For instance, consider Ax. x, typeable both as Int — Int
and as Bool — Bool. According to both classical intersection type systems and the semantic
subtyping interpretation, this term could be assigned type (Int — Int) A (Bool — Bool). But
we posited that this type is equivalent to (Int v Bool) — (Int A Bool). Thankfully, in MLstruct
Ax. x cannot be assigned such an intersection type; instead, its most general type is Va. « — «,
which does subsume both Int — Int and Bool — Bool, but not (Int — Int) A (Bool — Bool).
This explains why intersection types cannot be used to encode overloading in MLstruct.!

e For record intersections, we have the standard rule that {x: t} A {x: 7} < {x:T AT},
making the two sides equivalent since the other direction holds by depth subtyping. Intersec-
tions of distinct record fields, on the other hand, do not reduce and stay as they are — in fact,
multi-field record types are encoded, in MLstruct, as intersections of individual single-field
record types, following Reynolds [1997]. For instance, assuming x # y, then {x : 71, y : 72 }
is not a core form but merely syntax sugar for {x: 71} A {y: 12 }.

e We apply similar treatments to various forms of unions: First, (r; — ) v (13 — 74) =
(r1 A 13) — (72 v 14), the dual of the function intersection treatment mentioned above.
Second, we recognize that {x: 7} v {y: 7 }and {x : 7} v (m — m), where x # y, cannot
be meaningfully used in a program, as the language has no feature allowing to tease these
two components apart, so we identify these types with T, the top type. This is done by adding
T<{x:t}v{y:n}and T <{x:7} v (m — m) as subtyping derivation rules.

The full specification of our subtyping theory is presented later, in Section 4 (Figure 4).

2.2.3 Soundness. The soundness of subtyping disciplines was traditionally studied by finding
semantic models corresponding to types and subtyping, where types are typically understood as
predicates on the denotations of A terms (obtained from some A model) and where subtyping is
understood as inclusion between the corresponding sets of denotations. In this paper, we take
a much more straightforward approach: all we require from the subtyping relation is that it be
consistent, in the sense that it correctly relate types constructed from the same constructors and
that it not relate unrelated type constructors. For instance, 7; — 7, < m; — m, should hold if
and only if m < 71 and 7, < 7, and {x : Int} < #C should not be derivable. This turns out to
be a sufficient condition for the usual soundness properties of progress and preservation to hold
in our language. Consistency is more subtle than it may first appear. We cannot identify, e.g.,
#C v {x : 7} with T even though the components of this type cannot be teased apart through
instance matching, as doing so is incompatible with distributivity. Notice the conjunctive normal
formofr = #CA{x:7}v#DA{y: 7 }ism = #CVv#D)AH CVv{y: T’ PH)A({x: 7} v#D)A ({x:
t}v{y:7}). Wecanmake {x : 7} v {y : 7’} equivalent to T when x # y because that still
leaves t = (#C v #D) A (#C v {y : 7' }) A ({ x: T} v #D), which is equivalent to the original = by
distributivity and simplification. But making #C v {y : 7’ } and { x : 7} v #D equivalent to T would
make 7 = #C v #D, losing all information related to the fields, and breaking pattern matching!

2.24 Records. Record values are built using the syntax {x1 = t1, x2 =t2, ...} and are assigned
the corresponding types { x; : 71, x3 : T2, ... }. Record types are related via the usual width and depth
subtyping relationships. Width subtyping means that, for instance, {x: 7, y: 2 } < {x: 7 }, and
depth subtyping means that, for instance, {x : 7, y 1 } < {x: 71, y: ;3 } if » < 13.

2.2.5 Negation Types. Finally, we can add Boolean-algebraic negation to our subtyping lattice.
However, its interpretation is considerably constrained by the Boolean structure and by the rules
already presented in Section 2.2.2. In some languages, the values of a negation type —7 are intuitively

120ther forms of overloading, such as type classes and constructor overloading (see Section 6), are still possible.
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understood as all values that are not of the negated type 7, but in MLstruct, this intuition only
holds for nominal tags. For other constructs, such as functions and records, negations assume
a purely algebraic role. For instance, we have relationships like —{x : 7} < 7; — m due to
{x:1} v m — m, being identified with T (see also Section 4.4.5). Because no values inhabit types
like —{x : 7 } and —(m; — ), these types should be essentially thought of as special bottom types
that, for algebraic reasons, technically have to contain more static information than | and have to
possess fewer subtyping relationships.
Negations can express interesting patterns, such as safe division, as seen below, where ‘e : T’ is

used to ascribe a type T to an expression e:

def div nm=n/ (m : Int A —0) def f x = div x 2

div: Int — (Int A —0) — Int f: Int — Int

def g (x: Int) = div 100 x < error: found Int, expected Int A —0@

def div_opt n m = case m of @ — None{}, _ — Some{value = div n m}
div_opt: Int — Int — (None v Some[Int])
Here, ‘case m of ...  is actually a shorthand for the core form ‘case m = m of ...’ which shadows

the outer m with a local variable m that is assigned a more refined type in each case branch.

As we saw in the introduction, — also allows for the sound typing of class-instance matching with
default cases. Moreover, together with T, 1, A, and v, our type structure forms a Boolean lattice,
whose algebraic properties are essential to enabling principal type inference (see Section 3.3.1).

2.2.6 Structural Decomposition. We reduce complex object types to simpler elementary parts,
which can be handled in a uniform way. Similarly to type aliases, which can always be replaced by
their bodies, we can replace class types by their fields intersected with the corresponding nominal
tags. For example, Cons|7] as defined in Section 2.1.7 reduces to #Cons A { value : 7, tail : List[z] }.
Recall that class tags like #Cons represent the nominal identities of classes. They are related with
other class tags by a subtyping relationship that follows the inheritance hierarchy. For instance,
given class Cla] : D[a v 2] A {x:0v a } and class D[f] : {x : B, y : Int }, then we have #C < #D.
Moreover, the refined class type C[1] A {y : Nat } reduces to the equivalent #C A {x: 0v 1} A {x:
1v 2, y:Int} A {y:Nat}, which reduces further to #C A {x: 1, y : Nat }.

Decomposing class types into more elementary types makes MLstruct’s approach fundamentally
structural, while retaining the right amount of nominality to precisely reflect the semantics of
runtime class-instance matching (i.e., pattern matching based on the runtime class of objet values).
It also means that there is no primitive notion of nominal type constructor variance in MLstruct:
the covariance and contravariance of type parameters simply arise from the way class and alias
types desugar into basic structural components.

2.3 Limitations

While MLstruct features very flexible and powerful type inference, this naturally comes with some
limitations, necessary to ensure the decidability and tractability of the type system. We already
mentioned in Section 2.2.2 that intersections cannot be used to type overloading. Here we explain
several other significant limitations.

2.3.1 Regular Structural Types. We restrict the shapes of MLstruct data types to be regular trees to
make the problem of deciding whether one subsumes another decidable: concretely, occurrences of
a class or alias type transitively reachable through the body of that type must have the same shape
as the type’s head declaration. For instance, the following are disallowed:

class C[A]: {x: C[Int]} class C[A]: C[{x: List[AI}] class C[A]: {x: CLCLAII}
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We conjecture that allowing such definitions would give our types the expressive power of context-
free grammars, for which language inclusion is undecidable, making subtyping undecidable.'* To
replace illegal non-regular class fields, one can use either top-level functions or methods. The latter
solve this problem by having their types known in advance and not participating in structural
subtype checking. Methods are implemented in MLstruct but not presented in this paper.

2.3.2  Simplified Treatment of Unions. MLstruct keeps the expressiveness of unions in check by
identifying {x : r; } v{y : 2 } (x # y)and {x : 71 } v (1, — 73) with T, as described in Section 2.2.2.
To make unions of different fields useful, one needs to “tag” the different cases with class types, as
inCy A{x:11} v Cy A{y: 1}, allowing us to separately handle these cases through instance
matching ‘case v of C; — .. v.x .., C; — .. v.y ..’, whereas this is not necessary in, e.g., TypeScript.

A direct consequence of this restriction is that in MLstruct, there is no difference between
{x:Int,y:Int} v {x:Str,y:Str}and {x : Int v Str, y : Int v Str} (still assuming x # y).
Indeed, remember that { x : 71, y : 75 } is syntax sugar for {x : 71 } A {y : 72 } and by distributivity
of unions over intersections, we can take {x : Int, y : Int} v {x : Str, y : Str} to

({x:Int}v{x:Str}) A {x:Int} v {y:Str}) A {y:Int} v {x:Str}) A {y:Int} v {y:Str})
and since {x : 71 } v {y: 1z } is identified with T, as explained in Section 2.2.2, this reduces to
{x:Int} v{x:Str}) A {y:Int} v {y:Str})
which reduces by field merging to { x : Int v Str} A {y : Int v Str},ie., {x : Int v Str, y : Int v Str }.
Another consequence is that, e.g., List[Int] v List[Str] is identified with List[Int v Str]. Again,

to distinguish between these two, one should prefer the use of class-tagged unions or, equivalently,
proper sum types such as Either[List[Int], List[Str]], defined in terms of Left and Right classes.

2.3.3  Fewer Relationships. Unlike in semantic subtyping approaches, but like in most practical
programming languages, we do not have {x : L} < 1. This would in fact lead to unsoundness in
MLstruct: consider 7 = ({ x : Some[Int], y: 71 } v {x : None, y : 73 }) A {x : None }; we would
haver ={x: L y:7} v {x:Noney:7}={x:None y: 5} by distributivity and also
7 ={x:1 v None y:1; v 1} by using (2.3.2) before distributing, but 7; # 7; v 72 in general.

2.3.4 No intersection overloading. Unlike languages like TypeScript, we do not permit the use
of intersection types to encode inclusive function overloading [Pierce 1991]. Thankfully, simpler
forms of overloading compatible with MLstruct exist; we briefly discuss one in Section 6.

3 INFERRING PRINCIPAL TYPES FOR MLSTRUCT

We now informally describe our general approach to principal type inference in MLstruct.

3.1 Algebraic Subtyping

MLstruct follows Dolan’s algebraic subtyping [2017] discipline, which distinguishes itself from
so-called semantic subtyping approaches in that it focuses on the algebraic properties of types,
instead of focusing on set-theoretic semantics. In algebraic subtyping, some subtyping relationships
are not necessary and cannot be justified if one were to look at types purely as denotations for sets
of values. These algebraic relationships are nevertheless sound to have in the type system, and in
turn enable principal type inference and type simplification.

As an example, consider (r; — 12) A (13 > 14) < (11 v 13) — (72 A 74), which holds in Dolan’s
MLsub. While the other direction holds by simple contravariance of function parameters and
covariance of function results, this direction is a lot more contentious. It does not make sense from
the set-theoretic point of view: a function that can be viewed as returning 7, when given a 7; and

3 TypeScript does allow such definitions, meaning its type checker would necessarily be either unsound or incomplete.
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returning 74 when given a 73 cannot be viewed as always returning a 7, A 7. For instance, consider
Ax. x, typable both as Int — Int and as Bool — Bool, and which could therefore be assigned
type (Int — Int) A (Bool — Bool). Surely, this function never returns an Int A Bool value (an
uninhabited type) when called with an Int v Bool argument. But in MLsub, Ax. x by design cannot
be assigned such an intersection type; instead, its most general type is Va. @ — «, which does
subsume both Int — Int and Bool — Bool though not (Int — Int) A (Bool — Bool). This explains
the restriction that intersections cannot be used to encode overloading in MLsub and MLstruct.

In MLstruct, we define further additional algebraic subtyping relationships, such as T < {x :
71} v (12 — 73), as hinted in Section 2.3.2. We similarly ensure that this relationship does not
threaten soundness by making sure the language cannot meaningfully distinguish between values
of these two types (i.e., one cannot pattern match on record or function types).

3.2 Basic Type Inference Idea

We base the core of our type inference algorithm on a simple formulation of MLsub type inference
we formulated in previous work [Parreaux 2020]. The constraint solver attaches a set of lower and
upper bounds to each type variable, and maintain the transitive closure of these constraints, i.e., it
makes sure that at all times the union of all lower bounds of a variable remains a subtype of the
intersection of all its upper bounds. This means that when registering a new constraint of the form
a < 7, we not only have to add r to the upper bounds of @, but also to constrain lowerBounds(a) <
in turn. One has to be particularly careful to maintain a “cache” of subtyping relationships currently
being constrained, as the graphs formed by type variable bounds may contain cycles. Because types
are regular, there is always a point, in a cyclic constraint, where we end up checking a constraint
we are already in the process of checking (it is in the cache), in which case we can assume that the
constraint holds and terminate. Constraints of the general form 7; < 7, are handled by losslessly
decomposing them into smaller constraints, until we arrive at constraints on type variables, which
is made possible by the algebraic subtyping rules. The losslessness of this approach is needed to
ensure that we only infer principal types. In other words, when decomposing a constraint, we must
produce a set of smaller constraints that is equivalent to the original constraint. For example, we
can decompose the constraint 7; v (Tg — T3) < 14 — 715 into the equivalent set of constraints:
71 <1y — T5; 74 < Tz; and 13 < 75. If we arrive at a constraint between two incompatible type
constructors, such as 7; — 7, < { X : 73 }, an error is reported.

3.3 Solving Constraints with Unions and Intersections

By contrast with MLsub, MLstruct supports union and intersections types in a first-class capacity,
meaning that one can use these types in both positive and negative positions. 1* This is particularly
important to type check instance matching, which requires unions in negative positions, and class
types, which require intersections in positive positions (both illegal in MLsub).

The main problem that arises in this setting is: How to resolve constraints with the shapes
71 < 1o v 1 and 1 A T3 < 73 7 Such constraints cannot be easily decomposed into simpler
constraints without losing information — which would prevent us from achieving complete type
inference — and without having to perform backtracking — which would quickly become intractable,
even in non-pathological cases, and would yield a set of possible types instead of a single principal

14positive positions correspond to the types that a term outputs, while negative positions correspond to the types that a term
takes in as input. For instance, in (79 — 71) — 72, type 72 is in positive position since it is the output of the main function,
and the function type (70 — 71) is in negative position, as it is taken as an input to the main function. On the other hand,
71, which is returned by the function taken as input is in negative position (since it is provided by callers via the argument
function), and 7y is in positive position (since it is provided by the main function when calling the argument function).
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type. When faced with such constraints, we distinguish two cases: (1) there is a type variable among
71, T2, and 73; and (2) conversely, none of these types are type variables.

3.3.1 Negation Types. We use negation types to reformulate constraints involving type variables
into forms that allow us to make progress, relying on the Boolean-algebraic properties of negation.
A constraint such as 77 < 7, v @ can be rewritten to 7; A —7; < « by turning the “positive” 7, on
the right into a “negative” on the left, as these are equivalent in a Boolean algebra.'> Therefore, it is
sufficient and necessary to constrain « to be a supertype of 7; A —7; to solve the constraint at hand.
Similarly, we can solve @ A 7; < 7; by constraining « to be a subtype of 7, v —7;.!1® When both
transformations are possible, one may pick one or the other equivalently. The correctness of these
transformations is formally demonstrated in Theorem B.20.. This approach provides a solution
to case (1), but in a way it only pushes the problem around, delaying the inevitable apparition of
case (2).

3.3.2  Normalization of Constraints. To solve problem (2), we normalize constraints until they are
in the shape “r.on < 74is”, where (using a horizontal overline to denote 0 to n repetitions):

® Tcon represents T, L, or the intersection of any non-empty subset of { #C, 71 — 15, {x : 7 } }.
o 74 represents types of the form T, L, (r; — 2) vV #C, {x: 7} v #C, or #C v #C'.

Let us consider a few examples. First, given a constraint like (7; v 72) A 73 < 74, we can distribute the
intersection over the union thanks to the rules of Boolean algebras (see Section 4.4.4), which results
in (11 A13) v (12 AT3) < 14, allowing us to solve 71 A 73 < 74 and 73 A 73 < 74 independently. Second,
given a constraint like 7; < {x: 72 } v 73 — 74, we simply use the fact that {x: o } vz > 1y = T
(as explained in Section 2.2.2) to reduce the constraint to 7; < T, a tautology. Third, with constraints
containing intersected nominal class tags on the left, we can compute their greatest lower bound
based on our knowledge of the single-inheritance class hierarchy. We eventually end up with
constraints of the shape “r.on < 74is” and there always exists a 7; € 7con and T; € 14is such that we
can reduce the constraint to an equivalent constraint 7; < T}. Notice that if two related nominal
tags appears on each side, it is always safe to pick that comparison, as doing so does not entail any
additional constraints. If there are no such related nominal tags, the only other choice is to find a
type in the right-hand side to match a corresponding type in the left-hand side, and the syntax of
these normal forms prevents there being more than one possible choice. All in all, our Boolean
algebra of types equipped with various algebraic simplification laws ensures that we have a lossless
way of resolving the complex constraints that arise from union and intersection types, enabling
principal type inference.

The constraint solving algorithm described in Section 5.3 and implemented in the artifact uses
the ideas explored above but puts the entire constraint into a normal form, instead of normalizing
constraints on the fly. This helps to efficiently guarantee termination by maintaining a cache of
currently-processed subtyping relationships in normal forms, which is straightforward to query.

3.4 Subsumption Checking

Subsumption checking, denoted by <", is important to check that definitions conform to given signa-
tures. Contrary to MLsub, which syntactically separates positive from negative types (the polarity

15 Aiken and Wimmers [1993] used a similar trick, albeit in a more specific set-theoretic interpretation of unions/intersections.
161f it were not for pattern matching, we could avoid negation types by adopting a more complicated representation of type
variable bounds that internalizes the same information. That is, instead of @ < 7 and & > 7 for a given type variable a, we
would have bounds of the form o A 7 < rand @ v 7 > 7, representing @« < 7 v —w and @ = 7 A — respectively. But
reducing several upper/lower bounds into a single bound, which previously worked by simply intersecting/taking the union
of them, would now be impossible without generalizing bounds further. Type simplification would also become difficult.



12 Lionel Parreaux and Chun Yin Chau

restriction), and therefore requires different algorithms for constraint solving and subsumption
checking, in MLstruct we can immediately reuse the constraint solving algorithm for subsumption
checking, without requiring much changes to the type system. To implement VZ;. 7; <" VE,. 13,
we instantiate all the type variables in =;, with their bounds, to fresh type variables, and we turn
all the variables in Z; into rigid variables (so-called “skolems”). The latter can be done by turning
these type variables into fresh flexible nominal tags and by inlining their bounds, expressing them
in terms of unions, intersections, and recursive types. Since there is no polarity restrictions in our
system, the resulting types can be compared directly using the normal constraint solving algorithm.
Flexible nominal tags #F are just like nominal class tags #C, except that they can coexist with
unrelated tags without reducing to L. For example, while #C; A #C; is equivalent to L in MLstruct
when C; and C; are unrelated, #F A #C, is not.!” Flexible nominal tags are also the feature used to
encode the nominal tags of traits, necessary to implement mixin traits as described in Section 2.1.2.
For lack of space, we do not formally describe subsumption checking in this paper.

3.5 Simplification and Presentation of Inferred Types

Type simplification and pretty-printing are important components of any practical implementation
of MLsub and MLstruct. They indeed perform a lot of the heavy-lifting of type inference, massaging
inferred types, which are often big and unwieldy, into neat and concise equivalent type expressions.
In this section, we briefly explain how simplification is performed in MLstruct.

3.5.1 Basic Simplifications. For basic simplifications, we essentially follow Parreaux [2020] — we
remove polar occurrences of type variables, remove type variables “sandwiched” between identical
bounds, and we perform some hash consing to simplify inferred recursive types. The simplification
of unions, intersections, and negations is not fully addressed by Parreaux, since MLsub does not fully
supports these features. In MLstruct, we apply standard Boolean algebra simplification techniques to
simplify these types, such as putting them into disjunctive normal forms, simplifying complements,
and factorizing common conjuncts. We also reduce types as they arise, based on Section 2.2.2.

3.5.2 Bound Inlining. Many types can be represented equivalently using either bounded quantifica-
tion or inlined intersection and union types, so we often have to choose between them. For instance,
V(e < Int)-(f = Int). @ - a — f is much better expressed as the equivalent Int — Int — Int.
But whether (@ A Int) — (@ A Int) — « is better than the equivalent V(a < Int). « > @ — @ may
depend on personal preferences. As a general rule of thumb, we only inline bounds when doing so
would not duplicate them and when they are not cyclic (i.e., we do not inline recursive bounds).

3.6 Implementation

MLstruct is implemented in ~5000 lines of Scala code, including advanced type simplification
algorithms and error reporting infrastructure.'® We have an extensive tests suite consisting of more
than 4000 lines of well-typed and ill-typed MLstruct expressions, for which we automatically check
the output of the type simplifier and error reporting for regressions. Running this test suite in
parallel takes ~2s on a 2020 iMac with a 3.8 GHz 8-Core Intel Core i7 and 32 GB 2667 MHz DDRA4.

4 FORMAL SEMANTICS OF MLSTRUCT

In this section, we introduce A7, a formal calculus which reflects the core features of MLstruct.
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Core syntax

Type ruo=t—ort|{x:t} |Alf] |C[7] | #C |a | T° | V1| -1
Mode 0,0 = - |
Polymorphic type o= VE.7
Term st u=xyz|t:t| At |tt|tx|C{x=t}| casex=tof M
Case branches Mu=¢e|_—-t|Co>tM
Value o,w i= Ax.t |C{x =0}
Program Pu=t|defx=17P
Top-level declaration d == classCla] : 7 | type Ala] =7
Contexts
Declarations context D u=¢€|D-d
Typing context I i=¢|T-(x:7) | T-(x:0)
Subtyping context ~ Z,A u=E | Z-(r<1) | Z->(r < 1)
Constraining context Ev=c¢|E-(a<7)|E-(r<a)|E-err

Fig. 1. Syntax of types, terms, and contexts.

4.1 Syntax

The syntax of A is presented in Figure 1. We use the notation E; to denote a repetitionof i = Oton
occurrences of a syntax form E, and we use the shorthand E when i is not needed for disambiguation.

4.1.1 Core Syntax. The core syntax of A~ follows the MLstruct source language presented previ-
ously quite closely, though it introduces a syntactic novelty: the mode ¢ or o of a syntactic form
is used to deduplicate sentences that refer to unions and intersections as well as top and bottom,
which are respective duals and can therefore often be treated symmetrically. For instance, T° is to
be understood as either T" when ¢ = -, i.e., T, or as T° when o = D, 1i.e., L. A similar idea was
developed independently by d. S. Oliveira et al. [2020] to cut down on boilerplate and repetition in
formalizing subtyping systems.

Parametric polymorphism in A7 is attached solely to top-level ‘def’ bindings, whose semantics,
as in languages like Scala, is to re-evaluate their right-hand side every time they are referred to in
the program. In contrast, local let bindings are desugared to immediately-applied lambdas, and are
treated monomorphically. Let polymorphism is orthogonal to the features presented in this paper,
and can be handled by using a level-based algorithm [Parreaux 2020] on top of the core algorithm
we describe here, as well as a value restriction if the language is meant to incorporate mutation.

In A7, def bindings are never recursive. This simplification is made without loss of generality, as
recursion can be recovered using a Z fixed point combinator, typeable in MLsub [Dolan 2017] and
thus also in A7. This combinator is defined as t; = Af. t}, t;, where t;, = Ax. f (A0. x x v). One
can easily verify that ¢z can be typed as ((« — ) — ((a = f) A y)) — 7.

To keep the formalism on point, we only present class object types, and ignore uninteresting
primitive and built-in types like Int and Bool, which can be encoded as classes. Note that singleton
types like 1, 2, and true, as we use them in the introduction, are easily encoded as subclasses 1¢,
2¢, and truec of the corresponding built-in types.

17This requires extending the syntax of normal forms in a straightforward way to 7/, ::= Tcon A #F and Téis n= 1gis V #F.
8This does not include about 1200 additional lines of code to generate JavaScript (the tests are run through Node]S).
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E[o] u== 0ot |vo |ox | C{x=0,y=0,z2=1} | casex =oof M

E-Ctx E[t] v~ E[t'] if twot!

E-DEr def x =t; P v [x — £]P

E-App (Ax. t) 0 v [x — 0]t

E-Asc t:T vt

E-Proj V1.X > U2 if {x=0v}€eu
E-CaseCLs1 case x = C; Rof C; — t, M v [x — C1 R]t if CpeS(#C)
E-CaseCLs2 casex = Ci Rof Cy — t, M~~~ case x = v of M if Cp¢ S(#Cq)
E-CASEWLD casex =vof _— t v [x — 0]t

Fig. 2. Small-step evaluation rules.

Finally, the syntax of pattern matching ‘case x = t of ...” includes a variable binding because
the rules for typing it will refine the type of that variable in the different branches. We do not use
‘case x of ...” as the core form in order to allow for simple substitution of variables with terms.

4.1.2  Contexts. We use four kinds of contexts. Declarations contexts D hold the type declarations
of the program. Throughout this paper, we assume an ambient declarations context (i.e., our
formal developments are implicitly parameterized by D). Typing contexts I' bind both monomorphic
and polymorphic types, the latter corresponding to ‘def’ bindings. Subtyping contexts 3 record
assumptions about subtyping relationships, with some of these assumptions potentially hidden
behind a > (explained in Section 4.4.1). Finally, polymorphic or constraining contexts = contain
bounds/constraints on type variables and possibly errors (err € E) encountered during type
inference. The typing rules will ensure that in a polymorphic type VE. 7, context = is consistent,
which implies err ¢ =. Note that X contexts are rooted in = contexts because subtyping judgments
require the former but are invoked from typing judgments, which use the latter for polymorphism.

4.1.3  Shorthands. Throughout this paper, we make use of the following notations and shorthands:
R = {x=0} N == A|C H:=r1<r1 N = N[¢] C—ot=C—ote
{7 *€S, YTy} = (x5} A {y:ry} (yegS) letx=tint; = (Ax. ) 1
caseyof M = casex =yof [y — x|]M (x ¢ FV(M))

4.2 Evaluation Rules

The small-step reduction semantics of A~ is shown in Figure 2. The relation P v~~~ P’ reads “program
P evaluates to program P’ in one step.” Note that P here may refer to a simple term t.

We write { x = v, } € v; to say that v, is a value of the form ‘C {Z=w, x = v; }’ or of the form
‘C{z=w,y=u0,} wherey # xand {x = v, } € C {z = w }. Class instances are constructed via
the C R introduction form, where R is a record of the fields of the instance. Instance matching works
by inspecting the runtime instance of a scrutinee value, in order to determine which corresponding
branch to evaluate. This is done through the superclasses function S(7). Note that a term of the
shape ‘case x = v of €’ is stuck.

Definition 4.1 (Superclasses). We define the superclasses S(t) of a type 7 as the set of classes
transitively inherited by type 7, assuming 7 is a class type or the expansion of a class type. The full
definition is given in appendix (Definition A.1).
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T-Suss T-Opj
Er+t:n1 EF0<n ETHt:t C final
L
ETHt:n ETHC{x=t}:#CA{x:T}
T-Proj T-VAR1 T-VAR2 T-ABs
ETHt:{x:7} I'(x)=r Ix)=¢ Ero<"Ver El(x:m)kt:n
ETl+tx:t El~x:1 El-x:1 ETl-Ax.t:11 > 1
T-Aprpr T-Asc
2l+-ty:nm—->n ETFt:n =l-t:r
ETHtht1:m E,rl—(t:‘[):‘l’
T-Caskel T-CAsE2
T+t L1 ETHt:m A#C E,r~(x:‘[1)}—t2:‘[
T+ casex =t of e: L ETl+casex=tof —ty:1

T-CASE3
ElFt:#C ATV —#C A1y ETl(x:n)bkt:t ET(x:m)casex=xof M:1

ETlkcasex=t1of C—>ity, M: 1

Fig. 3. Term typing rules.

4.3 Declarative Typing Rules

Program-typing judgments Z,I" —* P : r are used to type programs while term-typing judgments
E,T |-t : 7 are used to type def right-hand sides and program bodies. The latter judgement is read
“under type variable bounds = and in context I, term t has type 7.” We present only the rules for
the latter judgment in Figure 3, as they are the more interesting ones, and relegate the auxiliary
program-typing (E,T * P : 1), consistency (3 cons.) and subtyping entailment (X - o <" o and
2 k= %) rules to the appendix (Appendix A.1). The consistency judgment is used to make sure we
type defs and program bodies under valid (i.e., consistent) bounds only."”

Rule T-OBj features a few technicalities deserving of careful explanations. First, notice that its
result type is an intersection of the nominal class tag #C with a record type of all the fields passed in
the instantiation. Importantly, these fields may have any types, including ones not compatible with
the field declarations in C or its parents. This simplifies the meta theory (especially type inference)
and is done without loss of generality: indeed, we can desugar ‘c {x = t, ...} instantiations in
MLstruct into a type-ascribed instantiation ‘C{x = t, ...} : C[a] in A7,%° where all @ are fresh,
which will ensure that the provided fields satisfy their declared types in C.

T-Osj also requires C to be “final” using the C final judgment (formally defined in Figure 10).
This means that C is not extended by any other classes in D. It ensures that, at runtime, for every
class pattern D, pattern-matching scrutinees are always instances of a class D’ that is either a
subclass of D (meaning #D’ < #D) or an unrelated class (meaning #D’ < —#D). Without this
property, type preservation would technically not hold. Indeed, consider the program:

class C; class Cy: Cy class Cs
case x = Ci{} of C; — C3{}, _ —x

¥Indeed, under inconsistent bounds, ill-typed terms become typeable. For example, we have (Int < Int — Int) = 11 : Int.
2The alternative desugaring ‘let tmp = C{x = ¢, ...} in let _ = tmp : C[@] in tmp’ is nicer because it allows the user to
retain refined field types (as described in Section 2.1.2) as well as any new fields that were not declared in C or its parents.
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This program can be given type —C, since C; < C; v —=C, = T (in T-CAsE3, we pick 7, = —C3),
but it reduces to C;{}, which does not have type —C, because C; and C; are not unrelated classes.
This finality requirement is merely a technicality of A~ and it does not exist in MLstruct, where

non-final classes can be instantiated. This can be understood as each MLstruct class C implicitly
defining a final version CF of itself, which is used upon instantiation. So the MLstruct program
above would actually denote the following desugared A~ program:

class C; class CIF: C; class Cy: Cy class C3 class C:’:: Cs

case x = CI'{} : ¢y of C; — Cl{} : ¢35, _ —x
The refined program above now evaluates to Cf{}, of type CF, which is a subtype of —Cs.

In T-SuBs, we use the current constraining context = as a subtyping context ¥ when invoking
the subtyping judgement E |- 7; < 72 (presented in the next subsection), which is possible since
the syntax of constraining contexts is a special case of the syntax of subtyping contexts.

Rule T-VAR2 uses the entailment judgment = - o <" Ve. 7 defined in appendix to instantiate the
polymorphic type found in the context.

The typing of instance matching is split over three rules. Rule T-Caskt1 specifies that no scrutinee
can be matched by a case expression with no branches, which is expressed by assigning type L
(the type inhabited by no value) to the scrutinee.

Rule T-CasEi2 handles case expressions with a single, default case, which is equivalent to a let
binding, where the body ¢, of the default case is typed within a typing context extended with the
case-bound variable x and the type of the scrutinee. This rule requires the scrutinee to have a class
type #C; this is to prevent functions from being matched, because that would technically break
preservation in a similar way as described above (since we do not have m; — m, < —#D?%').

T-CasE3 is the more interesting instance matching rule. We first assume that the scrutinee ¢, has
some type 77 in order to type the first case branch, and then assume t; has type 7, to type the rest
of the instance matching (by reconstructing a smaller case expression binding a new variable x
which shadows the old variable occurring in M). Then, we make sure that the scrutinee t; can be
typed at #C A 71 v —#C A 73, which ensures that if #; is an instance of C, then it is also of type 71,
and if not, then it is of type 7;. In this rule, 7; can be picked to be anything, so assuming I'-(x : 77)
to type 1, is sufficient, and there is no need to assume I'-(x : 7; A #C). If the #; branch needs 77 to
be a subtype of #C, we can always pick 7; = 7] A #C. Notice that the required type for #, still has
the same shape #C A 1y v —=#C A1y = #CA(#CAT)) v ~#C ATy = #C AT v —#C A Ty,

4.4 Declarative Subtyping Rules

The declarative subtyping rules are presented in Figure 4. Remember that the mode syntax ¢ is used
to factor in dual formulations. For instance, 7 <° T° is to be understood as either < T when
o=-le,7<T,orasr éb T° when o = J,ie, 7 > 1, also written L < 7. The purpose of rule
S-WEAKEN is solely to make rules which need no context slightly more concise to state. In this
paper, we usually treat applications of S-WEAKEN implicitly.

4.4.1 Subtyping Recursive Types. A consequence of our syntactic account of subtyping is that
we do not define types as some fixed point over a generative relation, as done in, e.g., [Dolan
2017; Pierce 2002]. Instead, we have to account for the fact that we manipulate finite syntactic
type trees, in which recursive types have to be manually unfolded to derive things about them.
This is the purpose of the S-Exp rules, which substitute a possibly-recursive type with its body to
expose one layer of its underlying definition. As remarked by Amadio and Cardelli [1993, §3.2], to
subtype recursive types, it is not enough to simply allow unfolding them a certain number of times.

2'We cannot support this without breaking subtyping consistency, because it would mean that #C A (71 — 73) < ...
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Moreover, in our system, recursive types may arise from cyclic type variable constraints (which is
important for type inference), and thus not be attached to any explicit recursive binders. Thus, we
cannot simply follow Castagna [2012, §1.3.4] in admitting a p rule, which would still be insufficient.

4.4.2  Subtyping Hypotheses. We make use of the ¥ environment to store subtyping hypotheses
via S-Assum, to be leveraged later using the S-Hyp rule. We should be careful not to allow the use
of a hypothesis right after assuming it, which would obviously make the system unsound (as it
could derive any subtyping). In the specification of their constraint solving algorithm, Hosoya et al.
[2005] use two distinct judgments | and ' to distinguish from places where the hypotheses can or
cannot be used. We take a different, but related approach. Our S-Assum subtyping rule resembles
the Lob rule described by Appel et al. [2007], which uses the “later” modality > in order to delay
the applicability of hypotheses — by placing this symbol in front of the hypothesis being assumed,
we prevent its immediate usage by S-Hyp. We eliminate > when passing through a function or
record constructor: the dual < symbol is used to remove all > from the set of hypotheses, making
them available for use by S-Hyp. These precautions reflect the “guardedness” restrictions used by
Dolan [2017] on recursive types, which prevents usages of « that are not guarded by — or { ... } in
a recursive type pa. 7. Such productivity restriction is also implemented by our guardedness check,
preventing the definition of types such as type A = A and type A = —A (Section 2.1.6).%?

22Perhaps counter-intuitively, it is not a problem to infer types like V(e < «). 7" and V(& < —a). T because such “funny”
cyclic bounds, unlike unproductive recursive types, do not actually allow concluding incorrect subtyping relationships.

‘ZI—TSTHTST‘ “E=E% <= -H)=<2-H < voH=<%H
S-NEGI
S-REFL S-ToBo S-CompPLo ZEﬁ I;IIV <z S-ANDOR11¢ S-ANDOR12¢
TET < T Ve 2 T < g T1 v<>1'2><>f1 71 v<>12><>72
S-ANDOR2¢ S-TRANS
S 120 S-DisTRIBO Shn<n Ihn<n
S Vv A% (V0 12) (1 A% 1) VO (1 A% 12) 1<
S-WEAKEN S-Assum S-Hyp S-CLsSuB S-CrsBot
H >>H R+ H HeX CgGS(#Cl) Cq ¢S(#C2) Cy ¢S(#C1)
>+—H Y+H Y+—H #C1 < #Cy #C1 A #Cy < L
S-FUNDEPTH S-Expo
LBy WLFn<n S-FunMrgo T exp. T
Sk o1 <1 — T3 (1Vvor) = (A r) 21 > A’ >y =7
S-RcpDEPTH S-RcpTor
BTk <1n S-RcoMreo re{{y™:n}ln—on}
SH{x:n}<{x:2} {x: V)< {x: 0} v {x:n} T<{x:n}vr
S-ALSExp S-CLsExp

(type A[@' ¢S] = 1) e D (class C[@;'€5] : 1) e D
A[—iGS —ieS]T C[—ieS —ieS]T

'] exp. [ai = 7 7' €] exp. #C A [a; > 1

Fig. 4. Declarative subtyping rules.
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4.4.3 Example. As an example, let us try to derive A; < A; where Ay = 7 — 7 — A; and
A; = T — A,, which states that the type of a function taking two curried 7 arguments an arbitrary
number of times is a special case of the type of a function taking a single r argument an arbitrary
number of times. To facilitate the development, we use the shorthand H = A; < A;. We
start by deriving that the respective unfoldings of the recursive types are subtypes; that is, that
(1) 1 > r —> A; < 7 — Aj. Note that for conciseness, we omit the applications of S-WEAKEN in
the derivations below:
(Al < Ag) eH
REFL Hyp
Hrt<t HFA <A
Fun Exp
H71—> A < 1> A HF17—> Ay <Ay

REFL TRANS
HEt<r~ HF71—-A < A

PHFT—o>1T—> A <1 A (1)

Fun

Then, we simply have to fold back the unfolded recursive types, using Exp and TRANs:

Expr
SHFA < 1—>1—o A (1)
TrRANS Exp
PHHFA < 7— A >HEFT7T— Ay < A
TrANS
>H - A1 < Ay
Assum

A1 < A

4.4.4 A Boolean Algebra. The subtyping preorder in A~ gives rise to a Boolean lattice or algebra
when taking the equivalence relation ‘r; = 7’ to be the relation induced by ‘r; < 1 and 7, < 77,
To see why, let us inspect the standard way of defining Boolean algebras, which is as the set of
complemented distributive lattices. We can define a lattice equivalently as either:

e An algebra (L, A, v) such that A and v are idempotent, commutative, associative, and
satisfy the absorption law, i.e., 7 A (v 7) =7 v (t A 1) = 7. Then 71 < 1, is taken to mean
1 = 71 A T or (equivalently) 7y v 7, = 7.

o A partially-ordered set (L, <) (i.e., < is reflexive, transitive, and antisymmetric) where every
two elements 7; and 7, have a least upper bound 7; v 7, (supremum) and a greatest lower
bound 7; A 7, (infimum). Thatis, Vr <, n.r <t AnandVr = 1,0. 1 = 11 V 1.

The latter is most straightforward to show: we have reflexivity by S-ReF1, transitivity by S-TrANS,
antisymmetry by definition of =, and the supremum and infimum properties are given directly by
S-ANDOR2- and S-ANDOR22 respectively.

Moreover, to be a Boolean algebra, our lattice needs to be:

o a complemented lattice, which is

- bounded: T and _L are respective least and greatest elements (S-ToBo);

— such that every 7 has a complement —7 where 7 v =7 = T and 7 A =7 = L (S-CompLo);?
e a distributive lattice, meaning that 7 A° (11 V° 12) = (t A°11) V8 (z A% 12) for o € {2, - }.

The first direction <° of distributivity is given directly by S-DisTriB. The other direction >°
is admissible: since 7; v° 7, 2° 7; (S-ANDOR119) and 71 V° 12 =° 7, (S-ANDOR120), we can easily
derive 7 A® (11 VO 12) 2° T A% 11 and 7 A° (11 V° 13) =° 7 A® 1y, and by (S-ANDOR2¢) we conclude
that 7 A® (11 V® 12) 2° (7 A° 11) VO (1 A° 12).

A useful property of Boolean algebras is that the usual De Morgan’s laws hold, which will allow
us to massage constrains into normal forms during type inference.

ZWe can also show that our lattice is uniquely complemented, i.e., =7; = —17, implies 7; = 7 (Theorem B.14).
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4.4.5 Algebraic Rules. We call S-FUNMRG and S-RcpTop algebraic subtyping rules because they
do not follow from a set-theoretic interpretation of order connectives (A, v, —). S-FUNMRG and
S-RcDMBRG respectively make function and record types lattice homomorphisms,?* which is required
to make type inference complete — this allows the existence of well-behaved normal forms. Though
one can still think of types as sets of values, as in the semantic subtyping approach, in A7 the sets of
values of 71 A 13 is not the intersection of the sets of values of 7; and 7, (unless 7; and 7, are nominal
tags or records), and similarly for unions and complements. These algebraic rules are sound in A~
because of the careful use we make of unions and intersections, e.g., not using intersections to
encode overloading. Notably, S-RcpTop implies surprising relationships like —(7; — 72) < {x: 7}
and ~{x:7} < {y: 7} (x # y), exemplifying that negation in A~ is essentially algebraic.

4.5 Soundness of the Declarative Type System

We now state the main soundness theorems for A™’s type system, proven in Section B.12 and B.13.
In the following, -* is used as the syntax for program-typing judgments (see Figure 9 in appendix).

THEOREM 4.2 (PROGRESS). If —* P : 7 and P is not a value, then - P v~ P’ for some P’.

THEOREM 4.3 (PRESERVATION). If H* P: 7 and - P v~ P/, then -* P’ : 1.

5 PRINCIPAL TYPE INFERENCE FOR A™

We now formally describe the type inference algorithm which was presented in Section 3.

5.1 Type Inference Rules

Our type inference rules are presented in Figure 5. The judgmentsI' -* P: 7 = Eand E,T |- ¢ :
7 = E are similar to their declarative typing counterparts, except that they are algorithmic and
produce constraining contexts = containing inferred type variables bounds.

We give the following formal meaning to premises of the form ‘e fresh’, and in the rest of this
paper, we implicitly only consider well-formed derivations:

Definition 5.1 (Well-formed derivations). A type inference or constraining derivation is said to be
well-formed if, for every «, the ‘a fresh’ premise appears at most once in the entire derivation and,
if it does, a does not occur in any user-specified type (i.e., on the right of ascription trees ‘t : 7°).

The program-typing inference rules I-Bopy and I-DEF mirror their declarative counterparts. In
I-DEF, notice how the output context corresponding to the definition’s body is the one used to
quantify the corresponding type in the typing context. Notice that in these rules, the consistency
condition (which can be seen in the declarative typing rules in Figure 9) has disappeared, because
type inference only produces consistent contexts by design.

The main difference between type inference rules and declarative typing rules is that in the
former, we immediately produce a type for each subexpression irrelevant of its context, using type
variables for local unknowns, and we then use a constraining judgement ¥ - 7 < 7 = = (explained
in the next subsection) to make sure that the inferred type 7 conforms to the expected type 7 in this
context. So whenever we need to guess a type (such as the type of a lambda’s parameter in I-ABSs),
we simply introduce a fresh type variable. As an example, in I-Proj, we infer an unconstrained
type 7 for the field projection’s prefix t, and then make sure that this is a subtype of a record type
by constraining Eg - 7 « {x : @ } = E; — where E; is the output context containing the type
variable bounds necessary to make this relationship hold. Rules I-App, I-Asc, I-Caskgl, I-CAsE2,
and I-CasE3 all work according to the same principles, threading the set of constraining contexts

24 A lattice homomorphism f is such that f(r v 7) = f(r) v f(x) and f(r A 7) = f(r) A f(r). Function types are
lattice homomorphisms in their parameters in the sense that f(7) = (—7) — 7 is a lattice homomorphism.
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I-Bopy I-DEF
" lFt:t=E Tht:r=28 T-(x:VE1O)FP:x=5%
THFP:r=Z2 < < 7
TH-t:r=2 IT''+*defx=t;P:mn=Z
I-Prog
— — Eo,TIFt:t=51 «afressh EpE1-1t<{x:a}=5E
20, IFtx:a= E1-Ey
[-Osj
20, -t 11 = &1 202l IFlh =58y ... Ep-B1....Bn-1,l IFth:1Th = ZE, C ﬁnal
Eo.TFC{xi=tisxa=1t2 ...;xp=1tn ) :#HC A {X1:7T1; X2: 72, ...; Xn 1 Tn } = E1-....Bp
I-VAR2
I-Var1 B B aes
I(x)=r I(x)=VE;.1 TV(VE;.71) =S  yq fresh
ETlFx:t=¢ E0.T IFx: [ 12%%]n = [a= 12%€5]E,
I-App
I-ABs Eo,TFti:mi =81 EpELlFh:nn=E
a fresh EpT(x:a)l-t:7= 5 a fresh EpE1-Eob1 <13 > a= 3
2, T FAx. t:a > 7= 2 ILZlFt1tr:a= E1-E2-E3
I-Asc I-Caskl
20, IHt:p = & E0BE1 T K= 5y 20, T IFH 11 = 21 EE1 k<« Ll=5E
=0, I I+ (t : Tz) 1Ty = BBy 2o, I-casex =t of e: L = E1-Ey
I-CaAsE2

20, IFt 1 = =21 2021 1 «#C = =y Eo-El-Ez,r~(x : 71) Ft:7= =3

o, T IFcasex =tjof _ —ty: 7= E1-Ey-E3

I-CasE3
20, -t 11 = =1 a fresh E(yE],I‘-(x : 0{) Ity : 1) = Eo B fresh
E0-E1-Ep T (x:f)IFcasex =xof M: 13 =53 EgE1-EpEsbn <K#CAnav —#C A J=Ey

2o, T Fcasex =t of C > 1), M: 1y v 13 = E1-E-E3-Ey

Fig. 5. Algorithmic type inference rules.

currently inferred through the next type inference steps, which is necessary to make sure that all
inferred type variable bounds are consistent with each other. Rule I-VAR2 refreshes all the variables
of a type VE. r obtained from the typing context, which includes both variables that occur in the
constraining context = as well as those that occur in the underlying type z, even when some of the
latter may not be mentioned in Z; indeed, in A7 all type variables are implicitly quantified.

