
MLstruct: Principal Type Inference
in a Boolean Algebra of Structural Types (Extended)∗

LIONEL PARREAUX, HKUST, Hong Kong, China

CHUN YIN CHAU, HKUST, Hong Kong, China

Intersection and union types are becoming more popular by the day, entering the mainstream in programming

languages like TypeScript and Scala 3. Yet, no language so far has managed to combine these powerful types

with principal polymorphic type inference. We present a solution to this problem in MLstruct, a language

with subtyped records, equirecursive types, first-class unions and intersections, class-instance matching, and

ML-style principal type inference. While MLstruct is mostly structurally typed, it contains a healthy sprinkle

of nominality for classes, which gives it desirable semantics, enabling the expression of a powerful form of

extensible variants that does not need row variables. Technically, we define the constructs of our language

using conjunction, disjunction, and negation connectives, making sure they form a Boolean algebra, and we

show that the addition of a few nonstandard subtyping rules gives us enough structure to derive a sound

and complete type inference algorithm. With this work, we hope to foster the development of better type

inference for present and future programming languages with expressive subtyping systems.

CCS Concepts: • Software and its engineeringÑ Functional languages; Polymorphism.

Additional Key Words and Phrases: principal type inference, union and intersection types, structural typing

1 INTRODUCTION
Programming languages with ML-style type inference have traditionally avoided subtyping because

of the complexities it brings over a simple unification-based treatment of type constraints. But

Dolan and Mycroft [2017] recently showed with MLsub that an algebraic account of subtyping

resolved many of these difficulties and enabled the inference of precise types that more accurately

reflect the flow of expressions in programs. Unfortunately, among other limitations, MLsub does

not support union and intersection types, which are emerging as important building blocks in the

design of structurally-typed programming languages like TypeScript, Flow, Scala 3, and others.

We close this gap with MLstruct, showing that MLsub-style type inference can be generalized

to include well-behaved forms of union and intersection types as well as pattern matching on

single-inheritance class hierarchies. As a first example, consider the following definitions:

class Some[A]: { value: A }

class None: {}

def flatMap f opt = case opt of

Some Ñ f opt.value ,

None Ñ None{}

The type inferred by our system for flatMap is:

flatMap : @𝛼, 𝛽. p𝛼 Ñ 𝛽q Ñ pSomer𝛼s _ Noneq Ñ p𝛽 _ Noneq

Interestingly, this is more general than the traditional type given to flatMap for Option types.

Indeed, our flatMap does not require the function passed in argument to return either a None or

a Some value, but allows it to return anything it wants (any 𝛽), which gets merged with the None

value returned by the other branch (yielding type 𝛽 _ None). For example,

let res = flatMap (fun x Ñ x) (Some{value = 42})

is given type 42_ None1 because the function may return either 42 or None. A value of this type

can later be inspected with an instance match expression of the form:

∗
This is version 8.0 of the paper; get the latest extended version at https://lptk.github.io/mlstruct-paper.

1
MLstruct supports singleton types for constant literals, e.g., 42 is both a value and a type, with 42 : 42 ď Nat ď Int.

Authors’ addresses: Lionel Parreaux, parreaux@ust.hk, HKUST, Hong Kong, China; Chun Yin Chau, cychauab@connect.

ust.hk, HKUST, Hong Kong, China.

HTTPS://ORCID.ORG/0000-0002-8805-0728
HTTPS://ORCID.ORG/0000-0003-0323-6644
https://lptk.github.io/mlstruct-paper
https://orcid.org/0000-0002-8805-0728
https://orcid.org/0000-0003-0323-6644

2 Lionel Parreaux and Chun Yin Chau

case res of Int Ñ res , None Ñ 0

which is inferred to be of type 42 _ 0, a subtype of Nat. This is not the most general version

of flatMap either. We can also make the function open-ended, accepting either a Some value or

anything else, instead of just Some or None, by using a default case (denoted by the underscore ‘_’):

def flatMap2 f opt = case opt of Some Ñ f opt.value , _ Ñ opt

This flatMap2 version has the following type inferred, where _ and ^ have the usual precedence:

flatMap2 : @𝛼, 𝛽. p𝛼 Ñ 𝛽q Ñ pSomer𝛼s _ 𝛽 ^␣ #Someq Ñ 𝛽

This type demonstrates a central aspect of our approach: the use of negation types (also called

complement types), written ␣𝜏 , which allows us to find principal type solutions in tricky typing

situations. Here, type #Some is the nominal tag of class Some. A nominal tag represents the identity

of a class, disregarding the values of its fields and type parameters: if a value 𝑣 has type #Some,
this means 𝑣 is an instance of Some, while if 𝑣 has type ␣#Some, this means it is not. To showcase

different usages of this definition, consider the following calls along with their inferred types:
2

ex1 = flatMap2 (fun x Ñ x + 1) 42 : Int
ex2 = flatMap2 (fun x Ñ Some{value = x}) (Some{value = 12}) : Somer12s

ex3 = flatMap2 (fun x Ñ Some{value = x}) 42 : SomerKs _ 42

It is easy to see that instantiating 𝛽 to Int and Somer12s respectively allows ex1 and ex2 to type

check. In ex3, both types Somer𝛾s and 42 flow into the result, for some type inference variable 𝛾 ,

but 𝛾 is never constrained and only occurs positively so it can be simplified, yielding SomerKs_ 42.

We can convert ex3 to 42 through a case expression using the impossible helper function:3

def impossible x = case x of {} : K Ñ K

case ex3 of Int Ñ ex3 , Some Ñ impossible ex3.value : 42

One may naively think that the following type could fit flatMap2 as well:

flatMap2_wrong : @𝛼, 𝛽,𝛾 . p𝛼 Ñ 𝛽q Ñ pSomer𝛼s _ 𝛾q Ñ p𝛽 _ 𝛾q

but this type does not work. To see why, consider what happens if we instantiate the type variables

to 𝛼 “ Int, 𝛽 “ Int, and 𝛾 “ SomerBools. This yields the type:

flatMap2_wrong1 : pIntÑ Intq Ñ pSomerInts _ SomerBoolsq Ñ pInt_ SomerBoolsq

whichwould allow the call flatMap2 (fun x Ñ x + 1) (Some{value = false }) because SomerBools ď
SomerInts _ SomerBools. This expression, however, would crash with a runtime type mismatch!

Indeed, the shape of the Some argument matches the first branch of flatMap2’s case expression,

and therefore false is passed to our argument function, which tries to add 1 to it as though it was

an integer... So we do need the negation that appears in the correct type of flatMap2 , as it prevents

passing in arguments that are also of the Some shape, but with the wrong type arguments.

Finally, let us push the generality of our function further yet, to demonstrate the flexibility of

the system. Consider this last twist on flatMap for optional values, which we will call mapSome:

def mapSome f opt = case opt of Some Ñ f opt , _ Ñ opt

The difference with the previous function is that this one does not unwrap the Some value received

in argument, but simply passes it unchanged to its function argument. Its inferred type is:

mapSome : @𝛼, 𝛽. p𝛼 Ñ 𝛽q Ñ p𝛼 ^ #Some_ 𝛽 ^␣ #Someq Ñ 𝛽

2
Notice that only ex3 features a union of two distinct type constructors ‘SomerKs _ 42’ because in ex1 and ex2 only one

concrete type constructor statically flows into the result of the expression (42 and Some, respectively).
3
One may expect SomerKs ” K, but this does not hold in MLstruct, as it would prevent effective principal type inference.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 3

This type shows that it does not matter what specific subtype of Somewe have in the first branch:

as long as the argument has type 𝛼 when it is a Some instance, then 𝛼 is the type the argument

function should take, without loss of generality. This demonstrates that our type system can tease

apart different flows of values based on the nominal identities of individual matched classes.

As an example of the additional flexibility afforded by this new function, consider the following:

class SomeAnd[A, P]: Some[A] ^ { payload: P }

let arg = if xarbitrary conditiony then SomeAnd{value = 42, payload = 23}

else None{}

in mapSome (fun x Ñ x.value + x.payload) arg

of inferred type Int_None. Here, we define a new subclass of Some containing an additional payload

field, and we use this class instead of Some, allowing the payload field to be used from within the

function argument we pass to mapSome . This is not expressible in OCaml polymorphic variants

[Garrigue 2001] and related systems [Ohori 1995]. More powerful systems with row variables

[Pottier 2003; Rémy 1994] would still fail here because of their use of unification: mapSome merges

its opt parameter with the result, so these systems would yield a unification error at the mapSome

call site, because the argument function returns an integer instead of a value of the same type as

the input:
4
subtyping makes MLstruct more flexible than existing systems based on row variable.

MLscript is a new programming language developed at the Hong Kong University of Science

and Technology
5
featuring first-class unions, intersections, negations, and ML-style type inference,

among other features. For simplicity, this paper focuses on a core subset of MLscript referred to as

MLstruct, containing only the features relevant to principal type inference in a Boolean algebra of

structural types, used in all examples above. An MLstruct implementation is provided as an artifact

[Parreaux et al. 2022] and available at github.com/hkust-taco/mlstruct, with a web demonstration

at hkust-taco.github.io/mlstruct. The specific contributions we make are the following:

‚ We present MLstruct (Section 2), which subsumes both the original ML type system and

the newer MLsub [Dolan 2017], extending the latter with simple class hierarchies and class-

instance matching based on union, intersection, and negation type connectives.

‚ We describe our approach to type inference based on the Boolean-algebraic properties of

MLstruct’s types (Section 3). To the best of our knowledge, MLstruct is the first language to

support principal polymorphic type inference with union and intersection types. Moreover,

it does not rely on backtracking and yields types that are amenable to simplification.

‚ We formalize the declarative semantics of MLstruct in the 𝜆␣ calculus (Section 4), making

sure to establish the Boolean-algebraic properties of its subtyping lattice (Section 4.4.4). We

state the standard soundness properties of progress and preservation, whose complete proofs

are given in Appendix B.

‚ We formally describe our type inference algorithm (Section 5). We state its soundness and

completeness theorems. Again, the proofs can be found in Appendix B.

2 PRESENTATION OF MLSTRUCT
MLstruct subsumes Dolan’s MLsub, the previous state of the art in type inference with subtyping,

which itself subsumes traditional ML typing: all ML terms are typeable in MLsub and all MLsub

terms are typeable in MLstruct. On top of this fertile ML substrate pollinated with MLsub’s rich

subtyping theory of records and equirecursive types, MLstruct grows structurally-typed abstractions

4
Wrapping the result in Some would not work either (as Some Int doesn’t unify with Some {value: Int, payload: Int}).

5
The GitHub repository of the full MLscript language is available at https://github.com/hkust-taco/mlscript.

https://github.com/hkust-taco/mlstruct
https://hkust-taco.github.io/mlstruct
https://github.com/hkust-taco/mlscript

4 Lionel Parreaux and Chun Yin Chau

in the form of unions, intersections, negations, structural class types, and class-instance matching.

We now present these features along with some examples.

2.1 Overview of MLscript Features
An MLstruct program is made of top-level statements followed by an expression, the program’s

body. A statements can be either a type declaration (class or type alias) or a top-level function

definition, written def f = t or rec def f = t when f is recursive. MLstruct infers polymorphic

types for def bindings, allowing them to be used at different type instantiations in the program.

2.1.1 Polymorphism. Polymorphic types include a set of type variables with bounds, such as

@p𝛼 ď Intq. Listr𝛼s Ñ Listr𝛼s. The bounds of polymorphic types are allowed to be cyclic, which

can be interpreted as indirectly describing recursive types. For example, @p𝛼 ď J Ñ 𝛼q. 𝛼 is the

principal type scheme of rec def f = fun a Ñ f which accepts any argument and returns itself.

To simplify the presentation of inferred polymorphic types with recursive bounds, such as @p𝛼 ď

𝛼 Ñ 𝛽q, 𝛽 . 𝛼 Ñ 𝛽 , we may use an equivalent ‘as’ shorthand, as follows: @𝛽. pp𝛼 Ñ 𝛽q as 𝛼q Ñ 𝛽 .

MLstruct applies aggressive simplification on inferred types, removing redundant type variables

and inlining simple type variable bounds (see Section 3.5), so that they are usually fairly concise.

2.1.2 Classes, Inheritance, and Type Aliases. Because object orientation is not the topic of this

paper, which focuses on functional-style use cases, the basic OO constructs of MLstruct presented

here are intentionally bare-bone. Classes are declared with the following syntax:

class C[A, B, ...]: D[S, T, ...] ^ { x: X, y: Y, ... }

where A, B, etc. are type parameters, S, T, X, Y, etc. are arbitrary types and D is the parent class of C,

which can be left out if the class has no parents. Along with a type constructor Cr𝐴, 𝐵, . . .s, such a

declaration also introduces a data constructor C of type:

C : @ 𝛽1, 𝛽2, ... , p𝛼1 ď 𝜏1q, p𝛼2 ď 𝜏2q, t𝑥1 : 𝛼1, 𝑥2 : 𝛼2, . . . u Ñ Cr𝛽1, 𝛽2 . . .s ^ t𝑥1 : 𝛼1, 𝑥2 : 𝛼2, . . . u

where 𝑥𝑖 are all the fields declared by Cr𝛽1, 𝛽2, . . .s or by any of its ancestors in the inheritance

hierarchy, and 𝜏𝑖 are the corresponding types – if a field is declared in several classes of the hierarchy,

we take the intersection of all the declared types for that field. To retain as precise typing as possible,

we let the types of the fields taken in parameters to be arbitrary subtypes 𝛼𝑖 of the declared 𝜏𝑖 , so

we can refine the result type Cr𝛽1, 𝛽2 . . .s ^ t𝑥1 : 𝛼1, 𝑥2 : 𝛼2, . . . u to retain these precise types. For

instance, assuming class C: { x: Int }, term C { x = 1 } is given the precise type C^ t𝑥 : 1 u.

Classes are restricted to single-inheritance hierarchies. Like in the work of Muehlboeck and Tate

[2018], this has the nice property that it allows union types to be refined by reducing types like

p𝐶0_ 𝜏q ^𝐶1 to𝐶0^𝐶1_ 𝜏 ^𝐶1 by distributivity and to just 𝜏 ^𝐶1 when𝐶0 and𝐶1 are unrelated

(𝐶0 ^𝐶1 ” K). But MLstruct can easily be extended to support traits, which are not subject to this

restriction, by slightly adapting the definition of type normal forms (our artifact [Parreaux et al.

2022] implements this). Thanks to their use of negation types (described in Section 4.3), the typing

rules for pattern matching do not even have to change, and traits can also be pattern-matched. In

fact, the full MLscript language supports mixin trait composition [Schärli et al. 2003] similar to Scala

[Odersky et al. 2004], whereby traits can be inherited alongside classes, and method overriding is

resolved in so-called “linearization order.”

2.1.3 Shadowing. Non-recursive defs use shadowing semantics,
6
so they can simulate the more

traditional field initialization and overriding semantics of traditional class constructors. For instance:

class Person: {name: Str, age: Nat, isMajor: Bool}

def Person n a = Person{name = capitalize n, age = a, isMajor = a >= 18}

6
Type names, on the other hand, live in a different namespace and are not subject to shadowing.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 5

in which the def, of inferred type Person1 : @p𝛼 ď Natq. Str Ñ 𝛼 Ñ Person ^ t age : 𝛼 u,

shadows the bare constructor of the Person class (of type Person0 : @p𝛼 ď Strq, p𝛽 ď Natq, p𝛾 ď
Boolq. t name : 𝛼, age : 𝛽, isMajor : 𝛾 u Ñ Person ^ t name : 𝛼, age : 𝛽, isMajor : 𝛾 u), forcing

users of the class to go through it as the official Person constructor. Function capitalize returns a

Str, so no ‘name’ refinement is needed (Person^ t age : 𝛼, name : Str u ” Person^ t age : 𝛼 u).

2.1.4 Nominality. Classes are not equivalent to their bodies. Indeed, they include a notion of

“nominal identity”, which means that while a class type is a subtype of its body, it is not a supertype

of it. So unlike TypeScript, it is not possible to use a record {x = 1} as an instance of a class declared

as class C: {x: Int}. To obtain a C, one must use its constructor, as in C{x = 1}. This nominality

property is a central part of our type system and is much demanded by users in practice.
7
It comes

at no loss of generality, as type synonyms can be used if nominality is not wanted.

2.1.5 Type Aliases. Arbitrary types can be given names using the syntax type X[A, B, ...] = T.

Type aliases and classes can refer to each other freely and can be mutually recursive.

2.1.6 Guardedness Check. Classes and type aliases are checked to ensure they do not inherit or

refer to themselves immediately without going through a “concrete” type constructor first (i.e., a

function or record type). For instance, the recursive occurrence of A in type A[X] = Id[A[X]] _ Int

where type Id[Y] = Y is unguarded and thus illegal, but type A[X] = { x: A[X] } _ Int is fine.

2.1.7 Class-Instance Matching. As presented in the introduction, one can match values against

class patterns in a form of primitive pattern matching. Consider the following definitions:

class Cons[A]: Some[A] ^ { tail: List[A] } type List[A] = Cons[A] _ None

rec def mapList f ls = case ls of

Cons Ñ Cons{value = f ls.value, tail = mapList f ls.tail},

None Ñ None{}

of inferred type:
8 mapList : @𝛼, 𝛽. p𝛼 Ñ 𝛽q Ñ pConsr𝛼s ^ t tail : 𝛾 u _ Noneq as 𝛾 Ñ

pConsr𝛽s ^ t tail : 𝛿 u _ Noneq as 𝛿

We define a List type using None as the “nil” list and whose Cons constructor extends Some (from

the introduction). A list in this encoding can be passed to any function that expects an option in

input — if the list is a Cons instance, it is also a Some instance, and the value field representing the

head of the list will be used as the value wrapped by the option. This example demonstrates that

structural typing lets us mix and match as well as refine different constructors in a flexible way.

As a slightly bigger motivating example, the List type thus defined can then be used as follows,

defining the classical unzip combinator:

def Cons head tail = Cons { value = head, tail = tail } def None = None{}

rec def unzip xs = case xs of

None Ñ { fst = None, snd = None },

Some Ñ let tmp = unzip xs.tail in { fst = Cons xs.value.fst tmp.fst ,
snd = Cons xs.value.snd tmp.snd }

Below are two possible types that may be annotated explicitly by the user for these definitions,

and which will be automatically checked by MLstruct for conformance (a.k.a., subsumption, see

Section 3.4) against their inferred types.
9

7
The lack of nominal typing for classes has been a major pain point in TypeScript. The issue requesting it, created in 2014

and still not resolved, has accumulated more than 500 “thumbs up”. See: https://github.com/Microsoft/Typescript/issues/202.

8
The where keyword is used to visually separate the specification of type variable bounds, making them more readable.

9
Annotating the types of public functions, while not required by MLstruct, is seen as good practice in some communities.

Moreover, the subsumption mechanism can be used to provide and check module signatures in an ML-style module system.

https://github.com/Microsoft/Typescript/issues/202

6 Lionel Parreaux and Chun Yin Chau

def Cons: 𝛼 Ñ (𝛽 ^ List[𝛼]) Ñ (Cons[𝛼] ^ { value: 𝛼, tail: 𝛽 })

def unzip: List[{ fst: 𝛼, snd: 𝛽 }] Ñ { fst: List[𝛼], snd: List[𝛽] }

2.2 Constructing the Lattice of Types
The algebraic subtyping philosophy of type system design is to begin with the subtyping of data

types (records, functions, etc.) and to define the order connectives to fit this subtyping order, rather

than to follow set-theoretic intuitions. We follow this philosophy and aim to design our subtyping

order to tackle the following design constraints:

(A) The order connectives^,_, and␣ should induce a Boolean algebra, so that we canmanipulate

types using well-known and intuitive Boolean-algebraic reasoning techniques.

(B) Nominal tags and their negations specifically should admit an intuitive set-theoretic under-

standing, in the sense that for any class 𝐶 , type #𝐶 should denote all instances of 𝐶 while

type ␣#𝐶 should correspondingly denote all instances that are not derived from class 𝐶 .10

(C) The resulting system should admit principal types as well as an effective polymorphic type

inference strategy, where “effective” means that it should not rely on backtracking.

2.2.1 Lattice Types. Top, written J, is the type of all values, a supertype of every other type. Its

dual bottom, written K, is the type of no values, a subtype of every other type. For every 𝜏 , we have

K ď 𝜏 ď J. Intersection ^ and union _ types are the respective meet and join operators in the

subtyping lattice. It is worth discussing possible treatments one can give these connectives:

(1) We can axiomatize them as denoting the intersection X and union Y of the sets of values

that their operands denote, which is the approach taken by semantic subtyping.

(2) We can axiomatize them as greatest lower bound (GLB) and least upper bound (LUB) operators,

usually written [and \, whose meaning is given by following the structure of a preexisting

lattice of simple types (types without order connectives). In this interpretation, we can

calculate the results of these operators when their operands are concretely known.

(3) Finally, we can view^ and_ as type constructors in their own right, with dedicated subtyping

derivation rules. Then unions and intersections are not “computed away” but instead represent

proper constructed types, which may or may not be equivalent to existing simple types.

2.2.2 Subtyping. We base our approach primarily on (3) but we do include a number of subtyping

rules whose goal is to make the order connectives behave like (2) in some specific cases:

‚ We posit #𝐶1 ^ #𝐶2 ď K whenever classes 𝐶1 and 𝐶2 are unrelated.
11

This makes sense

because there are no values that can be instances of both classes at the same time, due

to single inheritance. We obviously also have #𝐶1 ^ #𝐶2 ě K, meaning the two sides are

equivalent (they subtype each other), which we write #𝐶1 ^ #𝐶2 ” K. On the other hand,

#𝐶 ď #𝐷 for all 𝐶, 𝐷 where 𝐶 inherits from 𝐷 ; so when #𝐶1 and #𝐶2 are related then either

#𝐶1 ^ #𝐶2 ” #𝐶1 or #𝐶1 ^ #𝐶2 ” #𝐶2. Overall, we can always “reduce” intersections of

nominal class tags to a single non-intersection type, making ^ behave like a GLB operator in

the class inheritance sublattice, made of nominal tags, J, K, and _, evocative of (2).

‚ We also posit the nonstandard rule p𝜏1 Ñ 𝜏2q^ p𝜏3 Ñ 𝜏4q ď p𝜏1_ 𝜏3q Ñ p𝜏2^ 𝜏4q. The other

direction holds by function parameter contravariance and result covariance, so again the two

sides are made equivalent.^ behaves like a GLB operator on function types in a lattice which

does not contain subtyping-based overloaded functions types, such as those of Dolan [2017];

Pottier [1998b]. This rule is illogical from the set-theoretic point of view: a function that can

be viewed as returning a 𝜏2 when given a 𝜏1 and returning a 𝜏4 when given a 𝜏3 cannot be

10
By contrast, we have no specific requirements on the meaning of negated function and record types, which are uninhabited.

11
This class intersection annihilation rule is not novel; for example, Ceylon has a similar one [Muehlboeck and Tate 2018].

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 7

viewed as always returning a 𝜏2 ^ 𝜏4. For instance, consider 𝜆𝑥 . 𝑥 , typeable both as IntÑ Int
and as BoolÑ Bool. According to both classical intersection type systems and the semantic

subtyping interpretation, this term could be assigned type pIntÑ Intq ^ pBoolÑ Boolq. But
we posited that this type is equivalent to pInt_Boolq Ñ pInt^Boolq. Thankfully, in MLstruct

𝜆𝑥 . 𝑥 cannot be assigned such an intersection type; instead, its most general type is @𝛼. 𝛼 Ñ 𝛼 ,

which does subsume both IntÑ Int and BoolÑ Bool, but not pIntÑ Intq^ pBoolÑ Boolq.
This explains why intersection types cannot be used to encode overloading in MLstruct.

12

‚ For record intersections, we have the standard rule that t𝑥 : 𝜏 u ^ t𝑥 : 𝜋 u ď t𝑥 : 𝜏 ^ 𝜋 u,

making the two sides equivalent since the other direction holds by depth subtyping. Intersec-

tions of distinct record fields, on the other hand, do not reduce and stay as they are — in fact,

multi-field record types are encoded, in MLstruct, as intersections of individual single-field

record types, following Reynolds [1997]. For instance, assuming 𝑥 ‰ 𝑦, then t𝑥 : 𝜏1, 𝑦 : 𝜏2 u

is not a core form but merely syntax sugar for t𝑥 : 𝜏1 u ^ t𝑦 : 𝜏2 u.

‚ We apply similar treatments to various forms of unions: First, p𝜏1 Ñ 𝜏2q _ p𝜏3 Ñ 𝜏4q ”

p𝜏1 ^ 𝜏3q Ñ p𝜏2 _ 𝜏4q, the dual of the function intersection treatment mentioned above.

Second, we recognize that t𝑥 : 𝜏 u _ t𝑦 : 𝜋 u and t𝑥 : 𝜏 u _ p𝜋1 Ñ 𝜋2q, where 𝑥 ‰ 𝑦, cannot

be meaningfully used in a program, as the language has no feature allowing to tease these

two components apart, so we identify these types withJ, the top type. This is done by adding

J ď t𝑥 : 𝜏 u _ t𝑦 : 𝜋 u and J ď t𝑥 : 𝜏 u _ p𝜋1 Ñ 𝜋2q as subtyping derivation rules.

The full specification of our subtyping theory is presented later, in Section 4 (Figure 4).

2.2.3 Soundness. The soundness of subtyping disciplines was traditionally studied by finding

semantic models corresponding to types and subtyping, where types are typically understood as

predicates on the denotations of 𝜆 terms (obtained from some 𝜆 model) and where subtyping is

understood as inclusion between the corresponding sets of denotations. In this paper, we take

a much more straightforward approach: all we require from the subtyping relation is that it be

consistent, in the sense that it correctly relate types constructed from the same constructors and

that it not relate unrelated type constructors. For instance, 𝜏1 Ñ 𝜏2 ď 𝜋1 Ñ 𝜋2 should hold if

and only if 𝜋1 ď 𝜏1 and 𝜏2 ď 𝜋2, and t𝑥 : Int u ď #𝐶 should not be derivable. This turns out to

be a sufficient condition for the usual soundness properties of progress and preservation to hold

in our language. Consistency is more subtle than it may first appear. We cannot identify, e.g.,

#𝐶 _ t𝑥 : 𝜏 u with J even though the components of this type cannot be teased apart through

instance matching, as doing so is incompatible with distributivity. Notice the conjunctive normal

form of 𝜋 “ #𝐶^t𝑥 : 𝜏 u_#𝐷^t𝑦 : 𝜏 1 u is 𝜋 ” p#𝐶_#𝐷q^p#𝐶_t𝑦 : 𝜏 1 uq^pt𝑥 : 𝜏 u_#𝐷q^pt𝑥 :

𝜏 u _ t𝑦 : 𝜏 1 uq. We can make t𝑥 : 𝜏 u _ t𝑦 : 𝜏 1 u equivalent to J when 𝑥 ‰ 𝑦 because that still

leaves 𝜋 ” p#𝐶 _ #𝐷q ^ p#𝐶 _t𝑦 : 𝜏 1 uq ^ pt𝑥 : 𝜏 u_ #𝐷q, which is equivalent to the original 𝜋 by

distributivity and simplification. But making #𝐶_t𝑦 : 𝜏 1 u and t𝑥 : 𝜏 u_ #𝐷 equivalent to J would

make 𝜋 ” #𝐶 _ #𝐷 , losing all information related to the fields, and breaking pattern matching!