5.2 Reduced Disjunctive Normal Forms

To facilitate constraint solving, it is useful to massage types into a normal form which we call
RDNEF, for reduced disjunctive normal form. This normal form is similar to a classical disjunctive
normal form (DNF) except that we reduce all “incompatible” intersections and unions to L and T
respectively. Here, incompatible means that the type holds no useful information, either because it
is inhabited by no value or because it cannot be used meaningfully, as explained in Section 2.2.2.
The syntax of RDNF is given below. It is indexed by a level n and there are two possible levels:
level-0 RDNF, written D° does not contain any occurrence of class or alias types at the top level
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(they will have been expanded); whereas level-1 RDNF, written D!, allows them. Notation: we will
often write D as a shorthand for D! (and similarly for the other indexed syntax forms).

D" == 1L |C"|D*vC" C"u=1"A=U" | C"Aa | C" A —a
' w= 1° | I' AN[D!] 10 w= TNINY | I[7] | TUR)
Ul w= U° | U' v N[D'] W = L | D' D' | {x:D'} | U v#C
where the 7 contexts stand for combinations of nominal tags N, functions ¥, and records R:
IN[6] 2= o AF AR N := T | #C I[o] w= IN[6] | T7[0] | T[]
I7[0] == NAoAR F == T | D' - D! TP = TATAT
T[] s= NAF ro R u= T | {x:Dl}

As an example, ‘D1 = #C A T A {x: T} A C[Int, Bool] A A[Str] A =L A —¢’ is a valid level-1
RDNF, but not a valid level-0 one because C[Int, Bool] and A[Str] occur at the top level and are not
expanded, while ‘D) = T A T A {x: C[Int, Bool] } A —L” is well-defined for both n € {0, 1}.

5.2.1 Algorithm. Figures 6 and 7 give an algorithm to convert types 7 to level-n RDNFs, written
dnf?(7). The task is essentially straightforward, if relatively tedious. Essentially, dnf" pushes
negations in using DeMorgan laws, distributes intersections over unions, and at the same time
ensures that all constructed conjunctions are de-duplicated and as reduced as possible, so that
for instance intersections of unrelated classes are reduced to | and function and record types are
merged with themselves. We write (—)7 as a shorthand for either 7 or —7 (used uniformly in a
rule) and make use of auxiliary functions union”(D", D") and inter” (D", D"), which rely on the
following context definitions ST [-] and S™[-], used to “dig into” the various shapes of C" syntaxes:

SHe) s= I0e] | S*[e] na | S*[] A —a | S*[a] A ~U | $*[a] A N[DT]
S7[o] == ST[o]Aaa | ST[0] A —a | I A—=ST[o]

S7[6] #= o | ST[5] vN[D'] | $7[e] v#C | Uv o

For example, we can decompose C" = I" A —((D} — D}) v #C) A ¢ as C" = S~[D} — D}] where
S7[o] =1" A =(o v #C) A a.

The algorithm is well-defined on well-formed types = wf, assuming a well-formed declarations
context D wf. These notions of well-formedness are defined formally in Appendix A.2.

LEMMA 5.2 (WELL-DEFINED dnf). If D wf,  wf, and n € {0, 1}, then dnf"(z) = D" for some D".

LEMMA 5.3 (CORRECTNESS OF dnf). Forallt,n e {0, 1}, and D" = dnf"(r), we have r = D".

5.3 Type Constraining Rules

The type constraining rules are defined in Figure 8. They are defined for any pairs of types and
input subtyping contexts, returning an output context containing err in case the constraining fails.
We need err cases to distinguish an infinite loop in the algorithm from a subtype constraining error,
i.e., we want to justify that we have a proper algorithm and not just a semi-algorithm.

In top-level constraining judgments, of the form ¥ - 7 « 7 = E, we check whether a subtyping
relationship is currently in the assumptions; if not, we extend the set of assumptions with the
current constraint (guarded by a i) and call the nested constraining rules with the two sides 7; and
1, merged into a single dnf’(z; A —7,) normal form.?> Nested constraining judgments have syntax
¥ - D® = E; they implicitly solve the constraint D’ < |. We can do this because for all 7; and z,

%5The real implementation is a little smarter and does not always put the entire constraint into DNF to avoid needless work
in common cases. It also uses a mutable cache to reuse previous computations and avoid exponential blowups [Pierce 2002].
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dnf"(7) |: D"
dnf™(T) = dnf?(—=L) = T3 A =L (1)
dnf(L) = dnf"(=T) = L @
dnf* (@) =T* A=l ra (3)
dnf?(#C) =4C AT AT A L (4)
dnf?(1; > ) = T A dnfl(;) = dnfl(m) A T A =L (5)
dnf?({x:7}) ={x:dnf' (D) } AT AT A =L (6)
dnf®(N[z]) = dnf’() when N[7] exp. 7/ 7)
dnf (N[7]) = T* A N[dnfl(z)] A =L (8)
dnf (71 A 72) = inter(dnf" (1), dnf"(z2)) ©9)
dnf (71 v 72) = union(dnf"(z1), dnf" (7)) (10)
dnf?(=a) = T A =L A —a (11)
dnf?(—#C) = T* A =(L v #C) (12)
dnf?(—={x:7}) = T* A ={x : dnf'(z) } (13)
dnf? (= (11 = 1)) = T° A =(dnfl(z;) — dnf!(z2)) (14)
dnf’(=N([z]) = dnf’(—7") when N[7] exp. 7/ (15)
dnf' (=N[z]) = T* A =(L v N[dnf'(r)]) (16)
dnf?(—=(71 A 12)) = union(dnf"(—11), dnf?(—13)) (17)
dnf?(—=(7; v 12)) = inter(dnf"(—11), dnf"(—13)) (18)

union(D", D") |: D"

union(D", 1) = D" (19)
D" when C™ € D"
. n ny __
union(D", C") = { D™ v C"  otherwise (20)
union(DY, Df v C") = union(union(D7, C"), D}) (21)
inter(D", D™) |: D"
inter(L, D) = inter(D", L) = L (22)
inter(D v C", D}') = union(inter(D{, DY), inter(C", D})) (23)
inter(C{, D" v C7) = union(inter(C}, D"), inter(CY, C})) (24)

Fig. 6. Normal form construction algorithm.

the subtyping relationship X - 7; < 73 is formally equivalent to X - 71 A =72 < L. This technique
was inspired by Pearce [2013], who also puts constraints into this form to solve subtyping problems
involving unions, intersections, and negations. Our constraining rules are deterministic except for
C-VAR1 and C-VAR2. By convention, we always pick C-VAR1 in case both can be applied.
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inter(C™ | L, C™ | 1" | —U™) ‘:c" | L
inter(L, )=1

inter(CT, CJ A

inter(C7, CI})
(~)a) ={ .

inter(C" A

~)a. C3)

when (—)a € C}
when a,—a € CT A (—)a
otherwise

inter(C", I A =U™) = inter(inter(C", I"), —=U")

inter(C!, I' A N[D!]) = inter(inter(C', 1), N[D!])

(
inter(C", N A F A R) = inter(inter(inter(C",
(

N), F), R)

inter(C!, —=(U! v N[D!])) = inter(inter(C', —U'), =N[D!])

inter(C", —=1) = C"

C—
inter(ST[U?], —UY) = T3 when (Uf, UZ) e { {x: } > ) }
{x: b A{y™: )

sAxi 1)

inter(S™[D} — D3], —(D3 — D})) = S~ [inter(D1, D}) — union(D}, D})]

inter(S™
inter(ST[UT], —=(U7 v #C)) = {

inter(ST[L], —U") = ST[U"]

inter(D' | C!, (—)N [H])‘ D!

inter(L, (—=)N[D']) = L
inter(D} v C!, (—)N[D!]) = inter(D}
inter(C! A @, (—)N[D!]) = inter(C'
inter(C! A —a, (—=)N[D!]) = inter(C!

inter(I' A —U?, N[E] = {

inter(I' A —=U', =N[D!]) = {

‘ inter(C", N'| F| R) ‘:C" | L
inter(C", T) =C"

It A =U
I' AN[D!'] A =U!
A —U!
' A =(U! v N[D!])

inter(ST[ZN[T]], #C) = ST[ITN[#C]]

L

inter(ST[T[#C1]], #C2) = { ST[I[#C,]]
SH[I[#C1]]

inter(C", {x: DL,

[{x:D!}], ={x:D}}) = ST[{x: union(D}, D}) }]

fnter(S_[Uf], -Ur)
inter(S™[U} v #C], —U})

when #C € U?
otherwise

when N[D!]el!
otherwise
when N[D!] e U
otherwise

when C1 ¢ S(#C2) and Cy ¢ S(#C1)
when C; € S(#C3)
when Cy € S(#Cy)

inter(S[Z 7 [T]] D} = D3) = S¥[Z[D} — D3]]
inter(ST[Z[D} — D}]], D} — D}) = S*[Iunion(Dj, D}) — inter(D3, D})]]

inter(ST[TU[T]], {x:D'}) = ST[IO[{x:D'}]]

inter(S*[Z[{x: DL~ }]]. {y: D! })_{ SHI[{x

: Dxx eS\{y}

S*I[{x:Dk

y: D} }) = inter(inter(C", {x: D} }), {y: D} })

s LY inter(DL, DY ]
,y:D'}]]

Fig. 7. Normal form construction algorithm (continued).

when ye S

otherwise
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C-Hyr C-Assum
(n1<m)ex (n<n)¢s Io(n<n)dnf'(q A —n)=E
ST K1y =¢€ LK==
C-Or
SED == EX-C0= = C-Bor C-NotBot
SFDvC=EE Skl=e SFIPA-L=err
C-Crs1 C-Cis2
CzES(#C]) C2¢S(#C1) Z}—[[#Cl] A—-U=E
SHI[#C1] A —~(U v #Cy) = ¢ S I[#Ci] A= (U v #Cy) = E
C-Cis3 C-Fun1
SHIN[TIA-U=E L D3« D=5 E<XD; « Dyg=5
SHIN[TIA—(Uv#C)=>E 2+ I[Dy — D2] A =(D3 — Dy) = E-E
C-Repl
C-Fon2 yeS <X+ Dy « D=E
S I7[T] A —=(D1 — Dy) = err S I[{x Dr °HA—-{y:D}=E
C-Rcn2
yés C-Rcp3
ZI—I[{x:DXXES}] A—{y:D}=err SITU[TIA~{x:D} = err
C-Varl C-VAR2
S(a < —=C)F lby(a) « ~=C=>E S (C<a)FCkubs(a)=E
SCAa=E(a<—C) SFCA—a=E(C<a)

Fig. 8. Normal form constraining rules.

Definition 5.4 (Upper and lower bounds). We use the following definitions of lower and upper
bounds Ib=(«) and ub=() of a type variable « inside a constraining context =:

bz(a) |: 7 ubz(a) |: 7
bz err(@) = lbzop () = lbz(a) ubz. (@) = ubz.npr (@) = ubz ()
Ibz. (1<) (a) =17 v Ibz(a) ubz.(r<p) (a) = ubz(a)
Ibz.(r<p)(@) = lb=(a) (a # B) ubz.(g<r)(@) = 7 A ubz()
lb~»(ﬂ<r)(0‘) = lbz(a) ubsz.(p<r) (a) = ubz(a) (a # B)
Ibe(a) = L ube(a) =T

Notice how the C-VAR1/2 rules solve tricky constraints involving type variables by moving the
rest of a type expression to the other side of the inequality, relying on negation types and on the
properties of Boolean algebras (see Theorem B.20). Moreover, C-VAR1/2 look up the existing bounds
of the type variable being constrained and perform a recursive call to ensure that the new bound is
consistent with these existing ones. This is required to ensure we only produce consistent output
contexts, and it explains why we have to thread constraining contexts throughout all type inference
derivations. As part of this recursive call, we extend the subtyping assumptions context with the
bound being recorded. For example, C-VAR2 recurses with context - (C < «) instead of just . This
is crucial for two reasons: First, it is possible that new upper bounds z; be recorded for « as part
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of the recursive call. By adding C to the current lower bounds of & within the recursive call, we
make sure that any such new upper bounds 7; will be checked against C as part of the resulting
Ibs(ar) « 7; constraining call performed when adding bound 7;. Second, it is quite common for
type inference to result in direct type variable bound cycles, such as @ < f, f < a, which can
for instance arise from constraining f — f < a — a. These cycles do not lead to divergence of
type inference thanks to the use of 3-(C < «) instead of ¥ in the recursive call, ensuring that any
constraint resulting from a type variable bound cycle will end up being caught by C-Hyp.

The other constraining rules are fairly straightforward. The “beauty” of the RDNF is that it
essentially makes constraint solving with A7 types obvious. In each case, there is always an obvious
choice to make: either (1) the constraint is unsatisfiable (for example with T < | in C-NoTBor,
which yields an err); or (2) the constraint needs to unwrap an irrelevant part of the type to continue
(for example with D; — D, < U v #C in C-Crs3, which can be solved iff D; — D, < U itself

can be solved, because function types are unrelated to nominal class tags); or (3) we can solve the
——xeS
constraint in an obvious, unambiguous way (for example with { x : Dy - } < {y: D} where

y € S in C-Repl).

Normalizing types deeply (i.e., not solely on the outermost level) makes the termination of
constraining (Theorem A.9) straightforward. If we did not normalize nested types and for example
merged {x : 71 } A {x: 1, } syntactically as { x : ; A 72 }, constraining recursive types in a way
that repetitively merges the same type constructors together could lead to unbounded numbers of
equivalent types being constrained, such as {x : 77 A 71 A 71 A ... }, failing to terminate by C-Hye.

Example. Consider the constraint 7 = {x : Nat, y: Nat} « 7 = {x:Int, y : T }. After adding
the pair to the set of hypotheses, C-Assum computes the RDNF dnf’(t A —7) = {x : Nat, y :
Nat} A—{x:Int}v{x:Nat y:Nat}A—{y: T }. Then this constrained type is decomposed into
two smaller constrained types { x : Nat, y : Nat } A —={x : Int}and {x : Nat, y: Nat } A —={y: T}
by C-ORr, and each one is solved individually by C-Rcp1, which requires constraining respectively
Nat « Int and Nat « T. The former yields RDNF #Nat A —#Int, which is solved by C-C1sC1s1,
and the latter yields RDNF L, which is solved by C-BoT.

5.4 Correctness of Type Inference

We conclude this section by presenting the main correctness lemmas and theorems of type inference.

THEOREM 5.5 (SOUNDNESS OF TYPE INFERENCE). If the type inference algorithm successfully yields

—

a type for program P, then P has this type. Formally: if V* P: 7 = Z and err ¢ =, then = +* P : 1.

LEMMA 5.6 (SUFFICIENCY OF CONSTRAINING). Successful type constraining ensures subtyping: if
Y cons.and X+ 1 &< 7 = E and err ¢ E, then Z-3 cons. and Z-X + 7 < 7.

THEOREM 5.7 (CONSTRAINING TERMINATION). Forallt,m,D,% wf, ¥ - 7 « & = E for some E.

THEOREM 5.8 (COMPLETENESS OF TYPE INFERENCE). If a program P can be typed at type o, then
the type inference algorithm derives a type ¢’ such that o’ <" o. Formally: if £ * P : , then
I-* P: 7 = Z' for some Z' and 7’ where ' cons. and V='.7' <" VE.1.

In the following lemma, which is crucial for proving the above theorem, p refers to type variable
substitutions and E = E’ denotes that = entails Z’ (both defined formally in Appendix B).

LEMMA 5.9 (COMPLETENESS OF CONSTRAINING). If there is a substitution p that makes p(r;) a
subtype of p(r2) in some consistent =, then constraining 11 < 1, succeeds and only introduces type
variable bounds that are entailed by Z (modulo p). Formally: if = cons. and E + p(11) < p(12) and
E = p(Zo), then Eg - 11 € 75 = =1 for some E; so that err ¢ Z; and E = p(5,).
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6 RELATED WORK

We now relate the different aspects of MLstruct and A~ with previous work.

Intersection type systems. Intersection types for lambda calculus were pioneered by Coppo and
Dezani-Ciancaglini [1980]; Barendregt et al. [1983], after whom the “BCD” type system is named.
BCD has the very powerful “T-A-I” rule, stating: if [ ¢t : 7y and T ¢t : 7o, then T -t : 77 A 75,
Such systems have the interesting property that typeability coincides with strong normalization
[Ghilezan 1996], making type inference undecidable. Thankfully, we do not need something as
powerful as T-A-I — instead, we introduce intersections in less general ways (i.e., through T-Ogy),
and we retain decidability of type inference. Most intersection type systems, including MLstruct and
A7, do admit the following standard BCD subtyping rules given by Barendregt et al.: (1) 7y A 75 < 733
(2)1y A2 < 1p;and (3) if 1 < 1y and 1 < 13, then 77 < 73 A 73. Some systems use intersection types
to encode a form of overloading [Pierce 1991]. However, Smith [1991] showed that ML-style type
inference with such a general form of overloading and subtyping is undecidable (more specifically,
finding whether inferred sets of constraints are satisfiable is) and proposed constructor overloading,
a restricted form of overloading with more tractable properties, sufficient to encode many common
functions, such as addition on different primitive types as well as vectors of those types. Constructor
overloading is eminently compatible with MLstruct and MLscript. Another design decision for
intersection systems is whether and how this connective should distribute over function types.
BCD subtyping states?® (t — m;) A (t — m2) < © — (1 A 72) and Barbanera et al. [1995] also
propose (11 — ) A (13 = 7) < (11 v 72) — 7. Together, these correspond to the minimal relevant
logic B+ [Dezani-Ciancaglini et al. 1998]. Approaches like that of Pottier [1998b] use a greatest
lower bound connective 1 that resembles type intersection A but admits a more liberal rule that
generalizes the previous two: (1, — m) A (12 = m2) < (11 v 12) — (11 A 7m2), which we will refer
to as (full) function distributivity. However, notice that in a system with primitives, full function
distributivity is incompatible with T-A-I and thus precludes intersection-based overloading.*’

Union and intersection types in programming. Union types are almost as old as intersection
types, first introduced by MacQueen et al. [1986],%% and both have a vast (and largely overlapping)
research literature, with popular applications such as refinement types [Freeman and Pfenning
1991]. These types have seen a recent resurgence, gaining a lot of traction both in academia
[Alpuim et al. 2017; Binder et al. 2022; Castagna et al. 2022; Dunfield 2012; Huang and Oliveira
2021; Muehlboeck and Tate 2018; Rehman et al. 2022] and in industry,” with several industry-grade
programming languages like TypeScript, Flow, and Scala 3 supporting them, in addition to a myriad
of lesser-known research languages. It is worth noting that many modern type systems with
intersection types do not support T-A-I in its full generality. For example, in TypeScript, a term can
only assume an overloaded intersection type if that term is a function with a list of pre-declared
type signatures, and in Scala intersections can only be introduced through inheritance. Unions and
intersections have also found uses in program analysis. Palsberg and Pavlopoulou [1998] showed
that polyvariant analysis can be related formally to a subtyping system with union, intersection,
and recursive types. Unions model sets of abstract values and intersections model each usage of an

26This rule together with T- A-I was shown unsound in the presence of imperative features by Davies and Pfenning [2000].
?TFor instance, term id = Ax. x has both types Int — Int and Bool — Bool so by T-A-I it would also have type
(Int = Int) A (Bool — Bool). But by function distributivity and subsumption, this would allow typing id as (Int v Bool) —
(Int A Bool) and thus typing id 0 (which reduces to 0) as Int A Bool, breaking type preservation.

28Funnily, MacQueen et al. reported at the time that “type-checking difficulties seem to make intersection and union awkward
in practice; moreover it is not clear if there are any potential benefits from their use,

The first author of this paper has received emails from various people reimplementing Simple-sub [Parreaux 2020] and
wanting to know how to add support for first-class union and intersection types, showing the enduring interest in these.
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abstract value. Their system conspicuously does not feature polymorphism, but it is well-known
that there is a correspondence between intersection types and polymorphism — a polymorphic
type can be viewed as an infinite intersection of all its possible instantiations [Aiken and Wimmers
1993]. Smith and Wang [2000] propose inferring polymorphic types, rather than intersections, for
function definitions, which is more flexible and composable as it can process unrelated definitions
separately, whereas the approach based solely on intersections is a global process. We believe that
having both intersections and polymorphism, as in MLscript, represents the best of both worlds.

Type inference for unions and intersections. None of the previous approaches we know have
proposed a satisfactory ML-style type inference algorithm for full union and intersection types.
By satisfactory, we mean that the algorithm should infer principal polymorphic types without
backtracking. Earlier approaches used heavily-restricted forms of unions and intersections. For
instance, Aiken and Wimmers [1993]; Aiken et al. [1994] impose very strict restrictions on negative
unions (they must be disjoint) and on positive intersections (they must not have free variables
and must be “upward closed”). Trifonov and Smith [1996] go further and restrict intersections
to negative or input positions (those appearing on the right of < constraints) and unions types
to positive or output positions (those appearing on the left). Binder et al. [2022]; Dolan [2017];
Parreaux [2020]; Pottier [1998b] all follow the same idea. In these systems, unions and intersections
are not first-class citizens: they cannot be used freely in type annotations. Frisch et al. [2008] infer
set-theoretic types (see semantic subtyping below) for a higher-order language with overloading but
do not infer polymorphic types. Castagna et al. [2016] propose a complete polymorphic set-theoretic
type inference system, but their types are not principal so their algorithm returns several solutions,
which leads to the need for backtracking. It seems this should have severe scalability issues, as the
number of possible types for an expression would commonly grow exponentially.*’ Petrucciani
[2019] describes ways to reduce backtracking, but recognizes it as fundamentally “unavoidable.”

Negation or complement types. Negation types have not been nearly as ubiquitous as unions
and intersection in mainstream programming language practice and theory, except in the field of
semantic subtyping (see below). Nevertheless, our use of negation types to make progress while
solving constraints is not new — Aiken and Wimmers [1993] were the first to propose using
complement types in such a way. However, their complement types are less precise than our
negation types,*! and in their system & A 7; < 7, and @ < 7, v —1; are not always equivalent.

Recursive types. Recursive types in the style of MLstruct, where a recursive type is equivalent
to its unfolding (a.k.a. equi-recursive types, not to be confused with iso-recursive types), have a
long history in programming languages research [Abadi and Fiore 1996; Amadio and Cardelli 1993;
Appel et al. 2007; Hosoya et al. 2005; MacQueen et al. 1986; Pierce 2002], dating as far back as Morris’
thesis, where he conjectured their use under the name of cyclic types [Morris 1969, pp.122-124].
Recursive types with subtyping were developed in the foundational work of Amadio and Cardelli
[1993] and Brandt and Henglein [1998] gave a coinductive axiomatization of such recursive types.
Jim and Palsberg [1999] described a co-inductive formalization of recursive types as arbitrary
infinite trees which is more general than approaches like ours, which only allows reasoning about
regular types. Nevertheless, the algorithms they gave were unsurprisingly restricted to regular
types. Gapeyev et al. [2002]; Pierce [2002] reconciled the representation as infinite regular trees with
the representation as y types, and described the standard algorithms to decide the corresponding
subtyping relationship. An important aspect of practical recursive type algorithms is that one

30Hindley-Milner type inference and derived systems like MLsub and MLstruct can also infer types that grow exponentially
in some situations, but these mostly occur in pathological cases, and not in common human-written programs.
31For example, in their system — (7 — ) is the type of all values that are not functions, regardless of z and 7.
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needs to maintain the cache of discovered subtyping relationships across recursive calls to avoid
exponential blowup [Gapeyev et al. 2002]. Our implementation of MLstruct follows the same
principle, as a naive implementation of A~ would lead to exactly the same blowup. Also refer to
Section 4.4.2 for more parallels between the handling of recursive types in A~ and previous work.

Early approaches to subtype inference. The problem of type inference in the presence of
subtyping was kick-started in the 1980s [Fuh and Mishra 1989; Mitchell 1984; Stansifer 1988] and
studied extensively in the 1990s [Aiken and Wimmers 1993; Curtis 1990; Fuh and Mishra 1990;
Jim and Palsberg 1999; Kozen et al. 1994; Palsberg et al. 1997; Pottier 1998a,b; Smith 1991], mostly
through the lens of constraint solving on top of Hindley-Milner-style type inference [Damas and
Milner 1982; Hindley 1969; Milner 1978]. These approaches often involved combinations of record,
intersection, union, and recursive types, but as far as we know none proposed an effective (i.e.,
without backtracking) principal type inference technique for a system with all of these combined.
Odersky et al. [1999] gave them a unified account by proposing a general framework called
HM(X), where the X’ stands for a constraint solver to plug into their generic system. While
these approaches often claimed a form of principal type inference (also called minimality*?), the
constrained types they inferred were often large and unwieldy. Beyond inferring constraint sets
and ensuring their satisfiability, the related problem of simplification to produce more readable and
efficiently-processable types was also studied, often by leveraging the connection between regular
type trees and finite-state automata [Aiken 1996; Eifrig et al. 1995; Pottier 1996, 1998b, 2001; Simonet
2003]. A major stumbling block with all of these approaches was the problem of non-structural
subtyping entailment®® (NSSE), which is to decide whether a given type scheme, which consists in
a polymorphic type along with its constraints on type variables, subsumes another. Solving this
issue is of central importance because it is needed to check implementations against user-provided
interfaces and type signatures, and because it provides a foundation from which to derive sound
type simplification techniques. However, to this day NSSE remains an open problem, and it is not
known whether it is even decidable [Dolan 2017]. Due to these difficulties, interest in this very
powerful form of subtyping all but faded in the subsequent decade, in what we interpret as a minor
“subtype inference winter” Indeed, many subsequent approaches were developed in reaction to this
complexity with the aim of being simpler to reason about (e.g., polymorphic variants — see below).

Algebraic subtyping. Approaches like that of Pottier [1998b] used a lattice-theoretic construc-
tion of types inspired by the connection between types and term automata. Meet 1 and join L
operators resembling intersection and union types are used to compactly representing conjunctions
of constraints, but these are not first-class types, in that they are restricted to appearing respectively
in negative and positive positions only. Full function distributivity (defined above, in intersection
type systems) holds in these approaches due to the lattice structure. Pottier’s system still suffered
from a lack of complete entailment algorithm due to NSSE. Dolan [2017]; Dolan and Mycroft
[2017] later built upon that foundation and proposed an algebraic construction of types which
allowed breaking free of NSSE and finally enjoying a sound and complete entailment algorithm.
Two magical ingredients allowed this to be possible: 1. the definition of “extensible” type semantics
based on constructing types as a distributive lattice of coproducts; and 2. a different treatment
of type variables than in previous work, representing them as part of the lattice of types and
not as unknowns ranging over a set of ground types. In this paper, we in turn build on these
foundations, although we only retain the latter innovation, somehow forgoing the “extensible”

32Some authors like Aiken et al. [1994] make a distinction between a concept of principality which is purely syntactic
(relating types by a substitution instance relationship) and minimality which involve a semantic interpretation of types.

33“Non-structural” here is by opposition to so-called structural subtyping, which is a more tractable but heavily restricted
form of subtyping that only relates type constructors of identical arities [Palsberg et al. 1997] (precluding, e.g., {x: 7} < T).
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construction of types.>* Together with our generalization of the subtyping lattice to a Boolean one
by adding negations and with the additional structure we impose on types (such as reducing unions
of unrelated records to T), this turns out to be sufficient for allowing principal type inference and
decidable entailment (though we only sketched the latter in this paper for lack of space). Ingredient
1 allowed Dolan to show the soundness of his system in a very straightforward way, relying on the
property (called Proposition 12 by Dolan [2017]) that any constraint of the form A,z < \/; m
holds iff there is a k such that 7 < m when all 7; have distinct constructors and all 7; similarly.
By contrast, we allow some intersections of unrelated type constructors to reduce to L and some
unions of them to T, and we are thus not “extensible” in Dolan’s terminology. This is actually
desirable in the context of pattern matching, where we want to eliminate impossible cases by
making the intersections of unrelated class types empty. It is also needed in order to remove the
ambiguity from constraints like (1 — ) A {x: 71} < (r; = ;) v {x : 2’ } which in our system
reduces to (11 — 72) A {x : 7} < T. The present paper also takes heavy inspiration from our
earlier operationally-focused take on Dolan’s type inference algorithm [Parreaux 2020]. While
Dolan shirks from explicitly representing constraints, which he prefers to inline inside types on
the fly as m and L types, we use an approach closer to the original constrained-types formulation
followed by Pottier. Besides being much easier to implement, our approach has other concrete
advantages, such as the ability to deal with invariance seamlessly (class C[A]: {f: A — A}, which
is invariant in A, is valid in MLstruct) and a simpler treatment of cyclic type variable constraints.

Semantic subtyping and set-theoretic types. The semantic subtyping approaches [Castagna
et al. 2022, 2016; Frisch et al. 2002, 2008; Petrucciani 2019] view types as sets of values which inhabit
them and define the subtyping relationship as set inclusion, giving set-based meaning to union,
intersection, and negation (or complement) connectives. This is by contrast to algebraic subtyping,
which may admit subtyping rules that violate the set-theoretic interpretation, such as function
distributivity, to ensure that the subtyping lattice has desirable algebraic properties. For more
detailed discussions contrasting semantic subtyping with other approaches, we refer the reader to
Parreaux [2020] and Muehlboeck and Tate [2018].

Occurrence and flow typing. Occurrence typing was originally introduced by Tobin-Hochstadt
and Felleisen [2008] for Typed Scheme, and was later incorporated into TypeScript and Flow, where
it is known as flow typing. It allows the types of variables to be locally refined based on path
conditions encountered in the program. Negation types are pervasive in this context, though they
are often only used at the meta-theoretic level. Instance-matching in MLstruct can be understood
as a primitive form of occurrence typing in that it refines the types of scrutinee variables in case
expressions, similarly to the approach of Rehman et al. [2022]. Occurrence typing was also recently
extended to the semantic subtyping context [Castagna et al. 2021, 2022], where negation types
are first-class types. The latter work proposes a powerful type inference approach that can infer
overloaded function signatures as intersections types; however, this approach does not support
polymorphism and likely does not admit principal types. The idea of simplifying the definition of
core object-oriented type languages by using class tags (or brands) in addition to structural typing
is not new and was notably developed by Jones et al. [2015]; Lee et al. [2015].

Polymorphic records/variants and row polymorphism. Polymorphic records are structurally-
typed products whose types admit the usual width and depth subtyping relationships. Their dual,
polymorphic variants, are another useful language feature [Garrigue 1998, 2001], used to encode
structural sum types. In their simplest expression, polymorphic records (resp. variants) do not
support ad-hoc field extension (resp. default match cases). Previous approaches have thus extended

34 As discussed in prior work [Parreaux 2020], we believe the argument for Dolan’s notion of extensibility to be rather weak.
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polymorphic records and variants with row polymorphism, which uses a new kind of variables,
named “row” variables, to record the presence and absence of fields (resp. cases) in a given type.
Some approaches, like OCaml!’s polymorphic variants and object types, use row polymorphism
exclusively to simulate subtype polymorphism, in order to avoid subtyping in the wider languages.
However, row polymorphism and subtyping actually complement each other well, and neither is as
flexible without the other [Pottier 1998b, Chapter 14.7]. There are also techniques for supporting
variant and record extensibility through union, intersection, and negation types, as shown by
Castagna et al. [2016], who also explain that their system resolves long-standing limitations
with OCaml-style row polymorphism. In our system, we solve many (though not all) of these
limitations, but we also support principal type inference. It is worth pointing out that OCaml’s
polymorphic variants [Garrigue 2001] and related systems based on kinds [Ohori 1995] lack support
for polymorphic extension [Gaster and Jones 1996; White 2015], whereas MLstruct does (see mapSome
in the introduction). As a simpler example, def foo x dflt els = case x of { Apple — dflt | _ —
els x } would be assigned a too restrictive type in OCaml and as a consequence foo (Banana{})
@ (fun z — case z of { Banana — 1 }) would not type check (OCaml would complains that the
function argument does not handle Apple). A more expressive row-polymorphic system exposing
row variables to users would support this use case [Gaster and Jones 1996; Rémy 1994], but as
explained in the introduction, even these have limitations compared to our subtyped unions.

7 CONCLUSION AND FUTURE WORK

In this paper, we saw that polymorphic type inference for first-class union, intersection, and negation
types is possible, enabling class-instance matching patterns yielding very precise types, comparable
in expressiveness to row-polymorphic variants. We saw that this type inference approach relies
on two crucial aspects of MLstruct’s type system: 1. using the full power of Boolean algebras
to normalize types and massage constraints into shapes amenable to constraint solving without
backtracking; and 2. approximating some unions and intersections, most notably unions of records
and intersections of functions, in order to remove potential ambiguities during constraint solving
without threatening the soundness of the system.

Future Work. In the future, we intend to explore more advanced forms of polymorphism present
in MLscript, such as first-class polymorphism, as well as how to remove some of the limitations of
regular types, which currently prevent fully supporting object-oriented programming idioms.
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A  FORMALIZATION, CONTINUED

The full formalization does not fit in the main body of the paper, so we give the missing parts here.

A.1 Declarative Typing Rules
The declarative typing rules of A~ are presented in Figure 9.

Rule T-Bopy is used to type programs that happen to be simple terms, after having accumulated a
set of declarations in the context D, which is checked for well-formedness using the rules presented
in Figure 10 and explained later (Section A.2).

In T-DEF, we type the body of a def inside a constraining context = added on top of the current
declarations context, and subsequently use = as part of the resulting polymorphic type of this def,
which is placed into the typing context for use later in the program. Importantly, = has to be checked
for consistency, which is done with the = cons. judgement, defined in Figure 9 — essentially, this
makes sure that there is at least one assignment of variable that makes the constraints hold in the
base declarations context. This is to forbid the use of inconsistent bounds on type variables, such
as (Bool < «)-(a < Int), which could lead to accepting ill-typed definitions.

As a concrete example for T-DEF, consider a definition such as def f = Ax. x + 1 in a program
where a type synonym type A = Int is defined. One hypothetical judgement used to type this
definition could be ‘(type A = Int)- (¢ < A),T - Ax. x + 1 : a — Int’ where Z = (a < A) is the
constraints part of the context. According to T-DEF, because E is consistent (since lb=(a) = L <
ub=(a) = Int), we can type the definition f as ‘V(a < A). @ — Int’. As a side note, this type can
be rewritten to f : A — A, which is equivalent in the declarations context (type A = Int).

Rule T-VAR?2 is an interesting counterpart to rule T-DEF explained above. It instantiates a given
polymorphic type through the <" relation defined by rule S-ArL.

Rule S-ALL uses a substitution p, a premise that the subtyping holds under this substitution, and
the entailment judgement 3-=' = p(E), which simply makes sure that every subtyping constraint
in p(Z) holds in ¥ with &’ (which is e for T-VAR2). Condition dom(p) = TV(E) u TV(r), where
TV (-) is defined in Section A.3, is used to make sure that p assigns a substitution to all the variables
quantified by the polymorphic type.

A.1.1  Superclasses.

Definition A.1 (Superclasses). We define the superclasses S(r) of a type 7 as the set of classes
transitively inherited by type 7, assuming 7 is a class type or the expansion of a class type:

C e S(#D) T exp. 7 CeS(7) C e S(n1)vuS(r2)
CeS#C) Ce S(D[7]) Ce S(r) CeS(r A1)

A.1.2  Substitution.

Definition A.2 (Term substitution). A term substitution is a pair of variable and term [x — £].
Applying a term substitution to a term t’, denoted by [x — t]t’, replaces all free occurrences of x
in ¢’ with t, which is defined as follows:

[th]y={ ty igzii [x = t](to t1) = [x — t]to [x — t]tr
x> t](t' 7)) =[x t]t : 1 [x > t]t %" = ([x — t]t) .

AxI ot ifx' =x

M [x o ]t ifx #x [x > t](C{x' =1'}) =C{x' =[x > 1]t}

[x — t]Ax'. t' = {

/ / : /
r _ | casex’ =[x —t]t' of M ifx' =x
[x— t]case x” =t OfM_{ case x’ = [x —> t]t/ of [x — t|M ifx’ #x
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T-Bobpy T-DEr
Zcons. ETHt:7T E, cons. E’,F —t:T E,F'(XIVEI. 7.') P* P: p
=T - i T
=ETrH*"t:r ET+*defx=1t;P:1p
T-Suss T-Osy
BT+t Ebn<n ETHt:t C final
EE
Elkt:n EM-C{x=t}:4Cnr{x:7}
T-Proj T-Varl1 T-Var2 T-ABs
ETHt:{x:1} I'(x)=r [(x)=0c Ero<"Ver El(x:m)Ht:m
El+tx:t Elf~x:1 El-x:71 ETl-Ax.t:1y > 1
T-Arp T-Asc
=l —»n ETHt:n ==ttt
ETkHtot; i1 ETH(t:7):7
T-Caskel T-CAsg2
STkt :L ElFti:na#C El(x:m)kHtr:7
ET+ casex =t of e: L Tl casex=tof _—ity:1

T-CAsEg3
ET+H:#CArnv —#Can ET(x:m)kth:t ET(x:m)casex=xof M:1

El'-casex =t of C—>ty, M: 1

Assuming ¥ holds, then bounds >=-E are consistent, as witnessed by p.

>E-2; X; p cons. _ _
Z cons.=dp.=; €; p cons.
splity(E, dom(p')) = (B ) p = [+ @ A ubs(@) v Ibz(@)]
BERDEq pEgpE E pEy  DE-DEqpEg; pZ; p cons.
>E; X id cons. >ELE; Y p/ op cons.

(r<m)eE|lae{r,n} (Tén')eE\aeé{r,n}.

(a<®B)eE[fe{Y}

splity (B, {v}) = ((r < 7) (r<m) (@ <°p) )
S—ALL , ,
23 Ep(E B3 p(r) <t dom =TV(E)u TV(r
p(E) p(7) ; (p) ) (7)
SHVE T <" VELY
S-Cons S-Cons>
S S-EmPTY sEY SEn<n SEY ShEn<n
SkEe SEY (<) SEYe(n <)

Fig. 9. Full declarative typing, consistency, and subtyping entailment rules.

Where case branches term substitution [x +— ¢]M is defined as:

[x—tle=e [x=t]_—t)=_—[x—t]t [x = t](C—t', M) =C— [x— t]t/, [x — t]M
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Similarly, applying a term substitution to a program P, denoted by [x — ¢]P, replaces all free
occurrences of x in P with ¢, which is defined as follows:
def x’ =t/; P ifx' =x

Y _
[ = 1] (def x _t’P)_{ def x’ = [x — t]t/; [x — t]P ifx’ #x

Definition A.3 (Type substitution). A type substitution p = {& — 7} is a mapping from type
variables to types.

We use the notation (; — 11) € p to signify that a; € dom(p) and p(a;) = 7.

dom(p) is the domain of p, defined as follows:

dom({ }) =g dom({a—=r1,d —»7})=dom({a—z1})u{d}

Definition A.4 (Type substitution on type). Application of a type substitution to a type p() is
defined as follows:

plr1 = 1) = plr1) — p(z2) p<a>={; iﬁéz?;i(i;’
p({x:r}) ={x:p(r)} p(T°)=T°
p(N[7]) = N[p(2)] p(r1 v 12) = p(1) V° p(z2)

p(#C) = #C p(=1) = —p(7)

Definition A.5 (Type substitution on term). Application of a type substitution to a term p(¢) is
defined as follows:

p(x) =x p(tx) = p(t).x
plt 1) = plt) : p(r) pC{F=T}) =C{x=p()}
p(Ax.t) = Ax. p(¢) p(case x =t of M) = case x = p(t) of p(M)
plto 1) = p(to) p(t1)
Where type substitution p(M) on case branches is defined as:

ple) =€ p(L—1t)=_—p() p(C—t, M) =C — p(t), p(M)

Definition A.6 (Type substitution on typing context). Application of a type substitution to a typing
context p(T') is defined as follows:

ple) =€ p(T-(x: 7)) = p(I)-(x 2 p(7)) p(T-(x:0)) = p(T)-(x: 0)

Definition A.7 (Type substitution on subtyping context). Application of a type substitution to a
subtyping context p(2) is defined as follows:

ple) =e pE-(n1 <)) =p(3)-(p(n1) < p(r2))  p(E->(n1 < 2)) = p(Z)->(p(r1) < p(72))

A.2 Well-Formedness

The well-formedness rules are presented in Figure 10. They ensure that the declarations of a program
lead to a decidable type inference algorithm by restricting the shapes of recursive types to regular
trees. This is done by making sure that all recursive occurrences of class and type declarations are
given the same type arguments « as the declaration’s head N[a] itself. Note that well-formed type
declaration may refer to each other freely, possibly forming mutually-recursive definitions.

Definition A.8 (Occurrences). We define the occurrences of a type 7, written occs(7), as all the
types transitively reachable by progressively traversing the subterms of 7 and expanding the alias
and class types as we encounter them. This is always a finite set, thanks to the regularity check
(Section 2.3.1).
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The type variables of a piece of syntax s, written TV(s), is defined in Section A.3.
Function guardy (7) refers to the guardedness check described in Section 2.1.6.

THEOREM A.9 (REGULARITY). If D wf, then for all 7, the set occs(t) is finite.

This notably means that given well-formed declarations D, we can easily compute S(7).

W-DEecLs D
S
DEdwf' " TV(D) =0
D wf
W-ALs W-Crsl1
Alz ——C[z *z
— f - [7] € oces(r) guardA(ﬂ') Jl'wf — [T] €oces({x:7}) wa
-w D  type Ala] = = wf D classCla]: {x:7} wf
W-CLs2
—CC|7 s(D[Ti]n{xT
C¢ S(C[a]) guardo(D[7] A {x77)) Tog o@D g
Dt class Cla] : D[] A {x:7} wf
T wf o wf 1w wf o wf nwf T wf
T T wf a wf -7 wf 1 Vo wf 1 — 7 wf {x:7} wf
twf NJ[7] exp. «
#C wf N[z] wf
— Swf oowf nwf
(2| E) wf

€ Wf 2'<>>(T1 < Tz)

DEC final D#C
D+ C final S = =
€ - C final D-(class C'[a] : D[7]) + C final

D+ C final D#C
D-(class C'[a] : D[7] A {x 7 }) I C final

Fig. 10. Well-formedness and finality rules.

ProoF A.9 (REGULARITY). Since each type constructor declared as N[a] can only appear in its
body (and transitively in the bodies of other declarations) with the same type variables « as type
arguments, the expansion 7 of a type N[7]| may only lead to N occurrences of the form N[7], which
itself has the same occurrences as r; thus the number of distinct type occurrences transitively
reachable from a given declaration is finite. O
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A.3 Free type variables

Definition A.10 (Free type variables). The set of free type variables of a type 7, written TV(7), is
defined as:

TV(r1 — 12) = TV(11) v TV(12) TV(a) = {a}
TV({x:7t}) =TV(r) V(T)=¢
TV(#C) = I TV(r1 Vo 12) = TV(ry) U TV(12)
TV(N[7]) = U=TV(r) TV(—1) = TV(r)

Definition A.11 (Free type variables of declaration context). The free type variables of a declaration
context TV (D) is defined as:

TV(e) = & TV(D-(class C[a] : 7)) = TV(D) u (TV(r)\{a })

TV(D-(type Ala] = 7)) = TV(D) v (TV(r)\{a})

Definition A.12 (Free type variables of typing context). The free type variables of a typing context
TV(T) is defined as:

TV(e) = & TV(T-(x : 7)) = TV(T) U TV (1) TV(I-(X : 6)) = TV(T)
Definition A.13 (Free type variables of constraining context). The free type variables of a constrain-
ing context TV(E) is defined as:
TV(e) = & TV(E(a<’1)) = TV(E) u {a} U TV(7)

Definition A.14 (Top-level free type variables). The set of top-level free type variables of a type ,
written TTV(7), is defined as:

TTV(ry > ) = J TTV(a) = {a}
TTV({x:7}) - & TTV(T) = &
TTV(#C) = I TTV(r1 VP 12) = TTV(r1) v TTV(z3)
TTV(N[7]) = TTV(<') when N[7] exp. 7’ TTV(—7) = TTV(z)

The list of top-level free type variables of a type t (i.e., with duplicates), written TTV' (), is defined
similarly, except for the cases TTV'(a) = a and TTV'(1; V° o) = TTV'(71) - TTV'(12).

B FORMAL CORRECTNESS PROOFS
B.1 Subtyping Derivation Shapes

We first give a few definitions characterizing the shapes of subtyping derivations, and prove
properties about them.

Definition B.1 (Right-leaning derivations). A subtyping derivation is said to be right-leaning if
all its applications of rule S-TRANs have a first premise which is not itself an application of rule
S-TRANS.

It is easy to see that any subtyping derivation can be rewritten into an equivalent right-leaning
derivation of the same size by reorganizing its uses of S-TRANs.

Definition B.2 (Bottom-level rules). A rule is used at the bottom level in a derivation if it is one of
the following:

(1) the last rule used in the derivation;

(2) either premise of a bottom-level application of rule S-TRANS;
(3) the premise of a bottom-level application of rule S-Expo;

(4) the first premise of a bottom-level application of rule T-Suss.
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Definition B.3 (Unassuming derivation). An unassuming derivation is a subtyping derivation that
does not make use of S-Assum at the bottom level.

LEmMMA B.4 (UNASSUMING DERIVATION). Any subtyping derivation can be rewritten to an equivalent
unassuming derivation.

Proor. Consider a derivation D whose last applied rule is S-Assum. This rule application intro-
duces a hypothesis >H into the context of its premise derivation D’. In D', >H is kept unusable
(because of the ) until applications of rules S-FUNDEPTH or S-RcDDEPTH, within the premise
derivations of which H may be used, through applications DIH of the S-Hyp rule Therefore, H is
never used at the bottom level of D’. Moreover, each DIH will have a premise of the form X-H-3;. So
we can substitute all DiH in D with a weakened form (Lemma B.30) of the derivation D itself. After
this substitution, the main application of S-Assum becomes useless (the H it introduces is no longer
used in any subderivation), and it can therefore be removed, leaving the updated derivation D’.

It is easy to show that we can perform this S-Assum-elimination on bottom-level subderivations of
any given derivation until that derivation becomes unassuming. O

Definition B.5 (Subsumption-normalized derivation). A subsumption-normalized derivation is a
typing derivation that makes at most one use of T-Suss at the bottom level.

LEMMA B.6 (SUBSUMPTION-NORMALIZED DERIVATION). Any typing derivation can be rewritten to
an equivalent subsumption-normalized derivation.

Proor. By induction on the number of bottom-level applications of T-Suss.

The result is immediate for derivations with zero or one bottom-level applications of T-Suss.

For derivations with n > 2 bottom-level applications of T-SuBs, we first observe that the last
two typing rules applied must be T-SuBs (indeed, if the last rule applied was not T-Suss, then
by definition the derivation would have no bottom-level applications of T-SuBs; and the same
reasoning goes for the second last application). The premises of the last application of T-Suss are
t: v and 7’ < t for some 7/, where the subderivation for ¢ : 7’ has n — 1 bottom-level applications
of T-Suss. The premises of the second last application of T-Suss are ¢ : 7’ and r” < 7’ for some 7”,
where the subderivation for ¢ : " has n — 2 bottom-level applications of T-Suss. The subderivations
of 7 < 7’ and ¢’ < 7 can be merged by S-TRrANs into a derivations for 7’ < 7. We can then apply
T-SuBs to the subderivation for ¢ : 7” and the new derivation for z” < 7 to obtain a new derivation
for t : T with n — 1 bottom-level applications of T-Suss. By IH, such a derivation can be rewritten
to an equivalent subsumption-normalized derivation. O

B.2 Constraining Context Cleanup

Constraining context cleanup removes occurrences of a type variable from the top level of its
bounds, resulting in an equivalent guarded constraining context.
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Definition B.7 (Constraining context cleanup). The constraining context cleanup function is defined

as follows:
cleanup(e) = €
cleanup(Z-(a < 7)) = cleanup(E)-cleanup’ (a < cdn(r))
cleanup(Z-(r < a)) = cleanup(E)-cleanup’ (den(r) < @)
cleanup (o < \;79") = (a < N n'j.i”) where cleanup” (a < Tld”)l =(a< 71';-1“)]
J

cleanup’(\/; 7" < @) = (V/; < a)  where cleanup” (r{" < a) = (njc.” < a)

—i
hena € {70 }

; 1 < Ny — € w i
cleanup” (@ < \/; 7}") { (a < \/i|rf‘#ﬂa 1) otherwise
I3

—i
hena e {7 }

1 PN <a)=4 € v !
cleanup (/\1 T < a) { (/\ilr.n#ﬁafl!‘ < a) otherwise
7

——— HeE
LEMMA B.8 (EQUIVALENCE OF CONSTRAINING CONTEXT CLEANUP). H H cleanup(H) for all E.
LEMMA B.9 (GUARDEDNESS OF CONSTRAINING CONTEXT CLEANUP). cleanup(E) guard. for all =.

LEMMA B.10 (EQUIVALENCE OF BOUNDS UNDER CONSTRAINING CONTEXT CLEANUP). & A ubz(a) v
Ib=(a) = a A ubgeanup(z) (@) V Ibeeanup(z) (@) for all E and a.
B.3 Some Useful Subtyping Relationships
Next, we demonstrate a few useful subtyping rules that can be derived in our system.

THEOREM B.11 (DUALITY OF EXTREMA). T¢ = —1°

Proor.
Case -. We have =1 < T by S-ToB-. For T < —1: We have T < 1 v —1 by S-CompL-, which

implies T < —1 by Lemma B.242.
Case 2. We have | < —T by S-ToB2. For =T < 1: We have T A =T < L by S-Compr2, which

implies =T < 1 by Lemma B.24-.

m|
THEOREM B.12 (DOUBLE NEGATION INTRODUCTION).
S-NEG2
T T
Proor.
S-CompLD S-ToBO — S-REFL
TA—-T< L 1 <——-7 ——r < -7
THEOREM B.209 S-ANDOR2-
r<lv——r lv———r<——1
S-TRANS
T T

THEOREM B.13 (DOUBLE NEGATION ELIMINATION).
S-NEG1

——T<T
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Proor.
S-ToB: —— S-REFL —— S-CompL-
o < T < T <TV T
S-ANDOR22D THEOREM B.20- —M
=7 < T A -1 TA——1<T1
S-TRANS
——T g T

]

THEOREM B.14 (UNIQUE COMPLEMENTATION). For all 7y and 7,, =1y = —1, implies 11 = 13, Le.,
‘< mand - < - imply i <K npandn, < 1y

Proor.
Ty < T,
S-NEGINV " o S-NEG1
S-NEG2 S-TRANS Tt S T Tt S
-NEG2 ———— -TRAN
T g — 7, — T < T
S-TRANS e i e “
Tm < Tn
Taking (n,m) = (1,2) and (n, m) = (2, 1) yields the desired results. O
g Y
THEOREM B.15 (ASSOCIATIVITY).
S-Assoco
(V) Vi =0 Vv (n Vvon)
Proor.
S-ANDOR11¢
1) (V) vzl v
S-ANDOR12¢ S
¢ Vi =*n
S-TRANS S S S S-ANDOR12¢ S S S
S ANDORZS (Vi) Vi =’n Vo) Vi =
-ANDOR
@) (1 V) v 2 v
S-ANDOR11¢ S S
S Tra 1V 192"T1
-TRANS
(1 V) Vo3 2% g 2)
S-ANDORZO (r1 Vo 12) VO 13 =% 11 VO (12 VO 13)
The other direction follows from S-CommuTo (Theorem B.16 below). )
THEOREM B.16 (COMMUTATIVITY).
S-CoMmMUTO
nVn=nvnhy
Proor.
S-ANDOR12¢ — S-ANDOR11¢ S
S ANDORZ nVvin="1n 1V T2 T
-ANDOR2¢

T1 VO =01y VO T1
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THEOREM B.17 (DISTRIBUTIVITY).

S-DISTR

Vi (A®n) = (0 Vv nr) A% (0 von)
Proor.

Case ¢, >° direction. By S-DI1STRIBo.
Case -, < direction.

S-REFL S-ANDOR11: —M8M8M— S-REFL S-ANDOR12-
n<n T AT3 < T2 1<17 T2 NT3 < T3
LEmMA B.22- ( ) LEMmmA B.22- ( )
TIV((AT) ST VD TIV(AT) <1 VT3
S-ANDOR2D = =

nvinan)<(nvn)Alnvn)

Case ?, > direction. Symmetric.

O
THEOREM B.18 (ABSORPTION).
S-ABSORP
M GENEEE
ProOOF.
Case ¢, =° direction. By S-ANDOR110.
Case -, < direction.
S-REFL S-ToB-
11<1 n<T
S-ANDOR2- S-REFL
<t AT TIAT ST AT
LEMmmA B.22
Movman)<(@mAT)vi(nAn)
(1)
S-DISTR? S-ANDORI1O —M8M———
(mAT)vioman)<aa(Tvr) nAa(Tvn)<n
S-TRANS
(mAT)viman)<n
S-TRANS
nv(imnan)<n
Case ?, > direction. Symmetric.
O

THEOREM B.19 (DE MORGAN’s LAWS).

S-DEMORGAN

—(r V') = -1 A° 01y
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Proor.
S-CompL- ——— —  S-REFL
<TV T TS
LEmmA B.22- LEmMmA B.23-
Tve<(tv-r)vrx (tv-r)va<(tvn)v-r
S-TRANS
M)Tvae<L(tvr)v—r
S-REFL S-CompL: ————
T<T T<nv-—-rx
LEMMA B.22- S-Assoc-
tvT<tv(rv-—n) tv(rv—r)<(rvr)v—x
S-TrANS
@rvT<(rvn)v—x
S-ANDOR11l: ——— S-ANDOR12: ————
T<Tvnrx (1) T<navT 2)
S-TRANS S-TrRANS
T<(rvnm)v-r T<(tvnm)v-m
LEMMA B.229
BTATL(rvr)v—1)a((rvrm)v—r)
S-REFL S-REFL
T<T T<T
S-ANDOR2?
T<TAT ®3)
S-TrRANS
@WT<((rvr)v—-r)a((rvrm)v—r)
S-DISTRIBY
4) (rva)v-r)A((rtvr)v-n)<(tvr)v (-t A—n)
S-TRANS
G)T<(cvna)v(—-tA—7)
S-ComMuUT-
(5) tva)v(—tA—-x)<(—tA—-m)v (v
S-TrANS
T<(~tA—n)v(rvnm)
THEOREM B.20
TA=(cvra)<—TA—7
LEmmA B.24

—(tvr)<—tA—x

—7 A =1 < —(7 v ) can be derived by similar reasoning.

THEOREM B.20 (SWAPPING).

S-Swap
SV n>n

SE 2w A%n

Proor. Cased. Given (1) X 11 A 1o < 13, derive (2) X+ 7p < 13 v —7o:
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S-ToB» —— S-CompL: —8M8M
—nnvn < T<nv—n
S-REFL S-TrRANS

T VTS T2 VT Ty VT STV Ty
S-ANDOR2D

WD)nva<(—nvna)A(nv-—n)

S-REFL S-CommuT-
T VT TV Ty V 7Ty < 7T V T2

LEMMA B.22-

@2)(—~nva)A(nyv-n)<(—nvn)Aa(-nvn)

S-DISTRIBY
(2) (—mvo)A(-nvn)<-nv(nAn)

S-TRANS

B)(—nvn)a(nv-n)<—nv(nArn)

S-ANDOR129
1< T2V (1)
S-TRANS

n<(-nvno)A(nyv—n) 3)
S-TrRANS

@ < nvi(nAn)

S-REFL
KT TMMATRST3
LEMMA B.22- S-CoMMUT:
Ty V (n A Tz) < Ty VT3 —To V13 <13 V T2

S-TrANS
@) nv(nAn)<mnv-on

S-TRANS

71 <13V T
Case -. Symmetric.
LEMMA B.21. ForallY, wehaveX 1 v 1 <° 13 — X+ <° A 2+ 1 <% 13.

Proor.

Case:,=. Given (1)- X 11 v 13 < 13, derive (2)- X 11 < 3 and (3)- X + 15 < 13:

S-ANDOR11l: ——
<17V ND)nvn<n
S-TrRANS
(2)' T < T3
Similar derivation for concluding (3)-.
Case -, <. Given (2)- and (3)-, derive (1)
S-REFL ——— S-REFL ——
2)n<n @B)n<rn 3 <13 3 <13
LEMMA B.22- S-ANDOR2-
TIVT XT3V T3 3V T3 < T3

S-TRANS

D)nvn<n
Cased,=. Given (12X 13 < 1y A Ty, derive 22X - 3 < rpand 3)2 X + 13 < 13:

S-ANDOR119
(1)DT3<T1/\7.'2 MMTAT ST

(2)) 73 < 71

S-TRANS
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Similar derivation for concluding (3)>.
Case 2, <. Given (2)? and (3)?, derive (1)2:

S-REFL —— S-REFL ——
73 < T3 73 < 173 2Py BPn<n
S-ANDOR2? LEMMA B.22-
T3 < T3 A T3 T3VI3XT VD
S-TRANS
(AP n<nvn
O
LeEmMmA B.22.
2}—1’1@1’2 ZI—T3<OT4
SEnV L5y
Proor.
S-ANDOR110 ——— S-ANDOR12¢
n<n <y 1<y u<n\vy
S-TRANS S S-TRANS S
r1<>rz\/ T4 T3<>Tz\/ T4
S-ANDOR2¢ S S
V< 3 V' T4
O
LeEmmA B.23.
S (V) V< (n vin) vin
Proor.
S-REFL S-CoMmmuTe ——mm———
L B2 n<n Vi< Vvon
EMMA B.220
D1V (2 Vvr) < VO (13 V1)
S-Assoco
(1) 11V (13 Vo) < (1 Vo) Vo
S-Assoco S S S S S-TRANS S S S S
1V Tz)\/ T3<0T1\/(T2v T3) T]\/(Tzv T3)<O(T1\/ T3)\/ 2
S-TRANS S S S S
(1 V) VP13 <0 (11 VO 13) VO 1
m]
LeEmMmA B.24.
SETA T
S
Proor.
S-ToBo ————  S-REFL
S ANDORZS r<°Te <1
-ANDOR2¢
T AT IRUNE R4
S-TRANS
<
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B.4 Some Useful Subtyping Entailment Relationships
LEMMA B.25 (REFLEXIVITY AND WEAKENING). 2-3' = ()3 for all 3 and 3.

ProoF. By repeated applications of S-Cons or S-CoNs> on S-Hyp. O
LemMa B.26 (TRANSITIVITY). If3 = 3 and¥ =3, thenS = 3.

Proor. By straightforward induction on subtyping entailment derivations, making use of Lemma B.30
for cases S-Cons and S-Consp. o

LEMMA B.27 (MERGING). If3; = X and 3, = 3, then 31-3; = X3,

ProoF. By straightforward induction on subtyping entailment derivations for X, = 3/, making
use of Lemma B.25 and Lemma B.26 for case S-EmpTY, and Lemma B.30 for cases S-Cons and
S-Consp>. O

LemMma B.28 (GUARDING). If 3 = 3/, then >3 = 3.

Proor. By straight forward induction on subtyping entailment judgements. O
LemMaA B.29 (UNGUARDING). IfZ = 3/, then <X = <%/,

Proor. By straight forward induction on subtyping entailment judgements. O

LeEMMA B.30 (WEAKENING OF SUBTYPING CONTEXTS IN SUBTYPING JUDGEMENTS). IfY 7 <«
and¥ =3, thenY =t < 7.

Proor. By induction on unassuming subtyping derivations. The only non-trivial cases are S-Hyp,
S-FuNDEPTH, and S-RcDDEPTH.

Case S-Hyp. Then the premise of the rule is (r < x) € X. By straightforward induction on
subtyping entailment judgements, ¥’ = ¥ and (r < 7) € 3 implies ¥’ 7 < 7.

Case S-FUNDEPTH. Then we have r = 7; — 1, for some 7y and 7p, and 7 = m; — m,, for some m;
and 7,. The premises of the rule are <3 - 7; < 7; and <% + 7, < 7. By Lemma B.29, 3 = 3
implies <3’ = <3. Then by IH on the premises, we have <%’ - 71 < 17 and <%’ - 15 < 7.
Then we have 3’ + 17 —> 15 < 1y — 1, by S-FUNDEPTH.

Case S-RcoDePTH. Then we have 7 = {x : 7y } for some 7; and x, and 7 = { x : m; } for some ;.
The premise of the rule is <%  7; < ;. By Lemma B.29, 3’ = 3 implies <%’ = <3. Then
by IH on the premise, we have <%’ - 7; < m;. Then we have ' - {x : 71 } < {x : 1 } by
S-RCDDEPTH.

]

COROLLARY B.31 (WEAKENING OF GUARDED SUBTYPING CONTEXTS IN SUBTYPING JUDGEMENTS).
IfeXr<mand3 E 3, then>y =1 < 7.

Proor. By Lemma B.28 and Lemma B.30. O

LEMMA B.32 (WEAKENING OF GUARDED CONSTRAINING CONTEXTS IN CONSISTENCY JUDGEMENTS).

If - >E.-E; p cons. and >E, = >E,, then 3+ >EL-E; p cons..

Proor. By induction on consistency derivations.

Base case. For the base case, we have Z = €. Then by the base case of the definition of consistency,
we have:

S+ >EL; p cons. 1)
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Inductive case. For the inductive case, we have p = p, o p; for some p; and p,, where dom(p;) =
{a } for some a. The premises of the rule are:

PELDEyP1Ex P12 E P1Ea (2)
P12 DEL-DELp1E,; p2 cons. (3)
where split,,(E, dom(p;)) = (Eq, E4). From the assumption, we have:
DEL = >E,s 4)
By Lemma B.30 with (4), (2) implies:
BELBEy P12 P12 E p1Eg (5)
By IH on (3), we have:
P12 BELBEGp1E,; p2 cons. (6)
Then by the inductive case of the definition of consistency, (5) and (6) imply:

Y+ >EL-E; p cons. (7)

LEMMA B.33 (WEAKENING OF SUBTYPING CONTEXTS IN CONSISTENCY JUDGEMENTS). If ¥
>EL-E; p cons. and >EL-EY =3, then Y - >E,-E; p cons..

ProoF. By induction on consistency derivations.

Base case. For the base case, we have Z = €. Then by the base case of the definition of consistency,
we have:

¥ - >Ey; p cons. (1)

Inductive case. For the inductive case, we have p = p, o p; for some p; and p,, where dom(p;) =
{ & } for some a. The premises of the rule are:

DELDEy P12y P12 E P1Eg (2)
P12 PELDEGp1Ey; pa CONS. (3)
where split,(E, dom(p;)) = (E4, Ex). From the assumption, we have:
bEEY 3 (4)
By Lemma B.45, (4) implies:
BEy BEy p1Ea 1Y E p1Z (5)
By Lemma B.30 with (5), (2) implies:
BELD>EyP1E P12 E p1Ea (6)
By IH on (3) and (5), we have:
P12 DELDEp1Ey ;s pa cons. (7)
Then by the inductive case of the definition of consistency, (6) and (7) imply:

¥ - >Ey-E; p cons. (8)

LEMMA B.34 (WEAKENING OF CONSTRAINING CONTEXTS IN TYPING JUDGEMENTS). IfE, ' 1t : 7
and= ==, thenZ' T —t: 1.
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Proor. By straightforward induction on typing derivations. The only non-trivial vases are T-SuBs
and T-VAR2.

Case T-SuBs. By IH on the first premise, Lemma B.30 on the second premise, followed by T-Suss.
Case T-Var2. I'(x)=VE".7
We first notice that the subtyping entailment judgement is transitive by straightforward
induction on subtyping entailment judgements, applying Lemma B.30 to the second premise
of S-Cons. The first premise of S-ALLis = = p(E”), which implies Z' = p(E”) by transitivity
with the assumption &’ = =. The result then follows from Lemma B.30 on the second premise
S-A1L, followed by S-A1L and T-VaRr2.

B.5 Some Useful Lemmas on Substitutions

LEMMA B.35 (PRESERVATION OF TYPING UNDER SUBSTITUTION). If E,T |-t : 7 and D wf, then
p(E).p(T) = p(t) : p(r).

Proor. By induction on typing derivations of =, T - ¢ : 7.

Case T-SuBs. By IH on the first premise, we have p(Z), p(T) - p(t) : p(z1). By preservation of
subtyping under substitution (Lemma B.36) on the second premise, p(Z)  p(r;) < p(r2).
The result then follows from T-Suss.

Case T-OBj. By the definition of type substitution, p(#C A {X:7}) = #C A {x: p(7) }. By the
definition of term substitution, p(C {x =t }) = C {x = p(t) }. By IH on the premises, we
have p(E), p(T') = p(t) : p(z). Then p(E), p(T) = C{x = p(t) } : #C A {x : p(r) } by T-Oy,
ie, p(E),p(T) - p(C{x=1t}):#C A p({x:T}).

Case T-Proj. By the definition of term substitution, p(¢.x) = p(t).x By IH on the premise, we have
pE)LpM) Ht:p({x:1}) ie, p(E),pT) - p(t) : {x: p(r) } by the definition of type
substitution. Then p(E), p(T) + p(t).x : p(r) by T-Proy, i.e.,, p(E), p(T) - p(t.x) : p(7).

Case T-VAar1. Then ¢ = x. By the definition of term substitution, p(x) = x. From the premise and
the definition of typing context substitution, we have p(T)(x) = p(z). Then p(Z), p(T)
x : p(r) by T-Varl, ie., p(E), p(T) - p(x) : p(7).

Case T-VAR2. Then t = x. By the definition of term substitution, p(x) = x. From the premise,
we have Z - I'(x) <" Ve.r, where I'(x) = VZ’. 7. Note that the judgement <" can only be
derived by S-ALL, then from the premises of S-ALL, we have Z = p’(E') and E - p'(7) < 7.
By preservation of subtyping under substitution (Lemma B.36), we have p(Z) = p(p’(E'))
and p(E) + p(p'(7')) < p(r). Then p(E)  VE'.7/ <" Ve. p(r) by S-ALL. Note that by
the definition of typing context substitution, I'(x) = VZ’. 7/ implies p(T')(x) = VZ'. 7, then
p(E). p(T) = x : p(z) by T-Var, ie., p(E), p(T) = p(x) : p(7).

Case T-ABs. By the definition of type substitution, p(7; — 72) = p(r1) — p(z2). By IH on the
premise, we have p(E), p(T-(x:17)) - t : p(r2), e, p(E), p(T)-(x: p(r1)) - t : p(r2) by
the definition of typing context substitution. Then p(E), p(T) - Ax. ¢t : p(r1) — p(z2) by
T-AsBs, ie., p(E),p(T) - Ax. t : p(r1 — 12).

Case T-App. By IH on the premise, we have p(E),p(T) + & : p(r1) and p(E),p(T) + o :
p(r — 1), e, p(E),p(T) I to : p(r1) — p(r2) by the definition of type substitution. Then
p(E), p(T)  to t1 : p(12) by T-App.

Case T-Asc. By the definition of term substitution, p(t : 7) = p(t) : p(r). By IH on the premise,
W(e haV)e p(<5)),p(F) = p(t) : p(7). Then p(E), p(T') = (p(t) : p(7)) : p(7). i, p(E), p(T) -
plt:7):p(7).
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Case T-Case1. By the definition of type substitution, p(L) = L. By the definition of term sub-
stitution, p(case x = t; of €) = (case x = p(t;) of €). By IH on the premise, we have
p(E), p(T) = p(t1) - p(L).1e., p(E), p(T) b= p(t1) : L. Then p(E), p(T) I casex = p(t1) of € :
L,ie, p(E),p(T) - p(case x = t; of €) : p(L).

Case T-CAase2. By the definition of term substitution, p(case x =1t of _—1tf) =
(case x = p(t;) of _ — p(t;)). By IH on the premises, we have p(Z), p(T) + p(t1) : p(11)
and p(E),p(I"(x : 1)) b p(t2) : p(7), ie, p(E), p(T)-(x : p(r1)) b p(t2) : p(7) by the defi-
nition of typing context substitution. Then p(E), p(T) - case x = p(#1) of _ — p(t2) : p(7),
ie, p(E), p(T) - p(case x = t; of _ — t2) : p(7).

Case T-CasE3. By the definition of term substitution, p(case x =t; of C— £, M) =
(case x = p(t;) of C — p(t3), p(M)). By IH on the first premise, we have p(Z), p(T) +
p(t1) : p(BC A 11 v —#C A 1), Le., p(E), p(T)  p(t1) : #C A p(11) v —#C A p(12) by the
definition of type substitution. By IH on the second premise, we have p(=), p(T-(x : 71))
p(tz) : p(7), e, p(E), p(T)-(x: p(r1))  p(t2) : p(7). By IH on the third premise, we have
p(E)p(T(x:m) F please x=x of M) : p(r), e p(E)p(D)(x:p(m)
case x = x of p(M) : p(r) by the definition of term substitution. Then p(E),p(T) +
case x =p(t;) of C— p(t), p(M) : p(r) by T-Case3, ie, p(E),p() +
p(case x = t; of C — ty, M) : p(7).

]

LEMMA B.36 (PRESERVATION OF SUBTYPING UNDER SUBSTITUTION). If ¥ I 11 < 15 and D wf,
then p(2) b+ p(r1) < p(72).

Proor. By induction on subtyping derivations of ¥ |- 71 < 7,.

Case S-REFL. The result p(7) < p(r) follows immediately from S-REFL.

Case S-ToBo. By the definition of type substitution, p( T®) = T°. By S-ToBo, p(7) < T°, ie,,
p(r) <" p(T%).

Case S-CompLo. By the definition of type substitution, p(7 v® —7) = p(7) v° p(—1) = p(7) V® —p(7)
and p( T°) = T°.By S-Compro, p(1) V° —p(1) =° T°, ie, p(r Vv° —1) = p(T°).

Case S-NEGINvV. By the definition of type substitution, p(—7) = —p(r). By IH on the premise,
we have p(2) - p(r1) < p(r2). Then p(2) - —p(12) < —p(r1) by S-NEGINV, ie., p(2) -
p(—12) < p(—m).

Case S-ANDOR11¢. By the definition of type substitution, p(z; V° 72) = p(r ) V¢ p(r2). By TH
on the premise, we have p(Z) + p(r1) =° p(7). Then p(Z) + p(r1) v° p(r2) =° p(7) by
S-ANDORI1190, ie., p(Z) - p(r1 v 12) =° p(7).

Case S-ANDOR12¢. Symmetric to the case above.

Case S-ANDOR2¢. By the definition of type substitution, p(7; v° 7o) = p(r1) v° p(r2). By IH
on the premises, we have p(2)  p(7) =° p(r1) and p(2) + p( ) =° p(12). Then p(2) +
p(1) =° p(11) v° p(12) by S-FANDOR29, i.e., p(Z) F p(7) =° p(11 V° 12).

Case S-DisTRIBo. By the definition of type substitution, p(z A® (71 v° rz)) = p(7) A% p(11 V® 12)
S (o) () and oy ) = B oy o
~°p(r1)) v° (p(r) A° p(72)). By S-DistrIBO, p(T) A° (p(T: 1) Ve p(12)) < (p(7) A° p(11))
W (p(r) A° ple2)), i ple A° (11 v 1) < ({7 A 1) VP (1 1°15)).

Case S-TrANs. By IH on the premises, we have p(2) - p(9) < p(1) and p(2) F p(11) < p(12).
Then p(Z) + p(10) < p(r2) by S-TRANS.

Case S-WEAKEN. By IH on the premise, we have p(7;) < p(72). Then p(2) - p(r1) < p(72) by
S-WEAKEN.
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Case S-Assum. By the definition of subtyping context substitution, p(Z - >(1; < 7)) = p(E) -
>(p(71) < p(r2)). By IH on the premise, we have D-p(Z - >(1; < 1)) F p(11) < p(r2), ie,
D-p(E) ->(p(r1) < p(72)) F p(11) < p(2). Then D-p(E) = p(r1) < p(r2) by S-Assum.

Case S-Hyp. By the definition of subtyping context substitution and the H € X judgement, it is
straightforward to show that if (r < /) € 3, then (p(r) < p(7’)) € p(2) by induction on the
size of 3. Applying to the premise (r; < 2) € , we have (p(r1) < p(r2)) € p(2). Then
p(Z) = p(71) < p(r2) by S-Hre.

Case S-FUNDEPTH. By the definition of type substitution, p(r — ') = p(r) — p(7’). By IH on
the premises, we have <p(2) - p(19) < p(r1) and <p(2) + p(12) < p(r3). Then <p(X)
p(r1) = p(r2) < p(10) — p(73) by S-FUNDEPTH, i.e., <p(Z) - p(r1 — 12) < p(19 — 73).

Case S-FUNMRGo. By the definition of type substitution, p((7; v° 13) — (12 A° 1)) = p(11 VO 13) —
p(rz A° 1) = (p(t1) V° p(13)) — (p(72) A°p(m)). and p(r1 — 2 AT3 = 1) = p(r; —
) Ap(fa — ) = p(r1) — p(r2) Ap(r3) = p(74). By S-FUNMRGo, (p(71) V° p(13)) —
(p(z2) A° p(14)) =° p(11) = p(12) A p(73) = p(Ta).ie, p((11 VO 13) = (2 A% 14)) 2° p(11 —
To NT3 — T4)

Case S-RcoDePTH. By the definition of type substitution, p({ x:7})={x:p(r)}. By Hon
the premise, we have <ip(2) - p(11) < p(r2). Then <p(2) + {x : p(r1) } < {x: p(r2) } by
S-RcoDEepTH, ie., <p(Z) F p({x:71}) < p({x: 12 }).

Case S-RCDMRGo. By the definition of type substitution, p({x : 7y V° 1o }) = {x: p(1; V° 12) } =
{x : p(r) v plm) Fand pl{x = 1} v {x = m}) = p({x - 5 ) Vo p({x 22 }) = fx :
p(r1) } v° {x : p(r2) }. By S-RcDMRGo, {x : p(11) v p(72) } <" {x : p(71) } V* {x : p(r2) },
e, p({x: o V) <p({x:a} v {x:nn}).

Case S-RcpTop. By the definition of type substitution, p(T) = Tand p({x: 71} v 7) = p({x:
7 })vp(r) = {x: p(r1) } vp(r). From the premise, we have p(7) € {p({y™* : 12 }), p(72 — 13) },
ie, p(r) € {{y*™ :p(rz) } p(rz) = p(r3)} by the definition of type substitution. Then
< {x:p(r1)} v p(r) by S-RepTop, ie., p(r) < p({x: 71} v 7).

Case S-CLsSuUB. Note that the declaration context rooted in by the subtyping context contains
all the information required to determine the superclass relation, i.e., Sp.5s = Sp.5s. Then
the premise C; € S(C;[a]) implies C; € S(C;[a]). By the definition of type substitution,
p(#C) = #C. Then p(Z) - #C; < #C, by S-CLsSUB, ie., p(2) - p(#C1) < p(#Cy).

Case S-CLsBoT. As noted in the case above, S¢y.x = Sp.5/. By the definition of type substitution,
p(#Cy A#C3) = p(#C1) Ap(#Cy) = #Cy A#Cyand p( L) = L. Then the premise C; ¢ S(Cy[a])
and C, ¢ S(Cy[f]) imply C; ¢ S(Cz[@]) and C, ¢ S(Cy[]). Then p(3) - #C; A #Cy < L
by S-CisBor, i.e, p(2) - p(#C1 A #C3) < p(L).

Case S-Expo. We show that if 3 - 7 exp. v/, where D wf, then p(Z) - p(7) exp. p(7'). We
consider rules that can derive the judgement 3 | 7 exp. 7.

Case S-ALsSExp. Note that the declaration context contains all declarations, i.e,, d € X
implies d € D-3'. Then the premise implies (type A[_’ES] = 1) € p(Z). By the def-

€s
inition of type substitution, p(A[7'€°]) = A[p(n;) ,) |- By the well-formedness of D,
TV(r) < {&'®}, which implies that all type variables in [@; — 7; ©*| are introduced
. . — €S
by the substitution { &; — Tilés Vand p([a = 77 €5)7) = [a; — p(r,-)le |z. Then p(X) +

Alp(m) * ] exp. [ — p(z)  JrbyS-AusExe,ie., p(E) k- p(AlF <)) exp. p([ar=5'<"]r).
Case S-CLsExp. Similar to the case above, noting that p(#C A [a; = 7 <°|1) = p(#C) A
(7= =) = € » pl[a =7 =]r)
Then the premise ¥ 7 exp. v’ implies p(2) - p(7) exp. p('), and p(Z) + p(r) =° p(7’)
follows from S-Expo.

\_//—\
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]

COROLLARY B.37 (PRESERVATION OF SUBTYPING ENTAILMENT UNDER SUBSTITUTION). If 3 = 3/
and D wf, then p(2) = p(Z').

Proor. By induction on the derivation of subtyping entailment judgement ¥ = 3.

Case S-EmPTY. Immediate.

Case S-Cons. By the definition of subtyping context substitution, p(Z'-(r; < 1)) =
p(Z)-(p(r1) < p(r2)). By IH on the premise ¥ = ¥/, we have p(2) E p(2'). By preser-
vation of subtyping under substitution (Lemma B.36) on the premise ¥ - 71 < 172, we
have p(Z) I p(r1) < p(r2). Then p(2) &= p(2)-(p(r1) < p(r2)) follows from S-Cons, i.e.,
p(2) E p(E"(r1 < ).

O
LEmMA B.38 (CONGRUENCE OF SUBSTITUTION ON TYPES). IfX — n =7/, then3 | [a — n|r =
[ — =]t forall .
Proor. By straightforward induction on the syntax of 7. The only non-trivial cases are:
Case 7 = 11 — 72. From the assumption, we have:
Sta=na (1)
By Lemma B.30 with Lemma B.25, (1) implies:
ETrr=a (2)
By IH on (2), we have:
S [a— xln =[a— 7y 3)
T [a- xln =[a— 7] (4)
Then by S-FunDEPTH on (3) and (4), we have:
St la— x)(n > ) =la— 2](n — ) (5)
Case 7 = {x : r; }. From the assumption, we have:
Str=a (6)
By Lemma B.30 with Lemma B.25, (6) implies:
EThr=a (7)
By IH on (7), we have:
T+ [a— 7l =[a— 7n (8)

Then by S-RcpDEPTH on (8) and (4), we have:
Stla—rl{x:nl=la—al{x:n} )
Case 7 = a. From the assumption, we have:
Str=na
ie, Xt [a—rla=[a— n]a (10)
O

LEMMA B.39 (CONGRUENCE OF SUBSTITUTION ON GUARDED TYPES). If3 + n = 7’ anda ¢ TTV (1),
then >3 - [a — 7]t = [a — 7’|
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ProoF. By straightforward induction on the syntax of 7. The only non-trivial cases are:

Case 7 = 11 — 7,. From the assumption, we have:

Skr=a (1)
By Lemma B.30 with Lemma B.25, (1) implies:
Sk r=a (2)
By Lemma B.38 on (2), we have:
S+ [a e xln = [a— 7n 3)
T [a- 7ln =[a— 7] (4)

Then by S-FunDEePTH on (3) and (4), we have:
B3 [a e 7](n = ) =[a— 2'](n — ) (5)

Case 7 = { x : 71 }. From the assumption, we have:

Shr=q (6)
By Lemma B.30 with Lemma B.25, (6) implies:
Thkr=a (7)
By Lemma B.38 on (7), we have:
S+ [a xln = [a— 7n ®)
Then by S-RcpDEPTH on (8) and (4), we have:
Xk [a—rl{x:n}=la— 2 {x:n} 9)
Case 7 = a. Impossible since « ¢ TTV(z).
O
COROLLARY B40. S 7= [a — a A ubs(a) v lbg(a)]r forallz.
Proor. By LemmaB.38 onX - a = a A ubs(a) v lbs(a). O
CoroLLARY BA41. Ifa ¢ TTV(zr), then>S = [a — a A ubs(a) v lbs(a)]r.
Proor. By LemmaB.39on3 - a = a A ubs(a) v lbs(a). m|

LEMMA B.42 (INLINING OF BOUND). If3-(a <° 7) - 7 < 7/, then p3->(a <° 7) - pr < p7/,
where p = [a — a A° 7.
ProoF. By straightforward induction on unassuming subtyping derivations. The only non-trivial
case is S-Hyp when (r < 7/) = (@ <° 7).
Case S-Hyp when (7 < /) = (a <° 7). Let cleanup((a <° 7)) = (¢ <° 7’). By Lemma B.8,
Lemma B.9, and Lemma B.10, we have:

(a < ) H (o <° ) m
(e <° 7') guard. (2)
anr=an’ad 3)

By S-Trans on (a <° n') - a = a A° 7’ and (3), we have:

(a<’nYra=an’n (4)
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By Lemma B.39 on (2) and (4), we have:
>(a <° ') 7' = pr’ ()
By Lemma B.22 on (4) and (5), we have:
la<’ ) an®n =(an®x) A pr
ie, pla<’n)ran®rd =plan®r) (6)
By S-TraNs on (3) and S-ANDOR123, we have:
an®n <nr (7)
By Lemma B.36, (7) implies:
pla n®x) < pr (®)
Then by S-TrANs on (3), (6), and (8), we have:
a<’ ) an®n<®pr 9)
Then by Lemma B.30 with (1), (9) implies:
pla<’m) b an®n< pr

ie, >(a<®rm) b pa<®pr (10)

B.6 Some Useful Lemmas on Consistency
LEMMA B.43 (CONGRUENCE OF SUBSTITUTION ON CONSISTENCY). If[a — 7|2 - bEy-[a — 7]E;
p cons. and>Z,. |+ 7 = 7/, where t and ' are not type variables, then [a — T']|2 - BB, [ — T']

p’ cons. for some p’, where dom(p’) = dom(p).

[1] [1]

5

Proor. By induction on consistency derivations for the statement: if p” [a — 7|2 - >E.-p”[a — 7]E;

(y—m)ep”

peons.and>E, Fr=7andE Fy =71, , where 7 and 7’ are not type variables and

y = y’(y'_)y 17" and dom(p) n dom(p") = &, then p"[a — 7']Z F bE.-p"[a — T'|Z; p’ cons.

for some p’, where dom(p’) = dom(p).

Base case. For the base case, we have = = €. Then by the base case of the definition of consistency,
we have:

p"la— T2 - bEup”[a — ']Z; id cons. (1)

Inductive case on . For the inductive case on «, i.e., where p = p, o p; for some p; and p,,
where dom(p;) = { « }, the preimses of the rule are:
BBy BB p1Egp1p”[a — 7|2 F piE, (2)
p1p"[a — ]38 F >ELDE,-p1EL ; p2 cons. (3)
where split, (p”[a — 7]E, dom(p;)) = (2}, E},) and p; = [a@ — a A ubyijq, (@) v
Ibpi (e )= (a)]. Since 7 is not a type varialbe, we have:

B, =€ (4)
=, = a1 ©)
p1 = [a— a] (6)
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Then (3) implies:
p'la— ]2 - >Esp”[a — 7]Z; p; cons. (7)
Then by IH on (7), we have:
p'la— T2 - BBy p"[a— T'|E; p; cons.
ie, p'la— TS+ pELp [a— T']E; psop1 cons. 8)

for some pj, where dom(p;) = dom(p,).
Inductive case not on «a. For the inductive case not on «, i.e., where p = p, o p; for some p; and
p2 and B # a, where dom(p;) = { S }, the premises of the rule are:

[>E|>~I>E/ﬁ'plEjg-p1p”[a — T]Z = plE/ﬂ (9)
p1p" o — ]2 DED-DE'ﬁ-pIE%; po coms. (10)
where splity(p”[a — ]E, dom(p,)) = (Ep. E)y) and p1 = [ — B A ubprja.srz(f) v

by rjz(B)]. Let splity(E, dom(py)) = (Ep, Ey). Since 7 is not a type variable and

Yy = y’(yHy Jer , we have 2 = p"[a — 7|25 and E :ﬁ = p'la — T]Eﬁ. Then (9) and

(10) imply:
>Esop”a = 1]Epp1p" [a = T]E g pip”[a > T]Z I p1p”[a > 7]Ep (11)
p1p"[a — 7] - BEL->p”[a — 1]Eg-p1p”" [ — ]E4; p2 cons. (12)

Expanding the composition, we have:
prop’ = [y piry Y B BA ubpiarsz(B) V prars iz (B)] (13)
From the assumption, we have:

(y—1)ep”

PE, Y =1, (14)

By Corollary B.40, we have:
p'la =18 = m = [ B A ubpriarsejz; (B) V bprias iz, (B)] forall x
ie, p'la—1]Egtn=[f— A ubyiasdgz(P) Vv lbpias=(f)ln  forallnx
ie, p'la—rt|Egnm=pixr forallx (15)
By S-TraNs on (14) and (15), we have:

e e A5 ey = (16)
Taking = = f, (15) implies:
p'la > t]Ep = p= B A ubyriars gz(B) v priars rz(B) (17)
Then (16) and (17) imply:
B p[a o 155 ¥ = Ty(Y’_’Ty)EPIOPH (18)
Then by IH on (12) and (18), we have:
p1p"[a — |2 - BBy pp" [a — T|Egp1p" [a — T/]Eﬁ/; p;, cons. (19)

for some p;, where dom(p),) = dom(p,).
From the assumptions, we have:

bE, Tr=1 (20)



MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 55

By Lemma B.38, (20) implies:
bEs b [ tlr=[a— n foralln (21)
By S-Trans on Lemma B.25 and (21), we have:
>Es-la - T]Ep = [a — 7]Ep (22)
By Lemma B.36, (22) implies:
>p"Ep-p’[a — T']5 = pla — 1]Eg (23)
By Lemma B.38, (14) implies:
Eetrn=p'n foraln (24)
By S-TraNs on Lemma B.30 and (24), we have
Es k= p"Es (25)
Then by Lemma B.30 with (25), (23) implies:
>Esp”[a = T'|2p b= p"[a > 7]Ep (26)
Then by Lemma B.30 with (26), (19) implies:
pip"la = U2 = pEsep"[a > T]Eppip”[a — T]Ey; py cons. (27)
Similarly, we have:
>E-p" [a — r’]Eﬁp”[a — 2 E p'a — T]E)g‘p”[a — 7|2 (28)
By Lemma B.36, (28) implies:
>p1Esprp”a = TIEgpip”la = 12 E pip”[a > T]E g pip"a > 7] (29)
By S-TraNs on Lemma B.25 and (15), we have:
Eop"a = 7|25 = piEs (30)
Then by Lemma B.30 with (30), (29) implies:
>Es->p"[a — ]2 p1p" [a — T’]Eﬁ'plp"[a — T2 = pip’la— T]Eﬁplp”[a — 7|3 (31)
Then by Lemma B.30 with (31), (11) implies:

bEs>p"[a = t]Epp1p"[a = T]E g p1p"[a = T]Z E pip"a — T]Ep (32)
Similarly, we have:
>Es>p"[a > T]Epp1p"[a — T]Ep = p1p”[a — T']Ep (33)
Then by Lemma B.26 on (32) and (33), we have:
>Es>p" [ = 1]Epp1p"[a = T2 gpi1p"[a = T]Z E pip"a - T]Ep (34)
Then by Lemma B.30 with (26), (34) implies:
>Es>p"[a = T]Egpip”[a = T]Egpip”[a — TIZ E pip”[a— T]Eg (35)
Let p; = [f = BAubyijas 12(B) V Ibpr[a s r)=(B)]. Since 7 and 7’ are not type variables
and H(y ek p”, we have:
pr =[5 o[ s cJubs(B) v o[ Jlbs(B)] (36)
p1=[B—> B Ap'la ubz(B) v p"[a — ']lb=(p)] (37)
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By Lemma B.36, (21) implies:

>p"Ep - p”a > tlubz(B) = p"[a — ' ]ubz(B) (38)
>p"Es b p"[a > 7]lbs(B) = p"[a = 7']1b=(P) (39)
By Lemma B.30 with (25), (38) and (39) imply:
>Ep b p"[a = rlubz(B) = p"[a — o']ubz(p) (40)
>Es b p"[a > 7]lbz(B) = p"[a — T']1bz(B) (41)

Then by Lemma B.22 on S-REFL, (40), and (41), we have:

> By b B A pla s tubz(B) v p"la — 7]lbz(B)
= B A p"a > Tubs(B) v p'la > llbz(B) (42)
Then by IH on (27) and (42), we have:

/i

pip"la = ]2t pEsop"[a = T'|Egpip”[a — T]E 4 py cons. (43)

for some p}, where dom(p;) = dom(p}).
By Lemma B.38, (42) implies:

bE. - pir =pir foralln (44)

By S-TraNs on Lemma B.25 and (44), we have:
2B pip"[a = T2 g pip"[a = TS = pip”a = T]E 4 pip" [ — 7] (45)
>Zoepipla = V15 = plpla > 15 (46)

Then by Lemma B.30 with (45), (35) implies:

>Es>p"[a = T]|Eppip”[a = T]Egpip”[a — TIZ E p1p”[a - T]Eg (47)

Then by Lemma B.26 on (47) and (46), we have:
BB p" o= T'|Egpip"[a = T|E g pip"[a — ]2 = pip"la — 7|5 (48)

S(y—y)ep”

Since 7’ isnot a type variableand y = y ,we have splity(p”[a — 7']E, dom(py)) =
(p"[a = 7'|Ep, p"[a — 7']24). Then by the inductive case of the definition of consistency,
(43) and (48) imply:

p'la— T - pErp’[a — T']E; pi o p} cons. (49)
i

LEMMA B.44 (INVERSION OF CONSISTENCY). If ¥  BE.-E; p cons., then for all a, we have
DELDEy Pala Pad E PaBe andpeE F BELBEy paEy; p' cons. forsome p’, where split,,(E, dom(p’)) =
(Bas Bgr)s pa = [ — a A ubz(a) v Ibz(a)], and dom(p’) = dom(p)\{ @ }.