2.2.4 Records. Record values are built using the syntax {x1 = t1, x2 = t2, ...} and are assigned

the corresponding types t𝑥1 : 𝜏1, 𝑥2 : 𝜏2, ... u. Record types are related via the usual width and depth

subtyping relationships. Width subtyping means that, for instance, t𝑥 : 𝜏1, 𝑦 : 𝜏2 u ď t𝑥 : 𝜏1 u, and

depth subtyping means that, for instance, t𝑥 : 𝜏1, 𝑦 : 𝜏2 u ď t𝑥 : 𝜏1, 𝑦 : 𝜏3 u if 𝜏2 ď 𝜏3.

2.2.5 Negation Types. Finally, we can add Boolean-algebraic negation to our subtyping lattice.

However, its interpretation is considerably constrained by the Boolean structure and by the rules

already presented in Section 2.2.2. In some languages, the values of a negation type␣𝜏 are intuitively

12
Other forms of overloading, such as type classes and constructor overloading (see Section 6), are still possible.

8 Lionel Parreaux and Chun Yin Chau

understood as all values that are not of the negated type 𝜏 , but in MLstruct, this intuition only

holds for nominal tags. For other constructs, such as functions and records, negations assume

a purely algebraic role. For instance, we have relationships like ␣t𝑥 : 𝜏 u ď 𝜋1 Ñ 𝜋2 due to

t𝑥 : 𝜏 u _ 𝜋1 Ñ 𝜋2 being identified with J (see also Section 4.4.5). Because no values inhabit types

like␣t𝑥 : 𝜏 u and␣p𝜋1 Ñ 𝜋2q, these types should be essentially thought of as special bottom types

that, for algebraic reasons, technically have to contain more static information than K and have to

possess fewer subtyping relationships.

Negations can express interesting patterns, such as safe division, as seen below, where ‘e : T’ is

used to ascribe a type T to an expression e:

def div n m = n / (m : Int ^ ␣0)

div: Int Ñ (Int ^ ␣0) Ñ Int

def f x = div x 2

f: Int Ñ Int

def g (x: Int) = div 100 x ð error: found Int , expected Int ^ ␣0

def div_opt n m = case m of 0 Ñ None{}, _ Ñ Some{value = div n m}

div_opt: Int Ñ Int Ñ (None _ Some[Int])

Here, ‘case m of ...’ is actually a shorthand for the core form ‘case m = m of ...’ which shadows

the outer m with a local variable m that is assigned a more refined type in each case branch.

As we saw in the introduction,␣ also allows for the sound typing of class-instance matching with

default cases. Moreover, together with J, K, ^, and _, our type structure forms a Boolean lattice,

whose algebraic properties are essential to enabling principal type inference (see Section 3.3.1).

2.2.6 Structural Decomposition. We reduce complex object types to simpler elementary parts,

which can be handled in a uniform way. Similarly to type aliases, which can always be replaced by

their bodies, we can replace class types by their fields intersected with the corresponding nominal

tags. For example, Consr𝜏s as defined in Section 2.1.7 reduces to #Cons^t value : 𝜏 , tail : Listr𝜏s u.
Recall that class tags like #Cons represent the nominal identities of classes. They are related with

other class tags by a subtyping relationship that follows the inheritance hierarchy. For instance,

given class𝐶r𝛼s : 𝐷r𝛼 _ 2s^ t𝑥 : 0_𝛼 u and class 𝐷r𝛽s : t𝑥 : 𝛽, 𝑦 : Int u, then we have #𝐶 ď #𝐷 .

Moreover, the refined class type𝐶r1s ^ t𝑦 : Nat u reduces to the equivalent #𝐶 ^t𝑥 : 0_ 1 u^ t𝑥 :

1_ 2, 𝑦 : Int u ^ t𝑦 : Nat u, which reduces further to #𝐶 ^ t𝑥 : 1, 𝑦 : Nat u.
Decomposing class types into more elementary types makes MLstruct’s approach fundamentally

structural, while retaining the right amount of nominality to precisely reflect the semantics of

runtime class-instance matching (i.e., pattern matching based on the runtime class of objet values).

It also means that there is no primitive notion of nominal type constructor variance in MLstruct:

the covariance and contravariance of type parameters simply arise from the way class and alias

types desugar into basic structural components.

2.3 Limitations
While MLstruct features very flexible and powerful type inference, this naturally comes with some

limitations, necessary to ensure the decidability and tractability of the type system. We already

mentioned in Section 2.2.2 that intersections cannot be used to type overloading. Here we explain

several other significant limitations.

2.3.1 Regular Structural Types. We restrict the shapes of MLstruct data types to be regular trees to

make the problem of deciding whether one subsumes another decidable: concretely, occurrences of

a class or alias type transitively reachable through the body of that type must have the same shape

as the type’s head declaration. For instance, the following are disallowed:

class C[A]: {x: C[Int]} class C[A]: C[{x: List[A]}] class C[A]: {x: C[C[A]]}

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 9

We conjecture that allowing such definitions would give our types the expressive power of context-

free grammars, for which language inclusion is undecidable, making subtyping undecidable.
13
To

replace illegal non-regular class fields, one can use either top-level functions or methods. The latter

solve this problem by having their types known in advance and not participating in structural

subtype checking. Methods are implemented in MLstruct but not presented in this paper.

2.3.2 Simplified Treatment of Unions. MLstruct keeps the expressiveness of unions in check by

identifying t𝑥 : 𝜏1 u_t𝑦 : 𝜏2 u (𝑥 ‰ 𝑦) and t𝑥 : 𝜏1 u_p𝜏2 Ñ 𝜏3qwithJ, as described in Section 2.2.2.

To make unions of different fields useful, one needs to “tag” the different cases with class types, as

in 𝐶1 ^ t𝑥 : 𝜏1 u _𝐶2 ^ t𝑦 : 𝜏2 u, allowing us to separately handle these cases through instance

matching ‘case 𝑣 of 𝐶1 Ñ ... 𝑣 .𝑥 ... , 𝐶2 Ñ ... 𝑣 .𝑦 ...’, whereas this is not necessary in, e.g., TypeScript.

A direct consequence of this restriction is that in MLstruct, there is no difference between

t𝑥 : Int, 𝑦 : Int u _ t𝑥 : Str, 𝑦 : Str u and t𝑥 : Int _ Str, 𝑦 : Int _ Str u (still assuming 𝑥 ‰ 𝑦).

Indeed, remember that t𝑥 : 𝜏1, 𝑦 : 𝜏2 u is syntax sugar for t𝑥 : 𝜏1 u ^ t𝑦 : 𝜏2 u and by distributivity

of unions over intersections, we can take t𝑥 : Int, 𝑦 : Int u _ t𝑥 : Str, 𝑦 : Str u to

pt𝑥 : Int u _ t𝑥 : Str uq ^ pt𝑥 : Int u _ t𝑦 : Str uq ^ pt𝑦 : Int u _ t𝑥 : Str uq ^ pt𝑦 : Int u _ t𝑦 : Str uq

and since t𝑥 : 𝜏1 u _ t𝑦 : 𝜏2 u is identified with J, as explained in Section 2.2.2, this reduces to

pt𝑥 : Int u _ t𝑥 : Str uq ^ pt𝑦 : Int u _ t𝑦 : Str uq

which reduces by field merging to t𝑥 : Int_Str u^t𝑦 : Int_Str u, i.e., t𝑥 : Int_Str, 𝑦 : Int_Str u.
Another consequence is that, e.g., ListrInts _ ListrStrs is identified with ListrInt_ Strs. Again,

to distinguish between these two, one should prefer the use of class-tagged unions or, equivalently,

proper sum types such as EitherrListrInts, ListrStrss, defined in terms of Left and Right classes.

2.3.3 Fewer Relationships. Unlike in semantic subtyping approaches, but like in most practical

programming languages, we do not have t𝑥 : Ku ď K. This would in fact lead to unsoundness in

MLstruct: consider 𝜋 “ pt𝑥 : SomerInts, 𝑦 : 𝜏1 u _ t𝑥 : None, 𝑦 : 𝜏2 uq ^ t𝑥 : None u; we would
have 𝜋 ” t𝑥 : K, 𝑦 : 𝜏1 u _ t𝑥 : None, 𝑦 : 𝜏2 u ” t𝑥 : None, 𝑦 : 𝜏2 u by distributivity and also

𝜋 ” t𝑥 : K_ None, 𝑦 : 𝜏1 _ 𝜏2 u by using (2.3.2) before distributing, but 𝜏1 ı 𝜏1 _ 𝜏2 in general.

2.3.4 No intersection overloading. Unlike languages like TypeScript, we do not permit the use

of intersection types to encode inclusive function overloading [Pierce 1991]. Thankfully, simpler

forms of overloading compatible with MLstruct exist; we briefly discuss one in Section 6.

3 INFERRING PRINCIPAL TYPES FOR MLSTRUCT
We now informally describe our general approach to principal type inference in MLstruct.

3.1 Algebraic Subtyping
MLstruct follows Dolan’s algebraic subtyping [2017] discipline, which distinguishes itself from

so-called semantic subtyping approaches in that it focuses on the algebraic properties of types,

instead of focusing on set-theoretic semantics. In algebraic subtyping, some subtyping relationships

are not necessary and cannot be justified if one were to look at types purely as denotations for sets

of values. These algebraic relationships are nevertheless sound to have in the type system, and in

turn enable principal type inference and type simplification.

As an example, consider p𝜏1 Ñ 𝜏2q ^ p𝜏3 Ñ 𝜏4q ď p𝜏1 _ 𝜏3q Ñ p𝜏2 ^ 𝜏4q, which holds in Dolan’s

MLsub. While the other direction holds by simple contravariance of function parameters and

covariance of function results, this direction is a lot more contentious. It does not make sense from

the set-theoretic point of view: a function that can be viewed as returning 𝜏2 when given a 𝜏1 and

13
TypeScript does allow such definitions, meaning its type checker would necessarily be either unsound or incomplete.

10 Lionel Parreaux and Chun Yin Chau

returning 𝜏4 when given a 𝜏3 cannot be viewed as always returning a 𝜏2 ^ 𝜏4. For instance, consider

𝜆𝑥. 𝑥 , typable both as Int Ñ Int and as Bool Ñ Bool, and which could therefore be assigned

type pInt Ñ Intq ^ pBool Ñ Boolq. Surely, this function never returns an Int ^ Bool value (an
uninhabited type) when called with an Int_ Bool argument. But in MLsub, 𝜆𝑥 . 𝑥 by design cannot

be assigned such an intersection type; instead, its most general type is @𝛼. 𝛼 Ñ 𝛼 , which does

subsume both IntÑ Int and BoolÑ Bool though not pIntÑ Intq ^ pBoolÑ Boolq. This explains
the restriction that intersections cannot be used to encode overloading in MLsub and MLstruct.

In MLstruct, we define further additional algebraic subtyping relationships, such as J ď t𝑥 :

𝜏1 u _ p𝜏2 Ñ 𝜏3q, as hinted in Section 2.3.2. We similarly ensure that this relationship does not

threaten soundness by making sure the language cannot meaningfully distinguish between values

of these two types (i.e., one cannot pattern match on record or function types).

3.2 Basic Type Inference Idea
We base the core of our type inference algorithm on a simple formulation of MLsub type inference

we formulated in previous work [Parreaux 2020]. The constraint solver attaches a set of lower and

upper bounds to each type variable, and maintain the transitive closure of these constraints, i.e., it

makes sure that at all times the union of all lower bounds of a variable remains a subtype of the

intersection of all its upper bounds. This means that when registering a new constraint of the form

𝛼 ď 𝜏 , we not only have to add 𝜏 to the upper bounds of 𝛼 , but also to constrain lowerBoundsp𝛼q ď 𝜏

in turn. One has to be particularly careful to maintain a “cache” of subtyping relationships currently

being constrained, as the graphs formed by type variable bounds may contain cycles. Because types

are regular, there is always a point, in a cyclic constraint, where we end up checking a constraint

we are already in the process of checking (it is in the cache), in which case we can assume that the

constraint holds and terminate. Constraints of the general form 𝜏1 ď 𝜏2 are handled by losslessly

decomposing them into smaller constraints, until we arrive at constraints on type variables, which

is made possible by the algebraic subtyping rules. The losslessness of this approach is needed to

ensure that we only infer principal types. In other words, when decomposing a constraint, we must

produce a set of smaller constraints that is equivalent to the original constraint. For example, we

can decompose the constraint 𝜏1 _ p𝜏2 Ñ 𝜏3q ď 𝜏4 Ñ 𝜏5 into the equivalent set of constraints:

𝜏1 ď 𝜏4 Ñ 𝜏5 ; 𝜏4 ď 𝜏2 ; and 𝜏3 ď 𝜏5. If we arrive at a constraint between two incompatible type

constructors, such as 𝜏1 Ñ 𝜏2 ď t𝑥 : 𝜏3 u, an error is reported.

3.3 Solving Constraints with Unions and Intersections
By contrast with MLsub, MLstruct supports union and intersections types in a first-class capacity,

meaning that one can use these types in both positive and negative positions.
14
This is particularly

important to type check instance matching, which requires unions in negative positions, and class

types, which require intersections in positive positions (both illegal in MLsub).

The main problem that arises in this setting is: How to resolve constraints with the shapes
𝜏1 ď 𝜏2 _ 𝜏3 and 𝜏1 ^ 𝜏2 ď 𝜏3 ? Such constraints cannot be easily decomposed into simpler

constraints without losing information — which would prevent us from achieving complete type

inference — andwithout having to perform backtracking —which would quickly become intractable,

even in non-pathological cases, and would yield a set of possible types instead of a single principal

14
Positive positions correspond to the types that a term outputs, while negative positions correspond to the types that a term

takes in as input. For instance, in p𝜏0 Ñ 𝜏1q Ñ 𝜏2, type 𝜏2 is in positive position since it is the output of the main function,

and the function type p𝜏0 Ñ 𝜏1q is in negative position, as it is taken as an input to the main function. On the other hand,

𝜏1, which is returned by the function taken as input is in negative position (since it is provided by callers via the argument

function), and 𝜏0 is in positive position (since it is provided by the main function when calling the argument function).

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 11

type. When faced with such constraints, we distinguish two cases: (1) there is a type variable among

𝜏1, 𝜏2, and 𝜏3; and (2) conversely, none of these types are type variables.

3.3.1 Negation Types. We use negation types to reformulate constraints involving type variables

into forms that allow us to make progress, relying on the Boolean-algebraic properties of negation.

A constraint such as 𝜏1 ď 𝜏2 _ 𝛼 can be rewritten to 𝜏1 ^␣𝜏2 ď 𝛼 by turning the “positive” 𝜏2 on

the right into a “negative” on the left, as these are equivalent in a Boolean algebra.
15
Therefore, it is

sufficient and necessary to constrain 𝛼 to be a supertype of 𝜏1^␣𝜏2 to solve the constraint at hand.

Similarly, we can solve 𝛼 ^ 𝜏1 ď 𝜏2 by constraining 𝛼 to be a subtype of 𝜏2 _␣𝜏1.
16
When both

transformations are possible, one may pick one or the other equivalently. The correctness of these

transformations is formally demonstrated in Theorem B.20.. This approach provides a solution

to case (1), but in a way it only pushes the problem around, delaying the inevitable apparition of

case (2).

3.3.2 Normalization of Constraints. To solve problem (2), we normalize constraints until they are

in the shape “𝜏con ď 𝜏dis”, where (using a horizontal overline to denote 0 to 𝑛 repetitions):

‚ 𝜏con represents J, K, or the intersection of any non-empty subset of t #𝐶, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏 u u.

‚ 𝜏dis represents types of the form J, K, p𝜏1 Ñ 𝜏2q _ #𝐶 , t𝑥 : 𝜏 u _ #𝐶 , or #𝐶 _ #𝐶 1.

Let us consider a few examples. First, given a constraint like p𝜏1_𝜏2q^𝜏3 ď 𝜏4, we can distribute the

intersection over the union thanks to the rules of Boolean algebras (see Section 4.4.4), which results

in p𝜏1^𝜏3q_p𝜏2^𝜏3q ď 𝜏4, allowing us to solve 𝜏1^𝜏3 ď 𝜏4 and 𝜏2^𝜏3 ď 𝜏4 independently. Second,

given a constraint like 𝜏1 ď t𝑥 : 𝜏2 u_𝜏3 Ñ 𝜏4, we simply use the fact that t𝑥 : 𝜏2 u_𝜏3 Ñ 𝜏4 ” J

(as explained in Section 2.2.2) to reduce the constraint to 𝜏1 ď J, a tautology. Third, with constraints

containing intersected nominal class tags on the left, we can compute their greatest lower bound

based on our knowledge of the single-inheritance class hierarchy. We eventually end up with

constraints of the shape “𝜏con ď 𝜏dis” and there always exists a 𝜏𝑖 P 𝜏con and 𝜏
1
𝑗 P 𝜏dis such that we

can reduce the constraint to an equivalent constraint 𝜏𝑖 ď 𝜏 1𝑗 . Notice that if two related nominal

tags appears on each side, it is always safe to pick that comparison, as doing so does not entail any

additional constraints. If there are no such related nominal tags, the only other choice is to find a

type in the right-hand side to match a corresponding type in the left-hand side, and the syntax of

these normal forms prevents there being more than one possible choice. All in all, our Boolean

algebra of types equipped with various algebraic simplification laws ensures that we have a lossless

way of resolving the complex constraints that arise from union and intersection types, enabling

principal type inference.

The constraint solving algorithm described in Section 5.3 and implemented in the artifact uses

the ideas explored above but puts the entire constraint into a normal form, instead of normalizing

constraints on the fly. This helps to efficiently guarantee termination by maintaining a cache of

currently-processed subtyping relationships in normal forms, which is straightforward to query.

3.4 Subsumption Checking
Subsumption checking, denoted byď@, is important to check that definitions conform to given signa-

tures. Contrary to MLsub, which syntactically separates positive from negative types (the polarity

15
Aiken andWimmers [1993] used a similar trick, albeit in a more specific set-theoretic interpretation of unions/intersections.

16
If it were not for pattern matching, we could avoid negation types by adopting a more complicated representation of type

variable bounds that internalizes the same information. That is, instead of 𝛼 ď 𝜏 and 𝛼 ě 𝜏 for a given type variable 𝛼 , we

would have bounds of the form 𝛼 ^ 𝜋 ď 𝜏 and 𝛼 _ 𝜋 ě 𝜏 , representing 𝛼 ď 𝜏 _␣𝜋 and 𝛼 ě 𝜏 ^␣𝜋 respectively. But

reducing several upper/lower bounds into a single bound, which previously worked by simply intersecting/taking the union

of them, would now be impossible without generalizing bounds further. Type simplification would also become difficult.

12 Lionel Parreaux and Chun Yin Chau

restriction), and therefore requires different algorithms for constraint solving and subsumption

checking, in MLstruct we can immediately reuse the constraint solving algorithm for subsumption

checking, without requiring much changes to the type system. To implement @Ξ1 . 𝜏1 ď
@ @Ξ2 . 𝜏2,

we instantiate all the type variables in Ξ1, with their bounds, to fresh type variables, and we turn

all the variables in Ξ2 into rigid variables (so-called “skolems”). The latter can be done by turning

these type variables into fresh flexible nominal tags and by inlining their bounds, expressing them

in terms of unions, intersections, and recursive types. Since there is no polarity restrictions in our

system, the resulting types can be compared directly using the normal constraint solving algorithm.

Flexible nominal tags #𝐹 are just like nominal class tags #𝐶 , except that they can coexist with

unrelated tags without reducing to K. For example, while #𝐶1 ^ #𝐶2 is equivalent to K in MLstruct

when 𝐶1 and 𝐶2 are unrelated, #𝐹 ^ #𝐶2 is not.
17
Flexible nominal tags are also the feature used to

encode the nominal tags of traits, necessary to implement mixin traits as described in Section 2.1.2.

For lack of space, we do not formally describe subsumption checking in this paper.

3.5 Simplification and Presentation of Inferred Types
Type simplification and pretty-printing are important components of any practical implementation

of MLsub and MLstruct. They indeed perform a lot of the heavy-lifting of type inference, massaging

inferred types, which are often big and unwieldy, into neat and concise equivalent type expressions.

In this section, we briefly explain how simplification is performed in MLstruct.

3.5.1 Basic Simplifications. For basic simplifications, we essentially follow Parreaux [2020] — we

remove polar occurrences of type variables, remove type variables “sandwiched” between identical

bounds, and we perform some hash consing to simplify inferred recursive types. The simplification

of unions, intersections, and negations is not fully addressed by Parreaux, since MLsub does not fully

supports these features. In MLstruct, we apply standard Boolean algebra simplification techniques to

simplify these types, such as putting them into disjunctive normal forms, simplifying complements,

and factorizing common conjuncts. We also reduce types as they arise, based on Section 2.2.2.

3.5.2 Bound Inlining. Many types can be represented equivalently using either bounded quantifica-

tion or inlined intersection and union types, so we often have to choose between them. For instance,

@p𝛼 ď Intq¨p𝛽 ě Intq. 𝛼 Ñ 𝛼 Ñ 𝛽 is much better expressed as the equivalent Int Ñ Int Ñ Int.
But whether p𝛼 ^ Intq Ñ p𝛼 ^ Intq Ñ 𝛼 is better than the equivalent @p𝛼 ď Intq. 𝛼 Ñ 𝛼 Ñ 𝛼 may

depend on personal preferences. As a general rule of thumb, we only inline bounds when doing so

would not duplicate them and when they are not cyclic (i.e., we do not inline recursive bounds).

3.6 Implementation
MLstruct is implemented in ~5000 lines of Scala code, including advanced type simplification

algorithms and error reporting infrastructure.
18
We have an extensive tests suite consisting of more

than 4000 lines of well-typed and ill-typed MLstruct expressions, for which we automatically check

the output of the type simplifier and error reporting for regressions. Running this test suite in

parallel takes ~2s on a 2020 iMac with a 3.8 GHz 8-Core Intel Core i7 and 32 GB 2667 MHz DDR4.

4 FORMAL SEMANTICS OF MLSTRUCT
In this section, we introduce 𝜆␣, a formal calculus which reflects the core features of MLstruct.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 13

Core syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntax

Type 𝜏, 𝜋 ::“ 𝜏 Ñ 𝜏 | t𝑥 : 𝜏 u | 𝐴r𝜏s | 𝐶r𝜏s | #𝐶 | 𝛼 | J˛ | 𝜏 _˛ 𝜏 | ␣𝜏

Mode ˛, ˝ ::“ ¨ |

Polymorphic type 𝜎 ::“ @Ξ. 𝜏

Term 𝑠, 𝑡 ::“ 𝑥,𝑦, 𝑧 | 𝑡 : 𝜏 | 𝜆𝑥. 𝑡 | 𝑡 𝑡 | 𝑡 .𝑥 | 𝐶 t𝑥 “ 𝑡 u | case 𝑥 “ 𝑡 of 𝑀
Case branches 𝑀 ::“ 𝜖 | _Ñ 𝑡 | 𝐶 Ñ 𝑡, 𝑀

Value 𝑣,𝑤 ::“ 𝜆𝑥. 𝑡 | 𝐶 t𝑥 “ 𝑣 u

Program 𝑃 ::“ 𝑡 | def 𝑥 “ 𝑡 ; 𝑃

Top-level declaration 𝑑 ::“ class 𝐶r𝛼s : 𝜏 | type 𝐴r𝛼s “ 𝜏

ContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContexts

Declarations context D ::“ 𝜖 | D ¨ 𝑑
Typing context Γ ::“ 𝜖 | Γ ¨ p𝑥 : 𝜏q | Γ ¨ p𝑥 : 𝜎q

Subtyping context Σ,Δ ::“ Ξ | Σ ¨ p𝜏 ď 𝜏q | Σ ¨ ▷p𝜏 ď 𝜏q

Constraining context Ξ ::“ 𝜖 | Ξ ¨ p𝛼 ď 𝜏q | Ξ ¨ p𝜏 ď 𝛼q | Ξ ¨ err

Fig. 1. Syntax of types, terms, and contexts.

4.1 Syntax

The syntax of 𝜆␣ is presented in Figure 1. We use the notation 𝐸𝑖
𝑖
to denote a repetition of 𝑖 “ 0 to 𝑛

occurrences of a syntax form 𝐸, and we use the shorthand 𝐸 when 𝑖 is not needed for disambiguation.

4.1.1 Core Syntax. The core syntax of 𝜆␣ follows the MLstruct source language presented previ-

ously quite closely, though it introduces a syntactic novelty: the mode ˛ or ˝ of a syntactic form

is used to deduplicate sentences that refer to unions and intersections as well as top and bottom,

which are respective duals and can therefore often be treated symmetrically. For instance, J˛ is to

be understood as either J¨ when ˛ “ ¨, i.e., J, or as J when ˛ “ , i.e., K. A similar idea was

developed independently by d. S. Oliveira et al. [2020] to cut down on boilerplate and repetition in

formalizing subtyping systems.

Parametric polymorphism in 𝜆␣ is attached solely to top-level ‘def’ bindings, whose semantics,

as in languages like Scala, is to re-evaluate their right-hand side every time they are referred to in

the program. In contrast, local let bindings are desugared to immediately-applied lambdas, and are

treated monomorphically. Let polymorphism is orthogonal to the features presented in this paper,

and can be handled by using a level-based algorithm [Parreaux 2020] on top of the core algorithm

we describe here, as well as a value restriction if the language is meant to incorporate mutation.

In 𝜆␣, def bindings are never recursive. This simplification is made without loss of generality, as

recursion can be recovered using a Z fixed point combinator, typeable in MLsub [Dolan 2017] and

thus also in 𝜆␣. This combinator is defined as 𝑡𝑍 “ 𝜆𝑓 . 𝑡 1
𝑍
𝑡 1
𝑍
where 𝑡 1

𝑍
“ 𝜆𝑥. 𝑓 p𝜆𝑣 . 𝑥 𝑥 𝑣q. One

can easily verify that 𝑡𝑍 can be typed as pp𝛼 Ñ 𝛽q Ñ pp𝛼 Ñ 𝛽q ^ 𝛾qq Ñ 𝛾 .

To keep the formalism on point, we only present class object types, and ignore uninteresting

primitive and built-in types like Int and Bool, which can be encoded as classes. Note that singleton

types like 1, 2, and true, as we use them in the introduction, are easily encoded as subclasses 1𝐶 ,

2𝐶 , and true𝐶 of the corresponding built-in types.

17
This requires extending the syntax of normal forms in a straightforward way to 𝜏 1

con ::“ 𝜏con^ #𝐹 and 𝜏 1
dis ::“ 𝜏dis_ #𝐹 .