Proor. By induction on consistency derivations. If E is not guarded, we can replace it with

cleanup(Z) before applying the lemma, and restore it back to Z in the conclusion. Therefore we
can assume E guard..

Base case. For the base case, we have E = €. Then we have £, = €, 4 = ¢, and p, = id. By
S-EmMPTY, we have:

DELDE €

ie, DELPEyPeExPa E Pala (1)
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By the base case of the definition of consistency, we have:
>+ >Ey; id cons.
ie, pg2b DEsDEypoaEy; id cons. (2)
Inductive case on . For the inductive case on «, i.e., where p = p, o p; for some p; and p,,
where dom(p;) = { a }, we have the result immediately from the premises.

Inductive case not on «. For the inductive case not on «, i.e., where p = p; o p; for some p; and
pa, where dom(p;) = { p } for some f # «, the premises of the rule are:

DED'DEﬁ'pIEﬁ"Dlz = PlEﬁ (3)

P12+ I>E|>~>Eﬁ~p15)g; p2 cons. (4)

where splitg(E, dom(pz)) = (Ep, E4) and p1 = [B— B A ubs(B) v Ib=(B)]. By IH on (4),

we have:

— —_ —/ ! =/ / ! =/

BELDEFDEL PLE  PaP12 F PrEy (5)

Pep1S - DES->ERDEL-pLEL 5 ps cons. (6)

for some ps, where split, (p1E g, dom(ps)) = (B EY) and p, = [a — a A ubp,z, (a) v

lbmg/{ ()] and dom(ps) = dom(pz)\{ @ }. It is easy to see that &), = p1Eq and E, = 185,
where splita(E/;, dom(ps)) = (Eg, E/fﬂ)- Then (5) and (6) imply:
>Ep >ERDP1Ea PaPIE fu PaPiE F Pup1Ea (7
pLp1E I>E.>'I>Eﬁ-l>p15a~p;p13ﬁﬂ; p3 cons. ®)
Since (a <° pi7) € p1E g only if (a <° 7) € E, we have ubplgﬂ(ﬁ) = prub=(p) and
lbplgﬁ, (B) = p1lb=(p). Then we have:
ol = [ @ A prabs(a) v pilbe(a)] ©)
Expanding the composition, we have:
plopr = [ > @ A prubs(a) v pilbe(a), B A plubs() v pllb=(@)]  (10)
By Corollary B.40, we have:
Egp-p=[pr ubEﬂ(ﬂ) v leﬁ(ﬂ)]ﬂ
e, Epk f=[p— ubz(f) v Ib=(p)]Ip
i.e., Eﬁ' = ﬁ = plﬁ (11)
Then by Lemma B.38, (11) implies:
Ep b= [B— Bl(a A ubz(a) v Ibs
ie, Epk anubz(a)v b=

a)) = [f = p1fl(a A ubz(a) v Ibz(a))

(
(a) = a A prubz(a) v pilb=(a)

ie, Egkanubz(a)vibz(a)=an ubplgﬂ(a) v lbplgﬂ(a) (12)

Then by Lemma B.39, (12) implies:
>Sp b peubs(B) = plubs(B) (13)
>Zp b palbs(B) = pllb=() (14

By Lemma B.22 on S-REFL, (13) and (14), we have:
>Ep b B A paubz(B) v palbz(B) = B A poubz(B) v pelbz(P) (15)
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Let pi = [ — B A ubp,s,.(B) v Iby,s . (B)]. By the same reasoning, we have:
P pa = la > @ A plubs(a) v pilbs(a), f— f A paubs(B) v palbz(@)]  (16)
PEq - a A prubs(a) v pilbz(a) = a A piubz(a) v pilbz(a) (17)
Then by Lemma B.38 on (15) and (17), we have:
DEqDEg - pLp1T = pipan forallw (18)
By S-Trans on Lemma B.25 and (18), we have:
DEq>Egp1pal = pppiA  forall A (19)
By Corollary B.40, we have
Epbn=[B— B Aubz,(f) v bz, (f)]n  foralln
ie, Egtnm=[f— pArubz(p) v Ib=(p)]r forallx

ie, Egbrm=pir foralln (20)
By S-TraNs on Lemma B.25 and (20), we have:
Ea'Bp = p1Ea (21)
By Lemma B.28, (21) implies:
>Ey>Eg b Bp1Eqy (22)
By the same reasoning, we have:
> p1E >Es BEg F Bpl B >phEp (23)
BBy >paEp I PEg (24)

By Lemma B.36, (3) implies:
> P Ee B PLER PRPIE g PuPrZ E PupiEp
ie,  PPLEsPLER PaPIEa PuP1E g PuPIE F PaPiEp (25)
By Lemma B.30 with (7), (25) implies:
Dp;ED~l>p"xEﬁ~>E>~I>Eﬂ~l>plEa'p;plEﬁﬂ~p;p12 = pLp1Es (26)
Let splitg(E,, dom(ps)) = (Ep, Eﬂﬁ)' It is easy to see that £, y = E . Then (26) and (8)
imply:

>PoEs B PaEpEs PERBP1Ea PaPIEy g PaPiZ F Pup1Ep (27)
pLp1E I>E|>'I>Eﬁ~>p15a‘p;p15ﬂﬁ; p3 cons. (28)
By Lemma B.30 with (23), (27) implies:
PEp DB >p1Ea PaP1Eg g PuP1 F Prp1Ep (29)
By Lemma B.30 and Lemma B.32 with (22), (29) and (28) imply:
DB PEa P Ep PaP1E g PaP1E F PupiEp (30)
pLp1Z I>E>'>Ea~l>5ﬂ~pfxp15ﬂﬂ; p3 cons. (31)

By Lemma B.30 and Lemma B.26 with (19), (30) implies:
> >Ea >EpP1paB g PiPa>  PiPalp (32)
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By Lemma B.43 with (15) and (17), (31) implies:

Pipa >E>~I>Ea~l>5ﬂ~pgpa5ﬂﬁ; Py cons. (33)
for some p;, where dom(p;) = dom(ps3). By Lemma B.30 and Lemma B.32 with (24), (32) and
(33) imply:

PEp >Eq>paEp P1PaB g P1Pa F P1PaEp (34)

PipaZ DED-DEQ-DpaEﬁ-p;paEﬂﬂ; ps cons. (35)

It is easy to see that splitg(paE., dom(p;)) = (puEp, paEﬂl,«). Then by the inductive case
of the definition of consistency, (34) and (35) imply:

Pa b PESDEq paBa ;s pi o p) cons. (36)
By Lemma B.30 with (22), (7) implies:
>E>-DEa-DEﬁ-p;plEﬂﬂ-p;plz E prP1Ea (37)
By Lemma B.30 and Lemma B.26 with (19), (37) implies:
>Es DBy PEpp1Pal g P1Pad F PlPaEa (38)
By Lemma B.30 with (24), (38) implies:
>Ep > Ea>PaEpP1PaE g PiPaE F P1PaBa (39)
By Lemma B.30 with Lemma B.25, (39) implies:
>Es >EaPaBpP1PaE g P1PaE F P1PaBa (40)
By Corollary B.40, we have
paZp = =[f— B A ubpz,(B) v Iby,z,(f)]x foralln

ie, poEpm=[f— pAubyz,(B)VIibyz,(f)lr forallx
ie, poEpm=piwr foraln (41)

By S-TraNs on Lemma B.25 and (41), we have:
paBp-A = piA  forall A (42)
Then by Lemma B.30 and Lemma B.26 with (42), (40) implies:
DED'DEa'PaEﬁ'paE/{ﬂ'PaZ E paZa
ie., >E>~>Ea-paEﬁ-paEKﬂ~pa2 E pala
ie, PELPEyPalaPal E Pala (43)

]

LEMMA B.45 (INLINING OF CONSISTENT BOUNDS). If 2 + E; p cons. and 23 + 1t < 7/, then
>E-p3 | pr < pr’.

Proor. By induction on consistency derivations for the statement: if ¥ - >5.-=; p cons. and
>EL-EX b 1 < 7, then bEL BEpY - pr < pt'.

Base case. The base case is trivial since we have = = ¢ and p = id.
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Inductive case. For the inductive case, we have p = p; o p; for some p; = [@a — a A ubz(a) v
Ib=(«)] and p, and a. The premises of the rule are:

DELDEyP1Ex P12 E p1Eg (1)
P12 = PELBEG p1E4; po CONS. (2)
where split,(Z, dom(p;)) = (Eq. Ex). From the assumption, we have:
PELEZ <7 (3)
By Lemma B.36, (3) implies:
>p1Es-p1E-p1S - pi7 < pi7’
e, PpiEspiEapiEgpiZ b pi7t < pi7’ 4)
By Lemma B.30 with (1), (4) implies:
>p1Ep DB DEGp1Eg-p13 F p17 < pri7’ ©)
By Corollary B.40, we have:
Eo b r=[a— anubg, (a)vibg, (a)]r foralrx
e, Egbrm=[a— anubz(a)vibz(a)lr foralrx

ie, Eqkm=pir forallrx (6)

By S-TraNs on Lemma B.25 and (6), we have:
Ex By E p1Es (7)
EaBa F p1Eg (8)

Then by Lemma B.30 with (7), (5) implies:
>ELDEyp1EgpE - p17 < pi7’ ©)
Then by IH on (2) and (9), we have:
>En DB >p1Ea 21 - p2p1T < papr 7
ie, BELDELBpELpE pr < pr (10)
Then by Lemma B.30 with (8), (10) implies:
DBy DEyDEpY - pr < pr’
ie, BDE.>EpY pr<pr (11)

]

LEMMA B.46 (EQUIVALENCE OF INLINING OF CONSISTENT BOUNDS). If ¥ — E; p cons., then
=< ———(a—1)€Ep
=X a=rT1 .

Proor. By induction on consistency derivations for the statement: if ¥ - >E,-E; p cons., then
5 \vf —17)€Ep
DELEN - a= .
Base case. The base case holds vacuously since we have p = id.

Inductive case. For the inductive case, we have p = p; o p; for some p; = [ — a A ubg(a) v
Ib=(«)] and p, and a. The premises of the rule are:

DELDEyP1E g P12 E p1Eg (1)
P12 DEL-DELp1Ey; p2 CONS. (2)
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where split, (=, dom(p;)) = (Eq, Ex). Let py = [@; — ;'] for some &;' and 7;'. Expanding
the composition, we have:

p=[ai—= 7, a— poa A ubs(a) v Ibz(a))] (3)
By IH on (2), we have:

DELDELP1Ey P12 - o = T,-; (4)
By Corollary B.40, we have:
Egr=[a— anubg, (a)vibg, (a)]r forallrx
ie, EgbFm=[a— anubz(a)vibz(a)]r forallx
ie, Eqbnm=pir foralx (5)
By S-TraNs on Lemma B.25 and (5), we have:
EaBxpXE p1EgpX (6)
Then by Lemma B.30 with (6), (4) implies:

DBy EgBg Db o =1

ie, DELEXFa = T,f' (7)
By Lemma B.38 on (7), we have:
>E.ES b 1 =pyr forallx (3)
Then by S-TrANS on (5) and (8), we have:
PEL-ES - a = py(a A ubs(a) v Ib=(a)) %)
Then (7) and (9) imply:

(a—>1)Ep

PELEX R a=T (10)
O

LEmMMA B.47 (CONGRUENCE OF INLINING OF CONSISTENT BOUNDS ON TYPES). If3 - Z; p cons.,
then 2-3 - r = pt forallt.

Proor. By induction on the syntax of 7.
Case 7 = 11 — 1,. By IH, we have:
EX 10 =pn (1)
E2X 1 =p0 (2)
By Lemma B.30 with Lemma B.25, (1) and (2) imply:
<E-<X 1 = p7y (3)
E-<X 1 = pry (4)
Then by S-FunDEPTH on (3) and (4), we have:
22Xk T >0 =pn > pn

ie, EXb1 o 1n=p(n—n) (5)
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Case 7 = {x : 71 }. By IH, we have:
EX 1 =pn (6)
By Lemma B.30 with Lemma B.25, (6) implies:
<E-<X 1 = p7y (7)
Then by S-RcDDEPTH on (7), we have:
EXH{x:nn}={x:p11}

ie, EXH{x:m}=p{x:7} (8)
Cases 7 = #C, 7 = 1°, 7 = a ¢ dom(p). Then r = pr. By S-REFL, we have:
T=pr 9)
Case 7 = a € dom(p). From the assumption, we have:
2>+ E; pcons. (10)
By Lemma B.46 on (10), we have:
EXFa=pa (11)
Case 7 = 11 v° 1. By IH, we have:
EX 1 =pn (12)
EX 1 =pn (13)

Then by Lemma B.22¢ on (12) and (13), we have:
EXF 0 ven=pn vepn
ie, EXFnvein=p(nven) (14)
Case 7 = —77. By IH, we have:
EX 1 =pn (15)
Then by S-NEGINV on (15), we have:
EXF -1 = —pn

ie, EXF -nn=p—n (16)
O

LEMMA B.48 (CONGRUENCE OF INLINING OF CONSISTENT BOUNDS ON GUARDED TYPES). IfY - E;
p cons. and TTV (1) = &, then >E->3 - 7 = pr.

Proor. By induction on the syntax of .
Case 7 = 11 — 12. By Lemma B.47, we have:
EX k0 =pn (1)
EXFn=pn (2)
By Lemma B.30 with Lemma B.25, (1) and (2) imply:
QE-<E 11 = pry (3)
E<E 1 =pny (4)
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Then by S-FunDEPTH on (3) and (4), we have:
PEDY T = Ty = prp — Py
e, PEDIF T o0 =p(n—n) (5)
Case 7 = {x: 71 }. By Lemma B.47, we have:
EXkn=pn (6)
By Lemma B.30 with Lemma B.25, (6) implies:
QE-<E 11 = pry (7)
Then by S-RcDDEPTH on (7), we have:
PEDE - {x:n1}={x:pn1}
ie, PEPEIH{x:m}=p{x:n} (8)
Cases 7 = #C, 7 = T°. Then r = pr. By S-REFL, we have:

T=p1 )
Case 7 = a. Impossible since TTV(z) = .
Case 7 = 11 v° 1. By IH, we have:
PEDY 1 = pry (10)
>ED>Y - T = pry (11)

Then by Lemma B.22¢ on (10) and (11), we have:
PEDE 1 v =pr v opn
ie, PEPEIFVin=p(n ven) (12)
Case 7 = —71. By IH, we have:

>E->Y 1 P71 (13)

Then by S-NEGINV on (13), we have:
>ED>Y - 1 = —pTy
ie, DEDY| -1 =pon (14)
O

LEMMA B.49 (INLINING OF CONSISTENT BOUNDS ON GUARDED DERIVATIONS). IfX - Z; p cons.
andE3 1< and TTV(r) 0 TTV(7') = J, then bEBI-pE - 7 < 7.

Proor. From the assumptions, we have:

2 Z; p cons. 1)
Bt 2)
By Lemma B.45 on (1) and (2), we have:
>E-pZ - pr < pr’ 3)
By Lemma B.48 on (1), we have:
>E>Y - T=pr (4)

BEBY ¢ = pr’ (5)
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Then by S-TRANSs on (4), (3), and (5), we have:
PESS Y < T (6)

]

LEMMA B.50 (INLINING OF BOUND IN CONSISTENCY). If 3-(a <° 1)  B>E.-E; p cons., where
a ¢ dom(p), then p,2 - BEL->(a <° 1)-paE; p’ cons. for some p’, where p, = [a — a A° 7] and
dom(p’) = dom(p).

Proor. By induction on consistency derivations. If = is not guarded, we can replace it with
cleanup(Z) before applying the lemma, and restore it back to Z in the conclusion. Therefore we
can assume Z guard..

Base case. For the base case, we have E = €. Then by the base case of the definition of consistency,
we have:

a2 - >En>(a <° 1); id cons. (1)

Inductive case. For the inductive case, we have p = p; o p; for some p; = [f — S A ub=(f) v
Ib=(p)] and p; and f # . The premises of the rule are:

>Es>Egp1E gep13opr(a <° 1) E pi1Eg 2)
pZp(a < 1) >Es>Egp1Ey; p2 cons. (3)

where splits(E, dom(pz)) = (Ep. Eﬂ)- By IH on (3), we have:
Pup1 = BEs>Ept(a <° pi7)pepiEy ; p; cons. (4)

for some p), where p/, = [@ — a A° pi7]| and dom(p),) = dom(p,). Expanding the composi-
tion, we have:

plopi = [ @ A° pit, B B A plubs(B) v pllbs(B)] )
By Corollary B.40, we have:
(@ < 7) = f A ubz(h) v Ib=(P) = [a — a A° 7](f A ubz(f) v Ib=(P))
ie, (a<®1)ELAubz(B) v Ib=(B) =B A paubs(B) v palb=(p)
ie, (a<®1)EpAubz(f) v Ibz(B)=p A uby,=(p) v Iby =(p) (6)
Then by Lemma B.39, (6) implies:
(< 1) b pre = ple 0
Then by Lemma B.22 on S-RerL and (7), we have:
>a<’t)Ean’pir=an’pir (8)
Let p| = [B— B A ub,,=(B) v Ib,, =(p)]. By the same reasoning, we have:
PL0 pa = [ & A° P, B B A ubps(B) v 1y, (B)]
—[ar> @ A% plr, B> B A patb=(B) v palb=(B)]
>Ep = B A patbz(B) v palbz(B) = B A poubs(B) v pelb=(B) (10)
Then by Lemma B.38 on (8) and (10), we have:

>(a A°1)-DEg b= ppp1t = pipart forall (11)
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By S-TraNs on Lemma B.25 and (11), we have:
>(a A°1)-DEgp1pall b poppiA - forall A
By Corollary B.40, we have

Epbnm=[B— B Aubs,(f) v ibs,(f)|lr  foralln
ie, Egtm=[f— pArubz(p) v Ib=(p)|r forallx
ie, Egbrmr=pir foraln

By S-Trans on Lemma B.25 and (13), we have:
(@ <° 1) = (@ <° pyr)
By Lemma B.28, (14) implies:
>(a <° 17)>Eg = >(a <° pi7)
By the same reasoning, we have:
>(a <° pi7)->ELDE E DplEu>p,Ep
>Eg->(a <° 1) = >(a <° p17)
>(a <° 1) >peEp = >Eg
By Lemma B.42, (2) implies:
> po o> P Ep PapiE g PppiZ(a <° pi7) F popiBp
By Lemma B.30 with (16), (19) implies:
PEs >Eppap1E g papr>(a <° pi7) = popiBp
By Lemma B.30 with (17), (20) and (4) implies:
PEs >Epe(a <° 1) pppE g papiZ E pup1Ep
P - DB DEg> (o <° plr)-p;plEﬁ; Py, cons.
By Lemma B.30 and Lemma B.26 with (12), (21) implies:
BEs >Ep>(a <° 1) p1paE g pipaZ F p1paEp
By Lemma B.43 with (8) and (10), (22) implies:

P1PaZ - DES DEg>(a <° plr)-pgpaEﬂ; p, cons.
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(12)

(13)

(14)

(15)

(16)
(17)
(18)

(19)

(20)

(21)
(22)

(23)

(24)

for some p}, where dom(p;) = dom(p),). By Lemma B.30 with (18), (23) and (24) implies:

PEs>(a <° 1) paBppipat g p1pa® = P1PaEp

P pa b BE>(a <° pﬂ)-DpaEﬁ-p;paEﬂ; py cons.

(25)
(26)

It is easy to see that splitg(paE, dom(py)) = (paEp, paEﬂ). Then by the inductive case of

the definition of consistency, (25) and (26) imply:

pa> F BEu>(a <° pi7)-paE; py © p) cons.

(27)

]
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B.7 Reasoning Behind Proof Structure

The structure of the remaining proofs is quite complex, with many additional syntax forms and
relations introduced. We first shed some light on the reasoning behind them.

Our first goal is to prove subtyping consistency (Theorem B.88), which describes how the basic
type constructors of the language should or should not relate by subtyping, and in particular
prevents wrong relations, such as function types subtyping record types. However, its proof cannot
proceed by the standard technique of induction on subtyping derivations. Due to the restriction
of the type forms, the inductive hypothesis cannot be applied to the premises of S-TRANs, as the
middle type introduced may not adhere to the restriction. A quick inspection reveals that the
problem lies within S-ANDOR2. While some usages of S-ANDOR2 can be removed by rewritting
the derivation, not all usages can be removed. The solution we adopted was to split the full <
subtyping relation into two, with € covering the pure Boolean-algebraic relation and < covering
the remaining relation between the atoms and coatoms in the form of elementary type forms, which
will be introduced later. This allows us to state them separately in Lemma B.89.

The statement of Lemma B.89 is quite complex. It helps to first look at the statement of our first
attempt, which does not hold in general:

’ C; . —J —j D’
() X r<mandr = A\ (Ti v U, ’), then there exists some JT; and D;” and v /

R ,] —
such that 7 =~ A\ (n; v V].D’) and >3 /\iesj Ul.ci < VJ.D’ for some SjJ.

i

@ ErXr<rmandrz=\/; (n]’ A }’j.Dj), then there exists some T_{l and C; and Xici

such that 7 = \/, (Tll A Xl.ci> and >3 | X&' < Vies, Yij for some S; .

The proof of this lemma also cannot proceed by standard induction due to the interaction be-
tween S-ANDOR2 and S-DisTRIB. As an example, consider the following derivation for some

te{l, T,#C', 1y — 1, {X; 7 7;' } } and unrelated classes C and D:

S-DISTRIB-
C A (#D v —#C) < #C A #D v #C A —#C #C A#D v #C A —#C < L

(1)#C A (#D v —#C) < L

S-TRANS

N

#C T<#D v —#C
T < #C A (#D v —#C) (1)

r< L

S-ANDOR2?

S-TRANS

According to our goal of Theorem B.88, 7 can only be L. However, from the subderivations for
7 < #C and 7 < #D v —#C, nothing locally restricts 7 to be L. This is because S-DISTRIB can split
a complement into two separate subderivations to be later merged back together by S-ANDOR2. To
overcome this difficulty, we normalize the shape of subtyping derivations by introducing the CDN-
and DCN-normalized type forms and derivations. CDN- and DCN-normalized derivations require
S-DisTriB¢ to be followed immediately by S-ANDOR2¢. We show that all types and subtyping
derivations can be translated into an equivalent CDN-normalized one and an equivalent DCN-
normalized one. This allows us to perform the proof of Lemma B.89 by induction on CDN- and
DCN-normalized subtyping derivations.



MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 67

As we mentioned before, the above simplified version of Lemma B.89 does not hold in general.
The problematic cases arise when 7 = L for direction 1 and 7 = T for direction 2. Since the
relation holds by S-Trans with S-ToB for any type on the other side, we should not be able to
conclude anything about it. Fortunately, we do not need to care about such cases for proving
Theorem B.88. Therefore, we can exclude them by adding side conditions on the elementary type
forms, and making sure that they are preserved in the conclusion of the lemma, allowing us to
apply it successively to a transitivity chain. For direction 1, in order to reject cases where 7 =~ |, we

require /\; Uic " to be complement-free, then we have 7 =~ A; (rl’ v Ul.ci ) >N, Ul.ci ¢ 1, which
implies 7 & L by the antisymmetry and boundedness of Boolean algebras. For direction 2, we
symmetrically require \/ j Yij to be complement-free. To reject cases where 7 = | but r 2 L for

direction 1, we add restrictions on the set of elementary type constructors {C_',l }. For example,
since we can derive 1, — 1, < 73 — 74 for some 7;' - 4, which impliest) > A —(13 > 14) < L
by Theorem B.20, we reject cases where both — € {C; } and = € {C; }. We can derive similar
restrictions from other subtyping rules, and symmetric restrictions for direction 2.

So far, we have ignored the subtyping context by requiring it to be guarded. Our handling of type
variables and the subtyping context relies on two key insights: for Theorem B.88, we do not care
about type variables on the top level; and we do not care about all possible subtyping contexts, only
the ones produced by type inference. We have previously defined the consistency of constraining
contexts, and by ensuring type inference only produces consistent contexts, this allows us to guard
the context in any subtyping derivations under consistent contexts and with no type variables
on the top level by Lemma B.49, which are all we care about for the remaining soundness and
completeness proofs.

B.8 Pure Boolean-Algebraic Subtyping

First, we define C as the standard Boolean lattice order.

Definition B.51 (Pure Boolean-Algebraic Subtyping). We define r; C 7, to mean that 7; < 7, can be
derived by using only “Boolean Lattice” subtyping rules, which are those that that are not specific
to A7 types and simply encode their Boolean-Algebraic structure. More specifically, these rules are:
S-REFL, S-ToB, S-CompL, S-NEGINV, S-ANDOR11, S-ANDOR12, S-ANDOR?2, S-D1sTRIB, and S-TRANS.

THEOREM B.52 (STANDARD BOOLEAN LATTICE ORDER). < holds in every Boolean lattice, i.e., it
does not introduce any extra relations between its atoms, which are A~ types.

Since C is itself a Boolean Algebra (see Section 4.4.4), this means our rules for C are a proper
axiomatization of Boolean Algebras.

Proor. We show that the < rules follow from the pure Boolean algebra axioms. = is the pure
Boolean algebra equivalence, defined by the following axioms [Huntington 1904]:

B-IDEN® : TAT =1
B-COMMUT® : nVvin=nveng
B-DISTRIBO : A (vl =(tA’n) vl (T A% )

B-CoMmPLO : Tve—or=T°
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The following laws follow from the axioms [Huntington 1904]:

B-IDEMO : tvlr=r
B-BouND¢ : v T =T°
B-ABSORP® : nA’(nvln)=rg
B-DEMORGAN® : (11 v° ) = (-1 A® —13)
B-Assoco : (nven)vim=1nv®(nven)

Recall that 7; € 1, is taken to mean 7; = 77 A 73 (Section 4.4.4).

S-REFL.
T=TAT by B-IDEmM 2
S-ToB-.
T=1AT by B-IDEN-
S-ToB».
l=7zal by B-BounD
=1z by B-CoMMUT 9
S-CompL.-.
T=rv-—r by B-CompL:
=(tv-r)AT by B-IDEN-
=TA(rtv—r1) by B-CommuT 9
S-CompLo.
TA—-T=1 by B-CompL 2
=(tA—-1T)AL by B-BouND 9
S-NEGINv.
= A(nv o) by B-ABsORP-
=-nA (-1 Vv —n) by B-CoMMUT-
=0 A (AR by B-DEMORGAN 2
=Ty AT by assumption 71 S 7, © 171 =71 A T2
S-ANDORI11..
n=nA(nvn) by B-ABSORP-
S-ANDOR110.
TAL=(T1AT) AT by B-IDEM D
=1 A (11 A T2) by B-Assoc?
=(nAn) AT by B-CommuT 2
S-ANDORI12..
nm=nA(nvn) by B-ABSORP-

=nA(nvin) by B-CommuUT-
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S-ANDOR120.
TALR=TA (T2 ATR)
=(n1AT) A
S-ANDOR2-.
nvn=(nmAT)vVn
= (AT (5 AT
=(tAt) V(AT
=(tAmn)Vv(tAn)
=7A(n1Vv 1'2)
=(nvmn) A
S-ANDOR20.
T=TAD
=(tAT)AT
=7A(n1 AT2)
S-D1STRIB-.

TA(n V)=

—~

S-DI1STRIBO.

tvo)a(tvo)=(rva)altvn)A((tvn)A(tvn))

) A (T v (1 A R))

=((rvn)Aa
S-TRrANS.
To=10 A Ty
=19 A (11 A T2)
=(t0AT1) AT

=T0NT2

(tA(nnvm)A(ta(nvmn))

tA(nvo)aA((tan)v(can))

(rv

by B-IDEM 2
by B-Assoc 2

by assumptiony ST =10 AT
by assumption , S TS R =T AT
by B-CommuT 2

by B-CoMMUT 9

by B-DiSTRIB-

by B-CommuT 2

by assumption T S 1, © T=7T A Ty
by assumption 7 C 7;

by B-Assoc 2

ST=TAT

by B-IDEmM 2

by assumption 7 S 71 © 10 =79 A Ty
by assumption s S, < 11 =171 A T,
by B-Assoc 2

by assumption 7 S 71 © 10 =7 A T

by B-DisTRIB-

by B-IDEmM 2
by B-DISTRIB ?
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]

Contrary to full <-subtyping, < only relates concrete type constructors (function, record, and
nominal class tag types) in an obvious and syntactic way, making it easy to reason about. For
example, notice that {x : 71 } € {y : o } holds iff x = y and 71 = 1, (i.e,, iff they are syntactically

the same).

Definition B.53 (Boolean algebra equivalence). We define (=) as Boolean Algebra equivalence:

nen o nCnandn S0

Remark: It is easy to show that 7; = 7] v 7, implies 7, < 7y. Indeed, it implies 7] v 7, < 71, which
implies 7, < 7. Similarly, T{ A T, = 1y implies 7; S 15.

Lemma B.54. If\/; 5 © /\; ), then 7; © nji’j. Additionally, if \/; 7 =

71 where 11 is not an

intersection; or lf/\] 7j = my where mry is not a union, then the derivation for 7; < m; 7 has a size not
larger than that of the assumption \/; 7; /\j ).
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Proor. By induction on right-leaning < derivations.

Case S-REFL.
Case /\ M= = \/, 7i. By repeated applications of S-TRANs with S.—ANDORllg followed
- .
by an application of S-TraNs with S-ANDOR12-, we have 7; € \/; 7; , L.e., 7; nj”.
If \/; 7 = 71 where 77 is not an intersection, then \/;7; = 7;. Then 7; C ﬂjl’J is just
71 € 7y, which is the assumption itself.
If /\j nj = my where 7 is not a union, then 7; = \/, 7; is not a union, ie., \/; 7; = 71.
Then 7; < ﬂjl’J is just 7; S 717, which is the assumption itself.
Case \/;7; =11 = )\ ; 7j. By repeated applications of S-TrRaNs with S-ANDOR110, followed
by an application of S-TRANs with S-ANDOR122, we have /\j mCoLie, .
If\/;, 7 = 7y where iy is not an intersection, then r; = A\ i 7 is not an intersection, i.e.,
/\ T = m. Then7; € 7; 7rj s just 71 € 71, which is the assumption itself.
If /\j mj = m where 7y is not a union, then /\j mj = m.Thent; C ﬂjl’j is just 71 € 7,
which is the assumption itself.
Case S-ToB-. A\ ;7j = T.The result follows from S-ToB- on each of 7;".
Case S-ToB>. \/, 7; = L. The result follows from S-ToB> on each of 77;.
Case S-Compr-. \/;7; = T and A\; 7; = m = 7’ v —' for some 7'. The result follows immedi-

ately.

Case S-Compro. /\;7; = Land \/;7; = 71 = 7’ A =7 for some 7’. The result follows immedi-
ately.

Case S-NEGINV. \/;7; = 7y = —7’ and /\j nj = m = —n' for some 7’ and 7’. The result follows
immediately.

Case S-ANDOR11-. A\;7; = m = \/;5 v 7’ for some 7. By repeated applications of S-
TrANS with S ANDORll followed by an application of S-TrRaNs with S-ANDOR12:, we
haver; € \/; v ,ie., ﬁj.

If \/ 7; = 17; where 77 is not an intersection, then m s just T € r v &/, which is
the assumption itself.
It is impossible to have /\j n; = m where m; is not a union since 7, = \/; 7; v 7'.

Case S-ANDOR1D. \/;7; = 7; = /\; 7j A 7 for some 7’. By repeated applications of S-TraNs
with S-ANDOR112, followed by an application of S-TrRaNs with S-ANDOR12D, we have
/\j AT S ﬂjj, ie., TiTﬂjl’].

It is impossible to have \/l. 7; = 71 where 17 is not an intersection since 7; = \/ A
If /\j m; = m where 7 is not a union, then T,-Tﬂjl’] is just ¢ € t v &/, which is the
assumption itself.

Cases S-ANDOR12¢. Similar to the cases S-ANDOR11¢.

Case S-ANDOR2-. Let the range of i be 1..m. We have \/,; 7; = \/
of the rule are \/

7, © Jrjie Lm=Ly By IH on the second premise, we have 7, 77,'jj. Then we have 7; C 7;
Case S-ANDOR2>. Let the range of j be 1..n. We have A\ ; 7; = /\;c; ,_1 7j A 7;. The premises

of the rule are \/; 7; & A ¢, ,; 7y and \/; 5; S 7,. By IH on the first premise, we have
ijel.n—1 ij

ie1.m—1Ti V Tm. The premises
ZESWAN jmjand T, < N ; 7j. By IH on the first premise, we have
ij

iel.m—1

[ . [ JR—
T S . By IH on the second premise, we have 7; € 7, . Then we have 7; C 7;

Case S-DisTriB-. \/;7; =71 = 7' A (7] v iy) and A\ ; m; = m = (¢ A 7)) v (7' A 73) for some 7/
and 7; and 7,. The result follows immediately.
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Case S-DisTriBY. /\;7j =m = 7' v (rf A7y)and \/; 5 = 1 = (7' v 7]) A (7' v 13) for some
7" and 7] and 7,. The result follows immediately.
Case S-TrANs. The premises of the rule are \/; 7; € 7" and ' < /\ ; 7; for some 7’. By IH on the

_ [

former premise, we have 7; € 7/ . By IH on the latter premise, we have 7/ < 7TjJ. The result
—i —i

follows from S-TRANS on each of 7; € 7/ witheachof r; € 7.

]

B.9 Elementary type forms
B.9.1 Definition.

Definition B.55 (Constructors and negated constructors). The syntax of constructors and negated
constructors is presented in Figure 11.

Bu= - |x|#C | L|T
C,D == B | B

[ B ifc=B
Notation: E—{B fC—B

Fig. 11. Syntax of constructor and negated constructor.

Definition B.56 (Elementary type forms). The “elementary” type forms are defined in Figure 12.
These are conceptually the type forms we need to care about for the system to be sound.

Elementary union types

U™ =17 —>m V- VT, = T,
U s={x:g}v--vi{x:n}
U*C .=#C

Ul «=T [ {x1:m1}v{x:2} (wherex; # x;)

[ {x1:n} v (c—>m)

Uf o= -xP
Elementary intersection types
X7 u=(ngom) A A(th— 1)
X w={x:g}nrn-nr{x:1}
X*C = #C
Xt oa=1 | #C1 A #C;  (where C; and C; are unrelated)
xX# = -UB

Fig. 12. Elementary type form definition.
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LEMMA B.57 (INVERSION OF NEGATED ELEMENTARY TYPES).

(A) For all C and U€, we have —~U® =~ X% for some X~
(B) For all C and X€, we have —~XC =~ U# for some U¥.

Proor. By case analysis on C.
(A) If C = B for some B, then pick X% = x¥ = —UB = —UC.IfC = B for some B, then
U =y# = —xB by the definition ofUE, so ~UC = ——XB ~ xB = X<,
(B) If C = B for some B, then pick U% = U = —xB = —XC.IfC = B for some B, then
XC = xB = -yB by the definition ofXK, so =XC€ = ~—UB ~ UB = U¥.
]

Definition B.58 (Helper pseudo-subtyping relation). The rules of the helper pseudo-subtyping
relation are defined in Figure 13. It is easy to show that < implies <.

> A US < VP % YP<ViXF
THXC <V, YP SEANUS VT SeXE<VYE s AU <vP
S A VP <UC CrI<t k<A SHUC < (A;m) — (V;m)
SEXx2 <\, Y? Shron<t o7 SFUC<V,n—m
S (Vim) = (Aim) <Y€ 2= (\/i/\jrij) - (/\i\/j”ij) <U‘
SEA o m <Y SN V,m— m <UC
2’_Xci(/\i\/J'Tt'j)—>(\/i/\j”ij) Srr<T Z}—ch{x:\/iri}
Z%Xcﬁ\/i/\jfijamj Sh{x:t}<{x:7} Z%Ucﬁ\/i{x:n}
ZF{XI/\iTi}ﬁYC ZI—{XZ/\i\/jTij}ﬁUc Zl—Xcﬁ{X:vi/\jTij}
SEA{xnh<Y© SN Vilxn } <UC SEXC<ViA{xm )
CzES(#Cl) CzES(#Cl) X #Y
3 N\ #C1 < #C; S #C < /4G SEAUS <Y SEAUS <V

C1 ¢ S(#C;) Cy ¢ S(#Cy)
S AU <VF 3 XTC < \/, VS

Fig. 13. Helper pseudo-subtyping relation rules.

B.9.2 Some useful lemmas.

LEmMmA B.59.

A) If \; Ul.c < VD, then either one of the following is true:
e De{C T, L}
e C=#Cy and D = #C; and C, € S(#C)
o C=#] and D = #&5 and C; € S(#C3)
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eC=xandD =y #x
e C=xandD = —
e C=>randD =x
o C=#Cy and D = #€5 and C; ¢ S(#C;) and C, ¢ S(#C1)
(B) If X© < \/,; YP, then either one of the following is true:
e Ce{D, 1,1}
e D =#C; and C = #C; and C; € S(#C3)
o D = #] and C = #€; and C, € S(#C1)
eD=xandC=y+#x
e D=—andC=x
e D=xandC = >
e D = #1{ and C = #C; and C; ¢ S(#C;) and C, ¢ S(#C1)

Proor. By straightforward induction on < rules. O

LEMMA B.60. Fort € {t] = 1o, {x : 71 },#C},

(A) IfUC C 7, then UC = \/, 7.
(B) Ift < X, then X© = A\, 1.

Proor.

(A) By induction on right-leaning  derivations. We only consider rules that can syntactically
apply. Denote the size of the current derivation as n.
Case S-REeFL. Immediate.

Case S-ANDOR2-. U€ = Ulc1 v U2C2 for some Ulc1 and UZCZ, where UZCZ is not a union. The

premises of the rule are UC' € rand US* € 7. By IH, we have UC' = \/, rand Uy* = \/, .
Since UZCZ is not a union, UZc2 = 7. Then U® = U1C1 v UZc2 =V,rvr

Case S-Trans. Then the premises are U€ < ¢/ and 7 < 7 for some 7/, both of size n — 1. By
induction on the size of the subderivation for the former premise, denoted by m. Denote
the inner induction hypothesis as TH’.

Cases (S-REFL, *), (+, S-REFL). By IH on the other premise.

Cases (S-ToB., ). Then ' = T. The latter premise is T < r, which is impossible by
Lemma B.87. Therefore this case is impossible.

Cases (S-COMPL:, #). Then U® = T. The conclusion is T < 7, which is impossible by
Lemma B.87. Therefore this case is impossible.

Cases (S-ANDOR11:, x). Then 7’ = U v 7/ for some 7|. By Lemma B.54 on the latter
premise, we have UC€ < t with a derivation of size at most n — 1. The result then follows
from IH.

Cases (S-ANDOR12-, x). Then r’ = 7] v U for some 7|. By Lemma B.54 on the latter
premise, we have UC C 7 with a derivation of size at most n — 1. The result then follows
from IH.

Cases (S-ANDOR2, *). Then U€ = UIC1 Vv UZC2 for some Ulc1 and UZCZ, where UZC2 isnot a
union. The premises of the former rule are Ulc 'c 7’ and UZc 2 < 7/, both of size m — 1. By
S-Trans with 7/ € 7, we have Ulc 'C rand U2C ? € 1, both of size n with a former premise
of size m — 1. Then by IH’, we have U1C1 ~ 7 and UZC2 =~ 7, which imply Ulc‘ v U2c2 >~ 7.

Cases (S-ANDOR2), *). Then 7’ = 7] A 7, for some 7] and 7,. The premises of the former
rule are U < r{ and U€ Té, both of size m — 1. By Lemma B.82 on the latter premise,

we have 7] © 7 of size at most n — 1 for some [ € {1,2}. By S-TrRaNs on U® < 7] and
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7] € 7, we have UC < 1 of size n with a former premise of size m — 1. The result then
follows from IH'.
(B) By induction on right-leaning < derivations. We only consider rules that can syntactically

apply. Denote the size of the current derivation as n.

Case S-REFL. Immediate.

Case S-ANDOR2D. X€ = chl A XZC2 for some ch1 and XZCZ, where XZC2 is not a intersection.
The premises of the rule are 7 < chl and 7 < XZCZ. By IH, we have chl = As7and
X$* = A\, . Since X{” is not a intersection, Xy * = 7. Then X¢ = X% A X2 = Ay 7 A 1.

Case S-TrANs. Then the premises are 7 € 7/ and 7/ < X€ for some 7/, both of size n — 1.
By induction on the size of the subderivation of the former premise, denoted by m. Denote
the inner induction hypothesis as IH’.

Cases (S-REFL, *), (+, S-REFL). By IH on the other premise.

Cases (S-ToB-, #). Then 7’ = T. The latter premise is T < X, which implies T < XZC2
for some XZCZ € {m — m, {x':m },#C’} by Lemma B.54, where XC = chl A XZCZ,
which is impossible by Lemma B.87. Therefore this case is impossible.

Cases (S-ANDOR11,, %). Then 7/ = 7 v 7] for some 7;. By Lemma B.54 on the latter
premise, we have 7 € X € with a derivation of size at most n — 1. The result then follows
from IH.

Cases (S-ANDOR12, %). Then 7/ = 7] v 7 for some 7. By Lemma B.54 on the latter
premise, we have 7 € X € with a derivation of size at most n — 1. The result then follows
from IH.

Cases (S-ANDOR22, ). Then 7/ = 7] A 7, for some 7] and 7;. The premises of the former
rule are T < T{ and 7 C Té, both of size m — 1. By Lemma B.54 on the latter premise, we

—_— — 1
have T{ A Té c X, , where X€ = /\i X7 and X, are not intersections, each of size at

— .

most n — 1. Then by Lemma B.82, we have 7; Xl.c’ for some [; € { 1,2}, each of size at
I

most n — 1. By S-TRANS on 7 & Tl/ and Tl/ c Xl.c", we have 7 C XI.C" , each of size n with a

e— —1
former premise of size m — 1. Then Xl.c " =7 by IH' (note that Xl.c ! are not intersections),
ie., X€ = /\i T.
o

COROLLARY B.61. Fort€ {1; —> 1o, {x : 11 },#C},
(A) IfUC € —1, thenUC = \/, —1.
(B) If -t < X€, then X€ = Nt

Proor.
— —
(A) We have Uc€ = \/i Uici for some Uici , where Uici are not unions. Then by S-NEGINv,

Theorem B.12, Theorem B.13, and Theorem B.19, we have r < /\l- Ul.p/i, which implies
_—i
AV UiQ’( = /\,; 7 by Lemma B.60, i.e., Uig = 7. Then we have U€ = V, -

— 1 —1
(B) We have X© = A, Xic " for some Xic !, where Xl.c ! are not intersections. Then by S-NeGINv,

Theorem B.12, Theorem B.13, and Theorem B.19, we have \/i Xl.Qi/ € 7, which implies

1

V;X;" =\/;7by Lemma B.60, i.e, X;" = r.Then we have X = A\, —r.
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LEMMA B.62.

(A) If T < 7, then UC C 7 for some US and C e { T, £ }.
(B) Ift < L, thent < X for some X€ andC e { L, ¥ }.

Proor. By straightforward induction on subtyping derivations. O

B.10 CDN- and DCN-normalized type forms and derivations

Since the intersection, union, and negation connectives can freely nest within and intertwine
with each other, they introduce significant difficulty for the proof of subtyping consistency. We
introduce the CDN- and DCN-normalized forms to order them one after the other, using only the
Boolean-algebraic relation, i.e., not normalizing deeply under constructors as in RDNF.

We also present alternative sets of subtyping rules where only the respective normalized forms
appear in the top level, and show that any subtyping derivations can be translated into a normalized
one. Thus we can prove any property by induction on normalized derivations.

B.10.1 CDN-normalized type forms and derivations.

Definition B.63 (CDN-normalized form). The syntax of CDN-normalized (conjunction-disjunction-

negation) form is presented in Figure 14. We say that a CDN-normalized form ¢4 is complement-free

o cdn n > i n
if " = A\, Vjern, 7/}, where Vj; € 1.n; . AV o, € L.

o= ror|{x:t}|#C|a|T
™ oa= " | =7°

Tdn = | oMy Tdn

Tcdn - Tdn | Tdn /\‘[Cdn

Fig. 14. Syntax of CDN-normalized form.

dn cdn

In the proofs below, we sometimes abuse the notations 70" v TS" and 789" A ng” to mean their

1 1
dn_ 74} and con(z$9", 7£9") in Figure 16 respectively.

properly associated versions, i.e., dis(z}", 75 T

1

Definition B.64 (CDN-normalized derivations). The CDN-normalized subtyping relation <°" is
defined in Figure 15. The following are the difference compared to the full subtyping relation < in
Figure 4:

o On the top level, the relation is restricted to = redn  gedn

o On the top level, all occurrences of L are replaced with —T.

e The rule S-DisTRIB¢ is replaced by S-DisTRIBCDNo, which requires an application of S-
DisTrIB¢ to be followed immediately by an application of S-ANDOR2- in a transitivity chain
by merging the two rules into one.

o The negated-inverted versions of the algebraic rules are added.

Notice that the premises of S-FUNDEPTH and S-RcpDEPTH still refer to the full < relation, even
though their conclusions are about the <" relation.
The CDN-normalized boolean subtyping relation =" is defined similarly.

Notice that Lemma B.21 and Lemma B.22 extend to CDN-normalized derivations. In the proofs
below, we also make use of extended versions of commutativity (z; v° 72 (v °73) <, von (v°r3))
and idempotence (z; v° 7y (v 1) <" 1y (vom)).
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S Tcdn <cdn I_cdn I_cdn <cdn Tcdn

<E=E <(X-H)=<2-H <(-pH)=<X-H

S-REFL S-ToB- S-ToB2 S-CompL- S-CompL?D
Tcdn <cdn Tcdn z_cdn <cdn T -T <cdn Tcdn T <cdn TO v ﬂTO TO A —'TO <cdn T
S-NEGINV S-ANDORI- S-ANDORID S-ANDOR2: :
Zkrfs““‘rg Sc{i} Sc{i} 3 b edn gedn
S ﬂfg gcdn ﬂT? \/i’ES Tir: gcdn \/i Tlp /\i T;in Scdn /\i’GSTid/n b \/i T;‘l scdn Tcdn
S-ANDOR2D ) S-D1sTRIBCDN-
—_—1 i
d dn d d d d
ZFTCngchin Zlffin/\.[cngcn”cn
P Tcdn gcdn /\i Tlgin O (\/l Tln) A Tcdn gcdn ”cdn
S-DisTRIBCDN? S-TRANS S-WEAKEN
S " Scdn ”cdn s /\i Tlfjn gcdn ”cdn . ngn g(:dn den S Ti:dn <cdn ngn H
P /\i (Tn v T;:[n) gcdn ”cdn P T(():dn <cdn T;dn S H
S-Assum S-Hyp S-CrsSuB S-CrsBot S-CrsBoTNEGINV
>>HR+H HeX Cy € S(#Cl) Ci ¢ S(#Cz) Cy ¢ S(#Cl) Ci ¢ S(#Cg) Cy ¢ S(#C])
SEH SEH  #0 <9nuc, #Cp A #Cy <N T T <" —sCy v —#Cy
S-FUNDEPTH
SE<n <CH-n<n S-FUNMRG¢
Sk -n<%q—mn n—onA’n— T4<°Cdn(rl v ) = (12 AC1g)
S-RcpDEPTH
S-FUNMRGNEGINVO S0 <
=((r1 v®13) = (12 A® T4))<°Cdn—'(z'1 — 1) v =(13 > 14) SH{x:n} ~ {x:m2}
S-RcDMRGo S-RCDMRGNEGINVO
{x:1v°m }<°Cdn{x v {x:in} —{x:m}A®~{x:n }<°Cdn—|{x i v}
S-RcpTor S-RcpTorNEGINY
TE{{y;ﬁxZTg},‘[Z*)Tg} TE{{y#xZTZ},TzﬁT3}
T<M(x:n}vr —{x:m} A—r <9 T

Fig. 15. CDN-normalized subtyping rules.

Definition B.65 (CDN-normalized form translation). The translation from arbitrary types into
CDN-normalized types cdn(-) is defined in Figure 16.

LEMMA B.66. X - de“ < rgd“ if 3 - rfd“ <cdn rgd“. Similarly, rfd“ c TZCd" ifffd” cedn ng”.
PROOF. It is easy to see that every rule of <" is admissible in <. O
LEMMA B.67. For anyt, cdn(r) = 7.

Proor. By straightforward induction.
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cdn(z) |: 799"

cdn(z%) =
cdn(l) =
cdn(—1) = (cdn( )
cdn(ry v rp) = (Cdn(n) cdn(rz))
cdn(r1 A 12) = con(cdn(ry), cdn(zz))

neg(rcdn) . cdn

neg(z°) =
neg(—7°) =
neg(z v 75") = con(neg(z}), neg(z3"))
neg(Tl A rgdn) = (neg( "), neg(TZCdn))

dls( cdn cdn) cdn

Ny

dis(rdn A 7800, 784n) = con(dis(zdM, 754M), dis(z<dn, 754M))
dis(r]) v rlzn, dny — (1'11, dls(rfzn, rgd”))
dis(z7, T21 A Tzz M= (dls(rl, 721) dis(zf, rgg"))
dis(z], rz ) v 1'2
Disiemunr = dls( " Disie m+1.nT; cdn ™
Disicn.n rid = r,cld”

(cdn cdn) . cdn

con : T

con(r11 A Tlcgn, rgd”) = con(rijln, con(rlc‘zj", ng“))

con(rijn, rgd”) rf‘" A rzd

Con; cdn _ C cdn
oNiem.n T~ COI’](Tm , Conjemitnti )
Conjen. nTCdn = Tfldn

Fig. 16. CDN-normalized form translation

Definition B.68 (CDN-normalized subtyping context). ¥ is CDN-normalized if for all H € %, either
one of the following is true:

(1) H= (T <V, 1), where Va. { @, —ar } n {El} = 7
(2) H = (a < \/; 1}"), where the following are true:

e« (e —a)n{T} =@

e Vpe (T L opE(T )

e VB (7 LN A" < B) ez {7 } = (neg(T)
e V—pe {7 LAB< V1 >e2{n“’}—{""’”

s
i ﬂ,a};

, —al;
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= (A;! )where the following are true:
. {a ﬂa}m{r }=®;
VBE (T ) B¢ (T ) B
e Vpe T LBV, ) e R AT ) = (neg()) . a):
eV—pe{T LIN <P es{m ) ={7 " —a);

Definition B.69 (CDN-normalized subtyping context translation). The translation from arbitrary
subtyping contexts into CDN-normalized subtyping contexts cdn(-) is defined in Figure 17.

cdn(2) |: 2

< 2 —
cdn(2) = cdn(T < cdn(—7 v 7r))\T<”)E S

cdn(T <9 |: =
cdn(T < A\; V, Tl."jl_) =cdn(T <V}, TFji)i
€ if 3a.{«a, ﬁa}g{ﬁi}
ae{?}
cdn(T < V;1) = (Ai |7} #a neg(7;') < @) \/llT #ﬁvf i
if Ga.{a, ﬂa}m{f" }#@) and(\?’ae{rn }. —'ocaé{T” )
(T<Vit) if Yala—a}n{d } =

Fig. 17. CDN-normalized subtyping context translation

a|ﬁae{r }

LEMMA B.70. For any 3, we have Y k= cdn(X) and cdn(Z) &= 3.
Proor. Straightforward, notably making use of Theorem B.20 and Lemma B.67. O

LEMMA B.71. If S - 7 < 7, then cdn(Z) - cdn(z) <" cdn(r). Similarly, if t < x, then
cdn(r) <" cdn(x).
Proor. By induction on unassuming subtyping derivations.

Case S-REFL. Then 7 = 7, which implies cdn(z) = cdn (7). Then we have cdn(z) <" cdn(r)
by S-cpn.

Case S-ToB-. Then 7 = T and cdn(rz) = T. Then we have cdn(r) <" T by S-ToB-.

Case S-ToB>. Then 7 = | and cdn(7) = —T. Then we have =T <" cdn(x) by S-ToB>.

Case S-CompPL-. Thent = T and 7 = 7’ v —n’ for some 7’. Let cdn(7’) = A\, V
Then cdn(—7') = neg(cdn(n')) = A

Jji €l.ny
dis(cdn( ) Cdn( /)) = /\iel..m,milm"m (\/jlfel..n,- ”;l’ v \/i’el..m neg(”z’]/))' For
—i'el.m

n . . n n

each i, ji Vietn 77, contains the disjunct 7}, and \/;/ ¢y, neg(r;; ) contains the
n - n n cdn

disjunct neg(r};, ). Then by commutativity, we have \/ ;i _, TV Vier.mnes(nmy; ) =

\/le1 n,\{j,}” v\/l fetm\{i} neg(m l]/) 0 " vneg(m) ) which implies T <¢d" \/j;el..n,- ”?jlfv
ne n.,. . Finally by S-ANDOR2?, we have T <Cd“ cdn(n’ v —x').
i’el.m g i jy y by

n
jiet.n; Tij;

verm Vier.mneg(n)y,)- Thencdn(z'v —1') =
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Case S-CompL2. Then7 =7/ A =7 and = = L for some 7. Let cdn(7') = Aici 1 Vje1m T
Then cdn(—7’) = neg(cdn(r’)) = /\miel.,m Vie1.mneg(r);,). We want to show
Nictm Ve tn Ty A /\miel“m Vie1.mneg(rf;,) < —T.By S-DISTRIBCDN:, it suffices

]1 el.nm

to show A Nicom Vjern T A /\erl m \Vier.mneg(ry) < =T , ie,

ji€l.m
n n - - -
T A Niez.m \/j,-el.‘n,- Tij /\mtel--m Vie Lm\{ 1 €1.1| jy=j, } neg(riji) < -7

: n n " n 1" " s s
since 7, A (neg(r1 .,) v’ < Ty AT for any 7”. Repeating the process, it suffices to show

o el rI1]2€1 .ny

le N T A Nies. m Vjietn 7 A /\miel«-m \/iel..m\{ i'e1.2]jy=jl,} “eg(T?j,-) _‘T
Repeatlng the process m times, it suffices to show
jlel.n;

n R n — 12 . . Ce
Nicim T A /\mtel..m Vietm\(ietm =)} neg(z;) < =T ,whichisin

l€1 .m

deed true since one of the conjuncts is an empty union, i.e,, =T, when j; = j!
Case S-NEGINv. We define a function neg(-) that takes a CDN-normalized subtyping derlvatlon for

% |- rodn odn gedn swhere 3 is CDN-normalized, and returns a CDN-normalized subtyping

derivation for ¥ |- neg(z¢9") <" neg(z°I"). We prove its correctness by induction.

Case S-REFL. neg | S-REFL ——————— | = S-REFL

Tcdn <cdn Tcdn cdn) <cdn cdn)

neg(z neg(z

Case S-ToB-. neg | S-ToB- ————— | = S-ToB?
Tcdn gcdn T -T Scdn neg(TCdn)

Case S-ToB>. neg [ SToB) ————— | =S-ToB- —————
-7 <cdn Tcdn I’leg(TCdn) gcdn T

Case S-ComPL-. neg [ S-CompL: ————— | =
T v —r

S-CoMMUT? S-CompLD
—'TO A TO gcdn TO A —'TO A —'TO <cdn -T

S-TRANS
Al g T

Case S-ComPLY. neg ( S-CompLo ———F———— | =
TO A _‘TO gc n _‘T

S-ComPL: ————— S-CommuT-
T <odn 0y =70 R 2

S-TRANS

T gcdn —'TO v TO

S - py Scdn 0
Case S-NEGINV. neg | S-NegInv ] =% 0 <odn 70
P ﬂTO <c n ﬁﬂ,O
sc{i}
Case S-ANDORI1-. neg | S-ANDORI- — - =
Viesty <"Vt

sc{i}

S-ANDOR1? ~—cdn -
neg(\V; 77') <" neg(Vycs 7))
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scii
Case S-ANDORID. neg | S-ANDORID ti} :
/\' Tdn Scdn /\"ES Tgn
Wehaver \/ T] forsomer .Then neg( "= /\ji neg(i’lf1 ) Then neg(/\; d“) =
Dis; neg(z /\71 V; neg(]}, )andneg(/\i /es Ta") = Disy e sneg(r9") = /\ﬁzes Viesneg(tf;,)-
fi¢5

For eachﬁ % we have Vies neg(r); ) <¢dn \/, neg(! H )]l by S-ANDORI1-, which imply
\/ieSneg(Tij,») <¢cdn /\ﬁlgs \/i neg 7;;,) by S-ANDOR2>. Then by Lemma B.220,

—i€S
Ji .
Viesneg(efy,) <edn Aies \/ineg(ey)"  imply Aies Ve gneg(zf),) <" A=/, neg(1])),
Ji J Ji J Ji J
ie., neg(Ayes ") <" neg(A; 7).
> N gcdn Tcdnl
1 —
g \/i Tlp gcdn Tcdn
neg(z - Tin <cdn ”cdn)‘

S F neg(n%9") << \/, neg(zf) |

S rcdn gcdn Tldnl
P Tcdn gcdn /\i ,[idn

Case S-ANDOR2-. neg (S—ANDORZ-

S-ANDOR2?D

Case S-ANDOR2). neg | S-ANDOR2D

By Corollary B.73 on neg(s |- r<dn <cdn 7dn)’,

SEA zcdn gcdn ﬂ.cdn‘
1
- (\/l T{') A z.cdn gcdn ﬂ,cdn
Then for each i, neg(2 " A %" < 7¢dn) j5 3 derivation for ¥  neg(zd") <on
cdn)

Case S-D1STRIBCDN-. neg | S-DiSTRIBCDN-

neg(c" A7°"). Let neg (" Az¢d") = N r ". Then by Lemma B.21, we have 3 |- neg(nCd") edn 7dn i.

i

Then combining the results for i, by S-ANDOR22 on ¥ | neg(redn) <edn rfj? g , we have
% b neg(n°") <" A\; A\, 71", where by definition:

AYPAY rfjri’ = Con; neg(z" A 7°4")
= Con; dis(neg(z"), neg(r*"))
— dis(\, neg(z7), neg (=)
= dis(Con; neg(z""), neg(r*"))
— dis(neg(V/; ), neg(e)
= neg((\V/; 7)) A7)

S " <cdn ﬂcdn - /\ ‘L'fjn gcdn ”cdn
Case S-DISTRIBCDN?. neg | S-DisTRIBCDND 1 :

P /\i (Tn v Tlgjn) gcdn ”cdn
Then neg(Z + " <" 7%") and neg(= +— A,; 72" <" 7") are derivations for X
neg(7°9") <" neg(z") and 3  neg(7°M") <" neg(/\, 7%") respectively. We have

L7l
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i

—_— p—
dn _ n n Ji . .
ri" =\, 7j;, for some ], . By definition, we have:

neg(/\i Tidn) = neg(/\i \/ji Tlnji)
Dis; neg(\/ji Tir}l_)
= Dis; Conj, neg(f}“ji)
= Dis; /\, neg(7}},)
= Con-:Dis; neg(z;;,)

= /\ﬁi Vi neg(7}})

—i

81

Then by Lemma B.21, we have ¥ - neg(r¢d") <cdn \/, neg(z‘lf’ji)h Let 7y = . Then we

- —i —i
Jie{0.i} loe{ji }

d d d d
have X (- neg(z°d") <<dn \/, neg(z;,) by S-TraNs on neg(zd") <cdn
neg(z") and S-ANDOR11-/S-ANDOR12-. Then by S-ANDOR22, we have T |- neg(z°") <cdn
/\ﬁi Vi neg(fl'."j,), where by definition:

Ji €10, Ji !

— i \/.neg(r". ) = Con
/\jl{G{O,ji} \/1 g( l]i) jlfG{O,]i}

= Dis; /\jl{e{o,ﬁ} neg(T?jl()
= Dis; Conjrc (o 573 neg(rl.“jl{)
= Disineg(V e (07} %)
=neg(/\; Ve o) )

= neg(/\; (" v 7))

S - cedn <cdn T/Cdl‘l s ‘L'/Cdn <cdn 7cdn

Case S-TRANS. neg | S-TRANs

————Dis;neg(7]},)

P TCdn gcdn ncdn
neg(S T/cdn <cdn n'Cdn) neg(z - TCdn <cdn T/Cdn)
P neg(nCdn) ¢cdn neg(er”)

(99" < 7dMye 3 )

P Tcdn <cdn ﬂcdn

S-TRANS

Case S-HYP. neg (S—HYP

Since ¥ is CDN-normalized, 7" = A" and 7" = \/ ;jm; for some T_l.“l and ir_jr.‘].
By repeated applications of Theorem B.20 on ¥  A; 7! <edn \/
/\; neg(r}) <9 \/, neg(z"), ie., = - neg(n°") <N neg(7edn).

S-CrsSuB

Cy e S(#Cl)

#C, <" #C,

Case S-CLsSUB. neg | S-CLsSup ————— | = S-NecInv 5
#Cp <O #Cy —#Cy <" —#Cy

C1 ¢ S(#C: Cy ¢ S(#C
Case S-CLsBoTt. neg | S-CisBot 1 S(C) j¢ ¥ =
#Cp A #Cy <O =T

C1 ¢ S(#C2) Ca2 ¢ S(#C1)

S-CLsBOTNEGINV ]
T <9 —#C1 v —#Cy

we have >
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C1 ¢ S(#C: Cy ¢ S(#C
Case S-CLSBOTNEGINV. neg <S—CLSBOTNEGINV 1 ¢ S(C) 2 S(c) ) =

T SCdn —#C1 v —#Cy
Ci ¢ S(#Cz) Cy ¢ S(#Cl)

S-CrsBot 5
#Cp A #Cy <9 =T

Lhkn<sn Lk <13
Case S-FUNDEPTH. neg (S—FUNDEPTH

ZPT]HTQSCdnTOH’B

X1 <1n D1 <13
S-FuUNDEPTH

Sk -on<%qg -
S-NEGINV

2+ (10 — 13) <¢cdn —(11 — 1)

Case S-FUNMRGo©. neg | S-FUNMRGo .
oA n o> Vv ) o (A% )

S-FUNMRGNEGINVO

—((r1 V° 13) = (12 A° 11)) <°Cdn—|(f1 — 1) V¢ (13 = 14)
Case S-FUNMRGNEGINV©.

neg | S-FUNMRGNEGINV®

=((r1 v°13) = (12 A° 11)) QCdnﬁ(rl — 1) V® (13 > 1) )

S-FUNMRGo

I N @Cdn(rl Ve 13) — (12 A° 14)
D1 <n )

SH{x:n} <" {x:1} a
D11 <10
SH{x:n} <9 {x:n}
S fx:in} <9 {x:r}

Case S-RCDDEPTH. neg <S-RCDDEPTH

S-RcpDEPTH

S-NEGINV

Case S-RcpDMRGo. neg | S-RcpMrGo

{x:rlv°r2}<°Cdn{x:r1}\/°{xzrg})

S-RcDMRGNEGINVO

—{x:1} A% ={x: r2}<°Cdnﬁ{x Vo)
Case S-RCcDMRGNEGINVO.

neg | S-RcobMrGNEGINVS

—|{x:n}/\oﬂ{xzrg}éo(:dn—'{x:rl vorz}>

S-RcpMRGo ]
{x 0V}l NMx i} v {x:n}

re{{y":n}n—-n}
T<{x:n}vr >

re {{y" :n} >}

—{x:m} AT

Case S-RcpoTop. neg <S-RCDTOP

S-RcpTopNEGINV

Case S-RcpToOPNEGINV. neg (S—RCDTOPNEGINV

re{{y™ :n}n—omn) _
—{x:m} AT ) B
re{{y™:n}hn—on}

T<{x:nn}vr

S-RcpTor
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Then r = —7' and 7 = —7’ for some 7’ and 7’. Then by IH on the premise, we have cdn(2)
cdn(r') <" cdn(7’). The result follows from neg(cdn(Z) - cdn(z’) <" cdn(7)).

Case S- ANDOR11 Then 7 = 7 v &’ for some 7. Then cdn(x) = dis(cdn(z), cdn(z’)). Let
cdn(r) = A, 7" and cdn(r = A\, nd" Then dis(cdn(7), cdn(n’)) = /\”( dn v ﬂd")

d d dan™’ d d
By S-ANDOR1-, we have 7;" <Cd" 7" v ", which imply ;" <edn A (7" n§ ) by S-

1
ANDOR22, which imply A, zd" <en A, - (zd" v 7r]°.'”) by Lemma B.222, i.e., cdn(r) <codn

L]

cdn(r).
Case S-ANDOR11D. Then 7 = 7 A 7' for some 7’. Then cdn(r) = con(cdn(x), cdn(7')) =
cdn() A cdn(r'). Let cdn(r') = A, 7" and cdn(r) = A; ﬂd” By S-ANDOR12, we have

N; n?" AN T <A n}j", ie., cdn(r) <edn cdn( ).

Cases S-ANDOR12¢. Similar to the cases above.

Case S-ANDOR2-. Then 7 = 7; Vv 1, for some 7; and 7,. By IH on the premises, we have cdn(Z)
cdn(ry) <" cdn(x) and cdn(2) - cdn(rz) <" cdn(x). Then by Corollary B.73, we have
cdn(Z) I dis(cdn(z;), cdn(rz)) <" cdn(r), ie., cdn(Z) - cdn(z; v 7o) <" cdn (7).

Case S-ANDOR2D. Then 7 = m; A m, for some 7; and 7. By IH on the premises, we have
cdn(2) + cdn(r) <9 cdn(m) and cdn(E) + cdn(r) <" cdn(m). Let cdn(m) =

/\; 78" and cdn(r,) = /\ 7r " By Lemma B.21, we have cdn(Z) - cdn(r) <¢dn Jrfi“L and

cdn(Z)  cdn(r) <<dn 7r ' Then by S-ANDOR22, we have cdn(2) k- cdn(r) <" A, 70 A
N ﬂg]f‘ = cdn(m; A ﬂz).

Case S- DISTRIB Then T =1 A (1'1 v T3) and = (noArn)Vv (% /\ rz) for some 7y and 7; and 5.
Let cdn(ry) = Ay 7o, cdn(ry) = A; 7i", and cdn(z,) = /\; 757 Then we have:

cdn(r) = con(cdn(zp), dis(cdn(zy), cdn(rg)))
_/\k A/\1] fanTZJ)

cdn(r) = dis(con(cdn(z), cdn(z;)), con(cdn(zy), cdn(zz)))
= d's(/\k dn A /\ T11 > /\k dn /\ sz)

_ dn _dn
= dls(/\’e{ok 1,}1'1/ , /\j (T )

Y Td”)

:Aze{ok lz}]e{ok Z]}( J

For each i’ € {&k 1 Ll e {@k Z }, we have the following: If i’ = 0Ok, for some ki,

then we have Tg]? <cdn g]: % T, by S-ANDORI-. If j* = 0k, for some k;, then we have

dn cdn dn dn _cdn _dn dn
Tor, <N g okz " by S- ANDORl . Otherwise, we have Tl v Ty S v by S-REFL.

Thenwehave/\k /\/\lj ST TZJ) <o /\i'e{@kn Ljre ok 27}

commutativity, and 1demp0tence, i, cdn(m A (11 v 12)) < cdn((1o A 71) Vv (10 A 1)).
Case S-DisTRIBY. Then 7 = (19 \/ ) A(ovn)andr = 19 v (11 A 72) for some 7y and 7

and 73. Let cdn(zy) = /\ 70, cdn(rl) = A; 7% and cdn(r,) = /\; 75 Then we have

cdn((ro vr) A (o vre) = Ak (o v o) A (e v Tg]“) and cdn(To v(nAn)) =
VAVRLCiRY N gl? v TZJ) Then we have cdn((zo v 71) A (1 v 72)) <" cdn(zp v (71 A
12)) by S REFL.

Case S-TraNs. By IH on the premises, followed by S-TrANs.

(zdn v Td”) by Lemma B.222,
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S-Hyp. Then the premise of the rule is (r <) e Letcdn(—7 v ) = A;\V;, 7/}, Then

we have cdn(T </, 7, U ) C cdn(z ) For each i, we have:

Case da.{a, ~a} < { 7"}, Then we have T <% ¢ v —a by S-Compr- and a v —a <"

V. 7, by S-ANDOR1: for some &, which imply T <®" \/, 7/’ by S-TraNs.
i —Ji —Ji

Case (Ela.a € {rl.ji "}) and (Va € {o;, }mag{, " }). Then (/\ji\f{‘ji#a neg(r};,) < a) €
cdn(2) for some a and we have cdn(Z) = A\, o a neg(rf} ) <" g by S-Hyp, which
implies cdn(X) |- T <cdn V. 7}, by Theorem B.20.

Case (Ja. —a € { ]}, P }) and (Va € { 7]} J'} —a ¢ {1 P }). Then (e < V/;, e ;éﬁaru ) e
cdn(Z) for some a and we have cdn(2) - o <" \/ji [ 7, by S-Hye, which implies
cdn(Z) - T <cdn V, =i, by Theorem B.20.

n j’ —
CaseVa.{a, ~a} n {7} } = &. Then (T <V, ;) € cdn(Z) and we have cdn(Z) +
T cdn \/]i o by S- HYP. .
Then cdn(3) - T <edn \/, rlf‘jl_L imply cdn(Z) - T <n A, Vj, 7, by S-ANDOR2D, ie
n n
cdn(®) = T <" cdn(—7 v 7). Let cdn(7) = AW Vg, T'pq, @nd cdn(r) = A Vs, 75,
Then by definition, cdn(—7 v 7) = /\%p’r(\/p neg(f’;qp) vV m'y,). cdn(Z) = T S

. . —qp". T
Nagr.r(Vp eg(t'p, )N/, '3, implies cdn(3) 1= T < \/, neg(#pg,) v Vs, 777,

T :
by Theorem B.20, which

by Lemma B.21, which imply cdn(Z) - A, ' pap <edn /o a'l

imply cdn(2) = A\, 7’5, <o ALV, 7 ,Srqp by S-ANDOR2?, which imply cdn(X) +

/\p \/ ;qp <n AL \/ '}, by repeated applications of S-DisTRIBCDN- and commuta-

tivity i 1.e., cdn(2) - cdn(r) <" cdn(r).

S-FunDEPTH. Thent = 1y — 1, and # = 1y — 7, for some 11, 7, 711, 715. The premises of the
rule are <X - 7; < 1y and <X | 15 < mp. Each application of S-Hyp in the subderivations
of the premises has a premise H € <X for some H = (¢/ < n’), which implies either
>H € ZorH € 3. If >H € 3, we have >H € cdn(Z), which implies H € <cdn(Z), which
implies <cdn(X) - H by S-Hye. If H € ¥, we have cdn(2)  cdn(7') <" cdn(z’) by
the same reasoning as case S-Hyp, which implies cdn(3) + ¢ < n’ by Lemma B.66 and
Lemma B.67, which implies <cdn(Z) — 7’ < #’. Then by replacing each application of S-Hyp
for <%  H in the subderivations of the premises with the derivation for <cdn(Z) + H,
we obtain derivations for <cdn(Z) + m; < 71 and <cdn(Z) + 1 < mp, which imply
cdn(®) - 1y — 1, <" 1y — 73 by S-FUNDEPTH.

S-RcoDepTH. Then 7 = {x: 7 } and # = {x : 7 } for some 73, 71, and x. The premise of
the rule are <¥ - 71 < 1. Each application of S-Hyp in the subderivations of the premise has
a premise H € <t for some H = (7’ < #’), which implies either >H € S or He . If >H € 3,
we have >H € cdn(X), which implies H € <tcdn(2), which implies <cdn(Z) + H by S-Hyp. If
H e 3, we have cdn(Z) - cdn(7’) <" cdn(x’) by the same reasoning as case S-Hyp, which
implies cdn(Z) + 7’ < 7’ by Lemma B.66 and Lemma B.67, which implies <cdn(Z) + ¢/ < n'.
Then by replacing each application of S-Hyp for <X |~ H in the subderivations of the premise
with the derivation for <icdn(X) - H, we obtain a derivation for <cdn(Z)  7; < 71, which
imply cdn(2) - {x: 7 } <" {x: 1, } by S-RCDDEPTH.

Other cases. Immediate since they are already in the desired form.
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]

LEmma B.72. IfS = A, o8 <¢dn o4 gnd 5 Nt d” <dn 70 then 3 - Nij (dn v Tzd]”) cdn

rdn,

Proor. For each i, we have

S-ANDOR11-
i gjn <cdn dn Tdn <cdn Tdn v Tijln
SANPORIZ rdn edn dn dn >rnaxs /\"[dn <cdn zdn , odn
= Mt 2j S i
S-D1sTRIBCDN?
dl’l cdn dn dn
(1) /\ ( 11 ) < vV Tli
Then we have
i S-REFL ——F—
LEMMA B.229 @ D R rdn gedn zdn N T?in <cdn zdn
. /\ (‘[ v T )<cdn /\ ( v ‘L' ) -DISTRIBCDN /\ (dn dn) g
S-T L,j \"1i 2j 1i ; (7 v Tli < r
A /\ ( )<cdn cdn
i,j \"1i

]

CoroLLARY B.73. IfS = A, 78" <cdn z¢dn gng 3 - Nt d“ <Cdn 7edn then ¥ - Nij (zdn v rgjn)

<cdn cdn In other WOVdS sz — Tcdn <cdn cdn and > — z.cdn <cdn cdn thenZ - dls( cdn T2cdn)
<cdn cdn
< .

K

d d d
Proor. We have 79" = /\k " for some T By Lemma B.21, we have S N <cdn g

and 3 = A; rd" cdn rd” which imply ¥ + /\ (zdn v TSJ'.‘) cdn rg]? by Lemma B.72, which
imply X /\11 Tll Y TZdJ” ) <cdm A TgI? = godn by S-ANDOR2D. O
B.10.2 DCN-normalized type forms and derivations.

Definition B.74 (DCN-normalized form). The syntax of DCN-normalized (disjunction-conjunction-
negation) form is presented in Figure 18. We say that a DCN-normalized form 79" is complement-free

if 7den =Viljein Tl.j,whereV],el L TEN, T

=17 |{x:t}|#C|a]| L
™ oa= 0| =7°

" a= " | " AT

rdon = g | oy gden

Fig. 18. Syntax of DCN-normalized form.

dcn

In the proofs below, we sometimes abuse the notations 7{" A 75" and 77" v TZdC” to mean their

properly associated versions, i.e., con(z", 75") and dis(79", zd) in Figure 20 respectively.

Definition B.75 (DCN-normalized derivations). The DCN-normalized subtyping relation <4 is
defined in Figure 19. The following are the difference compared to the full subtyping relation < in
Figure 4:

e On the top level, the relation is restricted to ¥ |- rdon < 7
e On the top level, all occurrences of T are replaced with — L.

den
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3 |- pden gden pden ‘ gden den pden E=EF <(3-H)=<-H <(-pH)=<3-H
S-REFL S-ToB- S-ToB? S-CompL- S-CompLD
Tdcn <dcn Tdcn z_dcn <dcn L L <dcn Tdcn L gdcn TO v —'TO TO A —\TO gdcn L
S-NEGINV S-ANDOR1- S-ANDORID S_Mi
Z}—ngdc”rg Sc{i} Sc i} Z}—deédcnrdcn
S _‘Tg <dcn _'T? \/i’ES 7'.ic/n <dcn \/i Ticn /\i Tlp <dcn /\i’eS Tir} P \/i ,[;:d <dcn 7'.dcn
S-ANDOR2? ) S-DisTRIBDCN- S-D1STRIBDCN? )
> - rden gdcn Tlf'll 3= n,dCh gdcn P ”dcn gdcn \/i Tz":n S srden gdcn Tin v Tdcnb
S Tdcn sdcn /\i Tin P ”dcn gdcn \/i (Tn A Tlg:n) P ﬂdcn gdcn (/\l Tzn) v Tdcn
S-TRANS S-WEAKEN S-Assum S-Hyp S-CLsSuB
3 | gden gden gden 5y pden den den H SbH-H  Hes Cz € S(#C1)
3 | gden den gden SHH S-H SEH 40 <40
S-CrsBot S-CLsBOoTNEGINV S-FUNDEPTH
Ci ¢ S(#Cz) Cy ¢ S(#C]) Ci ¢ S(#Cz) Cy ¢ S(#Cl) DLy WDLH-n<n
#Cy A #Cp <4 | 1<l —wey v -G, Sk o<y

S-FUNMRGo

<>dcn(rl vO 1) = (13 AC 1)

T — T2 AOT?, — <
S-RcpDEPTH

S-FUNMRGNEGINVO T <n

~((r1 v 13) = (72 A% 1)< (1 = 1) VO (13— ) S {x:n) < {x:n}
S-RcDMRGo S-RCcDMRGNEGINVO
{x: v )< i} vO{xin} ~{xin} A% —{x: )< (x i VO }
S-RcpTor S-RcpTorNEGINY
re{{y™:n}n—on} re{{y™:n}n—mn}
L<dcn{x:n}vr —'{X:ﬁ}/\—'TSdan

Fig. 19. DCN-normalized subtyping rules.

e The rule S-DisTRiB¢ is replaced by S-DisTriBDcNo, which requires an application of S-
D1sTRIBO to be preceeded immediately by an application of S-ANDOR2? in a transitivity
chain by merging the two rules into one.

o The negated-inverted versions of the algebraic rules are added.

Notice that the premises of S-FUNDEPTH and S-RcpDEPTH still refer to the full < relation, even
though their conclusions are about the <" relation.
The DCN-normalized boolean subtyping relation 4" is defined similarly.
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Notice that Lemma B.21 Lemma B.22 extends to DCN-normalized derivations. In the proofs below,
we also make use of extended versions of commutativity (r; v 72( v °13) gden 7, vO g (v°r3)) and
idempotence (r; v° (v 1) <9 1y (Vo).

Definition B.76 (DCN-normalized form translation). The translation from arbitrary types into
DCN-normalized types dcn(-) is defined in Figure 20.

den(z) |: zden
0

den(7”)

den(T)

den(—1) = (dcn( )
)
)

on(dcen(ry ), den(rz))
( cn(ry), den(zz))

den(mp A 1

den(m v o

neg(‘rdcn) . den

T
neg(z°) =
neg(—7°%) =
neg(zy A 73") = dis(neg(]'), neg(z5"))
neg(r{" v rgcn) = con(neg(r{"), neg(f?“"))

dcn, Tdcn) . den

con(r T
con(rff v 7i", r§C“> = (con(ru, 75", con(rf5", 7iM))
con(zfy A 745, 75") = con(r]}, con(rfy, 75))
con(r, 757 v 735") = <con<rl, 751, con(z., 735"))
con(r}, 75") = 1 A 75"
Conjem.n r;j = COﬂ(Tm , Conjem+1..n T?C")
Conjen.n T?C — gden

dIS( dcn dcn) :Tdcn

dis(r{] v szc”, rgcn) = dis(r(], dis(rfzcn, Tgcn))
dis(z7", Tgcn) =" v Tgcn

dis(rfncn, Disie m+1..n Tldc“)

Disiem..n T,d n

. den den
Disien.nt; =1,

Fig. 20. DCN-normalized form translation
LEmMMA B.77. 3 - TdC“ SC" if 3 Tf”‘ Lden rgc". Similarly, rfc" c Tgm ifoC” gden TgC”,

PROOF. It is easy to see that every rule of <% is admissible in <.

LEMMA B.78. For anyt, dcn(t) = 7.
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Proor. By straightforward induction. O

Definition B.79 (DCN-normalized subtyping context). % is DCN-normalized if for all H € %, either
one of the following is true:

= (A\;7! < L), where Va. { a, ﬁa}m{r_{‘i}zg;
(2) H = (a </, 17'), where the following are true:
e {a ﬂa}ﬁ{fn } = s
'VﬂE{T” e (T )
- Ty — (e
o Vpe (" }..EI N7} < B)eZAn} } = {neg(] ,al;
-Vﬁﬂe{f_”l} UMY mes{m }= {3 oo

= (A\;7' < Where the following are true:

, —al;

. {a ﬂa}m{rn } =&
oVﬁe{T“}ﬁﬁe}:‘{T“} '

eVpe{m LIAB<V,; ) e x| = {neg(s])
e V-pe (T LIAN A <pes{a y={7

i|5)#f al;

- }’

den(2) |: 2

den(Z) = den(den(r A =) < J_)\Tén)ez ST

€ ifEIa.{a,ﬂa}Q{Ei}
ac {7}

a|—ae{7 }

den(A; 70 < L) = (a< Vi\r;.“;éa neg(z}')) . : (/\i|rl'.";e~a 7} < a) _
if Ga{a —a}n {7} # @) and (Vae {z }.—at {7 })

AT <b) f Yafa~abn (T} -2

Fig. 21. DCN-normalized subtyping context translation

LEMMA B.80. For any 3, we have Y = dcn(X) and den(Z) = 3.
Proor. Straightforward, notably making use of Theorem B.20 and Lemma B.78. O

LEMMA B.81. If S - 7 < x, then den(Z) - den(z) <9 den(rr). Similarly, if t < x, then
den(r) €9 den(x).

Proor. Symmetric to Lemma B.71. O
B.10.3  Some useful lemmas.

LEmMA B.82.
(A) Forte {T,11 — 12, {x : 7y }, #C } and \\; 7" in complement-free CDN-normalized form, if
A sz" C 7 with a derivation of size n, then ﬂ]‘cj" C 1 for some k with a derivation of size n.
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(B) Forte { L,y = 1o, {x : 7y },#C} and \/; 7" in complement-free DCN-normalized form, if
T € \/; 7" with a derivation of size n, then either t < ;" for some k with a derivation of size
n.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proor. By induction on right-leaning < derivations.

Case S-REFL. Immediate. i

Case S-ToB-. Then 7 = T and we have ﬂid” € T by S-ToB-, with a derivation of size 1.

Case S-ToB>. Then /\; 79" = 7" = L. The result is immediate.

Case S-CompL-. Impossible since 7 is not a union.

Case S-CompLY. Impossible since 7 # L.

Case S-NEGINv. Impossible since 7 is not a negation.

Case S-ANDOR11.. Impossible since 7 is not a union.

Case S-ANDOR110. Then ﬂf" = 7 and we have 7rf” C 7 by S-REFL, with a derivation of size 1.

Cases S-ANDOR12-. Impossible since 7 is not a union.

Cases S-ANDOR122. Then /\;_, ﬂld” = ﬂg“ = rand we have ﬂg” C 7 by S-REFL, with a derivation
of size 1.

Case S-ANDOR2-. Then /\; nf“ = ﬂld” = v nfzn for some 77, and Jrldzn. The result is immediate.

Case S-ANDOR2). Impossible since 7 is not an intersection.

Case S-TraNs. Then the premises are /\; ﬂf“ c v’ and 7’ < r for some 7/, both with a derivation
of size n — 1. By induction on the size of the subderivation for the former premise, denoted
by m. Denote the inner induction hypothesis as TH'.

Cases (S-REFL, *), (+, S-REFL). By IH on the other premise.
—_—i
Cases (S-ToB., %). Then 7’ = T.By S-ToB-, we have nf" c T .ByS-Trans with T € 7, we

nc Tl with a derivation of size n.

Cases (S-ToBD, #). Then A; 79" = 7" = 1. The result is immediate.

Cases (S-COMPL:, ). Then A, ﬂfn = ﬂf" = T. The result is immediate.

Cases (S-ComPLY, *). Impossible since /\; ﬂlfi“ is a complement-free CDN-normalized form.

Cases (S-ANDOR11,, *). Then 7/ = A\, 7rid” v 71 for some 7]. By Lemma B.54 on the latter
premise, we have /\i nf[" C r with a derivation of size n — 1. The result then follows from
IH.

Cases (S-ANDOR112, *). Then 7’ = ﬂf”. The result is immediate from the latter premise.

Cases (S-ANDOR12:, x). Then 7’ = 7 v /\; #I" for some 7|. By Lemma B.54 on the latter
premise, we have /\i nlfj" C 7 with a derivation of size n — 1. The result then follows from
IH.

Cases (S-ANDOR12), ). Then 7’ = A, 79". By IH on the latter rule, we have 71’;:“ cr
for some k > 1.

Cases (S-ANDOR2:, ). Then /\; n?" = nf” = v ﬂfzn for some 77, and ﬂfzn. The result
is immediate.