18
This does not include about 1200 additional lines of code to generate JavaScript (the tests are run through NodeJS).

14 Lionel Parreaux and Chun Yin Chau

𝐸r˝s ::“ ˝ 𝑡 | 𝑣 ˝ | ˝.𝑥 | 𝐶 t𝑥 “ 𝑣, 𝑦 “ ˝, 𝑧 “ 𝑡 u | case 𝑥 “ ˝ of 𝑀

E-Ctx 𝐸r𝑡s ù 𝐸r𝑡 1s if 𝑡 ù 𝑡 1

E-Def def 𝑥 “ 𝑡 ; 𝑃 ù r𝑥 ÞÑ 𝑡s𝑃

E-App p𝜆𝑥 . 𝑡q 𝑣 ù r𝑥 ÞÑ 𝑣s𝑡

E-Asc 𝑡 : 𝜏 ù 𝑡

E-Proj 𝑣1 .𝑥 ù 𝑣2 if t𝑥 “ 𝑣2 u P 𝑣1

E-CaseCls1 case 𝑥 “ 𝐶1 𝑅 of 𝐶2 Ñ 𝑡, 𝑀 ù r𝑥 ÞÑ 𝐶1 𝑅s𝑡 if 𝐶2 P Sp#𝐶1q

E-CaseCls2 case 𝑥 “ 𝐶1 𝑅 of 𝐶2 Ñ 𝑡, 𝑀 ù case 𝑥 “ 𝑣 of 𝑀 if 𝐶2 R Sp#𝐶1q

E-CaseWld case 𝑥 “ 𝑣 of _Ñ 𝑡 ù r𝑥 ÞÑ 𝑣s𝑡

Fig. 2. Small-step evaluation rules.

Finally, the syntax of pattern matching ‘case 𝑥 “ 𝑡 of . . .’ includes a variable binding because
the rules for typing it will refine the type of that variable in the different branches. We do not use

‘case 𝑥 of . . .’ as the core form in order to allow for simple substitution of variables with terms.

4.1.2 Contexts. We use four kinds of contexts. Declarations contexts D hold the type declarations

of the program. Throughout this paper, we assume an ambient declarations context (i.e., our

formal developments are implicitly parameterized byD). Typing contexts Γ bind bothmonomorphic

and polymorphic types, the latter corresponding to ‘def’ bindings. Subtyping contexts Σ record

assumptions about subtyping relationships, with some of these assumptions potentially hidden

behind a ▷ (explained in Section 4.4.1). Finally, polymorphic or constraining contexts Ξ contain

bounds/constraints on type variables and possibly errors (err P Ξ) encountered during type

inference. The typing rules will ensure that in a polymorphic type @Ξ. 𝜏 , context Ξ is consistent,

which implies err R Ξ. Note that Σ contexts are rooted in Ξ contexts because subtyping judgments

require the former but are invoked from typing judgments, which use the latter for polymorphism.

4.1.3 Shorthands. Throughout this paper, we make use of the following notations and shorthands:

𝑅 ::“ t𝑥 “ 𝑣 u 𝑁 ::“ 𝐴 | 𝐶 𝐻 ::“ 𝜏 ď 𝜏 𝑁 ” 𝑁 r𝜖s 𝐶 Ñ 𝑡 ” 𝐶 Ñ 𝑡, 𝜖

t 𝑥 : 𝜏𝑥
𝑥 P𝑆 , 𝑦 : 𝜏𝑦 u ” t𝑥 : 𝜏𝑥

𝑥 P𝑆 u ^ t𝑦 : 𝜏𝑦 u p𝑦 R 𝑆q let 𝑥 “ 𝑡1 in 𝑡2 ” p𝜆𝑥 . 𝑡2q 𝑡1

case 𝑦 of 𝑀 ” case 𝑥 “ 𝑦 of r𝑦 ÞÑ 𝑥s𝑀 p𝑥 R FV p𝑀qq

4.2 Evaluation Rules
The small-step reduction semantics of 𝜆␣ is shown in Figure 2. The relation 𝑃 ù 𝑃 1 reads “program

𝑃 evaluates to program 𝑃 1 in one step.” Note that 𝑃 here may refer to a simple term 𝑡 .

We write t𝑥 “ 𝑣2 u P 𝑣1 to say that 𝑣1 is a value of the form ‘𝐶 t 𝑧 “ 𝑤, 𝑥 “ 𝑣2 u’ or of the form

‘𝐶 t 𝑧 “ 𝑤, 𝑦 “ 𝑣 1
2
u’ where 𝑦 ‰ 𝑥 and t𝑥 “ 𝑣2 u P 𝐶 t 𝑧 “ 𝑤 u. Class instances are constructed via

the𝐶 𝑅 introduction form, where 𝑅 is a record of the fields of the instance. Instance matching works

by inspecting the runtime instance of a scrutinee value, in order to determine which corresponding

branch to evaluate. This is done through the superclasses function Sp𝜏q. Note that a term of the

shape ‘case 𝑥 “ 𝑣 of 𝜖’ is stuck.

Definition 4.1 (Superclasses). We define the superclasses Sp𝜏q of a type 𝜏 as the set of classes

transitively inherited by type 𝜏 , assuming 𝜏 is a class type or the expansion of a class type. The full

definition is given in appendix (Definition A.1).

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 15

Ξ, Γ $ 𝑡 : 𝜏

T-Subs

Ξ, Γ $ 𝑡 : 𝜏1 Ξ $ 𝜏1 ď 𝜏2

Ξ, Γ $ 𝑡 : 𝜏2

T-Obj

Ξ, Γ $ 𝑡 : 𝜏 𝐶 final

Ξ, Γ $ 𝐶 t𝑥 “ 𝑡 u : #𝐶 ^ t𝑥 : 𝜏 u

T-Proj

Ξ, Γ $ 𝑡 : t𝑥 : 𝜏 u

Ξ, Γ $ 𝑡 .𝑥 : 𝜏

T-Var1

Γp𝑥q “ 𝜏

Ξ, Γ $ 𝑥 : 𝜏

T-Var2

Γp𝑥q “ 𝜎 Ξ $ 𝜎 ď@@𝜖. 𝜏

Ξ, Γ $ 𝑥 : 𝜏

T-Abs

Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡 : 𝜏2

Ξ, Γ $ 𝜆𝑥 . 𝑡 : 𝜏1 Ñ 𝜏2

T-App

Ξ, Γ $ 𝑡0 : 𝜏1 Ñ 𝜏2 Ξ, Γ $ 𝑡1 : 𝜏1

Ξ, Γ $ 𝑡0 𝑡1 : 𝜏2

T-Asc

Ξ, Γ $ 𝑡 : 𝜏

Ξ, Γ $ p𝑡 : 𝜏q : 𝜏

T-Case1

Ξ, Γ $ 𝑡1 : K

Ξ, Γ $ case 𝑥 “ 𝑡1 of 𝜖 : K

T-Case2

Ξ, Γ $ 𝑡1 : 𝜏1 ^ #𝐶 Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏

Ξ, Γ $ case 𝑥 “ 𝑡1 of _Ñ 𝑡2 : 𝜏

T-Case3

Ξ, Γ $ 𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏 Ξ, Γ¨p𝑥 : 𝜏2q $ case 𝑥 “ 𝑥 of 𝑀 : 𝜏

Ξ, Γ $ case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏

Fig. 3. Term typing rules.

4.3 Declarative Typing Rules
Program-typing judgments Ξ, Γ $‹ 𝑃 : 𝜏 are used to type programs while term-typing judgments

Ξ, Γ $ 𝑡 : 𝜏 are used to type def right-hand sides and program bodies. The latter judgement is read

“under type variable bounds Ξ and in context Γ, term 𝑡 has type 𝜏 .” We present only the rules for

the latter judgment in Figure 3, as they are the more interesting ones, and relegate the auxiliary

program-typing (Ξ, Γ $‹ 𝑃 : 𝜏), consistency (Σ cons.) and subtyping entailment (Σ $ 𝜎 ď@𝜎 and

Σ (Σ) rules to the appendix (Appendix A.1). The consistency judgment is used to make sure we

type defs and program bodies under valid (i.e., consistent) bounds only.
19

Rule T-Obj features a few technicalities deserving of careful explanations. First, notice that its

result type is an intersection of the nominal class tag #𝐶 with a record type of all the fields passed in

the instantiation. Importantly, these fields may have any types, including ones not compatible with

the field declarations in 𝐶 or its parents. This simplifies the meta theory (especially type inference)

and is done without loss of generality: indeed, we can desugar ‘C {x = t, ...}’ instantiations in

MLstruct into a type-ascribed instantiation ‘𝐶t𝑥 “ 𝑡, . . . u : 𝐶r𝛼s’ in 𝜆␣,20 where all 𝛼 are fresh,

which will ensure that the provided fields satisfy their declared types in 𝐶 .

T-Obj also requires 𝐶 to be “final” using the 𝐶 final judgment (formally defined in Figure 10).

This means that 𝐶 is not extended by any other classes in D. It ensures that, at runtime, for every

class pattern 𝐷 , pattern-matching scrutinees are always instances of a class 𝐷 1 that is either a

subclass of 𝐷 (meaning #𝐷 1 ď #𝐷) or an unrelated class (meaning #𝐷 1 ď ␣#𝐷). Without this

property, type preservation would technically not hold. Indeed, consider the program:

class C1 class C2: C1 class C3

case x = C1{} of C2 Ñ C3{}, _ Ñx

19
Indeed, under inconsistent bounds, ill-typed terms become typeable. For example, we have pInt ď IntÑ Intq $ 1 1 : Int.

20
The alternative desugaring ‘let tmp “ 𝐶t𝑥 “ 𝑡, . . . u in let “ tmp : 𝐶r𝛼s in tmp’ is nicer because it allows the user to

retain refined field types (as described in Section 2.1.2) as well as any new fields that were not declared in𝐶 or its parents.

16 Lionel Parreaux and Chun Yin Chau

This program can be given type ␣𝐶2 since 𝐶1 ď 𝐶2 _␣𝐶2 ” J (in T-Case3, we pick 𝜏2 “ ␣𝐶2),

but it reduces to 𝐶1tu, which does not have type ␣𝐶2 because 𝐶1 and 𝐶2 are not unrelated classes.

This finality requirement is merely a technicality of 𝜆␣ and it does not exist in MLstruct, where

non-final classes can be instantiated. This can be understood as each MLstruct class 𝐶 implicitly

defining a final version 𝐶𝐹
of itself, which is used upon instantiation. So the MLstruct program

above would actually denote the following desugared 𝜆␣ program:

class C1 class C𝐹
1
: C1 class C2: C1 class C3 class C𝐹

3
: C3

case x = C𝐹
1
{} : C1 of C2 Ñ C𝐹

3
{} : C3, _ Ñx

The refined program above now evaluates to 𝐶𝐹
1
tu, of type 𝐶𝐹

1
, which is a subtype of ␣𝐶2.

In T-Subs, we use the current constraining context Ξ as a subtyping context Σ when invoking

the subtyping judgement Ξ $ 𝜏1 ď 𝜏2 (presented in the next subsection), which is possible since

the syntax of constraining contexts is a special case of the syntax of subtyping contexts.

Rule T-Var2 uses the entailment judgment Ξ $ 𝜎 ď@@𝜖. 𝜏 defined in appendix to instantiate the

polymorphic type found in the context.

The typing of instance matching is split over three rules. Rule T-Case1 specifies that no scrutinee

can be matched by a case expression with no branches, which is expressed by assigning type K

(the type inhabited by no value) to the scrutinee.

Rule T-Case2 handles case expressions with a single, default case, which is equivalent to a let

binding, where the body 𝑡2 of the default case is typed within a typing context extended with the

case-bound variable 𝑥 and the type of the scrutinee. This rule requires the scrutinee to have a class

type #𝐶; this is to prevent functions from being matched, because that would technically break

preservation in a similar way as described above (since we do not have 𝜋1 Ñ 𝜋2 ď ␣#𝐷21
).

T-Case3 is the more interesting instance matching rule. We first assume that the scrutinee 𝑡1 has

some type 𝜏1 in order to type the first case branch, and then assume 𝑡1 has type 𝜏2 to type the rest

of the instance matching (by reconstructing a smaller case expression binding a new variable 𝑥

which shadows the old variable occurring in𝑀). Then, we make sure that the scrutinee 𝑡1 can be

typed at #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2, which ensures that if 𝑡1 is an instance of 𝐶 , then it is also of type 𝜏1,

and if not, then it is of type 𝜏2. In this rule, 𝜏1 can be picked to be anything, so assuming Γ¨p𝑥 : 𝜏1q

to type 𝑡2 is sufficient, and there is no need to assume Γ¨p𝑥 : 𝜏1 ^ #𝐶q. If the 𝑡2 branch needs 𝜏1 to

be a subtype of #𝐶 , we can always pick 𝜏1 “ 𝜏 1
1
^ #𝐶 . Notice that the required type for 𝑡1 still has

the same shape #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 ” #𝐶 ^ p#𝐶 ^ 𝜏 1
1
q _ ␣#𝐶 ^ 𝜏2 ” #𝐶 ^ 𝜏 1

1
_␣#𝐶 ^ 𝜏2.

4.4 Declarative Subtyping Rules
The declarative subtyping rules are presented in Figure 4. Remember that the mode syntax ˛ is used

to factor in dual formulations. For instance, 𝜏 ď˛ J˛ is to be understood as either 𝜏 ď¨ J¨ when

˛ “ ¨, i.e., 𝜏 ď J, or as 𝜏 ď J when ˛ “ , i.e., 𝜏 ě K, also written K ď 𝜏 . The purpose of rule

S-Weaken is solely to make rules which need no context slightly more concise to state. In this

paper, we usually treat applications of S-Weaken implicitly.

4.4.1 Subtyping Recursive Types. A consequence of our syntactic account of subtyping is that

we do not define types as some fixed point over a generative relation, as done in, e.g., [Dolan

2017; Pierce 2002]. Instead, we have to account for the fact that we manipulate finite syntactic

type trees, in which recursive types have to be manually unfolded to derive things about them.

This is the purpose of the S-Exp rules, which substitute a possibly-recursive type with its body to

expose one layer of its underlying definition. As remarked by Amadio and Cardelli [1993, §3.2], to

subtype recursive types, it is not enough to simply allow unfolding them a certain number of times.

21
We cannot support this without breaking subtyping consistency, because it would mean that #𝐶 ^ p𝜏1 Ñ 𝜏2q ď ...

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 17

Moreover, in our system, recursive types may arise from cyclic type variable constraints (which is

important for type inference), and thus not be attached to any explicit recursive binders. Thus, we

cannot simply follow Castagna [2012, §1.3.4] in admitting a 𝜇 rule, which would still be insufficient.

4.4.2 Subtyping Hypotheses. We make use of the Σ environment to store subtyping hypotheses

via S-Assum, to be leveraged later using the S-Hyp rule. We should be careful not to allow the use

of a hypothesis right after assuming it, which would obviously make the system unsound (as it

could derive any subtyping). In the specification of their constraint solving algorithm, Hosoya et al.

[2005] use two distinct judgments$ and$1 to distinguish from places where the hypotheses can or

cannot be used. We take a different, but related approach. Our S-Assum subtyping rule resembles

the Löb rule described by Appel et al. [2007], which uses the “later” modality ▷ in order to delay

the applicability of hypotheses — by placing this symbol in front of the hypothesis being assumed,

we prevent its immediate usage by S-Hyp. We eliminate ▷ when passing through a function or

record constructor: the dual ◁ symbol is used to remove all ▷ from the set of hypotheses, making

them available for use by S-Hyp. These precautions reflect the “guardedness” restrictions used by

Dolan [2017] on recursive types, which prevents usages of 𝛼 that are not guarded byÑ or t ... u in

a recursive type 𝜇𝛼. 𝜏 . Such productivity restriction is also implemented by our guardedness check,

preventing the definition of types such as type 𝐴 “ 𝐴 and type 𝐴 “ ␣𝐴 (Section 2.1.6).
22

22
Perhaps counter-intuitively, it is not a problem to infer types like ‘@p𝛼 ď 𝛼q. 𝜏 ’ and ‘@p𝛼 ď ␣𝛼q. 𝜏 ’ because such “funny”

cyclic bounds, unlike unproductive recursive types, do not actually allow concluding incorrect subtyping relationships.

Σ $ 𝜏 ď 𝜏 𝜏 ď 𝜏 ◁Ξ “ Ξ ◁pΣ ¨ 𝐻q “ ◁Σ ¨ 𝐻 ◁pΣ ¨ ▷𝐻q “ ◁Σ ¨ 𝐻

S-Refl

𝜏 ď 𝜏

S-ToB˛

𝜏 ď˛ J˛

S-Compl˛

𝜏 _˛␣𝜏 ě˛ J˛

S-NegInv

Σ $ 𝜏1 ď 𝜏2

Σ $ ␣𝜏2 ď ␣𝜏1

S-AndOr11˛

𝜏1_
˛ 𝜏2ě

˛ 𝜏1

S-AndOr12˛

𝜏1_
˛ 𝜏2ě

˛ 𝜏2

S-AndOr2˛

Σ $ 𝜏 ě˛ 𝜏1 Σ $ 𝜏 ě˛ 𝜏2

Σ $ 𝜏 ě˛ 𝜏1_
˛ 𝜏2

S-Distrib˛

𝜏 ^˛ p𝜏1_
˛ 𝜏2qď

˛ p𝜏 ^˛ 𝜏1q_
˛ p𝜏 ^˛ 𝜏2q

S-Trans

Σ $ 𝜏0 ď 𝜏1 Σ $ 𝜏1 ď 𝜏2

Σ $ 𝜏0 ď 𝜏2

S-Weaken

𝐻

Σ $ 𝐻

S-Assum

Σ¨▷𝐻 $ 𝐻

Σ $ 𝐻

S-Hyp

𝐻 P Σ

Σ $ 𝐻

S-ClsSub

𝐶2 P Sp#𝐶1q

#𝐶1 ď #𝐶2

S-ClsBot

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

#𝐶1 ^ #𝐶2 ď K

S-FunDepth

◁Σ $ 𝜏0 ď 𝜏1 ◁Σ $ 𝜏2 ď 𝜏3

Σ $ 𝜏1 Ñ 𝜏2 ď 𝜏0 Ñ 𝜏3

S-FunMrg˛

p𝜏1_
˛ 𝜏3q Ñ p𝜏2^

˛ 𝜏4qě
˛ 𝜏1 Ñ 𝜏2^

˛ 𝜏3 Ñ 𝜏4

S-Exp˛

𝜏 exp. 𝜏 1

𝜏 ě˛ 𝜏 1

S-RcdDepth

◁Σ $ 𝜏1 ď 𝜏2

Σ $ t𝑥 : 𝜏1 u ď t𝑥 : 𝜏2 u

S-RcdMrg˛

t𝑥 : 𝜏1_
˛ 𝜏2 uď

˛ t𝑥 : 𝜏1 u_
˛ t𝑥 : 𝜏2 u

S-RcdTop

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

J ď t𝑥 : 𝜏1 u _ 𝜏

𝜏 exp. 𝜏

S-AlsExp

ptype 𝐴r𝛼𝑖 𝑖 P𝑆 s “ 𝜏q P D

𝐴r𝜏𝑖
𝑖 P𝑆 s exp. r𝛼𝑖 ÞÑ 𝜏𝑖

𝑖 P𝑆 s𝜏

S-ClsExp

pclass 𝐶r𝛼𝑖 𝑖 P𝑆 s : 𝜏q P D

𝐶r𝜏𝑖
𝑖 P𝑆 s exp. #𝐶 ^ r𝛼𝑖 ÞÑ 𝜏𝑖

𝑖 P𝑆 s𝜏

Fig. 4. Declarative subtyping rules.

18 Lionel Parreaux and Chun Yin Chau

4.4.3 Example. As an example, let us try to derive 𝐴1 ď 𝐴2 where 𝐴1 “ 𝜏 Ñ 𝜏 Ñ 𝐴1 and

𝐴2 “ 𝜏 Ñ 𝐴2, which states that the type of a function taking two curried 𝜏 arguments an arbitrary

number of times is a special case of the type of a function taking a single 𝜏 argument an arbitrary

number of times. To facilitate the development, we use the shorthand 𝐻 “ 𝐴1 ď 𝐴2. We

start by deriving that the respective unfoldings of the recursive types are subtypes; that is, that

p1q 𝜏 Ñ 𝜏 Ñ 𝐴1 ď 𝜏 Ñ 𝐴2. Note that for conciseness, we omit the applications of S-Weaken in

the derivations below:

Fun

Refl

𝐻 $ 𝜏 ď 𝜏

Fun

Refl

𝐻 $ 𝜏 ď 𝜏

p𝐴1 ď 𝐴2q P 𝐻

𝐻 $ 𝐴1 ď 𝐴2

Hyp

𝐻 $ 𝜏 Ñ 𝐴1 ď 𝜏 Ñ 𝐴2 𝐻 $ 𝜏 Ñ 𝐴2 ď 𝐴2

Exp

𝐻 $ 𝜏 Ñ 𝐴1 ď 𝐴2

Trans

▷𝐻 $ 𝜏 Ñ 𝜏 Ñ 𝐴1 ď 𝜏 Ñ 𝐴2 p1q

Then, we simply have to fold back the unfolded recursive types, using Exp and Trans:

Assum

Trans

Trans

Exp

▷𝐻 $ 𝐴1 ď 𝜏 Ñ 𝜏 Ñ 𝐴1 p1q

▷𝐻 $ 𝐴1 ď 𝜏 Ñ 𝐴2 ▷𝐻 $ 𝜏 Ñ 𝐴2 ď 𝐴2

Exp

▷𝐻 $ 𝐴1 ď 𝐴2

𝐴1 ď 𝐴2

4.4.4 A Boolean Algebra. The subtyping preorder in 𝜆␣ gives rise to a Boolean lattice or algebra

when taking the equivalence relation ‘𝜏1 ” 𝜏2’ to be the relation induced by ‘𝜏1 ď 𝜏2 and 𝜏2 ď 𝜏1’.

To see why, let us inspect the standard way of defining Boolean algebras, which is as the set of

complemented distributive lattices. We can define a lattice equivalently as either:

‚ An algebra x𝐿, ^, _y such that ^ and _ are idempotent, commutative, associative, and

satisfy the absorption law, i.e., 𝜏 ^ p𝜏 _ 𝜋q ” 𝜏 _ p𝜏 ^ 𝜋q ” 𝜏 . Then 𝜏1 ď 𝜏2 is taken to mean

𝜏1 ” 𝜏1 ^ 𝜏2 or (equivalently) 𝜏1 _ 𝜏2 ” 𝜏2.

‚ A partially-ordered set x𝐿, ďy (i.e., ď is reflexive, transitive, and antisymmetric) where every

two elements 𝜏1 and 𝜏2 have a least upper bound 𝜏1 _ 𝜏2 (supremum) and a greatest lower

bound 𝜏1 ^ 𝜏2 (infimum). That is, @𝜋 ď 𝜏1, 𝜏2 . 𝜋 ď 𝜏1 ^ 𝜏2 and @𝜋 ě 𝜏1, 𝜏2 . 𝜋 ě 𝜏1 _ 𝜏2.

The latter is most straightforward to show: we have reflexivity by S-Refl, transitivity by S-Trans,

antisymmetry by definition of ”, and the supremum and infimum properties are given directly by

S-AndOr2¨ and S-AndOr2 respectively.

Moreover, to be a Boolean algebra, our lattice needs to be:

‚ a complemented lattice, which is

– bounded: J and K are respective least and greatest elements (S-ToB˛);

– such that every 𝜏 has a complement ␣𝜏 where 𝜏 _␣𝜏 ” J and 𝜏 ^␣𝜏 ” K (S-Compl˛);23

‚ a distributive lattice, meaning that 𝜏 ^˛ p𝜏1_
˛ 𝜏2q ” p𝜏 ^

˛ 𝜏1q_
˛ p𝜏 ^˛ 𝜏2q for ˛ P t , ¨ u.

The first direction ď˛ of distributivity is given directly by S-Distrib. The other direction ě˛

is admissible: since 𝜏1_
˛ 𝜏2ě

˛ 𝜏1 (S-AndOr11˛) and 𝜏1_
˛ 𝜏2ě

˛ 𝜏2 (S-AndOr12˛), we can easily

derive 𝜏 ^˛ p𝜏1_
˛ 𝜏2qě

˛ 𝜏 ^˛ 𝜏1 and 𝜏 ^˛ p𝜏1_
˛ 𝜏2qě

˛ 𝜏 ^˛ 𝜏2, and by (S-AndOr2˛) we conclude

that 𝜏 ^˛ p𝜏1_
˛ 𝜏2qě

˛ p𝜏 ^˛ 𝜏1q_
˛ p𝜏 ^˛ 𝜏2q.

A useful property of Boolean algebras is that the usual De Morgan’s laws hold, which will allow

us to massage constrains into normal forms during type inference.

23
We can also show that our lattice is uniquely complemented, i.e., ␣𝜏1 ” ␣𝜏2 implies 𝜏1 ” 𝜏2 (Theorem B.14).

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 19

4.4.5 Algebraic Rules. We call S-FunMrg and S-RcdTop algebraic subtyping rules because they

do not follow from a set-theoretic interpretation of order connectives (^, _, ␣). S-FunMrg and

S-RcdMrg respectively make function and record types lattice homomorphisms,
24
which is required

to make type inference complete — this allows the existence of well-behaved normal forms. Though

one can still think of types as sets of values, as in the semantic subtyping approach, in 𝜆␣ the sets of

values of 𝜏1^𝜏2 is not the intersection of the sets of values of 𝜏1 and 𝜏2 (unless 𝜏1 and 𝜏2 are nominal

tags or records), and similarly for unions and complements. These algebraic rules are sound in 𝜆␣

because of the careful use we make of unions and intersections, e.g., not using intersections to

encode overloading. Notably, S-RcdTop implies surprising relationships like␣p𝜏1 Ñ 𝜏2q ď t𝑥 : 𝜋 u

and ␣t𝑥 : 𝜋 u ď t𝑦 : 𝜋 u (𝑥 ‰ 𝑦), exemplifying that negation in 𝜆␣ is essentially algebraic.

4.5 Soundness of the Declarative Type System
We now state the main soundness theorems for 𝜆␣’s type system, proven in Section B.12 and B.13.

In the following, $‹ is used as the syntax for program-typing judgments (see Figure 9 in appendix).

Theorem 4.2 (Progress). If $‹ 𝑃 : 𝜏 and 𝑃 is not a value, then $ 𝑃 ù 𝑃 1 for some 𝑃 1.

Theorem 4.3 (Preservation). If $‹ 𝑃 : 𝜏 and $ 𝑃 ù 𝑃 1, then $‹ 𝑃 1 : 𝜏 .

5 PRINCIPAL TYPE INFERENCE FOR 𝜆␣

We now formally describe the type inference algorithm which was presented in Section 3.

5.1 Type Inference Rules
Our type inference rules are presented in Figure 5. The judgments Γ ,‹ 𝑃 : 𝜏 ñ Ξ and Ξ, Γ , 𝑡 :

𝜏 ñ Ξ are similar to their declarative typing counterparts, except that they are algorithmic and

produce constraining contexts Ξ containing inferred type variables bounds.