Cases (S-ANDOR2D, ). Then 7/ = 7] A 7, for some 7} and 7,. Since 7 is not an intersection,
it is easy to see that the intersection must be consumed by an application of S-ANDOR112,
S-ANDOR129, or S-DisTRIB¢ in the transitivity chain. Then it is possible to rewrite the
derivation into a smaller one by dropping the application of S-ANDOR22. The result then
follows from IH.

Cases (S-DISTRIB', ). Then 7¢" = 77, v 73" and ¢/ = (="
7y, and ngzn. By Lemma B.54 on the latter rule, we have ﬂf“

have dn

A7) v (29" A 7dn) for some

n dn dn
Ay S tand 17" A ) ST,
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dn
1

both with a derivation of size n — 1. By IH on ﬂf" A 7132" C 7, we have 7

both with a derivation of size n — 1. If ﬂf“ C 1, then we have the result immediately.

both with a derivation of size n — 1. By IH on 7{" A 77, < 7, we have 7rld” Crorm ST,
c

dn dn
1 & TOr Iy,

T,
Otherwise, we have 7, < 7 and ﬂgzn C 7, which imply ﬂg” =7y Vv ﬂgz” C 7 by S-ANDOR2.,
with a derivation of size n.

Cases (S-DISTRIBY, *). Then 79" = z" v 79" and 79" = z" v 79" for some 7" and 79" and

1 0 12 2 0 22 0 12
7dn and ¢ = 27 v (7] A 7). By Lemma B.54 on the latter rule, we have 73" A 7332” cr
n

and 7y < 7, both with a derivation of size n — 1. By IH, we have 4" < ror Ty ST,

12 =
f” dn < 7 or ﬂg” =y Vv ﬂgz” C r with a derivation of size n by

L. . o
which implies ;" = 77 v 77, S

S-ANDOR2- with 7§ < 7.

]

LEMMA B.83.

(A) Fort € {T, 1y = 1, {x:11 }, #C}, if i) A 7" < 7, then either 1} < T or " < 7 or
m Amt S L

(B) Fort e {1, oy = 1w, {x:1}, #C}, ifr < 7} v ng“, then either T 7} or 7 < 7[3” or
Tgﬂ{‘\/ﬂg”.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proor. By induction on right-leaning <" derivations for the following statements, where
S-ANDOR2- does not occur as the first premise of S-TRANS in any of the judgements (in both the
assumptions and conclusions). It is easy to see that we can rewrite any subderivations with S-
ANDOR?2- as the first premise of S-TRANS into an equivalent one by applying S-TRANS to the premises
of S-ANDOR2- and the second premise of S-Trans, followed by an application of S-ANDOR2-.

T -1, — 1, ITy Jif o s C T wi ivati ize n, i
1) Fort e il x #C ) if ! A " S ith a derivation of size n, then either
7y © ror ;" S 7 with a derivation of size n, or 7 A 7" < L.

(2) Forro € {1y = 1, {x: 1y ,#C }, if \/; nf" < 7. with a derivation of size n, then 7" rcl,

all with a derivation of size n — 1.
In the remainder of this proof, we abbreviate 4" as .

Case S-REFL. Impossible
Case S-ToB-.
(1) Then 7 = —1 and we have both 7] < 7 and 75" < 7 by S-ToB-.
(2) Impossible.
Cases S-ToB2, S-ComPLo, S-NEGINV, S-ANDOR1-. Impossible.
Case S-ANDORI1D. )
(1) Then 7 = x} for some k, where 75" = /\,_, x}! for some n_l."l>1. If k = 1, then we have
n{ < 7 by S-REFL. Otherwise, we have 75" < 7 by S-ANDOR19.
(2) Impossible.
Case S-ANDOR2..
(1) Impossible.
(2) The premises of the rule are 7" < Tcl, all of size n — 1.
Cases S-ANDOR20, S-DisTRIBDCNo. Impossible.
Case S-TRANS.
(1) Then the premises of the rule are 7] A 75" S 7
n—1

den and 79" < 7 for some 79", both of size
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(2) Then the premises of the rule are \/; 7" € 79" and 79" C 7, for some 79", both of size
n—1

By induction on the size of the former premise of S-TRANs, denoted by m. Denote the inner

induction hypothesis as IH'.

Cases (S-REFL, ). By IH on the latter premise.

Cases (S-ToB-, *).

(1) Then 79" = — 1. We have both 7 € —L and 75" € —_L by S-ToB-. Then we have both
7] € rand 77" 7 by S-TRaNs with the latter premise, both with a derivation of size n.

(2) Impossible since =1 < 7, cannot be derived (Lemma B.87).

Cases (S-ToBD, ), (S-CoMPL-, ). Impossible.

Cases (S-ComPLD, *).

(1) Then 79" = 1. ) A " < L is immediate from the former premise.

(2) Impossible.

Cases (S-NEGINV, #). Impossible.

Cases (S-ANDORI., ).

(1) Then 79" = (2" A 75") v 79 for some 79" If r = T, then we have both 7" <
r and ;" < 7 with a derivation of size 1 by S-ToB.. Otherwise, the latter premise
(2 A ") v 7d © 7 implies 27 A 75" © 7 with a derivation of size n — 2 by IH (2). The
result then follows from IH (1).

(2) Then 79" = (\/; ") v 73" for some 70", The latter premise (\/; 7s") v 73" C 7,

implies \/; 7{" < 7. with a derivation of size n — 2 by IH (2), which implies 7{" < Te
all with a derivation of size n — 3 by IH (2).
Cases (S-ANDOR1D, ).
(1) Then r4" = A, g 7" for some S < {i}, where 75" = /\,.; n" for some ﬂ_lf’l
Case1€S. By IH (1) on the latter premise, we have either n} < 17 or
Nives\1y 7 S 7 with a derivation of size n — 1, or Ay g7 © L Ifn) < 7,
the result is immediate. If /\ ves\(1} ﬂir} C 1, then we have 7" < 7 with a derivation
of size n by S-TrRaNs with S-ANDOR1D. If /\;, . s 7]} < L, then we have 77 A 75" < L
by S-Trans with S-ANDOR19.
Case 1 ¢ S. Then 75" < 7 follows by IH (1) on the latter premise, followed by S-TraNS
with S-ANDOR12, with a derivation of size n.
(2) Impossible.
Cases (S-ANDOR?2, *). Impossible by assumption.
Cases (S-ANDOR2D, ).

(1) Then 74" = /\j 7} for some E]. The premises of the former rule are

>1

VANY Sl Tj'.‘], all of size m — 1. By repeated applications of IH (1), the latter premise

/\j 7} < 7 implies 7} < 7 for some k with a derivation of size n — 1, or /\J- el

Case 7; 7. Then by S-TrANs with one of the premises of the former rule, we have
7] A 3" © 1 with a derivation of size n and a former premise of size m — 1. The result
then follows from IH' (1).

Case /\ ;7; = L. Then we have 7' A 7;" < L by S-TrANs with the former premise.

_ _ —
(2) Then rden — /\j rj’.‘ for some T]’.‘J. The premises of the former rule are \/, "< T]r.‘ ,all

of size m — 1. By IH (1), the latter premise /\j 7} S 7. implies 7;} < 7. for some k with a
derivation of size n — 1, or /\j T < 1.
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Case 7} < 7.. Then by S-TrANs with one of the premises of the former rule, we have

V; 7" € 7. with a derivation of size n and a former premise of size m — 1. The result
then follows from IH' (2).

Case /\ TS L. Then it is easy to see that the transitivity chain in the derivation for

one of \/; 7{" < TJ’.‘] must pass through 1, ie., \/; 7f" < L can be derived with size
n — 2. Then we have \/; 7" < 7. with a derivation of size n — 1 by S-TRANs with
S-ToB2. The result then follows from IH (2).

Cases (S-DisTriBDCN:, ).

(1) Then 7" = \/j (5 A T}?”) for some 7 and T]Fj. The premises of the former rule are:

At S g (1)
LAY A=AV 75" (2)
both of size m — 1. The latter premise is:
Vigargh)cr (3)
By IH (2), (3) implies:

e e—
pATNCT (4)
all with derivations of size n — 2. For each j, by IH (1), (4) implies 7; < 7 or Tj“ C r with
a derivation of size n — 2, or 7j A TJC.” c 1.

Case 7j < 7. Then by S-TraNs with (1), we have:

AT ST (5)

with a derivation of size n — 1. The result then follows from IH (1).
Case 7j & 7. Thenforeach j,wehaver{" € rorggazi" € L.LetS={j[ 7 r7j" < L}.
By S-ANDOR2:, we have

Vjgsti" <7 (6)
with a derivation of size n — 1. From the definiton of S, we have:
— _jes
T AT C ¢ (7)
By Theorem B.20, (7) implies:
— _jes
T]C.n S ®)

where 7j, = neg(ry). By Lemma B.22- on (8) and S-REFL, we have:
Vit € Viest" v iy ©)
Then by S-TraNs on (2) and (9), we have:
ﬂ'; A\ ﬂ';n = \/]¢s T;n v Ton/ (10)
By Theorem B.20, (10) implies:
o AT AT SN s TS (11)
By S-Trans with S-ANDOR2 on (1) and S-REFL, (11) implies:

AT SV jes " (12)
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Since we have (2) with a derivation of size m — 1 and (12), it is easy to see that (12) can
be derived with size m — 1. Then by S-Trans with (6), we have:

AT ST (13)
with a derivation of size n and a former premise of size m — 1. The result then follows
from IH' (1).

(2) Then 7" =\/ (g A rj'?“) for some 7 and r}ﬁj. The premises of the former rule are:

V;z" <1 (14)
Vim" e V; " (15)
both with a derivation of size m — 1. The latter premise is:
V(@ At Sz (16)
By IH (2), (16) implies:
mATCr (17)

all with a derivation of size n — 2. For each j, by IH (1), (17) implies 7; < 7. or T}:” A
with a derivation of size n — 2, or 7j A rjc." c 1.
Case 7; < 7. Then by S-TraNs with (14), we have:

\/i TS T (18)
with a derivation of size n — 1. The result then follows from IH.
Case 7; & 7. Thenforeach j, wehaver" € rcor 7 Azi" L. LetS = {jlz A hel 1.
By S-ANDOR2:, we have:

Vigstj" S (19)
with a derivation of size n — 1. From the definiton of S, we have:
—_jes
gAaTre L (20)
By Theorem B.20, (20) implies:
——jes
e (21)
where 7j, = neg(rg). By Lemma B.22: on (21) and S-REFL, we have:
Vit € Vs " v g (22)
Then by S-TrRANS on (15) and (22), we have:
Vim" S Vigs " v g, (23)
By Theorem B.20, (23) implies:
TSA\/iﬂ;:nQVj¢ST;n (24)
By S-Trans with S-ANDOR2 on (14) and S-REFL, (24) implies:
Vim" S Vgsts" (25)

Since we have (15) with a derivation of size m — 1 and (25), it is easy to see that (25)
can be derived with size m — 1. Then by S-TraNs with (19), we have:

Vi €z (26)
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with a derivation of size n and a former premise of size m — 1. The result then follows
from IH' (2).
Cases (S-DisTRIBDCND, ).
i -k
(1) Then 79" = (/\] TJ") v V7" for some r}"l and 7" . The premises of the former rule
are:

J
LA SRR SAVAVIR (27)

all with a derivation of size m — 1. The latter premise is:

(N\; ) v Vet et (28)

By IH (2), (28) implies:
/\j T; cr (29)
T C Tk (30)

all with a derivation of size n — 2. By repeated applications of TH (1), (29) implies 7' < 7
for some [ € { j } with a derivation of size n — 2, or /\j s 1
Case 7' C 7. Then by S-ANDOR2- with (30), we have:

1
gvVighcr (31)
with a derivation of size n — 1. Then by S-TrANSs on (27) for j = k and (31), we have:
PN S (32)

with a derivation of size n and a former premise of size m — 1. The result then follows
from IH' (1).

Case /\ ;7; < L. Then it is easy to see that the transitivity chain in the derivation
for one of (27) must pass through either \/; ;" At S " or
7y A 3" © L can be derived with size m — 1.

Case 1] A 15" </, 7i". Then by S-Trans with S-ANDOR2- on (30), we have (32)
with a derivation of size n and a former derivation of size m — 1. The result then
follows from IH' (1).

Case 7] A 3" © L. then we have the result immediately.

n

or 1,ie., 7]

—j — Kk
(2) Then 7" = (A ;77 v Vi 7" for some r]r.'J and 7" . The premises of the former rule

are:
Vim" <l v Vi Tz”j (33)
all with a derivation of size m — 1. The latter premise is:
N;j7) v Ve € e (34)
By IH (2), (34) implies:
A j T;.‘ A (35)
e (36)

all with a derivation of size n — 2. By repeated applications of IH (1), (35) implies 7' < .
for some [ € { j } with a derivation of size n — 2, or N; FASER
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Case 7]’ < 7.. Then by S-ANDOR2- with (36), we have:
7 vVigh S (37)
with a derivation of size n — 1. Then by S-TrANS on (33) for j = [ and (37), we have:
\/i Sy 7 (38)

with a derivation of size n and a former premise of size m — 1. The result then follows
from IH' (1).

Case /\ ;7; < L. Then it is easy to see that the transitivity chain in the derivation for
one of (33) must pass through either \/;. rhor Lie, V:m" < Ve " or V"< L
can be derived with size m — 1.

Case \/; 7" < \/; 7i". Then by S-Trans with S-ANDOR2- on (36), we have:

V" Sz (39)

with a derivation of size n and a former derivation of size m — 1. The result then
follows from IH' (2).
Case \/; 7{" < L. Then by S-TraNs with S-ToB2, we have:

V;z" Sz (40)

with a derivation of size m < n — 1. The result then follows from IH (2).

]
. <& .
COROLLAIiY 1?:.84(.> Fc())rr e{T%n = {x:n },#C}, if \] n) S° 1, then either 1} =° 1 for
somek or \{ n} =° L°.
Proor. By repeated applications of Lemma B.83. O

LEMMA B.85.
dn

(A) N1t S 79 with a derivation of size n, where /\;c, , 7" is a complement-free CDN-
normalized form, then either 79" < " or A\; ., , 73" € 79" with a derivation of size n.
(B) If 1" < \/ ;1 n 75" with a derzvatlon ofszze n, where \/lEl aTi" is a complement-free DCN-

: cn cn
normalized form, then either 1" < =" or 1" < \/, ., , Ts" with a derivation of size n.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

ProoF. By induction on right-leaning <" derivations, where S-DiSTRIBCDN< does not occur
as the first premise of S-TRANS in any of the judgements (in both the assumptions and conclusions).
It is easy to see that we can rewrite any subderivations with S-DIsSTRIBCDNo as the first premise of
S-TrANS into an equivalent one by applying S-TRANs to the premises of S-DisTRIBCDN¢ and the
second premise of S-TRANS, followed by an application of S-DiSTRIBCDN®.

In the remainder of this proof we abbreviate <" as C.

Case S-REFL. Then /\l€1 " l = Tf“ = 79" ie., we have Tf” c gdn,

Case S-ToB-. Then 79" = T and we have both zd" € T and A, , 72" < T by S-ToB..

Case S-ToB>. Then A, , l = Tf" = —T,ie., we have rf” c gdn

Case S-CompL-. Then A, , , ld” = Tf“ = T,i.e., we have Tf” c gin,

Case S-CompLY. Impossible since /\;.; , T;jn is a complement-free CDN-normalized form.
Case S-NEGINV. Then A\, ., ,7d" = td" = —7° for some 7°, i.e., we have 74" < zdn.

Case S-ANDOR1-. Then A;_, , ld” is not an intersection, i.e., /\;c; , Tf” = rf” and we have

dn dn
ST,
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Case S-ANDOR1D. Then 74" = " for some k € {i}.If k = 1, then we have 7{" < 79" by S-RerL.

Otherwise, we have A, ,, Tld” < 79" by S-ANDOR1D.

Case S-ANDOR2-. Then A, ,7%" = ", ie., we have rd" c 7",
dn

Case S-ANDOR2D. Impossible since 7°" is not an 1ntersect10n

Case S-DisSTRIBCDN-. Then Tld” = ;7] for some T . The premises of the rule are

A Nican ld“ c ﬂd” all with a derivation of size n — 1. By IH on the premises, we

have 7} < 7 or A rdn ¢ 7rd" If N\;cp 78" € 79", then we have the result immedi-

zean

dn

ately. Otherwise, we have 7] < 797" which imply \/ ;7 < 7" with a derivation of size n

by S-ANDOR2-, i.e., 79" = 7dn.
—lEl..fl —ielun
Case S-DisTRIBCDN?. Then rlf’” =1V r‘f” for some 7" and Td” . The premises of the

rule are " € 79" and A, , Td” c nd" By IH on the latter premise, we have Td” c gdn

or Nican ld” c 79" with a derlvatlon of sizen — 1. If Td" < 79, then by S- ANDOR2 with

M < 79" we have Td” =1"v Tf,“ c 79" with a der1vat10n of size n. If /\i€2 n S” c gin,
then by S-DISTRIBCDND with 7" = 79", we have A\, , 70" = A, (" v ") < 7"
with a derivation of size n.

Case S-TraNs. Then the premises of the rule are /\;.; , 7" € 7" and 7" < 79" for some ¢
By induction on the size of the former premise of S-TRANS, denoted by m. Denote the inner
induction hypothesis by IH'.

Cases (S-REFL, *). By IH on the latter premise.

cdn

Cases (S-ToB-). Then 79" = T. By S- TOB we have both Tf" Tand A;c, 7" < T.
Then we have 9" < 79" and A, , 7" S 79" by S-TraNs with the latter premise
T ”dn

Cases (S-ToBD, %). Then A, , ld“ = Tf” = —T,ie., we have 7" 79",

Cases (S-CoMPL:, ). Then A;., , 70" = 79" = T, i.e., we have Td” c i,

Cases (S-ComPLY, #). Impossible since Ao, , 7" isa complement free CDN-normalized
form.

Cases (S-NEGINV, #). Then A, , ld" = 7" = —7¥ for some 7°, i.e., we have 73" < 7",

Cases (S-ANDORTL, #). Then A, , 72" is not an intersection, i.e., A;c; , 79" = 73" and

we have Tf” c ﬁd“.
Cases (S-ANDOR1D, #). Then 7" = A, 79" for some S < {i}.If 1 € S, by IH on the
latter premise, we have Tf" c 79 or /\i/eS\{ 1} € 79" with a derivation of size n — 1. If
d" < 79", the result is immediate. If /\, res\(1} S 79", then we have A
Wlth a derivation of size n by S-TRANs with S-ANDOR12.If 1 ¢ S, then A\, , 70"
with a derivation of size n follows from IH on the latter premise, followed by S-TraNs with
S-ANDORI10.

Cases (S-ANDOR2:, *). Then =7dn je., we have Td” c gdn,
iel.n z 1

dn dn
162n1 C”

c gdn

Cases (S-ANDOR2), #). Then 7 /\ nd" for some 7[] The premises of the former

rule are A\

for some k € {j } with a derivation of size n — 1 by repeated applications of IH, which
implies A\, , ld” C 79" with a derivation of size n and a former premise of size m — 1
by S-Trans with A;.; , ld” c 7'[;3“ The result then follows from IH'.
Cases (S-Di1sTRIBCDNO, *). Impossible by assumption.

ietn’ ld" c ﬂd“ The latter premise is /\ 7T " < 79", which implies ﬂ]‘:" c gin
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COROLLARY B.86.

A) If \; Tlfj” < 79", where AV Tl?j” is a complement-free CDN-normalized form, then rg“ c 7 for
somek € {i}.

(B) If " < \/_i 7", where \/; 7{" is a complement-free DCN-normalized form, then 7" < 7" for
somek € {i}.

Proor. By repeated application of Lemma B.85. O

LemMma B.87. T° <° 7 is not derivable fort € {11 — 15, {x : 11 }, #C }.

PROOF. By induction on <" and 4" derivations respectively. O

B.11 Consistency of Subtyping

The reason we can soundly define rules such as S-FUNMRG, S-RcDMRG, and S-RepTor is that they
do not threaten any of the properties we actually need for the type soundness proofs. As a first step
towards showing that, and in order to support the next important lemmas, we prove that subtyping
is consistent.

THEOREM B.88 (SUBTYPING CONSISTENCY). IfE cons. and = — 7 < &, where:
te{l, T,#C, 11 —> n, {X; :Tii}}
re{l, T,#C, my — m, {x' :m }}
then exactly one of the following is true:

(@t=_Lorn=T;

(b) T = #C and & = #C' and C' € S(#C);

(=0 —>nandr=m > mand=E m <7 and E - 15 < 1my;

@dr={xi:5 }andn ={xx:m } and E - 1 < 7 for somek.

Proor. By Lemma B.49 on the assumption, we have:
>EFT<ST (1)

Then proceed by case analysis on 7.

Case 7 = 1. Then (a) is true and (b), (c), (d) are false.
Case 7 = T. Then (b), (c), (d) are false. Since 7 = L v T, by Lemma B.89 on (1), we have:

~ ’ D;j
n:/\j(nijj> )
PERT <V 3)
i . —J )
for some n}l and D j] and VjD’ , where /\ j VJ.D’ is complement-free. By Lemma B.59, (3)
implies:
e ——]
Dye{T.Z] @
By Lemma B.222 on S-ANDOR12-, we have:
D; D;
AV € A (7 V) ®

By S-Trans on (5) and (2), we have:
A, Vij cr (6)
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. D; .
Since A j V] ’ is complement-free, we have:

D
AV L ™)
Then (6) and (7) imply:
rd L 8)
By Lemma B.82, (6) implies:
V,? 1 ©)

for some k. By case analysis on the syntax of VkD * and the assumption on the form of 7, (9)
can only be derived when 7 = T. Then we have 7 = T, i.e., (a) is true.

Case 7 = #C. Then (c), (d) are false. Since 7 =~ | v #C, by Lemma B.89 on (1), we have:

= N\; (ﬂ; v Vij> (10)
— D,
SE - #C < V) (11)

—j —j D,/ .
for some 77.';-] and D;” and VjD’ , where /\; VJ.D] is complement-free. By Lemma B.59, (11)
implies:

Dje{#Cl,ﬁQ/,T,Z}j (12)

where C; € S(#C) and C; ¢ S(#C) and C ¢ S(#C2). By Lemma B.223 on S-ANDOR12:, we
have:

NN (7 V) (13
By S-TraNs on (13) and (10), we have:
AV e (14)
Since /\ j Vij is complement-free, we have:
AV L (15)
Then (14) and (15) imply:
Tl (16)
By Lemma B.82, (14) implies:
V,? = 17)

for some k. By Lemma B.60, (17) implies either 7 = T or VkD" =V,
Case 7 = T. Then (a) is true and (b) is false.
Case 7 # 1. Then we have:

ﬂ;\/lﬂ:Vka (18)
By the syntax of U and U4, we have:
D¢ {T. 4} (19)
Then (12) and (19) imply:
Dy € {#Cy, #€5 } (20)
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By case analysis on the assumption on the form of 7, we have:
T = #C1
where C; € S(#C). Then (b) is true and (a) is false.

99

(1)

Case 7 = 1; — 13. Then (b), (d) are false. Since 7 =~ | v (r; — 12), by Lemma B.89 on (1), we have:

T /\j (7‘[; ijDj>

—_ Dj
l>:.}—T1—>T2§Vj]

J

(22)

(23)

—j — 3/ )
for some n;.j and D jj and VJ.D’ , where A\ j VJ.D’ is complement-free. By Lemma B.59, (23)

implies:

e E———]

Dj € { —, T, ,AK}
By Lemma B.222 on S-ANDOR12-, we have:

D; , D;

/\jijg/\j(”jVij>
By S-TraNs on (25) and (10), we have:
AV s n

. D; .
Since /\ ;V; 7 is complement-free, we have:

AV L
Then (26) and (27) imply:
rd L
By Lemma B.82, (26) implies:
V,?" cr

for some k. By Lemma B.60, (29) implies either 7 = T or Vka =V,
Case 7 = T. Then (a) is true and (c) is false.
Case 7 # T. Then we have:

r=\,;r= VkD K

By the syntax of U and U#, we have:

D¢ {T. £}
Then (24) and (31) imply:

Dy =—

By case analysis on the assumption on the form of 7, we have:

T =14 — Ty
Then (23) implies:

PEFT o<\, m—omn

By case analysis on the < rules, (34) implies:

PERT - n<(/A\;m)— (V™)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(1)

(32)

(33)

(34)

(35)
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Again by case analysis on the < rules, (35) implies:

E-Am<n (36)
EFn <V, m (37)
By S-Trans with S-ANDOR2¢ on S-REFL, (36) and (37) imply:
EFm<n (38)
En<m (39)

Then (c) is true and (a) is false.
Case 7 = {X; : 7;' }. Then (b), (c) are false. Since 7 = A; (L v {x; : 7; }), by Lemma B.89 on (1),
we have:

=N\ (77.'; v Vij> (40)

b,
DEl_{xijTkj}Sij (41)

— . — . '
for some 7'[}] and D jJ and VjD’ and k jj, where A j VjDJ is complement-free. By Lemma B.59,
(41) implies:

By Lemma B.222 on S-ANDOR12-, we have:
/\j Vij c /\j (7[]’ v Vij) (43)
By S-TraNs on (43) and (10), we have:
AV s n (44)
Since /\ ; Vij is complement-free, we have:
AV L (45)
Then (44) and (45) imply:
rE L (46)
By Lemma B.82, (44) implies:
VkD ko (47)

for some k. By Lemma B.60, (47) implies either 7 = T or Vka =V,
Case 7 = T. Then (a) is true and (d) is false.
Case 7 # T. Then we have:

nz\/lﬂ:VkD" (48)
By the syntax of U and U4, we have:
D¢ {T. 4L} (49)
Then (42) and (49) imply:
Dy = xp (50)

By case analysis on the assumption on the form of 7, we have:

7t={xkk:7'[1} (51)
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Then (41) implies:
PE b {xk, Tk § < Vi {xk i1} (52)
By case analysis on the < rules, (52) implies:
PE b {xk, Tk} < { Xkt V) (53)
Again by case analysis on the < rules, (53) implies:
Ebn, <Vm (54)
By S-Trans with S-ANDOR2: on S-REFL, (54) implies:
EFn, <m (55)

Then (d) is true and (a) is false.

LEMMA B.89 (SUBTYPING CONSISTENCY).
A) IfeS -t <mandr = )\, (r{ v UC‘) where the following are true:
o A\ U isa complement -free CDN-normalized form
o« >¢{C; }or7f¢{C }
o Vxc{C }.x¢{Ci}
e 4Ce {C/ )3 ¢ {T/)
o V4C € {C; ), #Cy € {Ei 1.C1 € S(#Cy) or Gy € S(#C)
. |{x|xe{c BRI
o« [{x|xe{C}} =00r7*¢{C )

J
#C¢{Cl }

thenthereexistssomeﬂ_]’.jandDje{ai}u{T,Z}u{fX‘f{al}} {#€ } and

—J
D; N / D; D; . ) . ;
V. such that m = /\j (ﬂj v Vi ) and /\j V. is a complement-free CDN-normalized form

G D;’ —iJ
and >3 /\iesj U' <V, forsomeS; .
(B) Iferitr<mandr =/, (n; A Y]D’) where the following are true:
o \/j Yij is a complement-free DCN-normalized form
e ~¢{D }or—r¢{D;)
e vxe{D;' }.x¢{D;}
o v#€ e {D; }.4C¢ {D; }
o V0] € {6"} 405 € {Ef 1.0y € S(#Cy) or Gy € S(#Cy)
o {x|xe{D;' }}I <
o [{x|xe{D) }}|—00r—>¢{D '}

%¢{DT-”}}‘

then thereexlstssomer and C; E{D }U{L 7}u{xx¢{D’ }}u{#C and
—i

Xl.c" such thatt = \/, (r. AX; ') and \/; X is a complement-free DCN-normalized form and

I>Z|—Xic"$\/jes Y ' for someS; .

Only the proof for (A) is shown below. The proof for (B) is mostly symmetric.
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PRrOOF. By Lemma B.67, there exists some 79" and 7" such that 7 =~ 79" and 7 = 7°I". Then
by Lemma B.71, we only need to consider CDN-normalized derivations for 7" <" 7¢dn and
the result would also apply to the original derivation for 7 < x. By induction on unassuming
CDN-normalized subtyping derivations.

Notice that the property to prove has a conclusion that can itself be used as a hypothesis for
another application of the property. When proving (A), we consider the leftmost rule application in
a transitivity chain, show the property for it, and this allows us to apply the induction hypothesis
on the rest of the chain; this works even if the chain is of length 1 (with no uses of S-TraNs). When
proving (B), we proceed in the same way but from the right. So we do not have to consider uses of
S-Trans explicitly, and only consider uses of the other rules here:

Case S-REFL. Immediate since 7 = 7. Pick Hz and ViDi = Uic"i. Then 7 =~ A\ (7{1' Y \/'l.Di)
and Ul.ci < \/iDii. '
Case S-ToB-. Then 7 = T.Pick 7, = Land V' = V," = T.Thenz = 7/ v V”" and Ul.ci < VlDll.
Case S-ToB>. Thent = —=T.Sor = w vt =nv /\ (z’l’ v Ul.ci). By distributivity, we have
= /\; (7‘[ vV Ul.ci). Pickmi and V' = UiC"i. Then 7w = \,; (nl’ v Vl.D") and

—_— =1

us < v
Cases S-ComPLo. Immediate since 7 = 7. Proceed with the same reasoning as case S-REFL.
Case S-NEGINV. Then 7 = —7’ and = = —7’ for some 7’ and 7. The premise of the rule is:

< (1)
From the assumptions, we have:
A (Tll v Ul.ci)

ie, =V, <_'Tl-/ A ﬁUl.C") (2)

ﬁz'/

12

_—
Let Xl.% = ﬁUl.C" (Lemma B.57). By IH on (1) and (2), we have:
DY
P j<7r;.’/\Yj’) (3)
D" gj
DZFY]‘] ﬁ\/iESin ' (4)

//j

for some ﬂ_]’fj and Y; 7 and EJ (3) implies:

DY DY
ﬂ%_‘\/j(ﬂj/-//\Yj]>gAj(ﬁﬂ}/V_‘ij) (5)
[ D, D D, Y
Pick 7[} = _'71']/-/ ,Dj = 9{ , and VJ 7 = ﬂYj 7 or ﬁVj T = YJ /" (Lemma B.57). Then we
have:
~ /\ / VDj (6)
r= N\; (7 vV
Then (4) implies:

. D-j
> Nies, UL <V (7)
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12

Case S-ANDOR1.. 7 = 7 v 7’ for some 7. Then 7 =~ /\, (Tl’ v Ul.ci) v = N\ (Tl’ v Uici).

_ . . -l . - R -l
Pick 7] = 7; v n’ and ViD‘ = Ul.c’ .Thenr =~ A, (nl' v Vl.D’> and Ul.c’ < ViD’ .

Case S-ANDORID. 7 = 7 A 7’ for some 7’. Then from the assumption, we have:
!~ / Ci
T=n AT = i(rile.> (8)
By Lemma B.22- on S-REFL and (8), we have:
(rA=T)v(rAad)=(xA—-T)v (Tll v Ulci)

ie, mx=N\; ((7[ A=) vy Ul.ci) 9)

i 5 —c . s —
Pick 7] = (= A —7') v 7/ and ViD’ = Uic’ .Then = =~ A, (ﬂ'l/ v ViDl and Uic‘ < ViDl .
Case S-ANDOR2.. By induction on the number of premises. Denote the inner induction hypothesis

—hel.n
as IH'. We have r = \/,_, , 7 for some 7}, Let 75" = \/}epn Th then v = 2 v 75"

h
The premises of the rule are:

< ﬂ_he l.n (10)

n

!

By S-ANDOR2-: on (10) for h € 2..n, we have:
Tg” < (11)

with the same size as the current derivation and one fewer premise. From the assumption,

we have:
A\; (Tl’ v Ul.ci) Cr=1vV Tg“ (12)
By S-Trans with Lemma B.22 on S-ANDOR12-, (12) implies:
AUE € o 1)
By Corollary B.86, (13) implies:
Uk s vt (14)

for some k.
Case Cy = B. If C;, = B for some B, then by Lemma B.54, (14) implies:

_— ]
1€ n dn
urtct v (15)

where U,fk =V, U’lc/l and U’?ll are not unions. By Lemma B.83, (15) implies either

c’ c’ 0
U’ ’gri‘orU’l lgfg" or T <1 vrg".

7

7 7 "
Case U’IC’ c 1 or U’IC’ c " . By S-ANDOR2-, we have:

IC1 R /Cll n
U = \/l ‘ U’ICIIQTF U 1 = Tl (16)
20 _ 1C'y dn
U = \/l U Uytcr (17)
1 =%
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By S-ANDOR2- with S-REFL, (16) and (17) imply:
v Ui < T} (18)
odn y U2 gdn (19)

Since we have the other direction by S-ANDOR11-, (18) and (19) imply:

v u© (20)
Tgn >~ Tg” v v (21)
Then by IH on the (10) for h = 1 and (20), we have:
= /\p (JT;, v Vlfl”) (22)
>3 - U < Vlf,’l"p (23)
By IH’ on (11) and (21), we have:
o /\q (ﬂ; v Vzgzq) (24)
o3 b U2 < 2l (25)
By distributivity, (22) and (24) imply:
7= Npg (7[11, A Vlfl” v ququ) (26)

For each pair (p, q), we pick 7, and V;;” 7 as follows:

2 1
. IfDlpe{T,/lf},picknj',q=nl vnzszquandequ =Vlf".Thenl>Z|—Ulfk <

D P q
rq
Vpa D! D D?
e If D% e { T, £}, pick ”;I:q = n}, v ”; v le P and V, 7 = qu ? Then >3 Uka <
D
V rq

pq -
e IfD', ¢ {T, X }and D?; ¢ { T, £ } and D', # D?;, then we have at least one of the
following by Lemma B.59 (note that since Cy = B, we have C! = B! and C? = B? for
some B! and B?):

2
- D', = C'and D?; = C?, which implies C' # C?. Since Uka ~ 1€ € , we have
1
Cr = T and (CL, C?) € { (x,y™*), (x,—), (—, x) } for some x and y. Then vibe,
y Yy P
2
sz; qu ﬂ;q v Vp—; for some 7[13, v
ra _ T C P
and Voq 7 = Vogs where we have >X |- Ukk <V,q 9, 1 2
— C!' = #C; and D', = #C,, where C; € S(#C;). Since Ut ~ g€y € , we have
p k
2 1
Cy = C' = C* = #C, Then we can pick 7, = 7, v 77 v szl) 7 and %qupq = Vlf,) ?
where we have >3 - Uka < Vp[;”q.
- C' = #Cy and D', = #€;5, where C; ¢ S(#C;) and C, ¢ S(#C). Proceed similarly
as above. ) ,
- C* = #C; and D?; = #C,, where C, € S(#C;). Since UIS" ~ Ut v U we have

D! D, D?
—Cl — 2 = 1 e 2 ‘71 p V.ore VZ q
Ck C C #Cl Then we can ple ﬂ:pq T, VvV ﬂ'q Vv P and pq = q >

P
D
where we have >¥ — Ukc" < qu”q.

T : ro_ 1 2 3
g and V.. Then we can pick n,, = 7, v g v 1,
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- C* = #C; and D?; = #€;, where C; ¢ S(#C;) and C, ¢ S(#C1). Proceed similarly

as above.
e If D!, = qu ¢ {T,4}, then we have C! = C? = D', = qu. Then Ukc" >~
1 2 1 1 2 2 1 2
U v ¢ and U'C < Vlf ? and U2C < quD 7 imply Ukc" < Vlf Y Vzl; 7, s0
1 2
we can pick 7, = 7, v n; and VIZM —viPry quD 7.

Then we have:

D
7= Npg (”I/Jq v qupq> (27)
Pq

} (28)

(29)

Dy (T U (T L} o (B HT ) (3T

P.q

[>2 |_ Ukck < ‘/p[;Pq

L ARVA Dr q) to an
equivalent complement-free form, where the < relation is still satisfyable.

Case T C 1] v Tg”. By Lemma B.62, we have VP < 7 for some VP and D € {T, £ }.
Then we can pick 7[{ = 7 and VlD1 = VP, which indeed satisfies 7 =~ m; v VlDl and
Uk < v

Case C;, = B. If C; = B for some B, then we proceed symmetrically to the case above on

The conditions on D,q in (28) ensures that we can rewrite /\ g (

the negation-inversion of U Ve, ] vy C X];G? for some 7'] and 7’5" and
X”Gk/

and finally apply negation-inversion again to obtain the desired result.

—h —h
Case S-ANDOR22. Then 7 = /\,, nd” for some 7r . The prem1ses are 7 < 71 d" . By IH on each

Ph
—Ph

premise, we have 7" = A <7‘[ v Vh P”) and >3 U g <Vvh, p” for some 1),
Ph

——Ph D
h Ph h ~ h wDoy,
and V and kj, . Then we have 7 = A\, A\, (ﬂph v )

Cases S-DISTRIBCDNO. Similar to case S-ANDOR2-.
Case S-RcpDEPTH. Then 7 = {x: 7y } and 7 = {x : 7 } for some 7; and ;. From the assump-
tion, we have:

Ni (T;VUiCi) cr={x:n} (30)
By S-Trans with Lemma B.222 on S-ANDOR12-, (30) implies:
/\iUl.c"Q{xzrl} (31)

By Lemma B.82, (31) implies:
Ukckg{x:rl} (32)
for some k. By Lemma B.60, (32) implies:
=V, {x:n} (33)
The premise of the rule is:

> 1 <M (34)
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By the definition of <, (34) implies:
pE{x:n}=<{x:m}
ie, BXk Uf" <{x:m} (35)

So we can pick 7/ = 1 and V"' = {x : 7, }, which indeed yields 7 = {x : m } = 7| v V"'
Case S-RcDMRG-. Thent ={x:7y v tand 7 = {x:1} v {x: 1, } for some 7; and 7. From

the assumption, we have:

/\i<rlvaiCi>gr={x:T1vrz} (36)
By S-Trans with Lemma B.22 on S-ANDOR12-, (36) implies:
AV Ul.C" c{x:nvn} (37)

By Lemma B.82, (37) implies:
Ukckg{x:ﬁvrg} (38)
for some k. By Lemma B.60, (38) implies:
Ukc’“:\/l{xzrlvrz} (39)
Pick 71 = 1 and VID1 ={x:1} v {x: 1}, which indeed satisfies 7 = {x : 7; } v {x:
n} = v VP and Ukc" <vP

Case S-RCDMRG?. Thent = {x:71} A{x:1p}and 7 = {x: 71 A 2 } for some 7; and 7,. From
the assumption, we have:

/\i(rl(le.Ci)gr={x:rl}/\{x:r2} (40)
By S-Trans with Lemma B.222 on S-ANDOR12-, (40) implies:
/\iUiCig{x:rl}/\{x:rz} (41)
Let [ range from 1 to 2. By Lemma B.54, (41) implies:
AU S {x:m} (42)

By Lemma B.82, (42) implies:
1

C
Uklk’ c{x:7} (43)

—1
for some k; . By Lemma B.60, (43) implies:

Cr !
Ukl’ =V,i{x:u} (44)
Pick 71 = 1 and VlD1 = {x:1 A1}, which indeed satisfies 7 = {x: 1y ATz } = 7] v VID1
Cr D
and/\lUkl L=<V
Case S-RCDMRGNEGINV-. Thent = —{x: 71} A ~{x:}and r = —={x : 1y v 1o } for some
7; and 73. From the assumption, we have:

/\i<‘['i/\/UiCi)g‘[':—‘{x:l'l}/\_‘{x:fz} (45)
By S-Trans with Lemma B.22 on S-ANDOR12-, (45) implies:
AUT € ~{x:n}A—{x:n} (46)
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Let [ range from 1 to 2. By Lemma B.54, (46) implies:

AUS € ~{x:n} (47)
By Corollary B.86, (47) implies:

]

c—{x:m} (48)

Ckl
Ukl

—
for some k; . By Corollary B.61, (48) implies:

Cr !
U, ' = Vy, ~{x:a} (49)

. Ly . C
Pick 7; = 1 and VlD1 = —{x: 1 v 12 }, which indeed satisfies 7 = 7] v VlD1 and /\, Uklkl <

D,
|2

Case S-RCDMRGNEGINVD. Thent = —{x: 1y A }and 7 = ~{x: 71} v ={x : 1z } for some
7; and 73. From the assumption, we have:

/\i(r{le.C")gr:ﬂ{x:ﬁ/\fz} (50)
By S-Trans with Lemma B.222 on S-ANDOR12-, (50) implies:
AUS S ={x:t1 Ar2} (51)
By Corollary B.86, (51) implies:
Ukckg_'{XZTl/\Tg} (52)
for some k. By Corollary B.61, (52) implies:
Ukc":\/lﬂ{x:rlArz} (53)
Pick 7/ = Land V"' = —{x: 7} v ={x: ©, }, which indeed satisfies = ~ 7/ v V’* and

Uk < v

Case S-RepTop. Thent = T and 7 = {x : 71 } v 7, where my € {{y** : 1o }, 7, — 73 }. Pick
;= Land Dy = T and VlD1 = {x:m } v m, which indeed satisfies 7 = {x : 1y } v 1y =
v VID1 and Uici < VlDll.

Case S-RcnTopPNEGINV. Thent = —~{x: 7 }a—rpandz = —T,wherery € {{y™ : o }, » > 13 }.
From the assumption, we have:

A (rl.’le.Ci) Cr=—{x:} A7 (54)
By S-Trans with Lemma B.229 on S-ANDOR12-, (54) implies:
A Ul.ci c—~{x:q} A1 (55)
By Lemma B.54, (55) implies:
/\iUicig—'{x:ﬁ} (56)
N UF* S =0 (57)
By Corollary B.86, (56) and (57) imply:
c
Uklk1 c—~{x:1} (58)
U™ < —g (59)

k2
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for some k; and k;. By Corollary B.61, (58) and (59) imply:

c
U =V, ~{x:n} (60)
C.
Ukz ‘= \/ig —To (61)
Case 1) = {y: 1, }. ThenCy, = x and Cx, = y, whichis impossible since |{ x | x € {al P <
1. .
Case 1) = 7, — 73. ThenCy, = x and Cy, — >, which is impossible since |{ x | x € {C; } }| =
0or ¢ {C; }.
Case S-FUNDEPTH. Then r = 11 — 1, and 7 = 7y — 73 for some Flleo”3. From the assumption,
we have:
/\i(r{vUici>§r:1'1—>Tz (62)
By S-Trans with Lemma B.22 on S-ANDOR12-, (62) implies:
/\i Uici S ) (63)
By Lemma B.82, (63) implies:
Ukck C1—oD0 (64)

for some k. By Lemma B.60, (64) implies:

U]Sk =V,n—n (65)

The premises of the rule are:
> — To < T1 (66)
> — T2 < T3 (67)

By the definition of <, (66) and (67) imply:
DT > <1 — T

ie, DX Uka <1 T3 (68)

. D L. . D
So we can pick 7] = L and V"' = 7y — 73, which indeed yields 7 = 7¢ — 5 = 77 v V"

Case S-FUNMRG-. Then 7 = 711 — 712 A 131 — tp and 7 = (111 v 721) — (712 A T22) for some
T11, T12, T21, and 7a;. From the assumption, we have:

/\i (Tl/ \ UZCL> CT=1T11] > Ti2 AN Tg1 —> T2 (69)
By S-Trans with Lemma B.22 on S-ANDOR12-, (69) implies:
A Ul-ci C 11— T12 A To1 — T2 (70)

Let [ range from 1 to 2. By Lemma B.54, (70) implies:

]

C; :
/\i Ui - T — 712 (71)

By Lemma B.82, (71) implies:

Cr; !
UM €y — i (72
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—I
for some k; . By Lemma B.60, (72) implies:

]

Cr l

Uy, P = \/1, I — T2 (73)
Pick 7; = | and VID1 = (111 v 721) — (712 A T22), which indeed satisfies 7 = (111 v 121) —

o

(Ti2 A T22) =1y v VID1 and /\; Uklk’ < VIDI.

Case S-FUNMRG?. Thenrt = (11 A13) = (z v iy) and 7 = 11 — 72 v 73 — 74 for some Flet4,
From the assumption, we have:

AV (Tl’ v Uici) Cr=(nAn) > (nvn) (74)
By S-Trans with Lemma B.22 on S-ANDOR12-, (74) implies:
AV Uici CS(nnan) —(nvn) (75)

By Lemma B.82, (75) implies:
Ukc" CS(nnan) — (v (76)
for some k. By Lemma B.60, (76) implies:
UIS" =Vt A1) > (v n) (77)
Pick 7; = 1 and VID1 =17 — Ty, vV 13 — T4, which indeed satisfies 71 =11 > 1, v 13 — 14 =
Y VID1 and Ukc" < VlD1.
Case S-FUNMRGNEGINV-. Thent = —((r;vr3) = (mAan))andr = —(r; = 13) v — (12 — 74)
for some Flle 14 Prom the assumption, we have:

AV <7.'l' v Uici> Cr=—-((nvmn)—(2Arn) (78)
By S-Trans with Lemma B.22> on S-ANDOR12-, (78) implies:
AU € =(( v ) > (72 A ) (79)
By Corollary B.86, (79) implies:
UIS" c—((nvn) > (nAn) (80)
for some k. By Corollary B.61, (80) implies:
Ukck =V~ vn)—(2An) (81)
Pick 7; = 1 and VlDl = —(n1 — 13) v (12 — 14), which indeed satisfies 7 = 7] v VlD1 and

c D
Ut <v
Case S-FUNMRGNEGINVD. Then 7 = —(11; — 712) A —(121 — 122) and 7 = —((111 A T21) —
(112 v 722)) for some 713, 712, T21, and 752. From the assumption, we have:

AV (T{ % U,-Ci) Sr=—(r11 = 112) A~ (721 = T22) (82)
By S-TrRaNs with Lemma B.225 on S-ANDOR12-, (82) implies:
AV Ul.ci € — (111 = 112) A (121 — T22) (83)

Let [ range from 1 to 2. By Lemma B.54, (83) implies:

A US € =(t1 — ) (84)
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By Corollary B.86, (84) implies:

7
L

Ck
Ukl ! < _‘(Tll — le) (85)

—I
for some k; . By Corollary B.61, (85) implies:

]
L

c
Uk,kl =V, ~(m — ) (86)

C
Pick 7] = L and VlD1 = —~((tn A1) = (tiz2v122)). Thenw = 7] v VlD1 and /\, Uklkl < VlDl.
Case S-CLsSuUB. Then 7 = #C; and 7 = #C; for some #C; and #C,. From the assumption, we have:

A (Tl, v Ulci) C = #C (87)
By S-Trans with Lemma B.229 on S-ANDOR12-, (87) implies:
AV Ul.ci c #Cy (88)
By Lemma B.82, (88) implies:
Uk C #Cy (89)
By Lemma B.60, (89) implies:
Uk =/ #Cy (90)
The premise of the rule is:
Cz € S(#C1) (91)
By the definition of <, (91) implies:
#C; < #Cy
ie, Uk <#GC (92)

So we can pick 7; = L and VID1 = #C,, which indeed yields 7 = #C, ~ 7] v VlDl.
Case S-CLsBot. Then 7 = #C; A #C; and & = L for some #C; and #C,. From the assumption, we

have:
A (v UT) €t =40y n 4y (93)
By S-Trans with Lemma B.22 on S-ANDOR12-, (93) implies:
A US S #Cy A #Cy (94)
Let [ range from 1 to 2. By Lemma B.54, (94) implies:
By Lemma B.82, (95) implies:
= #c,l (96)

—I
for some k; . By Lemma B.60, (96) implies:

—l
Ck
Ukl I = \/k[ #Cy (97)
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Then (97) implies:
Crp = #C1 (98)
The premises of the rule are:
C1 ¢ S(#C,) (99)
C, ¢ S(#Cy) (100)

which is impossible by the condition on al
Case S-CLSsBOTNEGINV. Then 7 = T and 7 = —#C; v —#C; for some C; and C,. The premises
are C; ¢ S(#C;) and C; ¢ S(#Cy). Pick 7; = 1 and VID1 = —#C; v —#C;, which indeed

.
) D C; D
satisfies 7 = 7y v V' and U;" < V7' .

B.12 Progress Proofs

LEMMA B.90 (PROGRESS — GENERAL). If €,€ - P : v and body(P) is not a value then P~~~ P’ for
some P'.

Proor. By induction on program typing derivations.

Case T-Bopy. By progress for terms (Lemma B.91).
Case T-DEF. By E-DEF.

LEmMA B.91 (TERM PROGRESS). If €,€ - t : T and t is not a value thent v~ t’ for somet'.

Proor. By induction on typing derivations.

Case T-SuBs. Immediate from the induction hypothesis.

Case T-OB). t=C{x =1t} Ifallt’ arevalues,thent isavalue; otherwise t reduces by E-Ctx
and IH.

Case T-Proy. t=1t'x
If t' is not a value, by IH we have t' v~ t”, and thus t v t”.x by E-CTx. Otherwise, by
canonical form for record types (Lemma B.92), we have t/ = C Rand {x = ¢’ } € R, and
therefore ¢ v~ v’ by E-Proj.

Cases T-Var1, T-VAR2. t=x
Impossible since there is no rule that would type x in an empty typing context.

Case T-ABs. t = Ax.t’ Immediate since ¢ is a value.

Case T-ApP. =1t 1
We can apply the induction hypothesis on t, and #;, which are given types in the premises
of this typing rule. If either #, or t; is not a value, then ¢ can progress by E-Ctx, so we only
have to consider the case where t) = vp and #; = v;. By canonical form for function types
(Lemma B.93), we have vy = Ax. t’. Then t v~ [x — 0v3]t’ by E-App.

Case T-Asc. t=1t;:7 Immediate since t; : 7 v t; by E-Asc.

Case T-Casel. = casex =t; of €
By IH, if t; is not a value, then t progresses by E-CTx. Moreover, by canonical form for bottom
types (Lemma B.95), t; cannot be a value.

Case T-CAsg2. t=casex =t;of _ — Iy
By IH, if t; is not a value, then ¢ progresses by E-Ctx. On the other hand, if t; = vy, then
t v~ t; by E-CASEWLD.
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Case T-Case3. t=casex =t of C > 1), M
By IH, if t; is not a value, then ¢ progresses by E-CTx. On the other hand, if t; = vy, either
v; = C; Rwith C; € 8(Cy), in which case E-CaseCLs1 applies, or E-CAseCLs2 applies since
scrutinees can only be classes by Lemma B.96 and canonical form for class types (Lemma B.94);
in either case, t progresses.

]

LEMMA B.92 (CANONICAL FORM FOR RECORD TYPES). If ¢, v : {x: 7} then we havev = CR
for some C and R, and {x = v’ } € R.

ProoF. By induction on typing derivations for the statement:if , T -+ o:7and e - 7 < {x: 7'}
then { x = 0’ } € v. The only cases to consider are those rules that can type values:

Case T-SuBs. Then the premises of the rule are v : 7’ and ¢’ < 7 for some 7”. By S-TRANS on
" < rtandr < {x: 7'}, we have 77 < {x : 7' }. This allows us to apply the IH on the
premise v : 77, by which we have {x =0’ } € 0.

Case T-ABs. Then 7 = 1r; — ;. By consistency of subtyping (Theorem B.88), 7y — 7, < {x: 7'}
cannot be true, therefore this case is impossible.

Case T-OBJ. Then 7 = #C A {X;:7;' }andv = C {X; = 0;' }. Then by consistency of subtyping
(Theorem B.88) we know that there is an i such that x; = x. Given the conclusion of T-OBj
and the definition of field projection (Section 4.2), this implies that there is a o’ = v; such
that {x =o' } € 0.

]

LEMMA B.93 (CANONICAL FORM FOR FUNCTION TYPES). If €,I' - v : 71 — 73 then we have
v = Ax. t for some x and t.

Proor. By induction on typing derivations for the statement:if ¢,T' o :7,and e -7 <11 — 7,
then v = Ax. t for some x and ¢. The only cases to consider are those rules that can type values:

Case T-SuBs. Then the premises of the rule are v : 7’ and 7’ < 7 for some 7. By S-TrRaNson 7/ < 1
and 7 < 7; — T2, we have 7/ < 7; — 1. Then the result follows from IHon v : 7.

Case T-ABs. Immediate.

Case T-OBJ. Thenz = {X; : 7;' } for some X;’ and o;'. By consistency of subtyping (Theorem B.88),
7 < 71 — 73 cannot be true, therefore this case is impossible.

]

LEMMA B.94 (CANONICAL FORM FOR CLASS TYPES). If €, |- v : #C then we havev = C R for some
R.

Proor. By induction on typing derivations for the statement: if ¢,T v : 7, and € - 7 < #C
then v = C R for some R. The only cases to consider are those rules that can type values:

Case T-SuBs. Then the premises of the rule are v : 7’ and 7’ < 7 for some 7. By S-TraNson 7/ < 1
and 7 < #C, we have 7/ < #C. Then the result follows from IHon v : 7’.

Case T-ABs. Then 7 = 7y — 7, for some 7; and ;. By consistency of subtyping (Theorem B.88),
7 < #C cannot be true, therefore this case is impossible.

Case T-OBJ. Immediate.

LEMMA B.95 (CANONICAL FORM FOR BOTTOM TYPE). For allv, €,T - v : L cannot be derived.
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Proor. By case analysis on the last typing rule used in the typing derivation, assuming without
loss of generality that this typing derivation is in subsumption-normalized form (Lemma B.6). The
only cases to consider are those rules that can type values:

Cases T-ABs, T-OBjy. Immediate.

Case T-SuBs. The premises are €, - v : 7 and € - 7 < 7’ and the goal is to show that we cannot
have 7/ = 1, i.e., that r < L cannot be derived. The typing derivation being subsumption-
normalized, the first premise is not an application of T-SuBs, so it must be an application
of either T-ABs or T-OBJ, meaning that 7 € {7, — 7, #C A {X;: 7, } }. We conclude that
7 < L cannot be derived by consistency of subtyping (Theorem B.88).

]

LEMMA B.96 (SCRUTINEE TYPES). If €, |- case x =t of M : 7 then we have €, |-t : #C for
some C.

Proor. By induction of typing derivations.

Case T-SuBs. Then the former premise of the rule is €, T - case x = v of M : ¢’ for some 7’. The
result follows from IH.

Case T-Casel. Then the premise of the rule is €,I' - v : L, which is impossible by canonical
form for bottom type (Lemma B.95).

Case T-Case2. Then the former premise of the rule is €,I' - v : 7; A #C for some 7; and C. Then
by T-Suss with 7; A #C < #C (S-ANDOR12D), we have €,T |- v : #C.

Case T-CasE3. Then the first premise of the rule is €, - ¢ : #C A 71 v —#C A 1, for some 7; and
7, We have either ¢, T -t : #C’ or €, - t : —=#C’ for some C’. For the former, the result is
immediate. For the latter, we have €,T -t : (#C A 71 v —#C A 73) A —#C, which implies
€T t: 1 by T-Suss since (#C A 71 v —#C A 73) A —#C = —#C A 73 < 7. By IH on the
last premise €,T-(x : 72) I case x = x of M : 7, we have ¢,T(x: 15) I x : #C” for some
C",ie., 1, < #C”. Then we have ¢,T + t : #C” by T-Suss.

O

B.13 Preservation Proofs

LEMMA B.97 (PRESERVATION — GENERAL). If €, +* P : 7 and P v~ P/, then we have ¢,T *
P
Proor. By induction on program typing derivations.
Case T-Bopy. By preservation for terms (Lemma B.101).
Case T-DEr. P=defx=1t; P
The only applicable reduction rule is E-DEF. The premises of the rule are E,T - ¢ : 7
and ¢, I(x:VE.7) —* P’ : 7p for some E and 7. By substitution (Lemma B.98), we have
6T [x+— t]P : p.
O

LEMMA B.98 (SUBSTITUTION). For all D wf, T and E such that TV(I') n TV(VE. 1) = &:
() IfeT-(x:VE.7)-*P:tpand E,T -t : 7, then e, T —* [x — t]P : 7p.
2) If 20, T-(x : VE. 7) - tp : tp and Eg-E,T -t : 7, then Zo,T I [x — t]tp : 7p.

Proor. By induction on program typing derivations of €,T-(x : VZ.7) * P : 7p and typing
derivations of =y, T'-(x : VE. 7) | tp : 7p. Note that the TV(T') n TV(VE. ) = J condition can
always be obtained by renaming variables quantified in definitions, when necessary. The only
difficult cases are for T-Bopy and T-VAR2:
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Case T-Bopy. P=1p
The premises of the rule are € cons. and €,T-(x : V=.7) I tp : 7p. By assumption, we have
5T+ t:7ByIH, we have ¢,T | [x — ¢]tp : 7p. The result €, T * [x — ¢]tp : 7p then
follows by T-Bopy, as P =

Case T-DEr. P=defx' =t ;P
If x = x, then [x — t]P = P and the result is immediate.

Otherwise, [x — t]P = def x’ = [x — ¢]t’; [x — t]P. We can apply the IH on the sec-

ond premise of T-Der, E/,T-(x:VE.7) - ¢/ : ¢/, to get E,T  [x — t]¢’' : 7. Then,

the third premise of T-DeF, €T (x:V=. 7)-(x' : VE'.7) -* P : 7p, can be commuted

(Lemma B.100) to €,T-(x" : VE'. ¢/)-(x : VE. ) * P : 7p, on which we can apply the IH to

get ¢, T-(x’ : VE'. /) * [x — t]P : p. We then conclude by T-DEF, for which we have just

derived the last two premises (the first premise is unchanged).

Case T-SuBs. The premises of the rule are Z,I-(x : VE. 7) I tp : 7y and Ey - 7 < 7p. By [H on
the first premise, we have =y, T + [x — t]tp : 7. Then Zo, T  [x — ¢]tp : 7p by T-SuBs
with the second premise.

Case T-OBy. tp=C{x'=t'} 1p=#CA{x' :7}

The premises of the rule are Z,I'-(x : VE. 7) - ¢/ : /. By IH, we have Z¢,T |- [x — t]t’ :

Then Z,T - C{x' = [x — t]t' } : #CA{x" : T } by T-Ony, ie., Bo,T I [x — t](C{x' = ¢/ t’}) :

#C A {x': 7' } by the definition of substitution.

Case T-Proy. tp =t'x’

The premise of the rule is =y, [-(x : VE.7) -t/ : {x’ : 7p }. By IH, we have Z,,T - [x —

t]t' : {x’' : zp }. Then Ey,T  ([x — t]t').x" : zp by T-PRrOJ, i.e., Eo, T - [x — ]’ .x" : 7p by

the definition of substitution.

Case T-Varl. tp=x" (T(x:VE.7))(x") =1p
Since x’ is mapped to a simple type in the context I'-(x : VE. 1), x # x/, then T'(x’) = zp.
Then Zo,T - x’ : 7p, ie., o, T  [x — t]x : 7p by the definition of substitution.

Case T-Var2. tp=x" p(rp)<tp ([(x:VE.7)(x')=VE" 1, E¢kpE)

There are two cases to consider:

Case x’ # x. Then [x — t]tp = tp and the result is immediate.

Case x’ = x. Then [x — t]tp = t and moreover (I'-(x : VE. 7))(x) = VE'. 75, thus VE. 7 =
VE'. 75, and thus £ = &' and 7 = 7},

By assumption, E,T |-t : 7so E',T |- t : 7j,. By preservation of typing under substitution
(Lemma B.35), p(E'),p(T) -t : p(1p,), ie, p(E'),T I~ t : 7p by T-Sus and since TV(I') N
dom(p) = & by assumption.

Moreover, since we have Zy = p(Z’), this implies that =, T - ¢ : 7p (Lemma B.34), which
is what we wanted to prove (remember ¢ = [x — t]tp).

CaseT-ABs. tp=Mx'.t' p=1—>1n
There are two cases to consider:

Case x’ = x. The premise of the rule is Zo,I-(x : VE. 7)-(x : 71) I ' : 2. Since the binding
(x : VE. 1) is shadowed, we can remove it from the typing context (Lemma B.99), i.e.,
Eo,[(x:71) -t : 1. Then o, T I Ax. ' : 7 — 12 by T-ABs, which is the desired result
since [x — t]tp = tp and x’ = x.

Case x’ # x. The premise of the rule is Zo,T-(x: VE.7)-(x' : 1y) + ' : 72, which can
be commuted (Lemma B.100) to =, [-(x’ : 77)-(x : VE. T) F ¢ : . By IH, we have
Eo,[(x' :11) + [x — t]t' : 5. Then Eo,T - Ax'. [x — ]t : 11 > 1, e, Eo,T
[x — t]Ax’. t' : 71 — 1, by the definition of substitution.
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Case T-AprpP. 1p = toty

The premises of the rule are 2o, T-(x : VE. 1) -ty : 7y —> rpand Zo, [ (x: VE. 7) - t; : 1y

for some 71. By IH, we have Zo,T - [x — t]ty : ;7 — 7p and Zo, T + [x — ¢]t; : 71. Then

o, T [x > t]to [x — t]t; : 7p by T-APp, ie,, B, T - [x — t](fy t1) : Tp by the definition

of substitution.

CaseT-Asc. tp=t':1p

The premise of the rule is o, T-(x : VE. 7) - ¢’ : 7p. By IH, we have Z¢,T - [x — t]¢' : 7p.

Then Z0,T + ([x — ]t/ : 7p) : p by T-Asc, ie., Eo,T - [x — t](¢ : zp) : 7p by the

definition of substitution.

Case T-Casel. tp=casex' =t;ofe p=_1

The premise of the rule is Zo,(x:VE.7) + #; : L. By IH, we have Z,T + [x —

t]t; + L. Then E,,T + case x' =[x — t]t; of € : L by T-Caskl, ie., Eo,T  [x —

t]case x’ = t; of € : L by the definition of substitution.

Case T-CASsg2. tp =casex' =t;jof _ — 1t

There are two cases to consider:

Case x’ = x. The premises of therule are 2, I'(x : VE. 7) I t; : 7 and Zo, - (x : VE. 7)-(x :
tp : 7p. Since the binding (x : VE. 7) in the second premise is shadowed, we can remove
it from the typing context (Lemma B.99), i.e., E¢,I-(x : 71) I &2 : 7p. By IH on the first
premise, we have Zo, T | [x — t]t; : 71. Then Z,, T + case x = [x — t]t; of _ — 15 : 7p,
ie, o, T | [x — t]case x = t; of _ — 1, : Tp by the definition of substitution.

Case x’ # x. The premises of therule are =, I'-(x : VE. 7) I t; : 7y and Zo, -(x : VE. 7)-(x" :

t : p. The latter can be commuted (Lemma B.100) to Zo,T-(x’ : 77)-(x : VE. 7) I 13 :

7p. By IH, we have E¢,' - [x — t]t; : 7y and Zo,[(x':11) + [x — t]t : 7p.

Then =, T + case x’ = [x — t]t; of _ — [x — t]|t; by T-CASE2, ie, B¢, - [x —
t]case x’ = t; of _ — t; by the definition of substitution.
Case T-Case3. tp=casex' =t;of C > t,, M
There are two cases to consider:
Case x’' = x. The premises of the rule are:

Epl(x:VET) -t :#C A v ~#C A Ty (1)
Eo,T-(x:VE.7)-(x:1q) -ty : p 2)
Eo,T-(x:VE.7)-(x: 15) - case x' = x" of M : 1p (3)

By IH on (1), we have:
Eo,rF[x*-’t]tli#C/\Tlv_‘#C/\Tz (4)

Since the binding (x : VE. 1) in (2) and (3) are shadowed, we can remove them from the
typing contexts (Lemma B.99):

EO,I‘~(x : Tl) =ty :1p (5)
Eo,[(x:7) - casex =xof M:1p (6)

Then by T-Cask3 on (4) and (5) and (6), we have:

Ep [+ casex =[x —t]tj of C > £, M : 7p
ie, EgTH[x—t]casex =t;0f C —ty, M:1p (7)

Tl) l—

Tl) l—
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Case x’ # x. The premises of the rule are:

o, [(x : VE. r)}—ty#CArl v —#C A Ty (8)
BT (x:VE.7)-(x" :1y) -ty )
Eo,T-(x:VE. 7)-(x" : 12) - case x’ = x" of M : 7p (10)

The typing contexts in (9) and (10) can be commuted (Lemma B.100) to
Eo, T-(x" i) (x :VE.T) -ty s 1p (11)
20, T(x" 1 12)(x : VE.7) - case x’ = x" of M : 7p (12)

By IH on (8) and (11) and (12) respectively, we have:

Ep L [x—tti:#C A v —~#C AT (13)
Zo, T-(x" i 1y) b [x —> t]ty s 7p (14)
20, T-(x" : 15) - case x’ = x’ of [x — t]M : 1p (15)

Then by T-Caskg3 on (13) and (14) and (15), we have:
Zo,[ - case x’ = [x > t]t; of C — [x > t]ty, [x — t]M : 7p
ie, ZoTH [x+— t]casex’ =t of C— t;, M:1p (16)

LEmMMA B.99 (SHADOWING OF TYPING CONTEXTS). Forally =t oro, andy = 1’ oro’:

(D If ET(x:y)I"(x:y)I" +* P : zp, then ET-T"-(x:y)(x:y)T” +* P : 1p and
S0 (x:y)T"*P:1p.

@) If ET-(x:y) T (x:y)T" + tp : tp, then ETT(x:y)(x:y)I" + tp : p and
E,FT’-(x : y’)-r” - tp : Tp.

Proor. By straightforward induction on typing derivations. The only non-trivial cases are T-VAR1

and T-VAR2.

Case T-VAR1. By the definition of T'(), if (T-(y:y)-I['-(y:y")-[”)(x) = 7" for some 7”, then
(T (y:y)(y:y)I")(x) = " and (T-I"-(y : y')-T”)(x) = 7”. The result then follows
from T-VAR1.

Case T-VAR2. Similarly.

]

LEmMMA B.100 (COMMUTATIVITY OF TYPING CONTEXTS). For all T’ such that x ¢ dom(I'), and

y=rtoro:

(1) If T-(x:y)T' +* P:tp, then ¢ T-I"-(x:y) -* P: 7p.
(2) IfE,I“-(x : y)-F’  tp : Tp, then E,F-F’-(x : y) I tp : 7p.

Proor. By induction on typing derivations.

Case T-Bopy. By IH, followed by T-Bopy.

Case T-DEr. P=defx' =1t ;P

The premises are € cons., &/, (x : y)- " ¢ : /;and €, T-(x : y) " (x" : VE. ') b* P' : 7p
By IH on the second premise, we have Z/,T-T’-(x : y) ¢’ : 7. If x’ = x, we can rearrange
the third premise (Lemma B.99) to ¢, I-T"-(x : y)-(x’ : VE'. ¢') * P’ : 7p. If ¥’ # x, then
x ¢ dom(T’-(x' : VE'. 7’)) and x’ ¢ dom((x : y)), so we have ¢, T-I"-(x: y)-(x" : VE'. /) *
P': 7p by IH. The result ¢, I-T'-(x : y) -* def x’ = t'; P’ : 7p then follows from T-DEr.
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Cases T-Suss, T-Rcp, T-Proj, T-App, T-Asc, T-Case1l. By IH on the premises, followed by
the respective rules.

Case T-Var1. By the definition of T'(+), since x ¢ dom(T”) by assumption, if (T-(x : y)-I")(x") = ¢/
for some 7/, then (I'-I"-(x : y))(x’) = 7’. The result then follows from T-VAR1.

Case T-VAR2. Similar to the case above.

CaseT-ABs. tp=M'".t' 1mp=1—>1n
The premise is E, T (x : y)-I"-(x" : 71) - ¢’ : 1. If x’ = x, we can rearrange it (Lemma B.99) to
ETT (x:y)(x:71) Ft': 2. If x' # x, then x ¢ dom(I"-(x" : 71)) and x” ¢ dom((x : y)),
sowehave 5, T-T"-(x : y)-(x" : 1) - t' : 7, by IH. Theresult E,T-T"-(x : y) - Ax".t' : 11 > 1
then follows from T-ABs.

Cases T-Casge2, T-CAsEg3. Similar to the case above.

LEMMA B.101 (TERM PRESERVATION). If €, T —t: 7 and t > t/, then ¢, T -t : 1.

Proor. By induction on typing derivations. In the following, we sometimes abbreviate €,I"' -t : 7
tot:r.

Case T-SuBs. Immediate from the induction hypothesis.
CaseT-OB). t=C{x=t} t=#CnA{x:7}
There is only one rule that reduces objects, E-CTx. By straightforward application of the
induction hypothesis with the respective premises of T-OBj and E-OBj and by reapplication
of T-OBj on t'.
Case T-Proy. t=tfyx ty:{x:7}
If t v t;.x by E-Ctx, we conclude by IH.
Otherwise, ¢ v~ v, reduces by E-Proj, meaning that t, = v; and { x = v, } € v;. We conclude
by inversion of object types (Lemma B.105), which gives us v; : 7.
Cases T-VAR1,T-VAR2. Immediate since ¢ cannot reduce.
Case T-ABs. t = Ax.t, Immediate since t cannot reduce.
CaseT-App. t=1t)t; ty:11 =7 t:71
There are two rules by which ¢ v~ ¢’ can hold:
Case E-Ctx. The result holds by IH and T-App.
Case E-APP ) = Ax.t; t; =01 two [x — o]t
By inversion (Lemma B.102), €,T-(x : 71) I t; : 7. Together with substitution (Lemma B.98,
applicable since €,T |- v; : 77), this givesus €,T - [x — 0]ty : 7,ie, T -t : 7.
CaseT-Asc. t=ty:7 t'=1t
Immediate by the premise of the rule.
Case T-Casel. = casex =t; of €
Immediate since the only rule that can apply is E-CTx, and it yields a term ¢’ that can still be
typed at L by T-Caskl.
Case T-CASE2. t=casex =t;of _ — Iy
If the rule that applies is E-CTx, by IH. Otherwise, the rule that applies is E-CASEWLD, and
we conclude by substitution.
Case T-Case3. t=casex=tHofC>trp, M t1:#C A1 Vv ~#C ATy
If the rule that applies is E-CTx, by IH.
Otherwise, if E-CAsSECLs1 is the rule that applies, it means #; is an instance of a subclass of
Cs,, so by Lemma B.107 we know that €,I" - #; : 77, and we can conclude by substitution
(Lemma B.98).
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Otherwise, E-CAsECLs2 must be the rule that applies, so by Lemma B.107 we know that
eI - t; : 7,, and we can conclude by substitution (Lemma B.98) and IH.

]

LEMMA B.102 (INVERSION OF FUNCTION TYPES). If ¢,T - Ax.t: 19 and € - 19 < 11 — 13, then
el-(x:m) Ht:m.

Proor. Straightforward induction on typing derivations. The only rules that can be used to type
such a lambda expression are:
Case T-SuBs. Then the premises of the rule are ¢, - Ax. ¢ : T(/) and € T(I) < 19 for some r(’), on
which we can apply the IH by S-TrANs (7; < 79 < 71 — 7).
Case T-ABs. Then 7p = 7; — 1, for some 7] and 7,. The premise is €,T-(x:7;) - t : 7,. By
Lemma B.103 we have € - 7; < 7] and € - 7, < 7. Combined with strengthening

(Lemma B.104) and T-Suss, this gives us the desired result.
O

LEmMA B.103 (INVERSION OF FUNCTION SUBTYPING). If e 70 > 71 < s = 13, then e - o < 19
and € -+ 11 < 13.

Proor. By consistency of subtyping (Theorem B.88). O

LEMMA B.104 (STRENGTHENING). If ¢,T-(x:7;) -+ t : T and € -+ 7. < 11, then we have
el(x:n)Ht:1

Proor. By straightforward induction on typing derivations, using T-Suss for the T-VAR1 case. O

LEMMA B.105 (INVERSION OF OBJECT TYPES). If ¢ - CR : 1p and {x = v} € CR and
e <{x:7}, thenetov:r.

Proor. Straightforward induction on typing derivations. The only rules that can be used to type
such a lambda expression are:

Case T-Suss. Then the premises of the rule are €,T' |- Ax. t : 7, and € |- 7y < 7o for some 7, on
which we can apply the IH by S-TraNs (r; < 79 < {x : 7 }).

Case T-OBjy. Then 7y = #C A {ﬁ’ } for some C and 7. One of the premises is €,T — v : 1,
where x; = x. By Lemma B.106 we have € - 7, < 7. Combined with T-SuBs, this gives us
the desired result.

]

LEMMA B.106 (INVERSION OF OBJECT SUBTYPING). If € - #C A {X;:7;' } < {xx : T}, then
e < T.

— | .
ProoF. Let UOC" = #C and Ul.c" ={xi:m}.Since #C A {7 } = Nycyory (L v Ul.c"), by
Lemma B.89, we have:

)~ / D;
{xeory= N\ (7 v V) (1)
Ck; D,
Ukj’ <V (2)

j _
and kj]. By S-Trans with Lemma B.22 on S-ANDOR12-, (1) implies:

/\].V].ng{xktl'} 3)

—J D;
for some n]’. and V] I
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By Lemma B.82, (3) implies:

VlDlg{xk:T} (4)
for some . By Lemma B.60, (4) implies:
VP =\, {x it} (5)
Then D; = xi. By Lemma B.59, (2) for j = [ implies:
Ck[ = Xk (6)

i.e., k; = k. Then (2) for j = [ becomes:
{xene} <V, {xe:r} (7

By case analysis on the < rules, (7) implies:

ie, w<r ®)
O

LEmMMA B.107 (INVERSION OF DISCRIMINATED CLASS TYPES). Assume €, - v : T where v is the
scrutinee of a case expression and € - 7 < #C A 71 v —#C A 1. Then we have:

e Ifv = Cy R and Cy is a subclass of C (i.e., C € S(Cp)), then €,T v : 1y.
e Otherwise, €,T v : 5.
Proor. By induction on typing derivations.The only rules that can be used to type a value are:
Case T-SuBs. Then the premises of the rule are €,T I v : 7’ and € I 7’ < 7 for some 7/, on which
we can apply the IH by S-Trans (7' < 7 < #C A 1; v —#C A 13).
Case T-ABs. o0 =Ax.t
Impossible since scrutinees can only be classes (Lemma B.96).
Case T-OB). 0v=CyR
Wehave R={x =t}andr = #Cy A {x:7 }and t : 7 and C; is final.
Sowehave #Co A {x T} <#C ATy v ~#C A Ty
e, #Co A{x T} A (#C Vv o) < #C A Ty
ie, (1) #Co A#C A {X T} v #Co A {X:7} A =13 < #C A 11 Then from the assumption, we
have:
#Co A {Xx: T} <#C ATV H#C AT
ie, #CoA{x:T}A(#CV ) <#CATr
ie, #CoA#CA{x T} Vv#CoA{X T} A n<#C AT (1)
Case C € S(Cy). Then by S-CrsSuB, we have:
#C, < #C
ie, #Cy A #C = #C, (2)
Then (1) and (2) imply:
#Co A {X T} v#CA{X T} A <#C AT
ie, #Con{x: 7} <#C A1

ie, T<#C A7 (3)
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By S-TraNs on (3) and S-ANDOR122, we have:
TS T (4)
Then by T-Suss, the assumption €,I' - v : 7 and (4) imply:
el'+o:n (5)
Case C ¢ S(Cp). By S-Trans on S-ANDOR12: and (1), we have:
#Co A {X T} A 1 < #C
ie, #Con{x:t}<#Cvn (6)

Case Cy € S(C). This case is impossible because Cy is final and Cy 5 C (since C ¢ S(Cp)).
Case Cy ¢ S(C). Then by S-CrsBoTt and Theorem B.20, we have:

#Cy < —#C (7)
Then (6) and (7) imply:
#Co A {X T} A #C < 1y
ie, #CoA{x:T}<n
ie, <1 (8)
Then by T-Suss, the assumption €,I' - v : 7 and (8) imply:
elTHo:n )

B.14 Type Inference Soundness Proofs

We first define a few judgements to be used in the remainder of this chapter.
The consistency of subtyping contexts is lifted to typing contexts through the bounds in the
polymorphic bindings.

Definition B.108 (Consistency of typing contexts). The consistency of typing contexts is defined as
follows:

I' cons. I' cons. = cons.
T cons. _

€ cons. I(x:1) cons. I(x:VE. 1) cons.

A constraining context is said to be guarded if none of the type variables appear on the top level
of its bounds. Guardedness is also similarly raised to typing contexts.

Definition B.109 (Guardedness of constraining contexts). The guardedness of constraining contexts
is defined as follows:

o ¢ TTV(T) = guard.
= guard. E—
g € guard.

E-(a <° 1) guard.

Definition B.110 (Guardedness of typing contexts). The guardedness of typing contexts is defined
as follows:

I' guard. I' guard. E guard.
e
€ guard. I(x:7) guard.

I(x:VE.7) guard.

LEmMA B.111 (SOUNDNESS OF TYPE INFERENCE — GENERAL). If I' [-* P: 7 = = andT cons. and
err¢ =, then Z T > P : .
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Proor. By induction on type inference derivations.

Case I-Bopy. By soundness of term inference (Lemma B.112).
Case I-DEF. By soundness of term inference (Lemma B.112), we get the subtyping relationship
necessary to apply the IH on P.

]

LEMMA B.112 (SOUNDNESS OF TERM TYPE INFERENCE). If 20T |- s : 7 = E! and E°T cons.

and 20, T guard. and err ¢ =l then Z0Z.T s : w and E°-E' cons. and Z°0-E! guard..

Proor. By induction on term type inference derivations.

Case I-Projy. s=t.x
By IH, we have E¢-E; |-t : 7and =y-E; cons.and =-=; guard.. And by sound constraining
(Lemma 5.6), we have Z¢g-E1-Z; - 7 < {x : @} and E¢-E;-E; cons. and Ey-Z1-Z; guard..
Therefore, by weakening (Lemma B.34) and T-SuBs we have Z¢-E;-E, -t : {x : « } and by
T-Proj we have Zy-Z21-5y - t.x : .

Case I-OBj. By straightforward applications of the IH and weakening.

Case I-VARr1. By T-VAr1.

CaseI-Var2. t=x I(x)=VE;.nq
Let p = [@ = 72%%°]. We have 2°-pE, = pE; by S-Cons and S-Hyp. We also have £°-p=,; |-
pt1 < pr; by S-REFL. Then we have Z°-p=; - VZ;.7; <" pr; by S-ALL, and by S-VAR2, we
have 2°-pZ;,T |- x : pry Since I cons., we have [@ — 7,%€°|Z; cons. for some 7, <%, Since

- _sesS
Ya fr‘eshaE , we have [@—= 7,°°|8; = [Ja = 72°°°]pE;. Then [@ = 7,°°]E; cons.

implies p=; cons.. Similarly, we also have p=; guard..

Case I-ABs. By straightforward applications of the IH.

Cases I-App I-Asc, I-Case1. By analogous reasoning to the I-Proj case, applying the IH and
sound constraining (Lemma 5.6) successively on the premises, threading the inferred con-
straints through and weakening accordingly.

CaseI-CAsE2. t=casex =1t of _— 1
By IH, we have Ey-E; cons. and Ey-E; guard. and Zy-Z1,'  t; : 7y, which implies
Z0-E1-E2-E3,T = t; : 7y by weakening. By sound constraining (Lemma 5.6), we have
Ho:E1-E cons.and Ey-=;-E; guard.and Ey-E;-E; - 7; < #C, which implies E¢-E1-E2-E3 -
71 < 11 A#C by weakening S-ANDOR2 with S-ReFL. Then by T-SuBs, we have E¢-E1-E2-E3, I' -

t : 7y A#C. By IH, we have 5¢-E1-E2-E3 cons.and Zy-5; -5, B3 guard.and 5y-5;-5y-53,T-(x 1 77)

t; : 7. Therefore, by T-CAsSE2, we have Ey-E1-E3-E3, [ - casex =t of _ — 1, : 7.
CaseI-CAse3. t=casex=t;of C > 1), M

By IH, we have Ey-E; cons. and Ey-E; guard. and Z¢-E,,T'  t; : 7, which implies

Ho=E1-Ee-E3-E4, I + t1 @ 7y by weakening. Then by IH, we have E(-E;-E; cons. and

Eo-E1-Ey guard.and 5y-51-E,, T+(x : @) | t; : 1o, whichimplies 5¢-5; -5y 5384, T+ (x : @)

: 7, v 13 by weakening and S-TRANS with S-ANDOR11-. Then by IH again, we have

0'21-E2-E3 cons. and Bg-E;-5y-E3 guard. and E¢-=;-E,-53,T-(x: f) I case x = x of M :
73, which implies Zy-E1-55-53-24,(x : §) |- case x = x of M : 7, v 73 by weakening and S-
TrANS with S-ANDOR12-. By sound constraining (Lemma 5.6), we have Z4-5¢-E1-22-23 cons.
and E4-Eg-E;-Ep-Es guard. and E4-E9-E1-E2-Es - 11 < #C A a v —#C A f, which imply
30'31'52'33'54 cons. and 30'31'52'53'54 guard. and Eo'El'Eg'Eg'E4 =1 < #C AN a v
—#C A f by commutation. Then by T-Suss, we have E¢-E1-E3-E3-E4, [ -t : #C A v —#C A B.
Therefore, by T-CAsE3, we have E¢-E1-Ez-E3-E4, - casex =t of C — 1), M : 1, Vv 73.

[1] S+

]
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PROOF 5.6 (SOUNDNESS OF CONSTRAINING). By Lemma B.113 and Theorem B.114. O

LEMMA B.113 (SUFFICIENCY OF CONSTRAINING).

(1)
@)

IfY-n<«n=Eandt,nn wfanderr¢ =, then 23X - 11 < 13.
IfS+ D= ZandD° wfand err ¢ E, then = — D° < L.

Proor. By induction on constraining derivations.

Case
Case

Case

Case
Case

Case

Case

Case

Case

C-Hyp. Immediate by S-Hyp.

C-Assum. By IH on the latter premise, we have Z-%->(7; < 1) - dnf’(r; A —13) < L. By
Lemma 5.3, we have dnf’(1; A —73) = 7; A —75. Thenwe have E-2->(1y < 1) - i A—1p < L,
which implies E-3->(71 < 13) - 71 < 72 by Theorem B.20, which implies E-% - 71 < 72 by
S-Assum.

C-ORr. Then D° = DY v CY for some DY and C!, and E = E;-E, for some Z; and =,. By
IH on the former premise, we have Z;-= - D < L. By IH on the latter premise, we have
2812 + CY < L, which implies £-% - CI < L by commutation. Z;-% - DI < L implies
E-3 - DY < 1 by Lemma B.30. Then by S-ANDOR2-, we have -3 - D} v CY < L.
C-Bort. Immediate by S-REFL.

C-Crs1. Then D° = I [#C;] A —(U v #C;) for some C; and C, and U. From the premise, we
have 3 | #C; < #C, by S-C1sSuB, which implies = - #C; A F A R < U v #C, by S-TRANS
with S-ANDOR11 and S-ANDOR12, which implies = - #C; A F AR A —=(U v #C;) < L by
Theorem B.20, i.e., 3 - I[#C1] A —(U v #C;) < L.

C-Crs2. Then D° = 7 [#C;] A —(U v #C;) for some C; and C; and U. By IH on the latter
premise, we have -3 - I [#C;] A —U < L. Since —(U v #C;) < —U by S-ANDOR11- and
S-NEeGINv, we have =3  I[#C;] A = (U v #C,) < I[#C;1] A —U by Lemma B.22> with
S-ReFL. Then we have E-3 I [#C;] A —(U v #C;) < L by S-TrANs.

C-CLs3. Then D° = T¥[T] A =(U v #C) for some C and U. By IH on the premise, we have
23 IN[T] A =U < L. Since —=(U v #C) < —U by S-ANDOR11- and S-NEGINV, we have
EX - IN[T] A =(U v #C) < ITV[T] A —U by Lemma B.22> with S-REFL. Then we have
Z23 - IN[T] A =(U v #C) < L by S-TraNs.

C-Fun1. Then D° = 7[D; — D3] A —(D3 — Dy) for some D; and D, and D3 and Dy, and
E = E;-E, for some Z; and Z,. By IH on the former premise, we have Z;-<X - D3 < Dy,
which implies <(Z2-%) - D3 < D; by Lemma B.30. By IH on the latter premise, we have
E5-E;<® + Dy < Dy, which implies <(2-%) + D, < D4 by Lemma B.30. Then by S-
FuNDEPTH, we have 23 I D; — Dy < D3 — Dy, which implies =% - N A Dy —
D, A R < D3 — Dy by S-Trans with S-ANDOR112 and S-ANDOR12D, ie, Z-3 + 7[D; —
D2] < D3 — Dy, which implies -3 7 [D; — Dz] A —=(D3 — D4) < L by Theorem B.20.
C-Rcpl. Then D = I[{x: Dxxes 1 A~ —{y : D} for some D_xxes and D. By IH on the
premise, we have Z-<¥ D, < D, which implies <(2-X) - D, < D by Lemma B.30.
Then by S-RcpDEPTH, we have Z-X - {y : Dy} < {y : D}, which implies Z-X - N A

FA{x: Dxxes } < {y:D} by S-Trans with S-ANDOR11? and S-ANDOR12D, i.e., E-3

I[{x:Dx >} < {y: D}, which implies 23 + 7[{x Dy }] A ~{y:D} < Lby
Theorem B.20.

Cases C-NoTBot, C-Fun2, C-Rcp2, C-Rcp3. Then erre =E.

Case

Case

C-Var1. By S-Hypr, we have Z-(a < —=C)-3 I a < —C, which implies E-(a < —C)-Z
C A a < L by Theorem B.20.

C-VAR2. By S-Hyp, we have Z- (¢ < C)-2  a < C, whichimplies Z-(a < C)-Z  an—C <
1 by Theorem B.20.
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C-Hyp C-Assum
(1 <m)e=x (1<) ¢EY EX>(n <n)kdnfl(q A —n) =&
83k r«r=>E -
EXFTI KT =¢€ EXFT K =2
C-Or
kD=5 =5 =g C-Bor C-NotBot
=D vC’=Z=E EXFLl=¢ X1 A-L=err
C-Crsl1 C-Crs2
Cy € S(#C1) Co ¢ S(#C1) ES I[#Ci] A —-U=Z
EZ - T[#C1] A = (U v #C) = € 53 IT[#C1] A —(U v #C) = &’
C-Cis3 C-Fun1
ESFINTIA-U=Z E<XkD3 « D=5 EE,<X+Dy « Dy=="
S+ IN[TIA—=(Uv#C) == E % I[D; — Dz] A —=(D3 — Dyg) = ="
C-Repl
C-Fonz yeS E<XpDy « D=>Z
EXFI7[T] A =(D; — D) = err =3 FI[{x:Dxxes}] A—{y:D} =&
C-Rep2
yés C-Rcp3
ESrI[{x:Dx J1A—{y:D}=err 52 TU[T] A ~{x:D} = err
C-Var1 C-VAR2
E(a < =C),2 lbg(a) « -C=E’ E(C<a)ZtC«ubz(a)=E
EXSFCra=E (a<—C) ESFCA—-a=E-(C<a)

Fig. 22. Reformulated normal form constraining rules. The only difference with the rules of Figure 8 is that
we now explicitly split the subtyping context into a constraining part Z and a plain subtyping part 3.

]

THEOREM B.114 (CONSISTENCY OF CONSTRAINING). IfE cons.andE guard.and=Z -t <« 1 = =’
and err ¢ =/, then 5-=' cons. and Z-=’ guard..

Proor. By Lemma B.115. m]

In the remainder of this section, we consider the reformulated type constraining rules in Figure 22.
In these rules, we assume that we always start derivations with an empty 3, so that we start only
with bounds, and all these bounds are in E. It is easy to see that they are equivalent to the ones
presented in Figure 8.