We give the following formal meaning to premises of the form ‘𝛼 fresh’, and in the rest of this

paper, we implicitly only consider well-formed derivations:

Definition 5.1 (Well-formed derivations). A type inference or constraining derivation is said to be

well-formed if, for every 𝛼 , the ‘𝛼 fresh’ premise appears at most once in the entire derivation and,

if it does, 𝛼 does not occur in any user-specified type (i.e., on the right of ascription trees ‘𝑡 : 𝜏 ’).

The program-typing inference rules I-Body and I-Def mirror their declarative counterparts. In

I-Def, notice how the output context corresponding to the definition’s body is the one used to

quantify the corresponding type in the typing context. Notice that in these rules, the consistency

condition (which can be seen in the declarative typing rules in Figure 9) has disappeared, because

type inference only produces consistent contexts by design.

The main difference between type inference rules and declarative typing rules is that in the

former, we immediately produce a type for each subexpression irrelevant of its context, using type

variables for local unknowns, and we then use a constraining judgement Σ $ 𝜏 ! 𝜋 ñ Ξ (explained

in the next subsection) to make sure that the inferred type 𝜏 conforms to the expected type 𝜋 in this

context. So whenever we need to guess a type (such as the type of a lambda’s parameter in I-Abs),

we simply introduce a fresh type variable. As an example, in I-Proj, we infer an unconstrained

type 𝜏 for the field projection’s prefix 𝑡 , and then make sure that this is a subtype of a record type

by constraining Ξ0 $ 𝜏 ! t𝑥 : 𝛼 u ñ Ξ1 — where Ξ1 is the output context containing the type

variable bounds necessary to make this relationship hold. Rules I-App, I-Asc, I-Case1, I-Case2,

and I-Case3 all work according to the same principles, threading the set of constraining contexts

24
A lattice homomorphism 𝑓 is such that 𝑓 p𝜏 _ 𝜋q ” 𝑓 p𝜏q _ 𝑓 p𝜋q and 𝑓 p𝜏 ^ 𝜋q ” 𝑓 p𝜏q ^ 𝑓 p𝜋q. Function types are

lattice homomorphisms in their parameters in the sense that 𝑓 p𝜏q “ p␣𝜏q Ñ 𝜋 is a lattice homomorphism.

20 Lionel Parreaux and Chun Yin Chau

Γ ,‹ 𝑃 : 𝜏 ñ Ξ

I-Body

Γ , 𝑡 : 𝜏 ñ Ξ

Γ ,‹ 𝑡 : 𝜏 ñ Ξ

I-Def

Γ , 𝑡 : 𝜏 ñ Ξ Γ¨p𝑥 : @Ξ. 𝜏q ,‹ 𝑃 : 𝜋 ñ Ξ1

Γ ,‹ def 𝑥 “ 𝑡 ; 𝑃 : 𝜋 ñ Ξ1

Ξ, Γ , 𝑡 : 𝜏 ñ Ξ

I-Proj

Ξ0, Γ , 𝑡 : 𝜏 ñ Ξ1 𝛼 fresh Ξ0¨Ξ1 $ 𝜏 ! t𝑥 : 𝛼 u ñ Ξ2

Ξ0, Γ , 𝑡 .𝑥 : 𝛼 ñ Ξ1¨Ξ2

I-Obj

Ξ0, Γ , 𝑡1 : 𝜏1 ñ Ξ1 Ξ0¨Ξ1, Γ , 𝑡2 : 𝜏2 ñ Ξ2 . . . Ξ0¨Ξ1¨...¨Ξ𝑛´1, Γ , 𝑡𝑛 : 𝜏𝑛 ñ Ξ𝑛 𝐶 final

Ξ0, Γ , 𝐶 t𝑥1 “ 𝑡1; 𝑥2 “ 𝑡2; . . . ; 𝑥𝑛 “ 𝑡𝑛 u : #𝐶 ^ t𝑥1 : 𝜏1; 𝑥2 : 𝜏2; . . . ; 𝑥𝑛 : 𝜏𝑛 u ñ Ξ1¨...¨Ξ𝑛

I-Var1

Γp𝑥q “ 𝜏

Ξ, Γ , 𝑥 : 𝜏 ñ 𝜖

I-Var2

Γp𝑥q “ @Ξ1 . 𝜏1 TV p@Ξ1 . 𝜏1q “ 𝑆 𝛾𝛼 fresh
𝛼 P𝑆

Ξ0, Γ , 𝑥 : r𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆 s𝜏1 ñ r𝛼 ÞÑ 𝛾𝛼

𝛼 P𝑆 sΞ1

I-Abs

𝛼 fresh Ξ0, Γ¨p𝑥 : 𝛼q , 𝑡 : 𝜏 ñ Ξ1

Ξ0, Γ , 𝜆𝑥. 𝑡 : 𝛼 Ñ 𝜏 ñ Ξ1

I-App

Ξ0, Γ , 𝑡1 : 𝜏1 ñ Ξ1 Ξ0¨Ξ1, Γ , 𝑡2 : 𝜏2 ñ Ξ2

𝛼 fresh Ξ0¨Ξ1¨Ξ2 $ 𝜏1 ! 𝜏2 Ñ 𝛼 ñ Ξ3

Γ, Ξ0 , 𝑡1 𝑡2 : 𝛼 ñ Ξ1¨Ξ2¨Ξ3

I-Asc

Ξ0, Γ , 𝑡 : 𝜏1 ñ Ξ1 Ξ0¨Ξ1 $ 𝜏1 ! 𝜏2 ñ Ξ2

Ξ0, Γ , p𝑡 : 𝜏2q : 𝜏2 ñ Ξ1¨Ξ2

I-Case1

Ξ0, Γ , 𝑡1 : 𝜏1 ñ Ξ1 Ξ0¨Ξ1 $ 𝜏1 ! K ñ Ξ2

Ξ0, Γ , case 𝑥 “ 𝑡1 of 𝜖 : K ñ Ξ1¨Ξ2

I-Case2

Ξ0, Γ , 𝑡1 : 𝜏1 ñ Ξ1 Ξ0¨Ξ1 $ 𝜏1 ! #𝐶 ñ Ξ2 Ξ0¨Ξ1¨Ξ2, Γ¨p𝑥 : 𝜏1q , 𝑡2 : 𝜏 ñ Ξ3

Ξ0, Γ , case 𝑥 “ 𝑡1 of _Ñ 𝑡2 : 𝜏 ñ Ξ1¨Ξ2¨Ξ3

I-Case3

Ξ0, Γ , 𝑡1 : 𝜏1 ñ Ξ1 𝛼 fresh Ξ0¨Ξ1, Γ¨p𝑥 : 𝛼q , 𝑡2 : 𝜏2 ñ Ξ2 𝛽 fresh
Ξ0¨Ξ1¨Ξ2, Γ¨p𝑥 : 𝛽q , case 𝑥 “ 𝑥 of 𝑀 : 𝜏3 ñ Ξ3 Ξ0¨Ξ1¨Ξ2¨Ξ3 $ 𝜏1 ! #𝐶 ^ 𝛼 _␣#𝐶 ^ 𝛽 ñ Ξ4

Ξ0, Γ , case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏2 _ 𝜏3 ñ Ξ1¨Ξ2¨Ξ3¨Ξ4

Fig. 5. Algorithmic type inference rules.

currently inferred through the next type inference steps, which is necessary to make sure that all

inferred type variable bounds are consistent with each other. Rule I-Var2 refreshes all the variables

of a type @Ξ. 𝜏 obtained from the typing context, which includes both variables that occur in the

constraining context Ξ as well as those that occur in the underlying type 𝜏 , even when some of the

latter may not be mentioned in Ξ; indeed, in 𝜆␣ all type variables are implicitly quantified.

5.2 Reduced Disjunctive Normal Forms
To facilitate constraint solving, it is useful to massage types into a normal form which we call

RDNF, for reduced disjunctive normal form. This normal form is similar to a classical disjunctive

normal form (DNF) except that we reduce all “incompatible” intersections and unions to K and J

respectively. Here, incompatible means that the type holds no useful information, either because it

is inhabited by no value or because it cannot be used meaningfully, as explained in Section 2.2.2.

The syntax of RDNF is given below. It is indexed by a level 𝑛 and there are two possible levels:

level-0 RDNF, written D0
does not contain any occurrence of class or alias types at the top level

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 21

(they will have been expanded); whereas level-1 RDNF, written D1
, allows them. Notation: we will

often write D as a shorthand for D1
(and similarly for the other indexed syntax forms).

D𝑛
::“ K | C𝑛 | D𝑛 _ C𝑛

I1 ::“ I0 | I1 ^ 𝑁 rD1 s

U1
::“ U0 | U1 _ 𝑁 rD1 s

C𝑛
::“ I𝑛 ^␣U𝑛 | C𝑛 ^ 𝛼 | C𝑛 ^␣𝛼

I0 ::“ INrNs | IÑrF s | IturRs
U0

::“ K | D1 Ñ D1 | t𝑥 : D1 u | U0 _ #𝐶

where the I¨ contexts stand for combinations of nominal tags N , functions F , and records R:
INr˝s ::“ ˝^ F ^ R N ::“ J | #𝐶 Ir˝s ::“ INr˝s | IÑr˝s | Itur˝s
IÑr˝s ::“ N ^ ˝^ R F ::“ J | D1 Ñ D1 J3

::“ J^J^J

Itur˝s ::“ N ^ F ^ ˝ R ::“ J | t𝑥 : D1 u

As an example, ‘D1 “ #𝐶 ^J^ t𝑥 : Ju ^𝐶rInt, Bools ^𝐴rStrs ^ ␣K^␣𝛼 ’ is a valid level-1

RDNF, but not a valid level-0 one because𝐶rInt, Bools and 𝐴rStrs occur at the top level and are not

expanded, while ‘D𝑛
2
“ J^J^ t𝑥 : 𝐶rInt, Bools u ^ ␣K’ is well-defined for both 𝑛 P t0, 1u.

5.2.1 Algorithm. Figures 6 and 7 give an algorithm to convert types 𝜏 to level-𝑛 RDNFs, written

dnf𝑛p𝜏q. The task is essentially straightforward, if relatively tedious. Essentially, dnf𝑛 pushes

negations in using DeMorgan laws, distributes intersections over unions, and at the same time

ensures that all constructed conjunctions are de-duplicated and as reduced as possible, so that

for instance intersections of unrelated classes are reduced to K and function and record types are

merged with themselves. We write p␣q𝜏 as a shorthand for either 𝜏 or ␣𝜏 (used uniformly in a

rule) and make use of auxiliary functions union𝑛pD𝑛, D𝑛q and inter𝑛pD𝑛, D𝑛q, which rely on the

following context definitions 𝑆`r¨s and 𝑆´r¨s, used to “dig into” the various shapes of C𝑛
syntaxes:

𝑆`r˝s ::“ Ir˝s | 𝑆`r˝s ^ 𝛼 | 𝑆`r˝s ^ ␣𝛼 | 𝑆`r˝s ^ ␣U | 𝑆`r˝s ^ 𝑁 rD1 s

𝑆´r˝s ::“ 𝑆´r˝s ^ 𝛼 | 𝑆´r˝s ^ ␣𝛼 | I^␣𝑆␣r˝s

𝑆␣r˝s ::“ ˝ | 𝑆␣r˝s _ 𝑁 rD1 s | 𝑆␣r˝s _ #𝐶 | U_ ˝

For example, we can decompose C𝑛 “ I𝑛^␣ppD𝑛
1
Ñ D𝑛

2
q_ #𝐶q^𝛼 as C𝑛 “ 𝑆´rD𝑛

1
Ñ D𝑛

2
s where

𝑆´r˝s “ I𝑛 ^␣p˝_ #𝐶q ^ 𝛼 .

The algorithm is well-defined on well-formed types 𝜏 wf, assuming a well-formed declarations

context D wf. These notions of well-formedness are defined formally in Appendix A.2.

Lemma 5.2 (Well-Defined dnf). If D wf, 𝜏 wf, and 𝑛 P t0, 1u, then dnf𝑛p𝜏q “ D𝑛
for some D𝑛

.

Lemma 5.3 (Correctness of dnf). For all 𝜏 , 𝑛 P t0, 1u, and D𝑛 “ dnf𝑛p𝜏q, we have 𝜏 ” D𝑛
.

5.3 Type Constraining Rules
The type constraining rules are defined in Figure 8. They are defined for any pairs of types and

input subtyping contexts, returning an output context containing err in case the constraining fails.

We need err cases to distinguish an infinite loop in the algorithm from a subtype constraining error,

i.e., we want to justify that we have a proper algorithm and not just a semi-algorithm.

In top-level constraining judgments, of the form Σ $ 𝜏 ! 𝜏 ñ Ξ, we check whether a subtyping
relationship is currently in the assumptions; if not, we extend the set of assumptions with the

current constraint (guarded by a ▷) and call the nested constraining rules with the two sides 𝜏1 and

𝜏2 merged into a single dnf0p𝜏1 ^␣𝜏2q normal form.
25
Nested constraining judgments have syntax

Σ $ D0 ñ Ξ; they implicitly solve the constraint D0 ď K. We can do this because for all 𝜏1 and 𝜏2,

25
The real implementation is a little smarter and does not always put the entire constraint into DNF to avoid needless work

in common cases. It also uses a mutable cache to reuse previous computations and avoid exponential blowups [Pierce 2002].

22 Lionel Parreaux and Chun Yin Chau

dnf𝑛p𝜏q : D𝑛

dnf𝑛pJq “ dnf𝑛p␣Kq “ J3 ^␣K (1)

dnf𝑛pKq “ dnf𝑛p␣Jq “ K (2)

dnf𝑛p𝛼q “ J3 ^␣K^ 𝛼 (3)

dnf𝑛p#𝐶q “ #𝐶 ^J^J^␣K (4)

dnf𝑛p𝜏1 Ñ 𝜏2q “ J^ dnf1p𝜏1q Ñ dnf1p𝜏2q ^ J^␣K (5)

dnf𝑛pt𝑥 : 𝜏 uq “ t𝑥 : dnf1p𝜏q u ^ J^J^␣K (6)

dnf0p𝑁 r𝜏sq “ dnf0p𝜏 1q when 𝑁 r𝜏s exp. 𝜏 1
(7)

dnf1p𝑁 r𝜏sq “ J3 ^ 𝑁 r dnf1p𝜏q s ^ ␣K (8)

dnf𝑛p𝜏1 ^ 𝜏2q “ interpdnf𝑛p𝜏1q, dnf𝑛p𝜏2qq (9)

dnf𝑛p𝜏1 _ 𝜏2q “ unionpdnf𝑛p𝜏1q, dnf𝑛p𝜏2qq (10)

dnf𝑛p␣𝛼q “ J3 ^␣K^␣𝛼 (11)

dnf𝑛p␣#𝐶q “ J3 ^␣pK_ #𝐶q (12)

dnf𝑛p␣t𝑥 : 𝜏 uq “ J3 ^␣t𝑥 : dnf1p𝜏q u (13)

dnf𝑛p␣p𝜏1 Ñ 𝜏2qq “ J
3 ^␣pdnf1p𝜏1q Ñ dnf1p𝜏2qq (14)

dnf0p␣𝑁 r𝜏sq “ dnf0p␣𝜏 1q when 𝑁 r𝜏s exp. 𝜏 1
(15)

dnf1p␣𝑁 r𝜏sq “ J3 ^␣pK_ 𝑁 r dnf1p𝜏q sq (16)

dnf𝑛p␣p𝜏1 ^ 𝜏2qq “ unionpdnf𝑛p␣𝜏1q, dnf𝑛p␣𝜏2qq (17)

dnf𝑛p␣p𝜏1 _ 𝜏2qq “ interpdnf𝑛p␣𝜏1q, dnf𝑛p␣𝜏2qq (18)

unionpD𝑛, D𝑛q : D𝑛

unionpD𝑛, Kq “ D𝑛
(19)

unionpD𝑛, C𝑛q “

"

D𝑛
when C𝑛 P D𝑛

D𝑛 _ C𝑛
otherwise

(20)

unionpD𝑛
1
, D𝑛

2
_ C𝑛q “ unionpunionpD𝑛

1
, C𝑛q, D𝑛

2
q (21)

interpD𝑛, D𝑛q : D𝑛

interpK, D𝑛q “ interpD𝑛, Kq “ K (22)

interpD𝑛
1
_ C𝑛, D𝑛

2
q “ unionpinterpD𝑛

1
, D𝑛

2
q, interpC𝑛, D𝑛

2
qq (23)

interpC𝑛
1
, D𝑛 _ C𝑛

2
q “ unionpinterpC𝑛

1
, D𝑛q, interpC𝑛

1
, C𝑛

2
qq (24)

Fig. 6. Normal form construction algorithm.

the subtyping relationship Σ $ 𝜏1 ď 𝜏2 is formally equivalent to Σ $ 𝜏1^␣𝜏2 ď K. This technique

was inspired by Pearce [2013], who also puts constraints into this form to solve subtyping problems

involving unions, intersections, and negations. Our constraining rules are deterministic except for

C-Var1 and C-Var2. By convention, we always pick C-Var1 in case both can be applied.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 23

(25)

interpC𝑛 | K, C𝑛 | I𝑛 | ␣U𝑛q : C𝑛 | K

interpK, q “ K (26)

interpC𝑛
1
, C𝑛

2
^ p␣q𝛼q “

$

&

%

interpC𝑛
1
, C𝑛

2
q when p␣q𝛼 P C𝑛

1

K when 𝛼,␣𝛼 P C𝑛
1
^ p␣q𝛼

interpC𝑛
1
^ p␣q𝛼, C𝑛

2
q otherwise

(27)

interpC𝑛, I𝑛 ^␣U𝑛q “ interpinterpC𝑛, I𝑛q, ␣U𝑛q (28)

interpC1, I1 ^ 𝑁 rD1 sq “ interpinterpC1, I1q, 𝑁 rD1 sq (29)

interpC𝑛, N ^ F ^ Rq “ interpinterpinterpC𝑛, Nq, Fq, Rq (30)

interpC1, ␣pU1 _ 𝑁 rD1 sqq “ interpinterpC1, ␣U1q, ␣𝑁 rD1 sq (31)

interpC𝑛, ␣Kq “ C𝑛
(32)

interp𝑆´rU𝑛
1
s, ␣U𝑛

2
q “ J3

when pU𝑛
1
, U𝑛

2
q P

$

&

%

p Ñ , t𝑥 : uq ;

pt𝑥 : u , Ñ q ;

pt𝑥 : u , t 𝑦‰𝑥
: uq

,

.

-

(33)

interp𝑆´rD1

1
Ñ D1

2
s, ␣pD1

3
Ñ D1

4
qq “ 𝑆´rinterpD1

1
, D1

3
q Ñ unionpD1

2
, D1

4
qs (34)

interp𝑆´rt𝑥 : D1

1
us, ␣t𝑥 : D1

2
uq “ 𝑆´rt𝑥 : unionpD1

1
, D1

2
q us (35)

interp𝑆´rU𝑛
1
s, ␣pU𝑛

2
_ #𝐶qq “

"

interp𝑆´rU𝑛
1
s, ␣U𝑛

2
q when #𝐶 P U𝑛

1

interp𝑆´rU𝑛
1
_ #𝐶s, ␣U𝑛

2
q otherwise

(36)

interp𝑆´rKs, ␣Unq “ 𝑆´rU𝑛s (37)

interpD1 | C1, p␣q𝑁 rD1 sq : D1

interpK, p␣q𝑁 rD1 sq “ K (38)

interpD1

0
_ C1, p␣q𝑁 rD1 sq “ interpD1

0
, p␣q𝑁 rD1 sq _ interpC1, p␣q𝑁 rD1 sq (39)

interpC1 ^ 𝛼, p␣q𝑁 rD1 sq “ interpC1, p␣q𝑁 rD1 sq ^ 𝛼 (40)

interpC1 ^␣𝛼, p␣q𝑁 rD1 sq “ interpC1, p␣q𝑁 rD1 sq ^ ␣𝛼 (41)

interpI1 ^␣U1, 𝑁 rD1 sq “

#

I1 ^␣U1
when 𝑁 rD1 s P I1

I1 ^ 𝑁 rD1 s ^ ␣U1
otherwise

(42)

interpI1 ^␣U1, ␣𝑁 rD1 sq “

#

I1 ^␣U1
when 𝑁 rD1 s P U1

I1 ^␣pU1 _ 𝑁 rD1 sq otherwise

(43)

interpC𝑛, N | F | Rq : C𝑛 | K

interpC𝑛, Jq “ C𝑛
(44)

interp𝑆`rINrJss, #𝐶q “ 𝑆`rINr#𝐶ss (45)

interp𝑆`rIr#𝐶1ss, #𝐶2q “

$

&

%

K when 𝐶1 R Sp#𝐶2q and𝐶2 R Sp#𝐶1q

𝑆`rIr#𝐶2ss when 𝐶1 P Sp#𝐶2q

𝑆`rIr#𝐶1ss when 𝐶2 P Sp#𝐶1q

(46)

interp𝑆`rIÑrJss, D1

1
Ñ D1

2
q “ 𝑆`rIÑrD1

1
Ñ D1

2
ss (47)

interp𝑆`rIrD1

1
Ñ D1

2
ss, D1

3
Ñ D1

4
q “ 𝑆`rIrunionpD1

1
, D1

3
q Ñ interpD1

2
, D1

4
qss (48)

interpC𝑛, t𝑥 : D1

𝑥 , 𝑦 : D1

𝑦 uq “ interpinterpC𝑛, t𝑥 : D1

𝑥 uq, t 𝑦 : D1

𝑦 uq (49)

interp𝑆`rIturJss, t𝑥 : D1 uq “ 𝑆`rIturt𝑥 : D1 uss (50)

interp𝑆`rIrt𝑥 : D1

𝑥

𝑥 P𝑆
uss, t 𝑦 : D1 uq “

$

&

%

𝑆`rIrt𝑥 : D1

𝑥

𝑥 P𝑆zt𝑦u
, 𝑦 : interpD1

𝑦, D
1q uss when 𝑦 P 𝑆

𝑆`rIrt𝑥 : D1

𝑥

𝑥 P𝑆
, 𝑦 : D1 uss otherwise

(51)

Fig. 7. Normal form construction algorithm (continued).

24 Lionel Parreaux and Chun Yin Chau

Σ $ 𝜏 ! 𝜏 ñ Ξ

C-Hyp

p𝜏1 ď 𝜏2q P Σ

Σ $ 𝜏1 ! 𝜏2 ñ 𝜖

C-Assum

p𝜏1 ď 𝜏2q R Σ Σ¨▷p𝜏1 ď 𝜏2q $ dnf0p𝜏1 ^␣𝜏2q ñ Ξ

Σ $ 𝜏1 ! 𝜏2 ñ Ξ

Σ $ D0 ñ Ξ

C-Or

Σ $ D0 ñ Ξ Ξ¨Σ $ C0 ñ Ξ1

Σ $ D0 _ C0 ñ Ξ¨Ξ1

C-Bot

Σ $ K ñ 𝜖

C-NotBot

Σ $ I0 ^␣K ñ err

C-Cls1

𝐶2 P Sp#𝐶1q

Σ $ Ir#𝐶1s ^ ␣pU_ #𝐶2q ñ 𝜖

C-Cls2

𝐶2 R Sp#𝐶1q Σ $ Ir#𝐶1s ^ ␣Uñ Ξ

Σ $ Ir#𝐶1s ^ ␣pU_ #𝐶2q ñ Ξ

C-Cls3

Σ $ INrJs ^ ␣Uñ Ξ

Σ $ INrJs ^ ␣pU_ #𝐶q ñ Ξ

C-Fun1

◁Σ $ D3 ! D1 ñ Ξ Ξ¨◁Σ $ D2 ! D4 ñ Ξ1

Σ $ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q ñ Ξ¨Ξ1

C-Fun2

Σ $ IÑrJs ^ ␣pD1 Ñ D2q ñ err

C-Rcd1

𝑦 P 𝑆 ◁Σ $ D𝑦 ! Dñ Ξ

Σ $ Irt𝑥 : D𝑥
𝑥 P𝑆

us ^ ␣t𝑦 : D u ñ Ξ

C-Rcd2

𝑦 R 𝑆

Σ $ Irt𝑥 : D𝑥
𝑥 P𝑆

us ^ ␣t𝑦 : D u ñ err

C-Rcd3

Σ $ IturJs ^ ␣t𝑥 : D u ñ err

C-Var1

Σ¨p𝛼 ď ␣Cq $ lbΣp𝛼q ! ␣Cñ Ξ

Σ $ C^ 𝛼 ñ Ξ¨p𝛼 ď ␣Cq

C-Var2

Σ¨pC ď 𝛼q $ C ! ubΣp𝛼q ñ Ξ

Σ $ C^␣𝛼 ñ Ξ¨pC ď 𝛼q

Fig. 8. Normal form constraining rules.

Definition 5.4 (Upper and lower bounds). We use the following definitions of lower and upper

bounds lbΞp𝛼q and ubΞp𝛼q of a type variable 𝛼 inside a constraining context Ξ:

lbΞp𝛼q : 𝜏 ubΞp𝛼q : 𝜏

lbΞ¨errp𝛼q “ lbΞ¨▷𝐻 p𝛼q “ lbΞp𝛼q ubΞ¨errp𝛼q “ ubΞ¨▷𝐻 p𝛼q “ ubΞp𝛼q

lbΞ¨p𝜏ď𝛼qp𝛼q “ 𝜏 _ lbΞp𝛼q ubΞ¨p𝜏ď𝛽qp𝛼q “ ubΞp𝛼q

lbΞ¨p𝜏ď𝛽qp𝛼q “ lbΞp𝛼q p𝛼 ‰ 𝛽q ubΞ¨p𝛼ď𝜏qp𝛼q “ 𝜏 ^ ubΞp𝛼q

lbΞ¨p𝛽ď𝜏qp𝛼q “ lbΞp𝛼q ubΞ¨p𝛽ď𝜏qp𝛼q “ ubΞp𝛼q p𝛼 ‰ 𝛽q

lb𝜖p𝛼q “ K ub𝜖p𝛼q “ J

Notice how the C-Var1/2 rules solve tricky constraints involving type variables by moving the

rest of a type expression to the other side of the inequality, relying on negation types and on the

properties of Boolean algebras (see Theorem B.20). Moreover, C-Var1/2 look up the existing bounds

of the type variable being constrained and perform a recursive call to ensure that the new bound is

consistent with these existing ones. This is required to ensure we only produce consistent output

contexts, and it explains why we have to thread constraining contexts throughout all type inference

derivations. As part of this recursive call, we extend the subtyping assumptions context with the

bound being recorded. For example, C-Var2 recurses with context Σ¨pC ď 𝛼q instead of just Σ. This
is crucial for two reasons: First, it is possible that new upper bounds 𝜏𝑖 be recorded for 𝛼 as part

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 25

of the recursive call. By adding C to the current lower bounds of 𝛼 within the recursive call, we

make sure that any such new upper bounds 𝜏𝑖 will be checked against C as part of the resulting

lbΣp𝛼q ! 𝜏𝑖 constraining call performed when adding bound 𝜏𝑖 . Second, it is quite common for

type inference to result in direct type variable bound cycles, such as 𝛼 ď 𝛽, 𝛽 ď 𝛼 , which can

for instance arise from constraining 𝛽 Ñ 𝛽 ď 𝛼 Ñ 𝛼 . These cycles do not lead to divergence of

type inference thanks to the use of Σ¨pC ď 𝛼q instead of Σ in the recursive call, ensuring that any

constraint resulting from a type variable bound cycle will end up being caught by C-Hyp.

The other constraining rules are fairly straightforward. The “beauty” of the RDNF is that it

essentially makes constraint solving with 𝜆␣ types obvious. In each case, there is always an obvious

choice to make: either (1) the constraint is unsatisfiable (for example with J ď K in C-NotBot,

which yields an err); or (2) the constraint needs to unwrap an irrelevant part of the type to continue

(for example with D1 Ñ D2 ď U _ #𝐶 in C-Cls3, which can be solved iff D1 Ñ D2 ď U itself

can be solved, because function types are unrelated to nominal class tags); or (3) we can solve the

constraint in an obvious, unambiguous way (for example with t𝑥 : D𝑥

𝑥 P𝑆
u ď t𝑦 : D u where

𝑦 P 𝑆 in C-Rcd1).

Normalizing types deeply (i.e., not solely on the outermost level) makes the termination of

constraining (Theorem A.9) straightforward. If we did not normalize nested types and for example

merged t𝑥 : 𝜏1 u ^ t𝑥 : 𝜏2 u syntactically as t𝑥 : 𝜏1 ^ 𝜏2 u, constraining recursive types in a way

that repetitively merges the same type constructors together could lead to unbounded numbers of

equivalent types being constrained, such as t𝑥 : 𝜏1 ^ 𝜏1 ^ 𝜏1 ^ . . . u, failing to terminate by C-Hyp.

Example. Consider the constraint 𝜏 “ t𝑥 : Nat, 𝑦 : Nat u ! 𝜋 “ t𝑥 : Int, 𝑦 : Ju. After adding

the pair to the set of hypotheses, C-Assum computes the RDNF dnf0p𝜏 ^ ␣𝜋q “ t𝑥 : Nat, 𝑦 :

Nat u^␣t𝑥 : Int u_t𝑥 : Nat, 𝑦 : Nat u^␣t𝑦 : Ju. Then this constrained type is decomposed into

two smaller constrained types t𝑥 : Nat, 𝑦 : Nat u^␣t𝑥 : Int u and t𝑥 : Nat, 𝑦 : Nat u^␣t𝑦 : Ju

by C-Or, and each one is solved individually by C-Rcd1, which requires constraining respectively

Nat ! Int and Nat ! J. The former yields RDNF #Nat ^ ␣#Int, which is solved by C-ClsCls1,

and the latter yields RDNF K, which is solved by C-Bot.

5.4 Correctness of Type Inference
We conclude this section by presenting the main correctness lemmas and theorems of type inference.

Theorem 5.5 (Soundness of type inference). If the type inference algorithm successfully yields

a type for program 𝑃 , then 𝑃 has this type. Formally: if ,‹ 𝑃 : 𝜏 ñ Ξ and err R Ξ, then Ξ $‹ 𝑃 : 𝜏 .

Lemma 5.6 (Sufficiency of Constraining). Successful type constraining ensures subtyping: if

Σ cons. and Σ $ 𝜏 ! 𝜋 ñ Ξ and err R Ξ, then Ξ¨Σ cons. and Ξ¨Σ $ 𝜏 ď 𝜋 .

Theorem 5.7 (Constraining Termination). For all 𝜏, 𝜋,D, Σ wf, Σ $ 𝜏 ! 𝜋 ñ Ξ for some Ξ.

Theorem 5.8 (Completeness of type inference). If a program 𝑃 can be typed at type 𝜎 , then

the type inference algorithm derives a type 𝜎 1 such that 𝜎 1 ď@ 𝜎 . Formally: if Ξ $‹ 𝑃 : 𝜏 , then

,‹ 𝑃 : 𝜏 1 ñ Ξ1 for some Ξ1 and 𝜏 1 where Ξ1 cons. and @Ξ1. 𝜏 1 ď@ @Ξ. 𝜏 .

In the following lemma, which is crucial for proving the above theorem, 𝜌 refers to type variable

substitutions and Ξ (Ξ1 denotes that Ξ entails Ξ1 (both defined formally in Appendix B).

Lemma 5.9 (Completeness of Constraining). If there is a substitution 𝜌 that makes 𝜌p𝜏1q a

subtype of 𝜌p𝜏2q in some consistent Ξ, then constraining 𝜏1 ! 𝜏2 succeeds and only introduces type

variable bounds that are entailed by Ξ (modulo 𝜌). Formally: if Ξ cons. and Ξ $ 𝜌p𝜏1q ď 𝜌p𝜏2q and

Ξ (𝜌pΞ0q, then Ξ0 $ 𝜏1 ! 𝜏2 ñ Ξ1 for some Ξ1 so that err R Ξ1 and Ξ (𝜌pΞ1q.

26 Lionel Parreaux and Chun Yin Chau

6 RELATEDWORK
We now relate the different aspects of MLstruct and 𝜆␣ with previous work.

Intersection type systems. Intersection types for lambda calculus were pioneered by Coppo and

Dezani-Ciancaglini [1980]; Barendregt et al. [1983], after whom the “BCD” type system is named.

BCD has the very powerful “T-^-I” rule, stating: if Γ $ 𝑡 : 𝜏1 and Γ $ 𝑡 : 𝜏2, then Γ $ 𝑡 : 𝜏1 ^ 𝜏2.

Such systems have the interesting property that typeability coincides with strong normalization

[Ghilezan 1996], making type inference undecidable. Thankfully, we do not need something as

powerful as T-^-I — instead, we introduce intersections in less general ways (i.e., through T-Obj),

and we retain decidability of type inference. Most intersection type systems, including MLstruct and

𝜆␣, do admit the following standard BCD subtyping rules given by Barendregt et al.: (1) 𝜏1^𝜏2 ď 𝜏1;

(2) 𝜏1^𝜏2 ď 𝜏2; and (3) if 𝜏1 ď 𝜏2 and 𝜏1 ď 𝜏3, then 𝜏1 ď 𝜏2^𝜏3. Some systems use intersection types

to encode a form of overloading [Pierce 1991]. However, Smith [1991] showed that ML-style type

inference with such a general form of overloading and subtyping is undecidable (more specifically,

finding whether inferred sets of constraints are satisfiable is) and proposed constructor overloading,

a restricted form of overloading with more tractable properties, sufficient to encode many common

functions, such as addition on different primitive types as well as vectors of those types. Constructor

overloading is eminently compatible with MLstruct and MLscript. Another design decision for

intersection systems is whether and how this connective should distribute over function types.

BCD subtyping states
26 p𝜏 Ñ 𝜋1q ^ p𝜏 Ñ 𝜋2q ď 𝜏 Ñ p𝜋1 ^ 𝜋2q and Barbanera et al. [1995] also

propose p𝜏1 Ñ 𝜋q^ p𝜏2 Ñ 𝜋q ď p𝜏1_𝜏2q Ñ 𝜋 . Together, these correspond to the minimal relevant

logic B+ [Dezani-Ciancaglini et al. 1998]. Approaches like that of Pottier [1998b] use a greatest

lower bound connective [that resembles type intersection ^ but admits a more liberal rule that

generalizes the previous two: p𝜏1 Ñ 𝜋1q ^ p𝜏2 Ñ 𝜋2q ď p𝜏1 _ 𝜏2q Ñ p𝜋1 ^ 𝜋2q, which we will refer

to as (full) function distributivity. However, notice that in a system with primitives, full function

distributivity is incompatible with T-^-I and thus precludes intersection-based overloading.
27

Union and intersection types in programming. Union types are almost as old as intersection

types, first introduced by MacQueen et al. [1986],
28
and both have a vast (and largely overlapping)

research literature, with popular applications such as refinement types [Freeman and Pfenning

1991]. These types have seen a recent resurgence, gaining a lot of traction both in academia

[Alpuim et al. 2017; Binder et al. 2022; Castagna et al. 2022; Dunfield 2012; Huang and Oliveira

2021; Muehlboeck and Tate 2018; Rehman et al. 2022] and in industry,
29
with several industry-grade

programming languages like TypeScript, Flow, and Scala 3 supporting them, in addition to a myriad

of lesser-known research languages. It is worth noting that many modern type systems with

intersection types do not support T-^-I in its full generality. For example, in TypeScript, a term can

only assume an overloaded intersection type if that term is a function with a list of pre-declared

type signatures, and in Scala intersections can only be introduced through inheritance. Unions and

intersections have also found uses in program analysis. Palsberg and Pavlopoulou [1998] showed

that polyvariant analysis can be related formally to a subtyping system with union, intersection,

and recursive types. Unions model sets of abstract values and intersections model each usage of an

26
This rule together with T-^-I was shown unsound in the presence of imperative features by Davies and Pfenning [2000].

27
For instance, term id “ 𝜆𝑥. 𝑥 has both types Int Ñ Int and Bool Ñ Bool so by T-^-I it would also have type

pIntÑ Intq^pBoolÑ Boolq. But by function distributivity and subsumption, this would allow typing id as pInt_Boolq Ñ
pInt^ Boolq and thus typing id 0 (which reduces to 0) as Int^ Bool, breaking type preservation.
28
Funnily, MacQueen et al. reported at the time that “type-checking difficulties seem to make intersection and union awkward

in practice; moreover it is not clear if there are any potential benefits from their use,”

29
The first author of this paper has received emails from various people reimplementing Simple-sub [Parreaux 2020] and

wanting to know how to add support for first-class union and intersection types, showing the enduring interest in these.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 27

abstract value. Their system conspicuously does not feature polymorphism, but it is well-known

that there is a correspondence between intersection types and polymorphism — a polymorphic

type can be viewed as an infinite intersection of all its possible instantiations [Aiken and Wimmers

1993]. Smith and Wang [2000] propose inferring polymorphic types, rather than intersections, for

function definitions, which is more flexible and composable as it can process unrelated definitions

separately, whereas the approach based solely on intersections is a global process. We believe that

having both intersections and polymorphism, as in MLscript, represents the best of both worlds.

Type inference for unions and intersections. None of the previous approaches we know have

proposed a satisfactory ML-style type inference algorithm for full union and intersection types.

By satisfactory, we mean that the algorithm should infer principal polymorphic types without

backtracking. Earlier approaches used heavily-restricted forms of unions and intersections. For

instance, Aiken and Wimmers [1993]; Aiken et al. [1994] impose very strict restrictions on negative

unions (they must be disjoint) and on positive intersections (they must not have free variables

and must be “upward closed”). Trifonov and Smith [1996] go further and restrict intersections

to negative or input positions (those appearing on the right of ď constraints) and unions types

to positive or output positions (those appearing on the left). Binder et al. [2022]; Dolan [2017];

Parreaux [2020]; Pottier [1998b] all follow the same idea. In these systems, unions and intersections

are not first-class citizens: they cannot be used freely in type annotations. Frisch et al. [2008] infer

set-theoretic types (see semantic subtyping below) for a higher-order language with overloading but

do not infer polymorphic types. Castagna et al. [2016] propose a complete polymorphic set-theoretic

type inference system, but their types are not principal so their algorithm returns several solutions,

which leads to the need for backtracking. It seems this should have severe scalability issues, as the

number of possible types for an expression would commonly grow exponentially.
30
Petrucciani

[2019] describes ways to reduce backtracking, but recognizes it as fundamentally “unavoidable.”

Negation or complement types. Negation types have not been nearly as ubiquitous as unions

and intersection in mainstream programming language practice and theory, except in the field of

semantic subtyping (see below). Nevertheless, our use of negation types to make progress while

solving constraints is not new — Aiken and Wimmers [1993] were the first to propose using

complement types in such a way. However, their complement types are less precise than our

negation types,
31
and in their system 𝛼 ^ 𝜏1 ď 𝜏2 and 𝛼 ď 𝜏2 _␣𝜏1 are not always equivalent.

Recursive types. Recursive types in the style of MLstruct, where a recursive type is equivalent

to its unfolding (a.k.a. equi-recursive types, not to be confused with iso-recursive types), have a

long history in programming languages research [Abadi and Fiore 1996; Amadio and Cardelli 1993;

Appel et al. 2007; Hosoya et al. 2005; MacQueen et al. 1986; Pierce 2002], dating as far back as Morris’

thesis, where he conjectured their use under the name of cyclic types [Morris 1969, pp.122–124].

Recursive types with subtyping were developed in the foundational work of Amadio and Cardelli

[1993] and Brandt and Henglein [1998] gave a coinductive axiomatization of such recursive types.

Jim and Palsberg [1999] described a co-inductive formalization of recursive types as arbitrary

infinite trees which is more general than approaches like ours, which only allows reasoning about

regular types. Nevertheless, the algorithms they gave were unsurprisingly restricted to regular

types. Gapeyev et al. [2002]; Pierce [2002] reconciled the representation as infinite regular trees with

the representation as 𝜇 types, and described the standard algorithms to decide the corresponding

subtyping relationship. An important aspect of practical recursive type algorithms is that one

30
Hindley-Milner type inference and derived systems like MLsub and MLstruct can also infer types that grow exponentially

in some situations, but these mostly occur in pathological cases, and not in common human-written programs.

31
For example, in their system ␣p𝜏 Ñ 𝜋q is the type of all values that are not functions, regardless of 𝜏 and 𝜋 .

28 Lionel Parreaux and Chun Yin Chau

needs to maintain the cache of discovered subtyping relationships across recursive calls to avoid

exponential blowup [Gapeyev et al. 2002]. Our implementation of MLstruct follows the same

principle, as a naive implementation of 𝜆␣ would lead to exactly the same blowup. Also refer to

Section 4.4.2 for more parallels between the handling of recursive types in 𝜆␣ and previous work.

Early approaches to subtype inference. The problem of type inference in the presence of

subtyping was kick-started in the 1980s [Fuh and Mishra 1989; Mitchell 1984; Stansifer 1988] and

studied extensively in the 1990s [Aiken and Wimmers 1993; Curtis 1990; Fuh and Mishra 1990;

Jim and Palsberg 1999; Kozen et al. 1994; Palsberg et al. 1997; Pottier 1998a,b; Smith 1991], mostly

through the lens of constraint solving on top of Hindley-Milner-style type inference [Damas and

Milner 1982; Hindley 1969; Milner 1978]. These approaches often involved combinations of record,

intersection, union, and recursive types, but as far as we know none proposed an effective (i.e.,

without backtracking) principal type inference technique for a system with all of these combined.

Odersky et al. [1999] gave them a unified account by proposing a general framework called

HM(X), where the ‘X’ stands for a constraint solver to plug into their generic system. While

these approaches often claimed a form of principal type inference (also called minimality
32
), the

constrained types they inferred were often large and unwieldy. Beyond inferring constraint sets

and ensuring their satisfiability, the related problem of simplification to produce more readable and

efficiently-processable types was also studied, often by leveraging the connection between regular

type trees and finite-state automata [Aiken 1996; Eifrig et al. 1995; Pottier 1996, 1998b, 2001; Simonet

2003]. A major stumbling block with all of these approaches was the problem of non-structural

subtyping entailment
33
(NSSE), which is to decide whether a given type scheme, which consists in

a polymorphic type along with its constraints on type variables, subsumes another. Solving this

issue is of central importance because it is needed to check implementations against user-provided

interfaces and type signatures, and because it provides a foundation from which to derive sound

type simplification techniques. However, to this day NSSE remains an open problem, and it is not

known whether it is even decidable [Dolan 2017]. Due to these difficulties, interest in this very

powerful form of subtyping all but faded in the subsequent decade, in what we interpret as a minor

“subtype inference winter.” Indeed, many subsequent approaches were developed in reaction to this

complexity with the aim of being simpler to reason about (e.g., polymorphic variants — see below).

Algebraic subtyping. Approaches like that of Pottier [1998b] used a lattice-theoretic construc-

tion of types inspired by the connection between types and term automata. Meet [and join \

operators resembling intersection and union types are used to compactly representing conjunctions

of constraints, but these are not first-class types, in that they are restricted to appearing respectively

in negative and positive positions only. Full function distributivity (defined above, in intersection

type systems) holds in these approaches due to the lattice structure. Pottier’s system still suffered

from a lack of complete entailment algorithm due to NSSE. Dolan [2017]; Dolan and Mycroft

[2017] later built upon that foundation and proposed an algebraic construction of types which

allowed breaking free of NSSE and finally enjoying a sound and complete entailment algorithm.

Two magical ingredients allowed this to be possible: 1. the definition of “extensible” type semantics

based on constructing types as a distributive lattice of coproducts; and 2. a different treatment

of type variables than in previous work, representing them as part of the lattice of types and

not as unknowns ranging over a set of ground types. In this paper, we in turn build on these

foundations, although we only retain the latter innovation, somehow forgoing the “extensible”

32
Some authors like Aiken et al. [1994] make a distinction between a concept of principality which is purely syntactic

(relating types by a substitution instance relationship) and minimality which involve a semantic interpretation of types.

33
“Non-structural” here is by opposition to so-called structural subtyping, which is a more tractable but heavily restricted

form of subtyping that only relates type constructors of identical arities [Palsberg et al. 1997] (precluding, e.g., t𝑥 : 𝜏 u ď J).

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 29

construction of types.
34
Together with our generalization of the subtyping lattice to a Boolean one

by adding negations and with the additional structure we impose on types (such as reducing unions

of unrelated records to J), this turns out to be sufficient for allowing principal type inference and

decidable entailment (though we only sketched the latter in this paper for lack of space). Ingredient

1 allowed Dolan to show the soundness of his system in a very straightforward way, relying on the

property (called Proposition 12 by Dolan [2017]) that any constraint of the form

Ź

𝑖 𝜏𝑖 ď
Ž

𝑖 𝜋𝑖
holds iff there is a 𝑘 such that 𝜏𝑘 ď 𝜋𝑘 when all 𝜏𝑖 have distinct constructors and all 𝜋𝑖 similarly.

By contrast, we allow some intersections of unrelated type constructors to reduce to K and some

unions of them to J, and we are thus not “extensible” in Dolan’s terminology. This is actually

desirable in the context of pattern matching, where we want to eliminate impossible cases by

making the intersections of unrelated class types empty. It is also needed in order to remove the

ambiguity from constraints like p𝜏1 Ñ 𝜏2q ^ t𝑥 : 𝜋 u ď p𝜏 1
1
Ñ 𝜏 1

2
q _ t𝑥 : 𝜋 1 u which in our system

reduces to p𝜏1 Ñ 𝜏2q ^ t𝑥 : 𝜋 u ď J. The present paper also takes heavy inspiration from our

earlier operationally-focused take on Dolan’s type inference algorithm [Parreaux 2020]. While

Dolan shirks from explicitly representing constraints, which he prefers to inline inside types on

the fly as [and \ types, we use an approach closer to the original constrained-types formulation

followed by Pottier. Besides being much easier to implement, our approach has other concrete

advantages, such as the ability to deal with invariance seamlessly (class C[A]: {f: A Ñ A}, which

is invariant in A, is valid in MLstruct) and a simpler treatment of cyclic type variable constraints.

Semantic subtyping and set-theoretic types. The semantic subtyping approaches [Castagna

et al. 2022, 2016; Frisch et al. 2002, 2008; Petrucciani 2019] view types as sets of values which inhabit

them and define the subtyping relationship as set inclusion, giving set-based meaning to union,

intersection, and negation (or complement) connectives. This is by contrast to algebraic subtyping,

which may admit subtyping rules that violate the set-theoretic interpretation, such as function

distributivity, to ensure that the subtyping lattice has desirable algebraic properties. For more

detailed discussions contrasting semantic subtyping with other approaches, we refer the reader to

Parreaux [2020] and Muehlboeck and Tate [2018].

Occurrence and flow typing. Occurrence typing was originally introduced by Tobin-Hochstadt
and Felleisen [2008] for Typed Scheme, and was later incorporated into TypeScript and Flow, where

it is known as flow typing. It allows the types of variables to be locally refined based on path

conditions encountered in the program. Negation types are pervasive in this context, though they

are often only used at the meta-theoretic level. Instance-matching in MLstruct can be understood

as a primitive form of occurrence typing in that it refines the types of scrutinee variables in case

expressions, similarly to the approach of Rehman et al. [2022]. Occurrence typing was also recently

extended to the semantic subtyping context [Castagna et al. 2021, 2022], where negation types

are first-class types. The latter work proposes a powerful type inference approach that can infer

overloaded function signatures as intersections types; however, this approach does not support

polymorphism and likely does not admit principal types. The idea of simplifying the definition of

core object-oriented type languages by using class tags (or brands) in addition to structural typing

is not new and was notably developed by Jones et al. [2015]; Lee et al. [2015].

Polymorphic records/variants and row polymorphism. Polymorphic records are structurally-

typed products whose types admit the usual width and depth subtyping relationships. Their dual,

polymorphic variants, are another useful language feature [Garrigue 1998, 2001], used to encode

structural sum types. In their simplest expression, polymorphic records (resp. variants) do not

support ad-hoc field extension (resp. default match cases). Previous approaches have thus extended

34
As discussed in prior work [Parreaux 2020], we believe the argument for Dolan’s notion of extensibility to be rather weak.

30 Lionel Parreaux and Chun Yin Chau

polymorphic records and variants with row polymorphism, which uses a new kind of variables,

named “row” variables, to record the presence and absence of fields (resp. cases) in a given type.

Some approaches, like OCaml’s polymorphic variants and object types, use row polymorphism

exclusively to simulate subtype polymorphism, in order to avoid subtyping in the wider languages.

However, row polymorphism and subtyping actually complement each other well, and neither is as

flexible without the other [Pottier 1998b, Chapter 14.7]. There are also techniques for supporting

variant and record extensibility through union, intersection, and negation types, as shown by

Castagna et al. [2016], who also explain that their system resolves long-standing limitations

with OCaml-style row polymorphism. In our system, we solve many (though not all) of these

limitations, but we also support principal type inference. It is worth pointing out that OCaml’s

polymorphic variants [Garrigue 2001] and related systems based on kinds [Ohori 1995] lack support

for polymorphic extension [Gaster and Jones 1996; White 2015], whereas MLstruct does (see mapSome

in the introduction). As a simpler example, def foo x dflt els = case x of { Apple Ñ dflt | _ Ñ

els x } would be assigned a too restrictive type in OCaml and as a consequence foo (Banana {})

0 (fun z Ñ case z of { Banana Ñ 1 }) would not type check (OCaml would complains that the

function argument does not handle Apple). A more expressive row-polymorphic system exposing

row variables to users would support this use case [Gaster and Jones 1996; Rémy 1994], but as

explained in the introduction, even these have limitations compared to our subtyped unions.

7 CONCLUSION AND FUTUREWORK
In this paper, we saw that polymorphic type inference for first-class union, intersection, and negation

types is possible, enabling class-instance matching patterns yielding very precise types, comparable

in expressiveness to row-polymorphic variants. We saw that this type inference approach relies

on two crucial aspects of MLstruct’s type system: 1. using the full power of Boolean algebras

to normalize types and massage constraints into shapes amenable to constraint solving without

backtracking; and 2. approximating some unions and intersections, most notably unions of records

and intersections of functions, in order to remove potential ambiguities during constraint solving

without threatening the soundness of the system.

Future Work. In the future, we intend to explore more advanced forms of polymorphism present

in MLscript, such as first-class polymorphism, as well as how to remove some of the limitations of

regular types, which currently prevent fully supporting object-oriented programming idioms.

Acknowledgements. Wewould like to sincerely thank the anonymous reviewers as well as François

Pottier, Didier Rémy, Alan Mycroft, Bruno C. d. S. Oliveira, Andong Fan, and Anto Chen for their

constructive and helpful comments on earlier versions of this paper. We are particularly grateful

to Stephen Dolan, who gave us some invaluable feedback and mathematical intuitions on the

development of this new algebraic subtyping system.

REFERENCES
Martin Abadi and Marcelo P. Fiore. 1996. Syntactic considerations on recursive types. In Proceedings 11th Annual IEEE

Symposium on Logic in Computer Science. IEEE, 242–252. ãÑ page 27

Alexander Aiken. 1996. Making set-constraint program analyses scale. In In CP96 Workshop on Set Constraints. ãÑ page 28

Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints and Type Inference. In Proceedings of

the Conference on Functional Programming Languages and Computer Architecture (Copenhagen, Denmark) (FPCA ’93).

Association for Computing Machinery, New York, NY, USA, 31–41. https://doi.org/10.1145/165180.165188 ãÑ pages 11,

27, and 28

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft Typing with Conditional Types. In Proceedings of the

21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94).

https://doi.org/10.1145/165180.165188

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 31

Association for Computing Machinery, New York, NY, USA, 163–173. https://doi.org/10.1145/174675.177847 ãÑ pages 27

and 28

João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In Programming Languages and Systems,

Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–28. ãÑ page 26

Roberto M. Amadio and Luca Cardelli. 1993. Subtyping Recursive Types. ACM Trans. Program. Lang. Syst. 15, 4 (Sept. 1993),

575–631. https://doi.org/10.1145/155183.155231 ãÑ pages 16 and 27

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A Very Modal Model of a

Modern, Major, General Type System. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Nice, France) (POPL ’07). Association for Computing Machinery, New York, NY, USA, 109–122.

https://doi.org/10.1145/1190216.1190235 ãÑ pages 17 and 27

F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. 1995. Intersection and Union Types: Syntax and Semantics. Information

and Computation 119, 2 (1995), 202–230. https://doi.org/10.1006/inco.1995.1086 ãÑ page 26

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model and the completeness of

type assignment. Journal of Symbolic Logic 48, 4 (1983), 931–940. https://doi.org/10.2307/2273659 ãÑ page 26

David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann. 2022. Structural Refinement Types. In Proceedings of the 7th

ACM SIGPLAN International Workshop on Type-Driven Development (TyDe ’22). Association for Computing Machinery,

New York, NY, USA. https://doi.org/10.1145/3546196.3550163 ãÑ pages 26 and 27

Michael Brandt and Fritz Henglein. 1998. Coinductive axiomatization of recursive type equality and subtyping. Fundamenta

Informaticae 33, 4 (1998), 309–338. ãÑ page 27

Giuseppe Castagna. 2012. Object-Oriented Programming A Unified Foundation. Springer Science & BusinessMedia. ãÑ page 17

Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. 2021. Revisiting Occurrence Typing.

arXiv:1907.05590 [cs.PL] ãÑ page 29

Giuseppe Castagna, Mickaël Laurent, Kim Nguyundefinedn, and Matthew Lutze. 2022. On Type-Cases, Union Elimination,

and Occurrence Typing. Proc. ACM Program. Lang. 6, POPL, Article 13 (jan 2022), 31 pages. https://doi.org/10.1145/3498674

ãÑ pages 26 and 29

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-theoretic types for polymorphic variants. In

Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016). Association for

Computing Machinery, Nara, Japan, 378–391. https://doi.org/10.1145/2951913.2951928 ãÑ pages 27, 29, and 30

M. Coppo and M. Dezani-Ciancaglini. 1980. An extension of the basic functionality theory for the 𝜆-calculus. Notre Dame

Journal of Formal Logic 21, 4 (1980), 685 – 693. https://doi.org/10.1305/ndjfl/1093883253 ãÑ page 26

Pavel Curtis. 1990. Constrained Qualification in Polymorphic Type Analysis. Ph.D. Dissertation. USA. UMI Order No.