LEMMA B.115 (CONSISTENCY OF CONSTRAINING).
(1) If<2-A + Z; p cons. and= guard.and=,3 1 < 7 = = anderr ¢ 2/, then<3-A - E-E';
p’ cons. and E-=' guard. for some p’.

ic
(2) If<=-A + E; p cons. andE guard. and=,% - \/,., ,C" = E' and TTV'(C?) are distinct
and err ¢ =/, then <X-A + =-E; p’ cons. and E-=' guard. for some p’.

l.n

Proor. By induction on constraining derivations.

Cases C-Hyp, C-Bot, C-CLs1. Immediate since =’ = e.
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Case C-Assum. Then the premise of the rule is:
EXe(r <) - dnfl(t A —1) = & (1)
From the assumptions, we have:
<A+ E; p’ cons. )
By Lemma B.33 with Lemma B.25, (2) implies:
<AE>(r < 7)) A+ E; p cons. (3)
for some p’. Then by IH on (3) and (1), we have:
(Z >(r < n))-A+EE; p cons.
ie, <Z(r<n)ArEE;p cons. 4)

By Lemma B.113, 5,3 | 7 « 7 = Z’ implies:

2ESrr<n (5)
By Lemma B.30 with Lemma B.25, (5) implies:
EE.SARFT<S T (6)
Then by Lemma B.33 with (6), (4) implies:
<A+ EE; p’ cons. (7)
Case C-ORr. Then the premises of the rule are:
E2F Viern1C = & (8)
EELIEC) =5 (9)
where Z' = E-Z). Then by IH on (8), we have:
<A EEL p” cons. (10)

for some p”. Then by IH on (10) and (9), we have:
<A - EEVEY; p cons.
ie, <ZAR ZEE;)p cons. (11)
for some p’.
Cases C-Crs2, C-CLs3, C-Rcp1. Immediate by IH on the premise.

Case C-Fun1. Similar to case C-Or.
Case C-VaRr1. Then the premise of the rule is:

E(a < =C), 2 I lbz(a) « =C = & (12)
where \/;.; ,C' = C A aand &' = E/-(a < —C) for some « and C and Z. From the
assumption, we have.

<A+ E; p cons. (13)

By Lemma B.33 with Lemma B.25, (13) implies:
(¢ < —C)-E[-<3-A + E; p cons. (14)
Since TTV’(C A a) are distinct, by the syntax of RDNF, we have a ¢ TTV(C). Then we have:
E-(a < —C) guard. (15)
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Since (15) implies a ¢ TTV(lbz(a)) v TTV(—C), by Lemma B.117 on (12) followed by
Lemma B.30, we have:

PEq>(a < —=C)py(ExElS) b lbz(a) < —C (16)

where split ,(E, dom(p)\{ a }) = (Ea, Ex) and p;, = [ — a A ubz.(a<r) (@) V bz (o<r)(@)].
By Lemma B.30 with Lemma B.25, (16) implies:

PEg>(a < =C)ph (ExgEY<E) + Ibz(a) < —C (17)
Then by Lemma B.116 on (14), (15), and (17), we have:
B <A E (a < —C); p’ cons.
ie, <=(E'A)F E(a<—C);p cons. (18)
for some p’. Then by IH on (18) and (12), we have:
< (EVA) - E(a < —C)-E}; p cons. (19)
By Lemma B.25, we have:
E-(a < =C)-E|-<Z-A = <2-(E]-A) (20)
Then by Lemma B.33 with (20), (19) implies:
<A+ E(a < —C)E]; p cons.
ie, <TARE=EE ;p cons. (21)
Case C-VAR2. Similar to case C-VARI1.

]

LEmMAB.116. If(a <° 7)-2 - >EL-E; p cons. and E-(a <° 1) guard. and>E, - l>:a >(a <° 1)
PL(ExZ) - b2 (a) <° 1, where split ,(Z, dom(p)\{ a }) = (Eq, Ex), thenE - >EL-E-(a <° 1)
p' cons. for some p', where py, = [a0 — a A ubz.(q<or)(@) V bz (g<or) (@)].

The proof for the - direction is shown below. The 9 direction is symmetric.
Proor. By Lemma B.44, (¢ < 7)-3 | >E,-E; p cons. implies:
>Eu DB paBapa((@ < 7)2) E paBa (1)
pa((a@ < 17)3) b DELDEypaBy; p) cons. (2)

for some p}, where p, = [0 — a A ubz(a) v Ib=(a)] and dom(p’) = dom(p)\{ a }.
Let p; = [@ — a A 7]. By Lemma B.36 on (1), we have:

pr(PEPEapaZapal(@ < 7)F)) E prpaBa 3)

By Corollary B.40 and Corollary B.41, we have:
(a<t)+-r=pr foralx 4)
>(a<t)brm=p forallm wherea ¢ TTV () (5)

By S-TraNs on Lemma B.25 and (4), we have:
>y DBy >(a < 1) F pr(PEs>Eg) (6)

Then by Lemma B.30 on (3) with (6), we have:
>Ep DBy >(a < 7)prpa(Eg(@ < 7)-2) = prpaBa (7)
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Expanding the composition, we have:
Pr0pg =lar—antnapubz(a) v plbz(a)] (8)
By Lemma B.22 on S-REFL and (5), we have:
Ma<rt)bantaubz(a)vibz(a) =ant A prubs(a) v plbz(a)

ie, D(a<71)bF an ubsg<r)(@) V bz g<r) (@) = a A T A prubz(a) v pelbz(a) 9)
Then by Lemma B.38 on (9), we have:
>(a < 1) b plt = prpar forallx (10)
By S-TraNs on Lemma B.25 and (10), we have:
o(@ < 7)pl(Ea(@ < 1)5) b prpu(Ea-(a < 7):3) a1
PrPaBa E PouZa (12)
Then by Lemma B.30 on (7) with (11), followed by Lemma B.26 with (12), we have:
>Es>Eq (o < 1) Py (B (@ < 7)3) E poEa (13)
From the assumption, we have:
PE DEL (e < 1) ph(ExZ) F lbz(a) <7 (14)
By S-ANDOR2- on S-ANDOR112/S-ANDOR122 and (14), we have:
BELBEy (e < 1) ph(ExZ) - a At Aubz(a) v ibz(a) <t (15)

By Corollary B.41, we have:

PE,>(a < 1)1 =plT (16)
Then by S-TRANSs on (15) and (16), we have:
PEs >Ey (@ < 7)o (Ex ) - paa < pot (17)
Then by Lemma B.30 on (13) with (17), we have:
>Ep DB (o < 1) pp(ExZ) F prEa (18)
By S-Cons on (18) with (17), we have:
DB > Eq (ot < 1) P (BaZ) b= poZapola <) (19)

By S-TraNs on S-ANDOR119, we have:
(a<t)Fanubz(a) <7t (20)
Then by S-ANDOR2- on (20) and (14), we have:
PE.DEy (@ < 1) ph(Ex) - a A ubz(a) v Ibz(a) <t (21)
By Corollary B.41, we have:
DEy - T = pat (22)
Then by S-TRANs on (21) and (22), we have:
>EsBEy(a < r)~p;(Eﬁ,«2) Fa A ubz(a) v Ibz(a) < pat
ie, DEDE (a <1)pL(ExZ) b pa < pat (23)
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By S-ANDOR2D and Lemma B.22 on S-Hyp and S-REFL, we have:
(e <t)FantAubz(a) v ibz(a) = a A ubs(a) v lbz(a)
ie, (a<71)F aAubs.(acr)(@) V bz (a<r)(@) = a A ubz(a) v lb=(a) (24)
By Lemma B.38 on (24), we have:
(¢ <71) b plw = por foralln (25)
By S-TrANs on Lemma B.25 and (25), we have:
Pa(ExZ) E po(ExX) (26)
Then by Lemma B.30 on (23) with (26), we have:
PELPEy (@ < 1) pa(BgZ) b patt < pat (27)
Then by Lemma B.36 and Lemma B.30 with (27), (2) implies:
(@ < 1)pa2 b PELPEypaZy; py cons. (28)
Then by Lemma B.50 on (28), we have:
Prpa b PEsBEy > (2 < 1) prpaBa; p; cons. (29)
for some pj. By Lemma B.43 on (29) with (9), we have:
PR b DELDEL > (a < 1) phEy ;s py cons. (30)
for some p5. Then by the definition of consistency on (19) and (30), we have:

S+ E(a<1); psopl, cons. (31)

LEmmA B.117.

(DIFESF-n <=5 anda¢ TTV(r;) U TTV(r;) and err ¢ ', then >Ey-p(E4-E'-2) -
71 < 12, where split (2, @) = (Eg, Ey) and p = [a — a A ubz(a) v Ibz(a)].

(2 IfE32 + D° = E and a ¢ TTV(D®) and err ¢ =/, where D = \/,_, , C?, then bE,
p(ExE %) - D < L, wheresplit, (2, &) = (Eq, Ex) andp = [a — anubz(a)vilbz(a)].

Proor. By induction on constraining derivations.

Case C-Hyp. Since a ¢ TTV(r;) U TTV(z;), we have from the premise:
(1 €< 1) €EELE
ie, (pr1 < pn) € p(En-X) (1)

Then by S-Hyp on (1), we have:

p(ExE) - pri < pr 2)
By Corollary B.41, we have:
>y 11 =pny 3)
DYy - T = pry (4)

Then by S-TRANSs on (2), (3), and (4), we have:
e p(Bp) b1 <1 (5)
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Case C-Assum. Then the premise of the rule is:
E3>(n <) - dnf' (g A —n) = &
By IH on (6), we have:
PE,p(EgE -2>(n < 1)) - dnf'(r; A =) < L
By Corollary B.40, we have:
Eqg b1 =pn
a1 =pn
Then by S-TRANs on Lemma B.25, (8), and (9), we have:
PEL>(n <) Ep> (11 < 1)
Then by Lemma B.30 with (10), (7) implies:
bE,p(Eg-E2)>(r < ) - dnf'(rp A =) < L
By S-TraNs on Lemma 5.3 and (11), we have:
PR pELE D) <n)FnA—n< Ll
By Theorem B.20 on (12), we have:
PRy p(Ep B ) (n <) <n
By S-Assum on (13), we have:

PELP(EgrE 21 <1

(10)

(11)

(12)

(13)

(14)

Case C-ORr. It is easy to see that if TTV’ (Cg) are not distinct for some k, we can deduplicate them
before preceeding, and duplicate them again in the conclusion. Therefore we can assume

i€l.n
that TTV’(CY) are distinct
The premises of the rule are:
EZF Viern1 G =5
EE,2-C =5,
where 2’ = E/-E), for some = and Z/,. By IH on (15), we have:
>Ea (BB 2) F Vierna G < L

By IH on (16), we have:

/ !
1 2

=T S === 0
[>._,a'[>_.1a p (_.ﬂ PR 2) '_ Cn < J_

where split, (2}, &) = (E],, E{,) and p' = [a = a A ubz.z/(a) v lbzg (a)].

/
1

By Lemma B.118 on (15), we have:
2] guard.
By Lemma B.25, we have:
PE| F pEi,
By Corollary B.40, we have:
Exn=a— anubg,(a)vibz,(a)|n forallx

ie, Egqbnm=pr foralx

(15)
(16)

17)

(18)

(19)

(20)

(21)



MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 129

Then by S-TRANSs on (20) and (21), we have:
Ea'pE; F Elq (22)
By Lemma B.28 on (22), we have:
>E,>pE] E BE], (23)
By Lemma B.26 on (23) and Lemma B.25, we have:
>E,pE] EBE], (24)
By Corollary B.41, we have:
>Eq b ubz (@) = [a — a A ubg, (a) v lbs, (a)]ubz ()
e, BEq - ubg (a) = pubz (a) (25)
By S-ANDOR22 on S-Hyp, we have:
PE} = pa < pubg (a)

ie, pE|F a A ubs(a) v ibz(a) < pubz (a) (26)
Then by S-TRANs on S-ANDOR12-, (26) and (25), we have:
>EqypE] - Ibz(a) < ubz (@) (27)
By S-ANDOR22 on S-REFL and (27), we have:
>EqypE] - lb=(a) < lbz(a) A ubz(a) (28)
Then by S-ANDOR112 and (28), we have:
>EqpE) = lbz(a) = lb=(a) A ubz (a) (29)

Then by (29) and S-D1sTR, we have:
DEgpE; - a A ubzg () v bz (a)
(a) v lbz(a) v lbz (a)
= a A ubs(a) A ubz (@) v Ibz(a) A ubs
= (a A ubz(a) v lbz(a)) A ubz () v bz ()
By S-ANDOR2? on S-RerL and S-Hyp, followed by S-TRaNs with S-ANDOR11-, we have:
PE] - a A ubs(a) v Ibz(a) < (a A ubs(a) v lbz(a)) A pubs (@) v plbz (@) (31)

Similarly, by S-ANDOR2- on S-ReFL and S-Hyp, followed by S-Trans with S-ANDOR119, we
have:

= a A ubz(a) A ubz/(a

(30)
a

PE] = (@ A ubs(a) v lbs(a)) A pubsz () v plbzr (@) < a A ubs(a) v Ibs(a) (32)
By Corollary B.41, we have:
>Eq - ubz (o) = pubs () (33)
>Eq b lbz (o) = plbg (@) (34)
Then by S-TrANs on (31)/(32), (33), and (34), we have:
>EypE) - a A ubs(a) v Ibz(a) = (a A ubz(a) v bz(a)) A ubz (@) v bz (a)  (35)
Then by S-TRANs on (35) and (30), we have:
>EypE) - a A ubz(a) v lbz(a) = a A ubzz (@) v b=z (@) (36)

’
1
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By Lemma B.38 on (36), we have:

bELpE - pr=p'w forallrw (37)

Then by S-TRANS on Lemma B.25 and (37), we have:
o E (B EL B T) b ' (E B By D) (39)

Then by Lemma B.30 with (24) and (38), (18) implies:
>Eyp(ExBrEyE) ECy < L (39)

Then by S-ANDOR2- on (17) and (39), we have:
l>Eo:‘p(Eﬂ!'Ell'E/Z'Z) = \/iel‘.n C? <1
ie, DEgp(ExpE 3)FHD0< L (40)

Case C-Bot. Immediate by S-ToB>.
Case C-Crs1. Then D° = 7 [#C;] A —(U v #C;) for some Cy, Cy, I [#Cy], and U. By S-CLSSUB on
the premise C; € S(#C;), we have:

#Cp < #Cy (41)
By S-TraNs on S-ANDOR119, (41), and S-ANDOR12:, we have:
T[#C] < U v #C, (42)
Then by Theorem B.20, (42) implies:
T[#C] A —=(Uv#C) < L (43)

Cases C-CLs2, C-Crs3. Then D’ = TN[N] A —(U v #C) for some N, C, TN[N], and U. The
premise of the rule is:

23 INN]JA-U=¥ (44)
By IH on (44), we have:
BEep(EpE 2 IN[N]A-U< L (45)
By S-AnNDOR11- followed by S-NEGINV, we have:
—=(U v #C) < —U (46)
Then by S-TRANS on (46) and (45), we have:
BEep(EpE 3 IN[N] A =(Uv#C) < L (47)

Case C-Fun1. Then D° = 7[D; — Dz] A —(D3 — Dy) for some D_jj€1"4 and 7[D; — Dz]. The
premises of the rule are:

25 <Dy <Dy = Ell (48)
EE, <X+ Dy <Dy =E, (49)
for some 2/ and Z,, where Z’ = =/ -E),. By Lemma B.113 on (48) and (49), we have:
"‘~<12':.1 — D3 x D1 (50)
E-E[-<Z-E) - Dy < Dy (51)
By Lemma B.30 with Lemma B.25, (50) and (51) imply:
E28.<¥+ D3 <Dy (52)

E-E <% Dy < Dy (53)
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By Corollary B.40, we have:

Eg b nm=[a— anubg,(a)vibs, (a)]r forallrx

ie, Eqbnm=pn foralln (54)
By S-TraNs on Lemma B.25 and (54), we have:
Eap(BEgE <¥) £ EyE <X (55)

Then by Lemma B.30 with (55), (52) and (53) imply:

Eap(EgE <) D3 < Dy (56)
B p(EgE <) - Dy < Dy (57)

Then by S-FunDEPTH on (56) and (57), we have:
bEy-p(Eg-E3) - Dy — Dy < Dy — Dy (58)

By S-TraNs on S-ANDOR119, S-ANDOR129, and (58), we have:
bEyp(Eg-E %) - I[D; — Dz] < D3 — Dy (59)
By Theorem B.20, (59) implies:
bEgp(ExE %) - I[D; — Dz] A —=(D3 — Dg) < L (60)

Case C-Rcp1. Similar to case C-Fun1.
Case C-Var1l. Then D’ = C A fand &' = gl-(p < —C) for some f, C, and Z/. By S-Hyp, we
have:

<
ie, p( < —pC (61)

1
ie, p(p 1 (62)
By Corollary B.41, we have:

bEy - CAf=[a— anubs, (a) v ibg, (a)](C A p)

ie, PEGHFCAB=p(CAP (63)
Then by S-TrRANs on (63) and (62), we have:
PE4Pp(Exr Bl (< —C)E)-CAf< L (64)

Case C-VAR2. Similar to case C-VARI.

LEMMA B.118 (GUARDEDNESS OF CONSTRAINING).
(DIfEE-n «1p=E anderr¢ =/, thenZ' guard..
(2) IfE. 2+ \/,;C? = = and TTV'(C?) are distinct and err¢ =/, then =’ guard..

Proor. By straightforward induction on constraining derivations. O
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B.15 Type Inference Termination Proof

The basic intuition is that by Theorem A.9, we know that in well-formed declarations contexts,
there is only a finite number of types that can be reached by expanding all the user-defined type
constructors in a given type. Therefore, the number of types that may be reached while applying
constraining rules is finite, and since each traversed type is saved as part of the current subtyping
hypotheses, all executions of constraining will eventually halt.

ProoF 5.7 (TERMINATION OF CONSTRAINING). Let T; be the set of type pairs that are constrained
at any recursive depth i of the type constraining algorithm.
We can see from the constrammg rules of Figure 8 that if we start from the constraint = - 75 < 7y,

thenTy = {1 < m }and T; < Tl.’ where:

Ty ={tnn<m}UE

Tl/_~_1 = {D3<D;|I[D;—> D] A—=S"[D3—Dy4|€S;}
U {Dy < Dy | I[D; — D3] A =S~[Ds — D4] € 5; }
U{Dy <D|I[{x:Ds }JA~S"[{y:D} €S ye{x}}
U{Viest<—C[Craes, SeP({rn|r<aecl;,;Ti})}
u{a<—-C|CAracs}

U{C< Aiest|Chr—aes, SeP({n|la<rel;;T/}}
<

a|CA—aeS;}

Si={Cl(r<m)eT, dnf(r n—1)=\,Cs, Ce{C; }}

Si puts each constraint in T, into RDNF, as is done by C-Assum. The first two components in
the inductive definition of T, correspond to the premises of C-Fun1, and the third component to
the premise of C-Rcp1. In addition to the pairs of types constrained (i.e., the hypotheses assumed),
Tl.’ also contains the bounds assumed in the premises of C-VARr1 and C-VAR2, as seen in the fifth
and seventh components. Therefore we can simply look up the bounds from the union of T/ for
Jj < iin the fourth and sixth components, which correspond to the premise of C-Var1 and C-VARr2
respectively. To exclude hypotheses assumed by C-Assum, which may not end up being assumed
as a bound by C-VaRr1 and C-VaRr2, we overapproximate by considering all subsets of such pairs of
types.

Next, we show that the size of | J; T} is bounded.

The functions collectcc traverse a type and collect the type variables, class and alias types, nominal
tags, and record labels, which we abbreviate as c, reachable from the type.

¢ =TV (type variables)
| CA (class and alias types)
| NT (nominal tags)
| RL (record labels)
N[7]* ==¢€ | N[7]*-N[7]
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collect}c\][ﬂ* (> )= collecz‘N[ﬂ’x< (T )u collectﬁv[ﬂ* (12)
collectN[ﬂ*({x 7)) = collecty (T) u{x} ifc=RL
¢ collect (T) otherwise
) collectY TN 1y G (N[7]}  ifN[7] ¢ N[Z]* andc = CA
collectN ™ (N[7]) = N[z]*-N[z] , P o
c collect, () if N[7] ¢ N[7]* and ¢ # CA
) if N[7] € N[7]*

where N[7| exp. 7/
{#C} ifc=NT
(%] otherwise

N[7T @ ife =TV
collect,, (1 (a) = { {@ } o];herwise

collectN[T] (#C) = {

collectlc\][ﬂ*(TQ) =

collecti\][ﬂ* (1 ver) = collect?][ﬂ* (r1) U collecti\][ﬂ* (12)

collectlc\][ﬂ*(ﬁr) = collect?j[ﬂ* (7)

Similarly, the function depth traverses a type and measures the nesting depth of type constructors
up to the first recursive occurrence of a class or alias type.

depthN17) (z; — 7,) = max(depthN7) (ry), depthN7) (7)) + 1
depthNF ({ x : 7}) = depthNTF (1) + 1

depthTT (NT7]) = { gepth[ﬂ*'Nm(f’) iﬁ E 11:]1 E . where N[7] exp. 7
depthN T (#C) = depthNF) (@) = depthN T (T¢) = 0
depthN1 (1 v° 1,) = max(depthN ) (1)), depth™ 7 (1))
depthN1T (=) = depthNT7 (1)

By the Theorem A.9, if D wf; then for all 7, the sets collectc(r)c are finite, and depth(r) is finite.

Given a set of types S, we can collect the ¢ reachable from it as collect,(S) = | J, . g collect.(t)
and the type constructor nesting depth as depth(S) = max,c s depth(r). Then we can inductively

construct the universes U; of C’s up to depth i that only contain collect, (S)C without duplicates, as
do the results of dnf’. Notice that all of U; are finite.

For any §' where collect(S") < collect.(S) , depth(S') is the type constructor nesting depth after
expanding class and alias types up to the first recursive occurrences, while dnf’ expands class and
alias types on the top level, which by the guardedness check does not include their first recursive
occurrences. Since the RDNF subexpression unnesting in the first three components of the inductive
definition of T}, the Boolean algebraic connectives in the remaining four components, and dnf® in
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S; all preserve the depth and do not introduce new ¢, we have:

Si & Udepth(ty)
Ti/ = TOI V) ({ \/reS T | Se P(Udepth(To’)) } U COlleCtTv(TO/))
X ({Viest|S€PUipnan)} 9 {Neest|S€PUsepmry)) }

V{7 | 7€ Uteprn(ry) } L collectry(Ty))
Therefore the set T = [ J; T; of all pairs of types ever constrained by the algorithm is bounded by:

TcUT cTiv  ({Viest|S€PUipmy)) } v collectty(Ty))
x ({ \/reS T | Se ¢)(Udepth(TO/)) } Y {/\reS T | Se ¢)(Udepth(To’)) }
U{ T ‘ TE Udepth(TO’) } U COlleCt'rv(TO/))
and is thus finite.
Since C-Hyp ensures that the subtyping context X reachable by the subtyping algorithm cannot
contain duplicates, we have ¥ € T U { err}. Since T is finite, ¥ is also finite. Since recursive calls

to the constraining algorithm always increases the size of %, this implies that constraining always
terminates. O

B.16 Type Inference Completeness Proofs

LEMMA B.119 (COMPLETENESS OF TYPE INFERENCE — GENERAL). If E\ T —* P:r,then T |F* P:
v = E for some = and 7’ so that VE'.7' <" VE. 1.

Proor. By induction on program typing derivations.

Case T-Bopy. Then P = t for some t. The premises of the rule are:

= cons. (1)
El+t:r (2)

By Lemma B.123 on (2) and (1), we have:

Tt: 7 =52 (3)
Erp’ <1 (4)
EE pE (5)

for some 7’ and =’ and p, where dom(p) = fresh((3)). By I-Bopy on (3), we have:
T t:r =7 (6)
By S-ALL on (4) and (5), we have:
ve. 7 <" VE.7 (7)
Case T-DEF. Then P = def x = t; P’ for some x and ¢ and P’. The premises of the rule are:

=, cons. (8)
E], I't: 1 (9)
ET(x:VEi.o) " P i1 (10)
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By Lemma B.123 on (9) and (8), we have:

Tit:r] =& (11)
ik pir <1 (12)
E1 E piEf (13)

for some 7] and Z] and p;, where dom(p;) = fresh((11)). By S-ALL on (12) and (13), we have:
Vel 7 <" VE.. o (14)

By Lemma B.120 on (10) and (14), we have:

E(x:VEL1) " Pt (15)

By IH on (15), we have:
I(x:VEl.7)) K" P : 7 =& (16)
ve'. ¢ <" VE.r (17)

for some 7’ and Z’. By [-Bopy on (11) and (16), we have:
F'i-*defx=1t;P:7 =% (18)
O

LEMMA B.120 (STRENGTHENING). IfE,T-(x:0y) - t:Tande - 0, <" 0y, then E,T-(x : 03) I
t:7.

Proor. By straightforward induction on typing derivations. O

Definition B.121. We write fresh(A) to denote all the type variables that are taken as fresh in the
given derivation A.

Definition B.122. We say p extends p’ if [ar> (%~ D €pacdomp)] — 5

LEmMA B.123 (COMPLETENESS OF POLYMORPHIC TYPE INFERENCE). IfE,T' |-t : 7 and E cons. and

EE poZo, then (A)Eg, T I-t: 7 = E and E + pt’ <t and E = p(Ey-E') for some v’ and Z' and
p, where err ¢ =’ and p extends py and dom(p)\dom(py) = fresh(A).

Proor. By induction on term typing derivations.

Case T-SuBs. Then the premises of the rule are:

ETHt:n (1)
En <7 (2)
for some 71. By IH on (1), we have:
Z,TI-t: 0 =& (3)
ERpr <1y (4)
EE p(E0-E) (5)

for some 7’ and =’ and p, where err ¢ =’ and p extends py and dom(p)\dom(po) = fresh((3)).
By S-TraNs on (4) and (2), we have:

Erpr’ <1 (6)
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Case T-OBj. Thent = C {x; = tl-i} and 7 = #C A {X;:7;' } for some C and X;' and t_ii and 77’

The premises of the rule are:

=Tt Tii
C final

Then for each i, repeat the following:
Assume the following:

—j€0..i—1
EE pic1(Ej )
#]Gl..i*l
= 'Difll'j < Tj

By IH on (7), we have:

—=Jj€0.i—1 / —_
Ej Flkti:ri:>:i
|_Pl S}
—Jj€0..i—1 _
= )=p,<._.] di)

©)
(10)

(11)
(12)
(13)

for some 7/ and E; and p;, where err ¢ Z; and p; extends p;_, and dom(p;)\dom(p;—1) =
fresh((ll)) Since p; extends p;_; and dom(pl)\dom(pl 1) are picked to be fresh in (11),

el..i—1
, we have:

which means they could not have appeared in TJ

—————jeli-l
,DIT = pPi— IT

Then (10) implies:
— - jel.i—1
== piT; S Tj

Then in the end we have:

—J€0..i—1
=j i

2 p(BeEr)

EFpr <t

Tt = 5

(14)

(15)

(16)
17)
(18)

for some r_lfi and E_l-i and p, where err ¢ E_ii and p extends py and dom(p)\dom(py) =
\UJ; (dom(p;)\dom(p;_1)) = |J; fresh((16);). By I-OBj on (16) and (8), we have:

By S-RcpDEPTH on (18), we have:

Er{x:pr}<{xi:u}

By Lemma B.222 on S-REFL and (20), we have:

EF#C A {x;: pr. pT! } #C A {x; 71}

=i

_.O,I‘IFC{xl—tl} #C/\{x,. ’}:

(19)

(20)

e, Er p#CA{xi:t }) #C A {x; 15 } (21)
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Case T-Proj. Then ¢ = t'.x for some ¢’ and x. The premise of the rule is:

ETHt:{x:7} (22)
By IH on (22), we have:
=TIt =5 (23)
Ebpir’ <{x:7} (29)
EF p1(E0Er) (25)
for some 7’ and =, and p;, where err ¢ =; and p; extends py and dom(p;)\dom(p,) =
fresh((23)). Introduce a fresh « and let p = [a — 7, /m(ﬁH”)Epl]. Then we have:
pt’ = pit’ (26)
p{x:a}) ={x:1} (27)
p(E0-E1) = p1(E0-E1) (28)
Then (24) and (25) imply:
Etpr <p({x:a}) (29)
E k- p(E0-E1) (30)

By Lemma 5.9 on (29) and (30), we have:
E0Ene T <« {x:a}=E, (31)
for some E,, where err ¢ =, and E = p=;. Then by I-Proj on (23) and (31), we have:
Eo,TI-t'x:a=E-Ey (32)
Since pa = 7, by S-REFL, we have:

EF pa < (33)

Y

(30) and E = pE; implies:

(1]
[1]

EE p(Eo 2) (34)

.
Case T-Var1. Immediate by I-VAR1.

Case T-VAR2. Then ¢ = x and I'(x) = VZE;. r; for some x and Z; and 7;. By the definition of <",
we have:

E F p1E (35)
E-pinn ST (36)

for some p;, where dom(p;) = TV(E;) u TV(7;) =: S. Introduce a fresh y, for each a € S.
Then by I-VAR2, we have:

aeS]

EoT-x:[a— vy 7= [a— ya“es]El (37)

aES]

Let p = [ya — p1@ . Then we have:

pola—ya"c"]

=pio[fa—a“®lo[@a—y."*] (38)

= p10[ya— a*c’]



138 Lionel Parreaux and Chun Yin Chau

Since 7% €% are picked to be fresh, which means they could not have appeared in Z; and 7;,
we have:

[Ya —a Ei=& (39)
aES]Tl =T (40)

Then we have:

piE1 = pi([Ya — a*<°]5)) (a1)
= p([@=va"*]81)
pit1 = p1([ya = a*=°r1) (42)
— ([T T )
Then (35) and (36) imply:
E F p[@=7a"*1E) (43)
Erp(l@=7"ln) <t (44)
Case T-ABs. Then t = Ax.t' and 7 = 7; — 1, for some x and ¢’ and 7; and 7,. The premise of the
rule is:
ET(x:m) 1t :n (45)
Introduce a fresh a. By Lemma B.124 on (45), we have:
E(a<n)T(x:a)-t 7 (46)
Et[a—n]d < (47)
By IH on (46), we have:
Eo,T(x:a) -t : 7" =7 (48)
E(a<n)Fpmt’ <7 (49)
E(a<n)kEpi(EoE) (50)

for some 7" and &’ and p;, where err ¢ E' and p; extends py and dom(p;)\dom(p,) =
fresh((48)). By I-ABs on (48), we have:

EoTIFAxt ia -1 =& (51)

By Lemma B.36, (49) and (50) imply:

"

|7’ (52)

Tl) = [(X — Tl] o pl(Eo'E/) (53)

By S-Cons on Lemma B.25 and S-ReFL, we have:

ie, [a— n]E(n

[a — Tl]E = [C( = Tl]E'(Tl < Tl) (54)
By Lemma B.30 with (53), (51) and (52) imply:
[a > ]2+ [a— n]opt” < [a— o] (55)

[a = 112 E [a— 1] 0 p1(Eg-E) (56)
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Since « is picked to be fresh, which means it could not have appeared in =, we have [a —
71]E = E. Then (54) and (55) imply:

Etla—1]opt” <[a— nlr (57)
EE[a— 1o pi(EeE) (58)
By S-Trans on (57) and (47), we have:
Erla—nlopmt” < (59)
By S-FunNDEPTH on S-REFL and (60), we have:

= T — [C(’—> ‘L'1] Opl‘L'”

ST
ie, EF[a—rnlopla—1")< > (60)
Cases T-App, T-Asc, T-Casel, T-Case2, T-CAsE3. Similar to case T-Proj.

O

LemMA B.124. IfET(x: 1) - t: 7, thenE-(a < 1), T (x:a) Ht: T andEF+ [a — 1]’ < T
for any a fresh and some 7’.
Proor. By straightforward induction on typing derivations. O
PRrROOF 5.9 (COMPLETENESS OF CONSTRAINING). By Theorem 5.7, we have:
e <K== (1)
for some Z’. The result then follows from Lemma B.125. O
LEMMA B.125 (NECESSITY OF CONSTRAINING).

(1) IfE+ pry < pry and E cons. and E = p=y and 50,32 11 K 13 = &, then B = p=/.
(2) FE + pD° < L and E cons. and E = pZy and 29, > + D® = =/, then E | p=&'.

Proor. By induction on constraining derivations.

Cases C-Hyp, C-Bot, C-Crs1. Immediate by S-EmMpTY since &' = .
Case C-AssuM. From the assumptions, we have:

Et pr < pro (1)
The premise of the rule is:
E0, 2> (r; < 1) b dnfo(ry A —1p) = & (2)

By Theorem B.20, (1) implies:

Epn A—prp <L
ie, EbFp(nA—-n) <L (3)
By Lemma 5.3, we have:
7 A 1y = dnfo(1; A —1) (4)
By Lemma B.36, (4) implies:
p(t1 A —13) = pdnf®(r; A —13) (5)

By S-TraNs on (5) and (3), we have:
EF pdnf’(r; A —1p) < L (6)
The result then follows from IH on (2) and (6).
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Case C-OR. Then D° = DY v C° for some D! and C°. From the assumptions, we have:

E-pDIvC) <L (7)
2 pEy (8)
The premises of the rule are:
Eo.2 DY = E] 9)
EpEL 2 C' = (10)
for some = and E), where &’ = =/-E). By S-~ANDOR11- and S-ANDOR12- respectively, we
have:
pDY < pDY v pC°
ie, pD?<p(DIvCY (11)
pC® < pDY v pC°
ie, pC’<p(D?vCY (12)
By S-Trans with (7), (11) and (12) respectively imply:
EpDi< L (13)
ERpCl< L (14)

By IH on (13) and (8) and (9), we have:

[1]
[1]

-

Ep (15)
(8) and (15) imply:
E E pEypE]
ie, ZEEp(EeE)) (16)
By IH on (14) and (16) and (10), we have:

= pE, (17)

[1]

(15) and (17) imply:
EE pE-pE)

ie, EEp= (18)
Case C-NoTBot. Then D’ = N A F A R A —L for some N and F and R. From the assumptions,
we have:
EFpINAFARA-L) <L
ie, EFNApFApRA—-L<L (19)
= cons. (20)
By S-TraNs on S-ToB- and Theorem B.11, we have:
NApF ApR<—1L (21)
By S-ANDOR2? on S-REFL and (21), we have:
N ApF ApRSNAPF ApRA—L (22)

By S-TRANSs on (22) and (19), we have:
EFNApF ApR< L (23)
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Since TTV(N A pF A pR) u TTV(L) = &, by Lemma B.49 on (20) and (23), we have:
PEFNApF ApR< L (24)

Notice that N' A pF A pR is in CDN-normalized form. Since none of { N, pF, pR } is a
negation, N A pF A pR is complement-free. Then by Lemma B.89 on (24), we have:

LA (v ) (25)

— — 0/ .
for some 7'[;.] and D j] and VjD] , where A\ j V].D’ is complement-free. By S-ANDOR12:, we have:

B pt
v cx v (26)

By Lemma B.222 on (26), we have:

D; D;
/\jvjjg/\j(”]/‘vvjj) (27)
By S-TrANs on (27) and (25), we have:
AV e L (28)

Co . . Dj . . . .
which is impossible since /\ iV 7 is complement-free. Therefore this case is impossible.

Case C-Crs2. Then D° = 7 [#C;] A —(U v #C;) for some C; and C; and 7 [#C;] and U. From the
assumptions, we have:

E p(J[#C] A —=(U Vv #Cy)) < L (29)
= cons. (30)
The premises of the rule are:
Cy ¢ S(#Cy) (31)
B, 2 F I[#Ci] A ~U =& (32)
By Theorem B.20 on (29), we have:
B pI[#C1]) < p(U v #Cy)
e, Eb pI[#Ci] < pt® v/ #C) v #C (33)

for some 7 € {1, D; > Dy, {y:D;}} and C_}J, where U = pz° v \/;#C]. Since
TTV(pI[#Ci]) U TTV(pz® v \/;#C) v #C;) = &, by Lemma B.49 on (30) and (33), we

have:
DE - pI[#C1] < p° v \/#C) v #C, (34)
By Lemma B.89 on (34), we have:
pI[#C1] =V, (1] A X[Y) (35
bE - X < Yii (36)

— R _i - (3
for some T;l and C; and Xl.ci and Y; € { p7%, #Cy, #C;.] }, where \/in.Ci is complement-free.
By S-ANDOR122, we have:
i

o AX{ S X (37)
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By Lemma B.22- on (37), we have:

Vi (7 A X,'Ci) < \/iXiCi (38)
By S-TraNs on (35) and (38), we have:
pI[#Ci] = \/, X{ (39)

By Corollary B.86, (39) implies:
pI[#Cy] = XS (40)

for some k.
Case C € { L, 7' }. Then we have:

Cr _
X =1 (41)
By S-TraNs on (40) and (41), we have:
pI[#C] < L (42)

By S-ANDOR112, we have:
pI[#Ci] A p(=U)
ie, p(I[#C1] A —U)
By S-TrANs on (43) and (42), we have:
p(I[#C] A —U) < L (44)
The result then follows from IH on (32) and (44).

pI[#Ci]

<
< pI[#C] (43)

1 1
Case Cr. ¢ { L, 7' }. Let Xka = /\leCl" for some Xkclk where X]flk are not intersections. By

S-ANDOR112 and S-ANDOR12D, we have:

—_—
C C

X e X f (45)

By S-TraNs on (40) and (45), we have:
—_—

Notice that pZ [#C;] is in CDN-normalized form. Since none of the conjuncts of pZ [#C;] is
a negation, pJ [#C;] is complement-free. Then by Lemma B.82, (46) implies:

—

prd © XK (47)

S —

for some Tlo e{N,F,R},where I[#C;] = N A F A R. By Lemma B.87, (47) implies:

0 1
AT (48)

Then by Lemma B.60 on (47), we have:

Xk = pr? (49)

By the syntax of Xkc ¥ and (49), we have:

S
pt) = pr} (50)

Then we have:

Xk = N\, pr? (51)
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Then (36) implies:
bE - A ot < % (52)
Since < implies <, (52) implies:

SEE Ap < Y

ie, PER prl <Y (53)
By Theorem B.88 on (53), (31) implies Yy # #C,. By S~ANDOR11¢ and S-ANDOR120, we
have:
pI[#Ci] = p(N A F AR) < pt? (54)
Ve <7 v V;#C; = U (55)
By S-Trans on (54) and (53) and (55), we have:
>E - pl[#C < U (56)
By Theorem B.20, (56) implies:
BE - pl[#C] A —-U< L (57)
By Lemma B.30 with Lemma B.25, (57) implies:
ER pl[#C] A -U< L (58)

The result then follows from IH on (32) and (58).
Case C-CLs3. Similar to case C-CLs2. 1
gt} .
Case C-Fun1. Then D’ = 7[D; — D;] A —(D3 — Dy) for some D; . From the assumptions,

we have:
Er p(Z[D; — D] A =(D3 —> Dy)) < L (59)
= cons. (60)
2k pEy (61)
The premises of the rule are:
Eo, <X - D3 « Dy = & (62)
Ep-E/, <% - Dy « Dy = & (63)
for some Z7 and Z), where Z' = Z-Z/. By Theorem B.20 on (59), we have:
E - pI[D; — D] < p(D3 — Dy) (64)
Since TTV(pI[D; — D3]) u TTV(p(D3 — Dy4)) = &, by Lemma B.49 on (60) and (64), we
have:
>E - pZ[D; — D3] < p(Ds — Dy) (65)
By Lemma B.89 on (65), we have:
pI[Di — Do) =V, (1) A X{) (66)
>E - Xici < p(D3 — D4)l (67)

i . —i
for some rlf ' and Cl-l and Xic i where \/i Xl.c" is complement-free. By S-ANDOR122, we have:

—_—
C; C;
o A XS C X (68)
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By Lemma B.22- on (68), we have:

V(g X7 € VX (69)
By S-TRrANs on (66) and (69), we have:
pI[D; — D] €V, X" (70)

By Lemma B.59, (67) implies that each of a—i is either bottom, arrow, or a negated record field.
By Corollary B.86, (70) implies:

pI[D; — D] € X* (71)

for some k.
Case C € { L, T'}. Then we have:

Cr
X =1 (72)
By S-TraNs on (71) and (72), we have:
pI[D; — D] < L (73)

which is impossible by the same reasoning as case C-NotBoT. Therefore this case is
impossible.

— —

Case Cy =—. Let Xka = /\,XkClk for some Xkclk where Xkcl" are not intersections. By S-
ANDOR11? and S-ANDOR122, we have:
—_—
Xk c Xk (74)
By S-TraNs on (71) and (74), we have:

pI[D; — Dg] < X5+ (75)

Notice that p7[D; — D] is in CDN-normalized form. Since none of the conjuncts of
pI[D; — Ds] is a negation, pJ [D; — D] is complement-free. Then by Lemma B.82, (75)
implies:

—_—

prd © XK (76)

—I
for some z'lo e{N,F, R}, where I[D; — Dz] = N A F A R. By Lemma B.87, (76)
implies:

)
7 #T (77)

Then by Lemma B.60 on (76), we have:
1

C)
X = pz’lo (78)
By the syntax of Xkc ¥ and (78), we have:
—_
pr) = pt} (79)
Then we have:
lek =/ pr? (80)

Then (67) implies:
>E A pr} < p(Ds — Ds) (81)
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Since < implies <, (81) implies:
>E+ /A pr) < p(Ds — Ds)
ie, BEF pr) < p(D3 — Dy)

By Theorem B.88 on (82), we have:

9 =D; — D,

E+ pDs < pDy

E+ pD; < pDy
By IH on (84) and (61) and (62), we have:

Bk pE]
(61) and (86) imply:
E I pEopE]

= p(E0-E})
By IH on (85) and (87) and (63), we have:

[1]

ie.,

(86) and (88) imply:

/
2
ie, EEp(E-E)

Case Cx = x. Then Xka ==V, {x: 7} for some 7;’. Then (71) implies:

pI[D1 — Dz] = =~/ {x:7;}
By S-ANDOR11-, we have:
{x:m}cV;{x:n}
By S-NEGINV on (91), we have:
SV {xim ) ~fxim)
By S-TraNs on (90) and (92), we have:
pI[D; —» Ds] € —~{x:m}
By Theorem B.20 on (93), we have:
pI[D; > Dy A{x:m}c L
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(82)

(83)
(84)
(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

which is impossible by the same reasoning as case C-NotBoT. Therefore this case is

impossible.
Case C-Rcp1. Similar to case C-Fun1.
Cases C-Fun2, C-Rcp2, C-Rcp3. Similar to case C-NoTBoOT.

Case C-Var1. Then D° = C A @ and & = E/:(a < —C) for some C and « and E/. From the

assumptions, we have:

[1]

Fp(Cra)< L
= cons.

E'ZPEO

(95)
(96)
(97)
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The premise of the rule is:
Zo-(a < =C),3 + Ibg,(a) « =C = E] (98)
By Theorem B.20, (95) implies:

ie, EF pa<p(—C) (99)
By S-ANDOR2 on S-Hyp, we have:
Eo b lbg,(a) < (100)
By S-Hyp, we have:
(a<—C)Fa<—C (101)
By S-TraNs on (100) and (101), we have:
Zo-(a < =C) = bz (a) < —C (102)
By Lemma B.36, (102) implies:
p(Eo-(a < —C)) = plbg, (@) < p(—C) (103)
By S-Cons on (97) and (99), we have:
E  pEo(pa < p(—C))
ie, EEpEy(a<Q)) (104)
By Lemma B.30 with (104), (103) implies:
E - plbg,(a) < p(—C) (105)
By IH on (105) and (104) and (98), we have:
EE pE (106)

By S-Cons on (106) and (99), we have:
E k= pE}-(pa < p(—C))
ie, EEp& (107)

Case C-VAR2. Similar to case C-VARI.
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