GAX90-26980. ãÑ page 28

Bruno C. d. S. Oliveira, Cui Shaobo, and Baber Rehman. 2020. The Duality of Subtyping. In 34th European Conference on

Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 166), Robert

Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29:1–29:29.

https://doi.org/10.4230/LIPIcs.ECOOP.2020.29 ãÑ page 13

Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In Proceedings of the 9th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’82). Association for Computing Machinery,

Albuquerque, New Mexico, 207–212. https://doi.org/10.1145/582153.582176 ãÑ page 28

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In Proceedings of the Fifth ACM

SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New

York, NY, USA, 198–208. https://doi.org/10.1145/351240.351259 ãÑ page 26

Van Bakel Dezani-Ciancaglini, S. Van Bakel, M. Dezani-ciancaglini, and Y. Motohama. 1998. The Minimal Relevant Logic and

the Call-by-Value Lambda Calculus. Technical Report. ãÑ page 26

Stephen Dolan. 2017. Algebraic subtyping. Ph.D. Dissertation. ãÑ pages 3, 6, 9, 13, 16, 17, 27, 28, and 29

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type inference in MLsub. ACM SIGPLAN Notices 52,

1 (Jan. 2017), 60–72. https://doi.org/10.1145/3093333.3009882 ãÑ pages 1 and 28

Jana Dunfield. 2012. Elaborating Intersection and Union Types. In Proceedings of the 17th ACM SIGPLAN International

Conference on Functional Programming (Copenhagen, Denmark) (ICFP ’12). Association for Computing Machinery, New

York, NY, USA, 17–28. https://doi.org/10.1145/2364527.2364534 ãÑ page 26

Jonathan Eifrig, Scott Smith, and Valery Trifonov. 1995. Sound Polymorphic Type Inference for Objects. In Proceedings of

the Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (Austin, Texas, USA)

(OOPSLA ’95). Association for ComputingMachinery, NewYork, NY, USA, 169–184. https://doi.org/10.1145/217838.217858

ãÑ page 28

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN 1991 Conference on

Programming Language Design and Implementation (PLDI ’91). ACM, New York, NY, USA, 268–277. https://doi.org/10.

1145/113445.113468 event-place: Toronto, Ontario, Canada. ãÑ page 26

https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.2307/2273659
https://doi.org/10.1145/3546196.3550163
https://arxiv.org/abs/1907.05590
https://doi.org/10.1145/3498674
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/3093333.3009882
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/217838.217858
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468

32 Lionel Parreaux and Chun Yin Chau

A. Frisch, G. Castagna, and V. Benzaken. 2002. Semantic subtyping. In Proceedings 17th Annual IEEE Symposium on Logic in

Computer Science. 137–146. https://doi.org/10.1109/LICS.2002.1029823 ãÑ page 29

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing Set-Theoretically with

Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article 19 (Sept. 2008), 64 pages. https://doi.org/10.

1145/1391289.1391293 ãÑ pages 27 and 29

You-Chin Fuh and Prateek Mishra. 1989. Polymorphic subtype inference: Closing the theory-practice gap. In TAPSOFT ’89,

J. Díaz and F. Orejas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 167–183. ãÑ page 28

You-Chin Fuh and Prateek Mishra. 1990. Type inference with subtypes. Theoretical Computer Science 73, 2 (1990), 155–175.

https://doi.org/10.1016/0304-3975(90)90144-7 ãÑ page 28

Vladimir Gapeyev, Michael Y Levin, and Benjamin C Pierce. 2002. Recursive subtyping revealed. Journal of Functional

Programming 12, 6 (2002), 511–548. ãÑ pages 27 and 28

Jacques Garrigue. 1998. Programming with polymorphic variants. In ML Workshop, Vol. 13. Baltimore, 7. ãÑ page 29

Jacques Garrigue. 2001. Simple Type Inference for Structural Polymorphism.. In APLAS. 329–343. ãÑ pages 3, 29, and 30

Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records and Variants. ãÑ page 30

Silvia Ghilezan. 1996. Strong Normalization and Typability with Intersection Types. Notre Dame Journal of Formal Logic 37,

1 (1996), 44 – 52. https://doi.org/10.1305/ndjfl/1040067315 ãÑ page 26

Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969),

29–60. https://doi.org/10.2307/1995158 Publisher: American Mathematical Society. ãÑ page 28

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2005. Regular Expression Types for XML. ACM Trans. Program.

Lang. Syst. 27, 1 (Jan. 2005), 46–90. https://doi.org/10.1145/1053468.1053470 ãÑ pages 17 and 27

Xuejing Huang and Bruno C. d. S. Oliveira. 2021. Distributing Intersection and Union Types with Splits and Duality

(Functional Pearl). Proc. ACM Program. Lang. 5, ICFP, Article 89 (aug 2021), 24 pages. https://doi.org/10.1145/3473594

ãÑ page 26

Edward V. Huntington. 1904. Sets of independent postulates for the algebra of logic. Trans. Amer. Math. Soc. 5, 3 (1904),

288–309. https://doi.org/10.1090/s0002-9947-1904-1500675-4 ãÑ pages 67 and 68

Trevor Jim and Jens Palsberg. 1999. Type Inference in Systems of Recursive Types With Subtyping. ãÑ pages 27 and 28

Timothy Jones, Michael Homer, and James Noble. 2015. Brand Objects for Nominal Typing. In 29th European Conference on

Object-Oriented Programming (ECOOP 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang

Boyland (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 198–221. https://doi.org/10.

4230/LIPIcs.ECOOP.2015.198 ãÑ page 29

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. 1994. Efficient inference of partial types. J. Comput. System Sci.

49, 2 (1994), 306–324. https://doi.org/10.1016/S0022-0000(05)80051-0 ãÑ page 28

Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin. 2015. A Theory of Tagged Objects. In 29th European Conference

on Object-Oriented Programming (ECOOP 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang

Boyland (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 174–197. https://doi.org/10.

4230/LIPIcs.ECOOP.2015.174 ãÑ page 29

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1986. An ideal model for recursive polymorphic types. Information and

Control 71, 1 (1986), 95–130. https://doi.org/10.1016/S0019-9958(86)80019-5 ãÑ pages 26 and 27

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (Dec. 1978), 348–375.

https://doi.org/10.1016/0022-0000(78)90014-4 ãÑ page 28

John C. Mitchell. 1984. Coercion and Type Inference. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (Salt Lake City, Utah, USA) (POPL ’84). Association for Computing Machinery, New

York, NY, USA, 175–185. https://doi.org/10.1145/800017.800529 ãÑ page 28

James Hiram Morris. 1969. Lambda-calculus models of programming languages. Ph.D. Dissertation. Massachusetts Institute

of Technology. ãÑ page 27

Fabian Muehlboeck and Ross Tate. 2018. Empowering Union and Intersection Types with Integrated Subtyping. Proc. ACM

Program. Lang. 2, OOPSLA, Article 112 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276482 ãÑ pages 4, 6, 26, and 29

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov,

Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An overview of the Scala programming language. (2004).

ãÑ page 4

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type inference with constrained types. Theory and Practice of

Object Systems 5, 1 (1999), 35–55. ãÑ page 28

Atsushi Ohori. 1995. A Polymorphic Record Calculus and Its Compilation. ACM Trans. Program. Lang. Syst. 17, 6 (nov 1995),

844–895. https://doi.org/10.1145/218570.218572 ãÑ pages 3 and 30

Jens Palsberg and Christina Pavlopoulou. 1998. From Polyvariant Flow Information to Intersection and Union Types. In

Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California,

USA) (POPL ’98). Association for Computing Machinery, New York, NY, USA, 197–208. https://doi.org/10.1145/268946.

https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1016/0304-3975(90)90144-7
https://doi.org/10.1305/ndjfl/1040067315
https://doi.org/10.2307/1995158
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/3473594
https://doi.org/10.1090/s0002-9947-1904-1500675-4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.1016/S0022-0000(05)80051-0
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/800017.800529
https://doi.org/10.1145/3276482
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/268946.268963
https://doi.org/10.1145/268946.268963

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 33

268963 ãÑ page 26

Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. 1997. Type inference with non-structural subtyping. Formal Aspects of

Computing 9, 1 (Jan. 1997), 49–67. https://doi.org/10.1007/BF01212524 ãÑ page 28

Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type Inference with Subtyping Made Easy

(Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 124 (Aug. 2020), 28 pages. https://doi.org/10.1145/3409006

ãÑ pages 10, 12, 13, 26, 27, and 29

Lionel Parreaux, Luyu Cheng, Tony Chau, Ishan Bhanuka, Andong Fan, Malcolm Law, Ali Mahzoun, and Elise Rouillé. 2022.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Artifact). https://doi.org/10.5281/zenodo.

7121838 ãÑ pages 3 and 4

David J. Pearce. 2013. Sound and Complete Flow Typing with Unions, Intersections and Negations. In Verification, Model

Checking, and Abstract Interpretation (Lecture Notes in Computer Science), Roberto Giacobazzi, Josh Berdine, and Isabella

Mastroeni (Eds.). Springer, Berlin, Heidelberg, 335–354. https://doi.org/10.1007/978-3-642-35873-9_21 ãÑ page 22

Tommaso Petrucciani. 2019. Polymorphic set-theoretic types for functional languages. Ph.D. Dissertation. Università di

Genova; Université Sorbonne Paris Cité – Université Paris Diderot. ãÑ pages 27 and 29

Benjamin C Pierce. 1991. Programming with intersection types and bounded polymorphism. Ph.D. Dissertation. Citeseer.

ãÑ pages 9 and 26

Benjamin C. Pierce. 2002. Types and programming languages. MIT press. ãÑ pages 16, 21, and 27

François Pottier. 1996. Simplifying Subtyping Constraints. In Proceedings of the First ACM SIGPLAN International Conference

on Functional Programming (Philadelphia, Pennsylvania, USA) (ICFP ’96). Association for Computing Machinery, New

York, NY, USA, 122–133. https://doi.org/10.1145/232627.232642 ãÑ page 28

François Pottier. 1998a. A Framework for Type Inference with Subtyping. In Proceedings of the Third ACM SIGPLAN

International Conference on Functional Programming (Baltimore, Maryland, USA) (ICFP ’98). Association for Computing

Machinery, New York, NY, USA, 228–238. https://doi.org/10.1145/289423.289448 ãÑ page 28

François Pottier. 1998b. Type Inference in the Presence of Subtyping: from Theory to Practice. Research Report RR-3483. INRIA.

https://hal.inria.fr/inria-00073205 ãÑ pages 6, 26, 27, 28, 29, and 30

François Pottier. 2001. Simplifying Subtyping Constraints: A Theory. Information and Computation 170, 2 (2001), 153–183.

https://doi.org/10.1006/inco.2001.2963 ãÑ page 28

François Pottier. 2003. A Constraint-Based Presentation and Generalization of Rows. In IEEE Symposium on Logic In Computer

Science (LICS). Ottawa, Canada, 331–340. http://cambium.inria.fr/~fpottier/publis/fpottier-lics03.pdf ãÑ page 3

Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. 2022. Union Types with Disjoint Switches. In

36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

25:1–25:31. https://doi.org/10.4230/LIPIcs.ECOOP.2022.25 ãÑ pages 26 and 29

Didier Rémy. 1994. Type Inference for Records in Natural Extension of ML. MIT Press, Cambridge, MA, USA, 67–95. ãÑ pages 3

and 30

John C. Reynolds. 1997. Design of the Programming Language Forsythe. Birkhäuser Boston, Boston, MA, 173–233. https:

//doi.org/10.1007/978-1-4612-4118-8_9 ãÑ page 7

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits: Composable units of behaviour.

In European Conference on Object-Oriented Programming. Springer, 248–274. ãÑ page 4

Vincent Simonet. 2003. Type Inference with Structural Subtyping: A Faithful Formalization of an Efficient Constraint Solver.

In Programming Languages and Systems, Atsushi Ohori (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 283–302.

ãÑ page 28

Geoffrey Seward Smith. 1991. Polymorphic type inference for languages with overloading and subtyping. Ph.D. Dissertation.

Cornell University. ãÑ pages 26 and 28

Scott F. Smith and Tiejun Wang. 2000. Polyvariant Flow Analysis with Constrained Types. In Programming Languages and

Systems, Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 382–396. ãÑ page 27

R. Stansifer. 1988. Type Inference with Subtypes. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (San Diego, California, USA) (POPL ’88). Association for Computing Machinery, New York,

NY, USA, 88–97. https://doi.org/10.1145/73560.73568 ãÑ page 28

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of the

35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)

(POPL ’08). Association for Computing Machinery, New York, NY, USA, 395–406. https://doi.org/10.1145/1328438.1328486

ãÑ page 29

Valery Trifonov and Scott Smith. 1996. Subtyping constrained types. In Static Analysis, Radhia Cousot and David A. Schmidt

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 349–365. ãÑ page 27

Leo White. 2015. Row polymorphism. https://www.cl.cam.ac.uk/teaching/1415/L28/rows.pdf ãÑ page 30

https://doi.org/10.1145/268946.268963
https://doi.org/10.1145/268946.268963
https://doi.org/10.1007/BF01212524
https://doi.org/10.1145/3409006
https://doi.org/10.5281/zenodo.7121838
https://doi.org/10.5281/zenodo.7121838
https://doi.org/10.1007/978-3-642-35873-9_21
https://doi.org/10.1145/232627.232642
https://doi.org/10.1145/289423.289448
https://hal.inria.fr/inria-00073205
https://doi.org/10.1006/inco.2001.2963
http://cambium.inria.fr/~fpottier/publis/fpottier-lics03.pdf
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/73560.73568
https://doi.org/10.1145/1328438.1328486
https://www.cl.cam.ac.uk/teaching/1415/L28/rows.pdf

34 Lionel Parreaux and Chun Yin Chau

A FORMALIZATION, CONTINUED
The full formalization does not fit in the main body of the paper, so we give the missing parts here.

A.1 Declarative Typing Rules
The declarative typing rules of 𝜆␣ are presented in Figure 9.

Rule T-Body is used to type programs that happen to be simple terms, after having accumulated a

set of declarations in the contextD, which is checked for well-formedness using the rules presented

in Figure 10 and explained later (Section A.2).

In T-Def, we type the body of a def inside a constraining context Ξ added on top of the current

declarations context, and subsequently use Ξ as part of the resulting polymorphic type of this def,
which is placed into the typing context for use later in the program. Importantly,Ξ has to be checked

for consistency, which is done with the Ξ cons. judgement, defined in Figure 9 — essentially, this

makes sure that there is at least one assignment of variable that makes the constraints hold in the

base declarations context. This is to forbid the use of inconsistent bounds on type variables, such

as pBool ď 𝛼q¨p𝛼 ď Intq, which could lead to accepting ill-typed definitions.

As a concrete example for T-Def, consider a definition such as def 𝑓 “ 𝜆𝑥. 𝑥 ` 1 in a program

where a type synonym type 𝐴 “ Int is defined. One hypothetical judgement used to type this

definition could be ‘ptype 𝐴 “ Intq¨p𝛼 ď 𝐴q, Γ $ 𝜆𝑥. 𝑥 ` 1 : 𝛼 Ñ Int’ where Ξ “ p𝛼 ď 𝐴q is the

constraints part of the context. According to T-Def, because Ξ is consistent (since lbΞp𝛼q “ K ď

ubΞp𝛼q “ Int), we can type the definition 𝑓 as ‘@p𝛼 ď 𝐴q. 𝛼 Ñ Int’. As a side note, this type can
be rewritten to 𝑓 : 𝐴Ñ 𝐴, which is equivalent in the declarations context ptype 𝐴 “ Intq.

Rule T-Var2 is an interesting counterpart to rule T-Def explained above. It instantiates a given

polymorphic type through the ď@ relation defined by rule S-All.

Rule S-All uses a substitution 𝜌 , a premise that the subtyping holds under this substitution, and

the entailment judgement Σ¨Ξ1 (𝜌pΞq, which simply makes sure that every subtyping constraint

in 𝜌pΞq holds in Σ with Ξ1 (which is 𝜖 for T-Var2). Condition domp𝜌q “ TV pΞq Y TV p𝜏q, where

TV p¨q is defined in Section A.3, is used to make sure that 𝜌 assigns a substitution to all the variables

quantified by the polymorphic type.

A.1.1 Superclasses.

Definition A.1 (Superclasses). We define the superclasses Sp𝜏q of a type 𝜏 as the set of classes

transitively inherited by type 𝜏 , assuming 𝜏 is a class type or the expansion of a class type:

𝐶 P Sp#𝐶q
𝐶 P Sp#𝐷q
𝐶 P Sp𝐷r𝜏sq

𝜏 exp. 𝜏 1 𝐶 P Sp𝜏 1q
𝐶 P Sp𝜏q

𝐶 P Sp𝜏1q Y Sp𝜏2q

𝐶 P Sp𝜏1 ^ 𝜏2q

A.1.2 Substitution.

Definition A.2 (Term substitution). A term substitution is a pair of variable and term r𝑥 ÞÑ 𝑡s.

Applying a term substitution to a term 𝑡 1, denoted by r𝑥 ÞÑ 𝑡s𝑡 1, replaces all free occurrences of 𝑥

in 𝑡 1 with 𝑡 , which is defined as follows:

r𝑥 ÞÑ 𝑡s𝑦 “

"

𝑡 if 𝑦 “ 𝑥

𝑦 if 𝑦 ‰ 𝑥
r𝑥 ÞÑ 𝑡sp𝑡0 𝑡1q “ r𝑥 ÞÑ 𝑡s𝑡0 r𝑥 ÞÑ 𝑡s𝑡1

r𝑥 ÞÑ 𝑡sp𝑡 1 : 𝜏q “ r𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏 r𝑥 ÞÑ 𝑡s𝑡 1 .𝑥 1 “ pr𝑥 ÞÑ 𝑡s𝑡 1q.𝑥 1

r𝑥 ÞÑ 𝑡s𝜆𝑥 1 . 𝑡 1 “

"

𝜆𝑥 1 . 𝑡 1 if 𝑥 1 “ 𝑥

𝜆𝑥 1 . r𝑥 ÞÑ 𝑡s𝑡 1 if 𝑥 1 ‰ 𝑥
r𝑥 ÞÑ 𝑡sp𝐶 t𝑥 1 “ 𝑡 1 uq “ 𝐶 t𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡 1 u

r𝑥 ÞÑ 𝑡s case 𝑥 1 “ 𝑡 1 of 𝑀 “

"

case 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡 1 of 𝑀 if 𝑥 1 “ 𝑥

case 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡 1 of r𝑥 ÞÑ 𝑡s𝑀 if 𝑥 1 ‰ 𝑥

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 35

Ξ, Γ $‹ 𝑃 : 𝜏

T-Body

Ξ cons. Ξ, Γ $ 𝑡 : 𝜏

Ξ, Γ $‹ 𝑡 : 𝜏

T-Def

Ξ1 cons. Ξ1, Γ $ 𝑡 : 𝜏 Ξ, Γ¨p𝑥 : @Ξ1 . 𝜏q $‹ 𝑃 : 𝜏𝑃

Ξ, Γ $‹ def 𝑥 “ 𝑡 ; 𝑃 : 𝜏𝑃

Ξ, Γ $ 𝑡 : 𝜏

T-Subs

Ξ, Γ $ 𝑡 : 𝜏1 Ξ $ 𝜏1 ď 𝜏2

Ξ, Γ $ 𝑡 : 𝜏2

T-Obj

Ξ, Γ $ 𝑡 : 𝜏 𝐶 final

Ξ, Γ $ 𝐶 t𝑥 “ 𝑡 u : #𝐶 ^ t𝑥 : 𝜏 u

T-Proj

Ξ, Γ $ 𝑡 : t𝑥 : 𝜏 u

Ξ, Γ $ 𝑡 .𝑥 : 𝜏

T-Var1

Γp𝑥q “ 𝜏

Ξ, Γ $ 𝑥 : 𝜏

T-Var2

Γp𝑥q “ 𝜎 Ξ $ 𝜎 ď@@𝜖. 𝜏

Ξ, Γ $ 𝑥 : 𝜏

T-Abs

Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡 : 𝜏2

Ξ, Γ $ 𝜆𝑥 . 𝑡 : 𝜏1 Ñ 𝜏2

T-App

Ξ, Γ $ 𝑡0 : 𝜏1 Ñ 𝜏2 Ξ, Γ $ 𝑡1 : 𝜏1

Ξ, Γ $ 𝑡0 𝑡1 : 𝜏2

T-Asc

Ξ, Γ $ 𝑡 : 𝜏

Ξ, Γ $ p𝑡 : 𝜏q : 𝜏

T-Case1

Ξ, Γ $ 𝑡1 : K

Ξ, Γ $ case 𝑥 “ 𝑡1 of 𝜖 : K

T-Case2

Ξ, Γ $ 𝑡1 : 𝜏1 ^ #𝐶 Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏

Ξ, Γ $ case 𝑥 “ 𝑡1 of _Ñ 𝑡2 : 𝜏

T-Case3

Ξ, Γ $ 𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏 Ξ, Γ¨p𝑥 : 𝜏2q $ case 𝑥 “ 𝑥 of 𝑀 : 𝜏

Ξ, Γ $ case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏

▷Ξ¨Ξ ; Σ ; 𝜌 cons.
Assuming Σ holds, then bounds ▷Ξ¨Ξ are consistent, as witnessed by 𝜌 .

Ξ cons. ” D𝜌. Ξ ; 𝜖 ; 𝜌 cons.

▷Ξ ; Σ ; id cons.

split𝛼 pΞ, domp𝜌
1qq “ pΞ𝛼 , Ξ𝛼 q 𝜌 “ r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qs

▷Ξ▷¨▷Ξ𝛼 ¨𝜌Ξ𝛼 ¨𝜌Σ (𝜌Ξ𝛼 ▷Ξ▷¨▷Ξ𝛼 ¨𝜌Ξ𝛼 ; 𝜌Σ ; 𝜌 1 cons.

▷Ξ▷¨Ξ ; Σ ; 𝜌 1 ˝ 𝜌 cons.

split𝛼 pΞ, t𝛾 uq “ pp𝜏 ď 𝜋q
p𝜏ď𝜋q PΞ |𝛼 P t𝜏, 𝜋 u

, p𝜏 ď 𝜋q
p𝜏ď𝜋q PΞ |𝛼 R t𝜏, 𝜋 u

¨ p𝛼 ď˛ 𝛽q
p𝛼ď˛𝛽q PΞ | 𝛽 P t𝛾 u

q

Σ $ 𝜎 ď@𝜎

S-All

Ξ1¨Σ (𝜌pΞq Ξ1¨Σ $ 𝜌p𝜏q ď 𝜏 1 domp𝜌q “ TV pΞq Y TV p𝜏q

Σ $ @Ξ. 𝜏 ď@ @Ξ1 . 𝜏 1

Σ (Σ
S-Empty

Σ (𝜖

S-Cons

Σ (Σ1 Σ $ 𝜏1 ď 𝜏2

Σ (Σ1¨p𝜏1 ď 𝜏2q

S-Cons▷
Σ (Σ1 ◁Σ $ 𝜏1 ď 𝜏2

Σ (Σ1¨▷p𝜏1 ď 𝜏2q

Fig. 9. Full declarative typing, consistency, and subtyping entailment rules.

Where case branches term substitution r𝑥 ÞÑ 𝑡s𝑀 is defined as:

r𝑥 ÞÑ 𝑡s 𝜖 “ 𝜖 r𝑥 ÞÑ 𝑡sp_Ñ 𝑡 1q “ _Ñ r𝑥 ÞÑ 𝑡s𝑡 1 r𝑥 ÞÑ 𝑡sp𝐶 Ñ 𝑡 1, 𝑀q “ 𝐶 Ñ r𝑥 ÞÑ 𝑡s𝑡 1, r𝑥 ÞÑ 𝑡s𝑀

36 Lionel Parreaux and Chun Yin Chau

Similarly, applying a term substitution to a program 𝑃 , denoted by r𝑥 ÞÑ 𝑡s𝑃 , replaces all free

occurrences of 𝑥 in 𝑃 with 𝑡 , which is defined as follows:

r𝑥 ÞÑ 𝑡s pdef 𝑥 1 “ 𝑡 1; 𝑃q “

"

def 𝑥 1 “ 𝑡 1; 𝑃 if 𝑥 1 “ 𝑥

def 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡 1; r𝑥 ÞÑ 𝑡s𝑃 if 𝑥 1 ‰ 𝑥

Definition A.3 (Type substitution). A type substitution 𝜌 “ t𝛼 ÞÑ 𝜏 u is a mapping from type

variables to types.

We use the notation p𝛼1 ÞÑ 𝜏1q P 𝜌 to signify that 𝛼1 P domp𝜌q and 𝜌p𝛼1q “ 𝜏1.

domp𝜌q is the domain of 𝜌 , defined as follows:

dompt uq “ H dompt𝛼 ÞÑ 𝜏, 𝛼 1 ÞÑ 𝜏 1 uq “ dompt𝛼 ÞÑ 𝜏 uq Y t𝛼 1 u

Definition A.4 (Type substitution on type). Application of a type substitution to a type 𝜌p𝜏q is

defined as follows:

𝜌p𝜏1 Ñ 𝜏2q “ 𝜌p𝜏1q Ñ 𝜌p𝜏2q 𝜌p𝛼q “

"

𝜏 if p𝛼 ÞÑ 𝜏q P 𝜌

𝛼 if 𝛼 R domp𝜌q

𝜌pt𝑥 : 𝜏 uq “ t𝑥 : 𝜌p𝜏q u 𝜌pJ˛ q “ J˛

𝜌p𝑁 r𝜏sq “ 𝑁 r𝜌p𝜏qs 𝜌p𝜏1_
˛ 𝜏2q “ 𝜌p𝜏1q_

˛ 𝜌p𝜏2q

𝜌p#𝐶q “ #𝐶 𝜌p␣𝜏q “ ␣𝜌p𝜏q

Definition A.5 (Type substitution on term). Application of a type substitution to a term 𝜌p𝑡q is

defined as follows:

𝜌p𝑥q “ 𝑥 𝜌p𝑡 .𝑥q “ 𝜌p𝑡q.𝑥

𝜌p𝑡 : 𝜏q “ 𝜌p𝑡q : 𝜌p𝜏q 𝜌p𝐶 t𝑥 “ 𝑡 uq “ 𝐶 t𝑥 “ 𝜌p𝑡q u

𝜌p𝜆𝑥. 𝑡q “ 𝜆𝑥. 𝜌p𝑡q 𝜌pcase 𝑥 “ 𝑡 of 𝑀q “ case 𝑥 “ 𝜌p𝑡q of 𝜌p𝑀q
𝜌p𝑡0 𝑡1q “ 𝜌p𝑡0q 𝜌p𝑡1q

Where type substitution 𝜌p𝑀q on case branches is defined as:

𝜌p𝜖q “ 𝜖 𝜌p_Ñ 𝑡q “ _Ñ 𝜌p𝑡q 𝜌p𝐶 Ñ 𝑡, 𝑀q “ 𝐶 Ñ 𝜌p𝑡q, 𝜌p𝑀q

Definition A.6 (Type substitution on typing context). Application of a type substitution to a typing

context 𝜌pΓq is defined as follows:

𝜌p𝜖q “ 𝜖 𝜌pΓ¨p𝑥 : 𝜏qq “ 𝜌pΓq¨p𝑥 : 𝜌p𝜏qq 𝜌pΓ¨p𝑥 : 𝜎qq “ 𝜌pΓq¨p𝑥 : 𝜎q

Definition A.7 (Type substitution on subtyping context). Application of a type substitution to a

subtyping context 𝜌pΣq is defined as follows:

𝜌p𝜖q “ 𝜖 𝜌pΣ ¨ p𝜏1 ď 𝜏2qq “ 𝜌pΣq ¨ p𝜌p𝜏1q ď 𝜌p𝜏2qq 𝜌pΣ ¨▷p𝜏1 ď 𝜏2qq “ 𝜌pΣq ¨▷p𝜌p𝜏1q ď 𝜌p𝜏2qq

A.2 Well-Formedness
Thewell-formedness rules are presented in Figure 10. They ensure that the declarations of a program

lead to a decidable type inference algorithm by restricting the shapes of recursive types to regular

trees. This is done by making sure that all recursive occurrences of class and type declarations are

given the same type arguments 𝛼 as the declaration’s head 𝑁 r𝛼s itself. Note that well-formed type

declaration may refer to each other freely, possibly forming mutually-recursive definitions.

Definition A.8 (Occurrences). We define the occurrences of a type 𝜏 , written occsp𝜏q, as all the

types transitively reachable by progressively traversing the subterms of 𝜏 and expanding the alias

and class types as we encounter them. This is always a finite set, thanks to the regularity check

(Section 2.3.1).

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 37

The type variables of a piece of syntax 𝑠 , written TV p𝑠q, is defined in Section A.3.

Function guard𝑁 p𝜏q refers to the guardedness check described in Section 2.1.6.

Theorem A.9 (Regularity). If D wf, then for all 𝜏 , the set occsp𝜏q is finite.

This notably means that given well-formed declarations D, we can easily compute Sp𝜏q.

D wf

W-Decls

D $ 𝑑 wf
𝑑 PD

TV pDq “ H
D wf

D $ 𝑑 wf

W-Als

𝜏 “ 𝛼
𝐴r𝜏s P occsp𝜋q

guard𝐴p𝜋q 𝜋 wf

D $ type 𝐴r𝛼s “ 𝜋 wf

W-Cls1

𝜏 “ 𝛼
𝐶r𝜏s P occspt𝑥 :𝜏 uq

𝜏 wf

D $ class 𝐶r𝛼s : t𝑥 : 𝜏 u wf

W-Cls2

𝐶 R Sp𝐶r𝛼sq guard𝐶p𝐷r𝜏𝑖s ^ t𝑥 : 𝜏 uq 𝜏 “ 𝛼
𝐶r𝜏s P occsp𝐷r𝜏𝑖 s^t𝑥 :𝜏 uq

𝜏 wf

D $ class 𝐶r𝛼s : 𝐷r𝜏𝑖s ^ t𝑥 : 𝜏 u wf

𝜏 wf
J˛ wf 𝛼 wf

𝜏 wf

␣𝜏 wf

𝜏1 wf 𝜏2 wf

𝜏1_
˛ 𝜏2 wf

𝜏1 wf 𝜏2 wf

𝜏1 Ñ 𝜏2 wf

𝜏 wf

t𝑥 : 𝜏 u wf

#𝐶 wf

𝜏 wf 𝑁 r𝜏s exp. 𝜋

𝑁 r𝜏s wf

pΣ | Ξq wf
𝜖 wf

Σ wf 𝜏1 wf 𝜏2 wf

Σ¨p▷qp𝜏1 ď 𝜏2q

D $ 𝐶 final
𝜖 $ 𝐶 final

D $ 𝐶 final 𝐷 ‰ 𝐶

D¨pclass 𝐶 1r𝛼s : 𝐷r𝜏sq $ 𝐶 final

D $ 𝐶 final 𝐷 ‰ 𝐶

D¨pclass 𝐶 1r𝛼s : 𝐷r𝜏s ^ t𝑥 : 𝜋 uq $ 𝐶 final

Fig. 10. Well-formedness and finality rules.

Proof A.9 (Regularity). Since each type constructor declared as 𝑁 r𝛼s can only appear in its

body (and transitively in the bodies of other declarations) with the same type variables 𝛼 as type

arguments, the expansion 𝜏 of a type 𝑁 r𝜋smay only lead to 𝑁 occurrences of the form 𝑁 r𝜋s, which

itself has the same occurrences as 𝜏 ; thus the number of distinct type occurrences transitively

reachable from a given declaration is finite. □

38 Lionel Parreaux and Chun Yin Chau

A.3 Free type variables
Definition A.10 (Free type variables). The set of free type variables of a type 𝜏 , written TV p𝜏q, is

defined as:

TV p𝜏1 Ñ 𝜏2q “ TV p𝜏1q Y TV p𝜏2q TV p𝛼q “ t𝛼 u

TV pt𝑥 : 𝜏 uq “ TV p𝜏q TV pJ˛ q “ H

TV p#𝐶q “ H TV p𝜏1_
˛ 𝜏2q “ TV p𝜏1q Y TV p𝜏2q

TV p𝑁 r𝜏sq “
Ť

𝜏 TV p𝜏q TV p␣𝜏q “ TV p𝜏q

Definition A.11 (Free type variables of declaration context). The free type variables of a declaration

context TV pDq is defined as:

TV p𝜖q “ H TV pD¨pclass 𝐶r𝛼s : 𝜏qq “ TV pDq Y pTV p𝜏qzt𝛼 uq

TV pD¨ptype 𝐴r𝛼s “ 𝜏qq “ TV pDq Y pTV p𝜏qzt𝛼 uq

Definition A.12 (Free type variables of typing context). The free type variables of a typing context

TV pΓq is defined as:

TV p𝜖q “ H TV pΓ¨p𝑥 : 𝜏qq “ TV pΓq Y TV p𝜏q TV pΓ¨p𝑋 : 𝜎qq “ TV pΓq

Definition A.13 (Free type variables of constraining context). The free type variables of a constrain-

ing context TV pΞq is defined as:

TV p𝜖q “ H TV pΞ¨p𝛼 ď˛ 𝜏qq “ TV pΞq Y t𝛼 u Y TV p𝜏q

Definition A.14 (Top-level free type variables). The set of top-level free type variables of a type 𝜏 ,

written TTV p𝜏q, is defined as:

TTV p𝜏1 Ñ 𝜏2q “ H TTV p𝛼q “ t𝛼 u

TTV pt𝑥 : 𝜏 uq “ H TTV pJ˛ q “ H

TTV p#𝐶q “ H TTV p𝜏1_
˛ 𝜏2q “ TTV p𝜏1q Y TTV p𝜏2q

TTV p𝑁 r𝜏sq “ TTV p𝜏 1q when 𝑁 r𝜏s exp. 𝜏 1 TTV p␣𝜏q “ TTV p𝜏q

The list of top-level free type variables of a type 𝜏 (i.e., with duplicates), written TTV
1p𝜏q, is defined

similarly, except for the cases TTV
1p𝛼q “ 𝛼 and TTV

1p𝜏1_
˛ 𝜏2q “ TTV

1p𝜏1q ¨ TTV
1p𝜏2q.

B FORMAL CORRECTNESS PROOFS
B.1 Subtyping Derivation Shapes
We first give a few definitions characterizing the shapes of subtyping derivations, and prove

properties about them.

Definition B.1 (Right-leaning derivations). A subtyping derivation is said to be right-leaning if

all its applications of rule S-Trans have a first premise which is not itself an application of rule

S-Trans.

It is easy to see that any subtyping derivation can be rewritten into an equivalent right-leaning

derivation of the same size by reorganizing its uses of S-Trans.

Definition B.2 (Bottom-level rules). A rule is used at the bottom level in a derivation if it is one of

the following:

(1) the last rule used in the derivation;

(2) either premise of a bottom-level application of rule S-Trans;

(3) the premise of a bottom-level application of rule S-Exp˝;

(4) the first premise of a bottom-level application of rule T-Subs.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 39

Definition B.3 (Unassuming derivation). An unassuming derivation is a subtyping derivation that

does not make use of S-Assum at the bottom level.

Lemma B.4 (Unassuming derivation). Any subtyping derivation can be rewritten to an equivalent

unassuming derivation.

Proof. Consider a derivation 𝐷 whose last applied rule is S-Assum. This rule application intro-

duces a hypothesis ▷𝐻 into the context of its premise derivation 𝐷 1. In 𝐷 1, ▷𝐻 is kept unusable

(because of the ▷) until applications of rules S-FunDepth or S-RcdDepth, within the premise

derivations of which 𝐻 may be used, through applications 𝐷𝐻
𝑖 of the S-Hyp rule Therefore, 𝐻 is

never used at the bottom level of 𝐷 1. Moreover, each 𝐷𝐻
𝑖 will have a premise of the form Σ¨𝐻 ¨Σ𝑖 . So

we can substitute all 𝐷𝐻
𝑖 in 𝐷 with a weakened form (Lemma B.30) of the derivation 𝐷 itself. After

this substitution, the main application of S-Assum becomes useless (the 𝐻 it introduces is no longer

used in any subderivation), and it can therefore be removed, leaving the updated derivation 𝐷 1.

It is easy to show that we can perform this S-Assum-elimination on bottom-level subderivations of

any given derivation until that derivation becomes unassuming. □

Definition B.5 (Subsumption-normalized derivation). A subsumption-normalized derivation is a

typing derivation that makes at most one use of T-Subs at the bottom level.

Lemma B.6 (Subsumption-normalized derivation). Any typing derivation can be rewritten to

an equivalent subsumption-normalized derivation.

Proof. By induction on the number of bottom-level applications of T-Subs.

The result is immediate for derivations with zero or one bottom-level applications of T-Subs.

For derivations with 𝑛 ě 2 bottom-level applications of T-Subs, we first observe that the last

two typing rules applied must be T-Subs (indeed, if the last rule applied was not T-Subs, then

by definition the derivation would have no bottom-level applications of T-Subs; and the same

reasoning goes for the second last application). The premises of the last application of T-Subs are

𝑡 : 𝜏 1 and 𝜏 1 ď 𝜏 for some 𝜏 1, where the subderivation for 𝑡 : 𝜏 1 has 𝑛 ´ 1 bottom-level applications

of T-Subs. The premises of the second last application of T-Subs are 𝑡 : 𝜏2 and 𝜏2 ď 𝜏 1 for some 𝜏2,

where the subderivation for 𝑡 : 𝜏2 has 𝑛´2 bottom-level applications of T-Subs. The subderivations

of 𝜏2 ď 𝜏 1 and 𝜏 1 ď 𝜏 can be merged by S-Trans into a derivations for 𝜏2 ď 𝜏 . We can then apply

T-Subs to the subderivation for 𝑡 : 𝜏2 and the new derivation for 𝜏2 ď 𝜏 to obtain a new derivation

for 𝑡 : 𝜏 with 𝑛 ´ 1 bottom-level applications of T-Subs. By IH, such a derivation can be rewritten

to an equivalent subsumption-normalized derivation. □

B.2 Constraining Context Cleanup
Constraining context cleanup removes occurrences of a type variable from the top level of its

bounds, resulting in an equivalent guarded constraining context.

40 Lionel Parreaux and Chun Yin Chau

Definition B.7 (Constraining context cleanup). The constraining context cleanup function is defined

as follows:

cleanupp𝜖q “ 𝜖

cleanuppΞ¨p𝛼 ď 𝜏qq “ cleanuppΞq¨cleanup1p𝛼 ď cdnp𝜏qq

cleanuppΞ¨p𝜏 ď 𝛼qq “ cleanuppΞq¨cleanup1pdcnp𝜏q ď 𝛼q

cleanup
1p𝛼 ď

Ź

𝑖 𝜏
dn
𝑖
q “ p𝛼 ď

Ź

𝑗 𝜋
dn
𝑗
q where cleanup

2p𝛼 ď 𝜏dn
𝑖
q
𝑖
“ p𝛼 ď 𝜋dn

𝑗
q
𝑗

cleanup
1p

Ž

𝑖 𝜏
cn
𝑖
ď 𝛼q “ p

Ž

𝑗 𝜋
cn
𝑗
ď 𝛼q where cleanup

2p𝜏cn
𝑖
ď 𝛼q

𝑖
“ p𝜋cn

𝑗
ď 𝛼q

𝑗

cleanup
2p𝛼 ď

Ž

𝑖 𝜏
n
𝑖
q “

#

𝜖 when 𝛼 P t𝜏n
𝑖

𝑖
u

p𝛼 ď
Ž

𝑖 |𝜏n
𝑖
‰␣𝛼 𝜏

n
𝑖
q otherwise

cleanup
2p

Ź

𝑖 𝜏
n
𝑖
ď 𝛼q “

#

𝜖 when 𝛼 P t𝜏n
𝑖

𝑖
u

p
Ź

𝑖 |𝜏n
𝑖
‰␣𝛼 𝜏

n
𝑖
ď 𝛼q otherwise

Lemma B.8 (Eqivalence of constraining context cleanup). 𝐻 () cleanupp𝐻q
𝐻 PΞ

for all Ξ.

Lemma B.9 (Guardedness of constraining context cleanup). cleanuppΞq guard. for all Ξ.

Lemma B.10 (Eqivalence of bounds under constraining context cleanup). 𝛼 ^ ubΞp𝛼q _

lbΞp𝛼q ” 𝛼 ^ ub
cleanuppΞqp𝛼q _ lb

cleanuppΞqp𝛼q for all Ξ and 𝛼 .

B.3 Some Useful Subtyping Relationships
Next, we demonstrate a few useful subtyping rules that can be derived in our system.

Theorem B.11 (Duality of Extrema). J˛ ” ␣K˛

Proof.

Case ¨. We have ␣K ď J by S-ToB¨. For J ď ␣K: We have J ď K _ ␣K by S-Compl¨, which

implies J ď ␣K by Lemma B.24 .

Case . We have K ď ␣J by S-ToB . For ␣J ď K: We have J^␣J ď K by S-Compl , which

implies ␣J ď K by Lemma B.24¨.

□

Theorem B.12 (Double Negation Introduction).

S-Neg2

𝜏 ď ␣␣𝜏

Proof.

S-Trans

Theorem B.20

S-Compl

𝜏 ^␣𝜏 ď K

𝜏 ď K_␣␣𝜏
S-AndOr2¨

S-ToB

K ď ␣␣𝜏
S-Refl

␣␣𝜏 ď ␣␣𝜏

K_␣␣𝜏 ď ␣␣𝜏

𝜏 ď ␣␣𝜏

□

Theorem B.13 (Double Negation Elimination).

S-Neg1

␣␣𝜏 ď 𝜏

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 41

Proof.

S-Trans

S-AndOr2

S-ToB¨
␣␣𝜏 ď J

S-Refl

␣␣𝜏 ď ␣␣𝜏

␣␣𝜏 ď J^␣␣𝜏
Theorem B.20¨

S-Compl¨
J ď 𝜏 _␣𝜏

J^␣␣𝜏 ď 𝜏

␣␣𝜏 ď 𝜏

□

Theorem B.14 (Uniqe Complementation). For all 𝜏1 and 𝜏2, ␣𝜏1 ” ␣𝜏2 implies 𝜏1 ” 𝜏2, i.e.,

“␣𝜏1 ď ␣𝜏2 and ␣𝜏2 ď ␣𝜏1” imply ”𝜏1 ď 𝜏2 and 𝜏2 ď 𝜏1”.

Proof.

S-Trans

S-Neg2

𝜏𝑚 ď ␣␣𝜏𝑚
S-Trans

S-NegInv

␣𝜏𝑛 ď ␣𝜏𝑚

␣␣𝜏𝑚 ď ␣␣𝜏𝑛
S-Neg1

␣␣𝜏𝑛 ď 𝜏𝑛

␣␣𝜏𝑚 ď 𝜏𝑛

𝜏𝑚 ď 𝜏𝑛

Taking p𝑛,𝑚q “ p1, 2q and p𝑛,𝑚q “ p2, 1q yields the desired results. □

Theorem B.15 (Associativity).

S-Assoc˛

p𝜏1_
˛ 𝜏2q_

˛ 𝜏3 ” 𝜏1_
˛ p𝜏2_

˛ 𝜏3q

Proof.

S-AndOr11˛
(1) p𝜏1_

˛ 𝜏2q_
˛ 𝜏3ě

˛ 𝜏1_
˛ 𝜏2

S-AndOr2˛

S-Trans

(1)

S-AndOr12˛
𝜏1_

˛ 𝜏2ě
˛ 𝜏2

p𝜏1_
˛ 𝜏2q_

˛ 𝜏3ě
˛ 𝜏2

S-AndOr12˛
p𝜏1_

˛ 𝜏2q_
˛ 𝜏3ě

˛ 𝜏3

(2) p𝜏1_
˛ 𝜏2q_

˛ 𝜏3ě
˛ 𝜏2_

˛ 𝜏3

S-AndOr2˛

S-Trans

(1)

S-AndOr11˛
𝜏1_

˛ 𝜏2ě
˛ 𝜏1

p𝜏1_
˛ 𝜏2q_

˛ 𝜏3ě
˛ 𝜏1 (2)

p𝜏1_
˛ 𝜏2q_

˛ 𝜏3ě
˛ 𝜏1_

˛ p𝜏2_
˛ 𝜏3q

The other direction follows from S-Commut˛ (Theorem B.16 below). □

Theorem B.16 (Commutativity).

S-Commut˛

𝜏1_
˛ 𝜏2 ” 𝜏2_

˛ 𝜏1

Proof.

S-AndOr2˛

S-AndOr12˛
𝜏1_

˛ 𝜏2ě
˛ 𝜏2

S-AndOr11˛
𝜏1_

˛ 𝜏2ě
˛ 𝜏1

𝜏1_
˛ 𝜏2ě

˛ 𝜏2_
˛ 𝜏1

□

42 Lionel Parreaux and Chun Yin Chau

Theorem B.17 (Distributivity).

S-Distr

𝜏1_
˛ p𝜏2^

˛ 𝜏3q ” p𝜏1_
˛ 𝜏2q^

˛ p𝜏1_
˛ 𝜏3q

Proof.

Case ˛, ě˛ direction. By S-Distrib˛.

Case ¨, ď direction.

S-AndOr2

Lemma B.22¨

S-Refl

𝜏1 ď 𝜏1

S-AndOr11¨
𝜏2 ^ 𝜏3 ď 𝜏2

𝜏1 _ p𝜏2 ^ 𝜏3q ď 𝜏1 _ 𝜏2

Lemma B.22¨

S-Refl

𝜏1 ď 𝜏1

S-AndOr12¨
𝜏2 ^ 𝜏3 ď 𝜏3

𝜏1 _ p𝜏2 ^ 𝜏3q ď 𝜏1 _ 𝜏3

𝜏1 _ p𝜏2 ^ 𝜏3q ď p𝜏1 _ 𝜏2q ^ p𝜏1 _ 𝜏3q

Case , ě direction. Symmetric.

□

Theorem B.18 (Absorption).

S-Absorp

𝜏1_
˛ p𝜏1^

˛ 𝜏2q ” 𝜏1

Proof.

Case ˛, ě˛ direction. By S-AndOr11˛.

Case ¨, ď direction.

Lemma B.22

S-AndOr2¨

S-Refl

𝜏1 ď 𝜏1

S-ToB¨
𝜏1 ď J

𝜏1 ď 𝜏1 ^J
S-Refl

𝜏1 ^ 𝜏2 ď 𝜏1 ^ 𝜏2

(1) 𝜏1 _ p𝜏1 ^ 𝜏2q ď p𝜏1 ^Jq _ p𝜏1 ^ 𝜏2q

S-Trans

(1)

S-Trans

S-Distr

p𝜏1 ^Jq _ p𝜏1 ^ 𝜏2q ď 𝜏1 ^ pJ _ 𝜏2q
S-AndOr11

𝜏1 ^ pJ _ 𝜏2q ď 𝜏1

p𝜏1 ^Jq _ p𝜏1 ^ 𝜏2q ď 𝜏1

𝜏1 _ p𝜏1 ^ 𝜏2q ď 𝜏1

Case , ě direction. Symmetric.

□

Theorem B.19 (De Morgan’s Laws).

S-DeMorgan

␣p𝜏1_
˛ 𝜏2q ” ␣𝜏1^

˛␣𝜏2

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 43

Proof.

S-Trans

Lemma B.22¨

S-Compl¨
J ď 𝜏 _␣𝜏

S-Refl

𝜋 ď 𝜋

J_ 𝜋 ď p𝜏 _␣𝜏q _ 𝜋
Lemma B.23¨

p𝜏 _␣𝜏q _ 𝜋 ď p𝜏 _ 𝜋q _ ␣𝜏

(1) J_ 𝜋 ď p𝜏 _ 𝜋q _ ␣𝜏

S-Trans

Lemma B.22¨

S-Refl

𝜏 ď 𝜏
S-Compl¨

J ď 𝜋 _␣𝜋

𝜏 _J ď 𝜏 _ p𝜋 _␣𝜋q
S-Assoc¨

𝜏 _ p𝜋 _␣𝜋q ď p𝜏 _ 𝜋q _ ␣𝜋

(2) 𝜏 _J ď p𝜏 _ 𝜋q _ ␣𝜋

Lemma B.22

S-Trans

S-AndOr11¨
J ď J_ 𝜋 (1)

J ď p𝜏 _ 𝜋q _ ␣𝜏
S-Trans

S-AndOr12¨
J ď 𝜋 _J (2)

J ď p𝜏 _ 𝜋q _ ␣𝜋

(3) J^J ď pp𝜏 _ 𝜋q _ ␣𝜏q ^ pp𝜏 _ 𝜋q _ ␣𝜋q

S-Trans

S-AndOr2

S-Refl

J ď J
S-Refl

J ď J

J ď J^J (3)

(4) J ď pp𝜏 _ 𝜋q _ ␣𝜏q ^ pp𝜏 _ 𝜋q _ ␣𝜋q

S-Trans

(4)

S-Distrib

pp𝜏 _ 𝜋q _ ␣𝜏q ^ pp𝜏 _ 𝜋q _ ␣𝜋q ď p𝜏 _ 𝜋q _ p␣𝜏 ^␣𝜋q

(5) J ď p𝜏 _ 𝜋q _ p␣𝜏 ^␣𝜋q

Lemma B.24

Theorem B.20

S-Trans

(5)

S-Commut¨
p𝜏 _ 𝜋q _ p␣𝜏 ^␣𝜋q ď p␣𝜏 ^␣𝜋q _ p𝜏 _ 𝜋q

J ď p␣𝜏 ^␣𝜋q _ p𝜏 _ 𝜋q

J ^␣p𝜏 _ 𝜋q ď ␣𝜏 ^␣𝜋

␣p𝜏 _ 𝜋q ď ␣𝜏 ^␣𝜋

␣𝜏 ^␣𝜋 ď ␣p𝜏 _ 𝜋q can be derived by similar reasoning. □

Theorem B.20 (Swapping).

S-Swap

Σ $ 𝜏1_
˛ 𝜏2ě

˛ 𝜏3

Σ $ 𝜏1ě
˛ 𝜏3^

˛␣𝜏2

Proof. Case . Given (1) Σ $ 𝜏1 ^ 𝜏2 ď 𝜏3, derive (2) Σ $ 𝜏1 ď 𝜏3 _␣𝜏2:

44 Lionel Parreaux and Chun Yin Chau

S-AndOr2

S-Refl

␣𝜏2 _ 𝜏1 ď ␣𝜏2 _ 𝜏1

S-Trans

S-ToB¨
␣𝜏2 _ 𝜏1 ď J

S-Compl¨
J ď 𝜏2 _␣𝜏2

␣𝜏2 _ 𝜏1 ď 𝜏2 _␣𝜏2

(1) ␣𝜏2 _ 𝜏1 ď p␣𝜏2 _ 𝜏1q ^ p𝜏2 _␣𝜏2q

Lemma B.22¨

S-Refl

␣𝜏2 _ 𝜏1 ď ␣𝜏2 _ 𝜏1

S-Commut¨
𝜏2 _␣𝜏2 ď ␣𝜏2 _ 𝜏2

(2) p␣𝜏2 _ 𝜏1q ^ p𝜏2 _␣𝜏2q ď p␣𝜏2 _ 𝜏1q ^ p␣𝜏2 _ 𝜏2q

S-Trans

(2)

S-Distrib

p␣𝜏2 _ 𝜏2q ^ p␣𝜏2 _ 𝜏2q ď ␣𝜏2 _ p𝜏1 ^ 𝜏2q

(3) p␣𝜏2 _ 𝜏1q ^ p𝜏2 _␣𝜏2q ď ␣𝜏2 _ p𝜏1 ^ 𝜏2q

S-Trans

S-Trans

S-AndOr12

𝜏1 ď ␣𝜏2 _ 𝜏1 (1)

𝜏1 ď p␣𝜏2 _ 𝜏1q ^ p𝜏2 _␣𝜏2q (3)

(4) 𝜏1 ď ␣𝜏2 _ p𝜏1 ^ 𝜏2q

S-Trans

(4)

S-Trans

Lemma B.22¨

S-Refl

␣𝜏2 ď ␣𝜏2 𝜏1 ^ 𝜏2 ď 𝜏3

␣𝜏2 _ p𝜏1 ^ 𝜏2q ď ␣𝜏2 _ 𝜏3

S-Commut¨
␣𝜏2 _ 𝜏3 ď 𝜏3 _␣𝜏2

␣𝜏2 _ p𝜏1 ^ 𝜏2q ď 𝜏3 _␣𝜏2

𝜏1 ď 𝜏3 _␣𝜏2

Case ¨. Symmetric.

□

Lemma B.21. For all Σ, we have Σ $ 𝜏1 _
˛ 𝜏2 ď

˛ 𝜏3 ðñ Σ $ 𝜏1 ď
˛ 𝜏3 ^ Σ $ 𝜏2 ď

˛ 𝜏3.

Proof.

Case ¨,ñ. Given (1)¨ Σ $ 𝜏1 _ 𝜏2 ď 𝜏3, derive (2)¨ Σ $ 𝜏1 ď 𝜏3 and (3)¨ Σ $ 𝜏2 ď 𝜏3:

S-Trans

S-AndOr11¨
𝜏1 ď 𝜏1 _ 𝜏2 (1)¨ 𝜏1 _ 𝜏2 ď 𝜏3

(2)¨ 𝜏1 ď 𝜏3

Similar derivation for concluding (3)¨.

Case ¨,ð. Given (2)¨ and (3)¨, derive (1)¨:

S-Trans

Lemma B.22¨
(2)¨ 𝜏1 ď 𝜏3 (3)¨ 𝜏2 ď 𝜏3

𝜏1 _ 𝜏2 ď 𝜏3 _ 𝜏3

S-AndOr2¨

S-Refl

𝜏3 ď 𝜏3

S-Refl

𝜏3 ď 𝜏3

𝜏3 _ 𝜏3 ď 𝜏3

(1)¨ 𝜏1 _ 𝜏2 ď 𝜏3

Case ,ñ. Given (1) Σ $ 𝜏3 ď 𝜏1 ^ 𝜏2, derive (2) Σ $ 𝜏3 ď 𝜏1 and (3) Σ $ 𝜏3 ď 𝜏2:

S-Trans

(1) 𝜏3 ď 𝜏1 ^ 𝜏2

S-AndOr11

𝜏1 ^ 𝜏2 ď 𝜏1

(2) 𝜏3 ď 𝜏1

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 45

Similar derivation for concluding (3) .

Case ,ð. Given (2) and (3) , derive (1) :

S-Trans

S-AndOr2

S-Refl

𝜏3 ď 𝜏3

S-Refl

𝜏3 ď 𝜏3

𝜏3 ď 𝜏3 ^ 𝜏3

Lemma B.22¨
(2) 𝜏3 ď 𝜏1 (3) 𝜏3 ď 𝜏2

𝜏3 _ 𝜏3 ď 𝜏1 _ 𝜏2

(1) 𝜏3 ď 𝜏1 _ 𝜏2

□

Lemma B.22.

Σ $ 𝜏1ď
˛ 𝜏2 Σ $ 𝜏3ď

˛ 𝜏4

Σ $ 𝜏1_
˛ 𝜏2ď

˛ 𝜏3_
˛ 𝜏4

Proof.

S-AndOr2˛

S-Trans

𝜏1ď
˛ 𝜏2

S-AndOr11˛
𝜏2ď

˛ 𝜏2_
˛ 𝜏4

𝜏1ď
˛ 𝜏2_

˛ 𝜏4

S-Trans

𝜏3ď
˛ 𝜏4

S-AndOr12˛
𝜏4ď

˛ 𝜏2_
˛ 𝜏4

𝜏3ď
˛ 𝜏2_

˛ 𝜏4

𝜏1_
˛ 𝜏2ď

˛ 𝜏3_
˛ 𝜏4

□

Lemma B.23.

Σ $ p𝜏1_
˛ 𝜏2q_

˛ 𝜏3ď
˛ p𝜏1_

˛ 𝜏3q_
˛ 𝜏2

Proof.

Lemma B.22˛

S-Refl

𝜏1ď
˛ 𝜏1

S-Commut˛
𝜏2_

˛ 𝜏3ď
˛ 𝜏3_

˛ 𝜏2

(1) 𝜏1_
˛ p𝜏2_

˛ 𝜏3qď
˛ 𝜏1_

˛ p𝜏3_
˛ 𝜏2q

S-Trans

S-Assoc˛
p𝜏1_

˛ 𝜏2q_
˛ 𝜏3ď

˛ 𝜏1_
˛ p𝜏2_

˛ 𝜏3q
S-Trans

(1)

S-Assoc˛
𝜏1_

˛ p𝜏3_
˛ 𝜏2qď

˛ p𝜏1_
˛ 𝜏3q_

˛ 𝜏2

𝜏1_
˛ p𝜏2_

˛ 𝜏3qď
˛ p𝜏1_

˛ 𝜏3q_
˛ 𝜏2

p𝜏1_
˛ 𝜏2q_

˛ 𝜏3ď
˛ p𝜏1_

˛ 𝜏3q_
˛ 𝜏2

□

Lemma B.24.

Σ $ J˛^˛ 𝜏 ď˛ 𝜋

Σ $ 𝜏 ď˛ 𝜋

Proof.

S-Trans

S-AndOr2˛

S-ToB˛
𝜏 ď˛J˛

S-Refl

𝜏 ď˛ 𝜏

𝜏 ď˛J˛^˛ 𝜏 J˛^˛ 𝜏 ď˛ 𝜋

𝜏 ď˛ 𝜋

□

46 Lionel Parreaux and Chun Yin Chau

B.4 Some Useful Subtyping Entailment Relationships
Lemma B.25 (Reflexivity and weakening). Σ¨Σ1 (p▷qΣ for all Σ and Σ1.

Proof. By repeated applications of S-Cons or S-Cons▷ on S-Hyp. □

Lemma B.26 (Transitivity). If Σ (Σ1 and Σ1 (Σ2, then Σ (Σ2.

Proof. By straightforward induction on subtyping entailment derivations, making use of LemmaB.30

for cases S-Cons and S-Cons▷. □

Lemma B.27 (Merging). If Σ1 (Σ1
1
and Σ2 (Σ1

2
, then Σ1¨Σ2 (Σ1

1
¨Σ1

2
.

Proof. By straightforward induction on subtyping entailment derivations for Σ2 (Σ1
2
, making

use of Lemma B.25 and Lemma B.26 for case S-Empty, and Lemma B.30 for cases S-Cons and

S-Cons▷. □

Lemma B.28 (Guarding). If Σ (Σ1, then ▷Σ (▷Σ1.

Proof. By straight forward induction on subtyping entailment judgements. □

Lemma B.29 (Unguarding). If Σ (Σ1, then ◁Σ (◁Σ1.

Proof. By straight forward induction on subtyping entailment judgements. □

Lemma B.30 (Weakening of subtyping contexts in subtyping judgements). If Σ $ 𝜏 ď 𝜋

and Σ1 (Σ, then Σ1 (𝜏 ď 𝜋 .

Proof. By induction on unassuming subtyping derivations. The only non-trivial cases are S-Hyp,

S-FunDepth, and S-RcdDepth.

Case S-Hyp. Then the premise of the rule is p𝜏 ď 𝜋q P Σ. By straightforward induction on

subtyping entailment judgements, Σ1 (Σ and p𝜏 ď 𝜋q P Σ implies Σ1 $ 𝜏 ď 𝜋 .

Case S-FunDepth. Then we have 𝜏 “ 𝜏1 Ñ 𝜏2 for some 𝜏1 and 𝜏2, and 𝜋 “ 𝜋1 Ñ 𝜋2 for some 𝜋1

and 𝜋2. The premises of the rule are ◁Σ $ 𝜋1 ď 𝜏1 and ◁Σ $ 𝜏2 ď 𝜋2. By Lemma B.29, Σ1 (Σ
implies ◁Σ1 (◁Σ. Then by IH on the premises, we have ◁Σ1 $ 𝜋1 ď 𝜏1 and ◁Σ

1 $ 𝜏2 ď 𝜋2.

Then we have Σ1 $ 𝜏1 Ñ 𝜏2 ď 𝜋1 Ñ 𝜋2 by S-FunDepth.

Case S-RcdDepth. Then we have 𝜏 “ t𝑥 : 𝜏1 u for some 𝜏1 and 𝑥 , and 𝜋 “ t𝑥 : 𝜋1 u for some 𝜋1.

The premise of the rule is ◁Σ $ 𝜏1 ď 𝜋1. By Lemma B.29, Σ1 (Σ implies ◁Σ1 (◁Σ. Then
by IH on the premise, we have ◁Σ1 $ 𝜏1 ď 𝜋1. Then we have Σ1 $ t𝑥 : 𝜏1 u ď t𝑥 : 𝜋1 u by

S-RcdDepth.

□

Corollary B.31 (Weakening of guarded subtyping contexts in subtyping judgements).

If ▷Σ $ 𝜏 ď 𝜋 and Σ1 (Σ, then ▷Σ1 (𝜏 ď 𝜋 .

Proof. By Lemma B.28 and Lemma B.30. □

Lemma B.32 (Weakening of guarded constraining contexts in consistency judgements).

If Σ $ ▷Ξ▷¨Ξ ; 𝜌 cons. and ▷Ξ1▷ (▷Ξ▷, then Σ $ ▷Ξ1▷¨Ξ ; 𝜌 cons..

Proof. By induction on consistency derivations.

Base case. For the base case, we have Ξ “ 𝜖 . Then by the base case of the definition of consistency,

we have:

Σ $ ▷Ξ1▷ ; 𝜌 cons. (1)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 47

Inductive case. For the inductive case, we have 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 and 𝜌2, where domp𝜌1q “

t𝛼 u for some 𝛼 . The premises of the rule are:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ (𝜌1Ξ𝛼 (2)

𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ; 𝜌2 cons. (3)

where split𝛼pΞ, domp𝜌2qq “ pΞ𝛼 , Ξ𝛼 q. From the assumption, we have:

▷Ξ1▷ (▷Ξ▷ (4)

By Lemma B.30 with (4), (2) implies:

▷Ξ1▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ (𝜌1Ξ𝛼 (5)

By IH on (3), we have:

𝜌1Σ $ ▷Ξ
1
▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ; 𝜌2 cons. (6)

Then by the inductive case of the definition of consistency, (5) and (6) imply:

Σ $ ▷Ξ1▷¨Ξ ; 𝜌 cons. (7)

□

Lemma B.33 (Weakening of subtyping contexts in consistency judgements). If Σ $

▷Ξ▷¨Ξ ; 𝜌 cons. and ▷Ξ▷¨Ξ¨Σ1 (Σ, then Σ1 $ ▷Ξ▷¨Ξ ; 𝜌 cons..

Proof. By induction on consistency derivations.

Base case. For the base case, we have Ξ “ 𝜖 . Then by the base case of the definition of consistency,

we have:

Σ1 $ ▷Ξ▷ ; 𝜌 cons. (1)

Inductive case. For the inductive case, we have 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 and 𝜌2, where domp𝜌1q “

t𝛼 u for some 𝛼 . The premises of the rule are:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ (𝜌1Ξ𝛼 (2)

𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ; 𝜌2 cons. (3)

where split𝛼pΞ, domp𝜌2qq “ pΞ𝛼 , Ξ𝛼 q. From the assumption, we have:

▷Ξ▷¨Ξ¨Σ
1 (Σ (4)

By Lemma B.45, (4) implies:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ
1 (𝜌1Σ (5)

By Lemma B.30 with (5), (2) implies:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ
1 (𝜌1Ξ𝛼 (6)

By IH on (3) and (5), we have:

𝜌1Σ
1 $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ; 𝜌2 cons. (7)

Then by the inductive case of the definition of consistency, (6) and (7) imply:

Σ1 $ ▷Ξ▷¨Ξ ; 𝜌 cons. (8)

□

Lemma B.34 (Weakening of constraining contexts in typing judgements). If Ξ, Γ $ 𝑡 : 𝜏

and Ξ1 (Ξ, then Ξ1, Γ $ 𝑡 : 𝜏 .

48 Lionel Parreaux and Chun Yin Chau

Proof. By straightforward induction on typing derivations. The only non-trivial vases are T-Subs

and T-Var2.

Case T-Subs. By IH on the first premise, Lemma B.30 on the second premise, followed by T-Subs.

Case T-Var2. Γp𝑥q “ @Ξ2. 𝜏 1

We first notice that the subtyping entailment judgement is transitive by straightforward

induction on subtyping entailment judgements, applying Lemma B.30 to the second premise

of S-Cons. The first premise of S-All is Ξ (𝜌pΞ2q, which implies Ξ1 (𝜌pΞ2q by transitivity
with the assumption Ξ1 (Ξ. The result then follows from Lemma B.30 on the second premise

S-All, followed by S-All and T-Var2.

□

B.5 Some Useful Lemmas on Substitutions
Lemma B.35 (Preservation of typing under substitution). If Ξ, Γ $ 𝑡 : 𝜏 and D wf, then

𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡q : 𝜌p𝜏q.

Proof. By induction on typing derivations of Ξ, Γ $ 𝑡 : 𝜏 .

Case T-Subs. By IH on the first premise, we have 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡q : 𝜌p𝜏1q. By preservation of

subtyping under substitution (Lemma B.36) on the second premise, 𝜌pΞq $ 𝜌p𝜏1q ď 𝜌p𝜏2q.

The result then follows from T-Subs.

Case T-Obj. By the definition of type substitution, 𝜌p#𝐶 ^ t𝑥 : 𝜏 uq “ #𝐶 ^ t𝑥 : 𝜌p𝜏q u. By the

definition of term substitution, 𝜌p𝐶 t𝑥 “ 𝑡 uq “ 𝐶 t𝑥 “ 𝜌p𝑡q u. By IH on the premises, we

have 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡q : 𝜌p𝜏q. Then 𝜌pΞq, 𝜌pΓq $ 𝐶 t𝑥 “ 𝜌p𝑡q u : #𝐶^t𝑥 : 𝜌p𝜏q u by T-Obj,

i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝐶 t𝑥 “ 𝑡 uq : #𝐶 ^ 𝜌pt𝑥 : 𝜏 uq.

Case T-Proj. By the definition of term substitution, 𝜌p𝑡 .𝑥q “ 𝜌p𝑡q.𝑥 By IH on the premise, we have

𝜌pΞq, 𝜌pΓq $ 𝑡 : 𝜌pt𝑥 : 𝜏 uq, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡q : t𝑥 : 𝜌p𝜏q u by the definition of type

substitution. Then 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡q.𝑥 : 𝜌p𝜏q by T-Proj, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡 .𝑥q : 𝜌p𝜏q.

Case T-Var1. Then 𝑡 “ 𝑥 . By the definition of term substitution, 𝜌p𝑥q “ 𝑥 . From the premise and

the definition of typing context substitution, we have 𝜌pΓqp𝑥q “ 𝜌p𝜏q. Then 𝜌pΞq, 𝜌pΓq $
𝑥 : 𝜌p𝜏q by T-Var1, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑥q : 𝜌p𝜏q.

Case T-Var2. Then 𝑡 “ 𝑥 . By the definition of term substitution, 𝜌p𝑥q “ 𝑥 . From the premise,

we have Ξ $ Γp𝑥q ď@@𝜖. 𝜏 , where Γp𝑥q “ @Ξ1. 𝜏 1. Note that the judgement ď@ can only be

derived by S-All, then from the premises of S-All, we have Ξ (𝜌 1pΞ1q and Ξ $ 𝜌 1p𝜏 1q ď 𝜏 .

By preservation of subtyping under substitution (Lemma B.36), we have 𝜌pΞq (𝜌p𝜌 1pΞ1qq
and 𝜌pΞq $ 𝜌p𝜌 1p𝜏 1qq ď 𝜌p𝜏q. Then 𝜌pΞq $ @Ξ1. 𝜏 1 ď@ @𝜖. 𝜌p𝜏q by S-All. Note that by

the definition of typing context substitution, Γp𝑥q “ @Ξ1. 𝜏 1 implies 𝜌pΓqp𝑥q “ @Ξ1. 𝜏 1, then
𝜌pΞq, 𝜌pΓq $ 𝑥 : 𝜌p𝜏q by T-Var, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑥q : 𝜌p𝜏q.

Case T-Abs. By the definition of type substitution, 𝜌p𝜏1 Ñ 𝜏2q “ 𝜌p𝜏1q Ñ 𝜌p𝜏2q. By IH on the

premise, we have 𝜌pΞq, 𝜌pΓ¨p𝑥 : 𝜏1qq $ 𝑡 : 𝜌p𝜏2q, i.e., 𝜌pΞq, 𝜌pΓq¨p𝑥 : 𝜌p𝜏1qq $ 𝑡 : 𝜌p𝜏2q by

the definition of typing context substitution. Then 𝜌pΞq, 𝜌pΓq $ 𝜆𝑥 . 𝑡 : 𝜌p𝜏1q Ñ 𝜌p𝜏2q by

T-Abs, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜆𝑥. 𝑡 : 𝜌p𝜏1 Ñ 𝜏2q.

Case T-App. By IH on the premise, we have 𝜌pΞq, 𝜌pΓq $ 𝑡1 : 𝜌p𝜏1q and 𝜌pΞq, 𝜌pΓq $ 𝑡0 :

𝜌p𝜏1 Ñ 𝜏2q, i.e., 𝜌pΞq, 𝜌pΓq $ 𝑡0 : 𝜌p𝜏1q Ñ 𝜌p𝜏2q by the definition of type substitution. Then

𝜌pΞq, 𝜌pΓq $ 𝑡0 𝑡1 : 𝜌p𝜏2q by T-App.

Case T-Asc. By the definition of term substitution, 𝜌p𝑡 : 𝜏q “ 𝜌p𝑡q : 𝜌p𝜏q. By IH on the premise,

we have 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡q : 𝜌p𝜏q. Then 𝜌pΞq, 𝜌pΓq $ p𝜌p𝑡q : 𝜌p𝜏qq : 𝜌p𝜏q, i.e., 𝜌pΞq, 𝜌pΓq $
𝜌p𝑡 : 𝜏q : 𝜌p𝜏q.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 49

Case T-Case1. By the definition of type substitution, 𝜌pKq “ K. By the definition of term sub-

stitution, 𝜌pcase 𝑥 “ 𝑡1 of 𝜖q “ pcase 𝑥 “ 𝜌p𝑡1q of 𝜖q. By IH on the premise, we have

𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡1q : 𝜌pKq, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡1q : K. Then 𝜌pΞq, 𝜌pΓq $ case𝑥 “ 𝜌p𝑡1qof 𝜖 :

K, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌pcase 𝑥 “ 𝑡1 of 𝜖q : 𝜌pKq.

Case T-Case2. By the definition of term substitution, 𝜌pcase 𝑥 “ 𝑡1 of _Ñ 𝑡2q “

pcase 𝑥 “ 𝜌p𝑡1q of _Ñ 𝜌p𝑡2qq. By IH on the premises, we have 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡1q : 𝜌p𝜏1q

and 𝜌pΞq, 𝜌pΓ¨p𝑥 : 𝜏1qq $ 𝜌p𝑡2q : 𝜌p𝜏q, i.e., 𝜌pΞq, 𝜌pΓq¨p𝑥 : 𝜌p𝜏1qq $ 𝜌p𝑡2q : 𝜌p𝜏q by the defi-

nition of typing context substitution. Then 𝜌pΞq, 𝜌pΓq $ case 𝑥 “ 𝜌p𝑡1q of _Ñ 𝜌p𝑡2q : 𝜌p𝜏q,

i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌pcase 𝑥 “ 𝑡1 of _Ñ 𝑡2q : 𝜌p𝜏q.

Case T-Case3. By the definition of term substitution, 𝜌pcase 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀q “

pcase 𝑥 “ 𝜌p𝑡1q of 𝐶 Ñ 𝜌p𝑡2q, 𝜌p𝑀qq. By IH on the first premise, we have 𝜌pΞq, 𝜌pΓq $
𝜌p𝑡1q : 𝜌p#𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2q, i.e., 𝜌pΞq, 𝜌pΓq $ 𝜌p𝑡1q : #𝐶 ^ 𝜌p𝜏1q _ ␣#𝐶 ^ 𝜌p𝜏2q by the

definition of type substitution. By IH on the second premise, we have 𝜌pΞq, 𝜌pΓ¨p𝑥 : 𝜏1qq $

𝜌p𝑡2q : 𝜌p𝜏q, i.e., 𝜌pΞq, 𝜌pΓq¨p𝑥 : 𝜌p𝜏1qq $ 𝜌p𝑡2q : 𝜌p𝜏q. By IH on the third premise, we have

𝜌pΞq, 𝜌pΓ¨p𝑥 : 𝜏2qq $ 𝜌pcase 𝑥 “ 𝑥 of 𝑀q : 𝜌p𝜏q, i.e., 𝜌pΞq, 𝜌pΓq¨p𝑥 : 𝜌p𝜏2qq $

case 𝑥 “ 𝑥 of 𝜌p𝑀q : 𝜌p𝜏q by the definition of term substitution. Then 𝜌pΞq, 𝜌pΓq $
case 𝑥 “ 𝜌p𝑡1q of 𝐶 Ñ 𝜌p𝑡2q, 𝜌p𝑀q : 𝜌p𝜏q by T-Case3, i.e., 𝜌pΞq, 𝜌pΓq $

𝜌pcase 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀q : 𝜌p𝜏q.

□

Lemma B.36 (Preservation of subtyping under substitution). If Σ $ 𝜏1 ď 𝜏2 and D wf,
then 𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q.

Proof. By induction on subtyping derivations of Σ $ 𝜏1 ď 𝜏2.

Case S-Refl. The result 𝜌p𝜏q ď 𝜌p𝜏q follows immediately from S-Refl.

Case S-ToB˛. By the definition of type substitution, 𝜌pJ˛ q “ J˛ . By S-ToB˛, 𝜌p𝜏qď˛ J˛ , i.e.,

𝜌p𝜏qď˛ 𝜌pJ˛ q.

Case S-Compl˛. By the definition of type substitution, 𝜌p𝜏 _˛␣𝜏q “ 𝜌p𝜏q_˛ 𝜌p␣𝜏q “ 𝜌p𝜏q_˛␣𝜌p𝜏q

and 𝜌pJ˛ q “ J˛ . By S-Compl˛, 𝜌p𝜏q_˛␣𝜌p𝜏qě˛ J˛ , i.e., 𝜌p𝜏 _˛␣𝜏qě˛ 𝜌pJ˛ q.

Case S-NegInv. By the definition of type substitution, 𝜌p␣𝜏q “ ␣𝜌p𝜏q. By IH on the premise,

we have 𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q. Then 𝜌pΣq $ ␣𝜌p𝜏2q ď ␣𝜌p𝜏1q by S-NegInv, i.e., 𝜌pΣq $
𝜌p␣𝜏2q ď 𝜌p␣𝜏1q.

Case S-AndOr11˛. By the definition of type substitution, 𝜌p𝜏1_
˛ 𝜏2q “ 𝜌p𝜏1q_

˛ 𝜌p𝜏2q. By IH

on the premise, we have 𝜌pΣq $ 𝜌p𝜏1qě
˛ 𝜌p𝜏q. Then 𝜌pΣq $ 𝜌p𝜏1q_

˛ 𝜌p𝜏2qě
˛ 𝜌p𝜏q by

S-AndOr11˛, i.e., 𝜌pΣq $ 𝜌p𝜏1_𝜏2qě
˛ 𝜌p𝜏q.

Case S-AndOr12˛. Symmetric to the case above.

Case S-AndOr2˛. By the definition of type substitution, 𝜌p𝜏1_
˛ 𝜏2q “ 𝜌p𝜏1q_

˛ 𝜌p𝜏2q. By IH

on the premises, we have 𝜌pΣq $ 𝜌p𝜏qě˛ 𝜌p𝜏1q and 𝜌pΣq $ 𝜌p𝜏qě˛ 𝜌p𝜏2q. Then 𝜌pΣq $
𝜌p𝜏qě˛ 𝜌p𝜏1q_

˛ 𝜌p𝜏2q by S-AndOr2˛, i.e., 𝜌pΣq $ 𝜌p𝜏qě˛ 𝜌p𝜏1_
˛ 𝜏2q.

Case S-Distrib˛. By the definition of type substitution, 𝜌p𝜏 ^˛ p𝜏1_
˛ 𝜏2qq “ 𝜌p𝜏q^˛ 𝜌p𝜏1_

˛ 𝜏2q “

𝜌p𝜏q^˛ p𝜌p𝜏1q_
˛ 𝜌p𝜏2qq and 𝜌pp𝜏 ^˛ 𝜏1q_

˛ p𝜏 ^˛ 𝜏2qq “ 𝜌p𝜏 ^˛ 𝜏1q_
˛ 𝜌p𝜏 ^˛ 𝜏2q “ p𝜌p𝜏q

^˛ 𝜌p𝜏1qq_
˛ p𝜌p𝜏q^˛ 𝜌p𝜏2qq. By S-Distrib˛, 𝜌p𝜏q^˛ p𝜌p𝜏1q_

˛ 𝜌p𝜏2qqď
˛ p𝜌p𝜏q^˛ 𝜌p𝜏1qq

_˛ p𝜌p𝜏q^˛ 𝜌p𝜏2qq, i.e., 𝜌p𝜏 ^
˛ p𝜏1_

˛ 𝜏2qqď
˛ 𝜌pp𝜏 ^˛ 𝜏1q_

˛ p𝜏 ^˛ 𝜏2qq.

Case S-Trans. By IH on the premises, we have 𝜌pΣq $ 𝜌p𝜏0q ď 𝜌p𝜏1q and 𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q.

Then 𝜌pΣq $ 𝜌p𝜏0q ď 𝜌p𝜏2q by S-Trans.

Case S-Weaken. By IH on the premise, we have 𝜌p𝜏1q ď 𝜌p𝜏2q. Then 𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q by

S-Weaken.

50 Lionel Parreaux and Chun Yin Chau

Case S-Assum. By the definition of subtyping context substitution, 𝜌pΞ ¨ ▷p𝜏1 ď 𝜏2qq “ 𝜌pΞq ¨
▷p𝜌p𝜏1q ď 𝜌p𝜏2qq. By IH on the premise, we have D¨𝜌pΞ ¨ ▷p𝜏1 ď 𝜏2qq $ 𝜌p𝜏1q ď 𝜌p𝜏2q, i.e.,

D¨𝜌pΞq ¨ ▷p𝜌p𝜏1q ď 𝜌p𝜏2qq $ 𝜌p𝜏1q ď 𝜌p𝜏2q. Then D¨𝜌pΞq $ 𝜌p𝜏1q ď 𝜌p𝜏2q by S-Assum.

Case S-Hyp. By the definition of subtyping context substitution and the 𝐻 P Σ judgement, it is

straightforward to show that if p𝜏 ď 𝜏 1q P Σ, then p𝜌p𝜏q ď 𝜌p𝜏 1qq P 𝜌pΣq by induction on the

size of Σ. Applying to the premise p𝜏1 ď 𝜏2q P Σ, we have p𝜌p𝜏1q ď 𝜌p𝜏2qq P 𝜌pΣq. Then
𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q by S-Hyp.

Case S-FunDepth. By the definition of type substitution, 𝜌p𝜏 Ñ 𝜏 1q “ 𝜌p𝜏q Ñ 𝜌p𝜏 1q. By IH on

the premises, we have ◁𝜌pΣq $ 𝜌p𝜏0q ď 𝜌p𝜏1q and ◁𝜌pΣq $ 𝜌p𝜏2q ď 𝜌p𝜏3q. Then ◁𝜌pΣq $
𝜌p𝜏1q Ñ 𝜌p𝜏2q ď 𝜌p𝜏0q Ñ 𝜌p𝜏3q by S-FunDepth, i.e., ◁𝜌pΣq $ 𝜌p𝜏1 Ñ 𝜏2q ď 𝜌p𝜏0 Ñ 𝜏3q.

Case S-FunMrg˛. By the definition of type substitution, 𝜌pp𝜏1_
˛ 𝜏3q Ñ p𝜏2^

˛ 𝜏4qq “ 𝜌p𝜏1_
˛ 𝜏3q Ñ

𝜌p𝜏2^
˛ 𝜏4q “ p𝜌p𝜏1q_

˛ 𝜌p𝜏3qq Ñ p𝜌p𝜏2q^
˛ 𝜌p𝜏4qq. and 𝜌p𝜏1 Ñ 𝜏2^𝜏3 Ñ 𝜏4q “ 𝜌p𝜏1 Ñ

𝜏2q^𝜌p𝜏3 Ñ 𝜏4q “ 𝜌p𝜏1q Ñ 𝜌p𝜏2q^𝜌p𝜏3q Ñ 𝜌p𝜏4q. By S-FunMrg˛, p𝜌p𝜏1q_
˛ 𝜌p𝜏3qq Ñ

p𝜌p𝜏2q^
˛ 𝜌p𝜏4qqě

˛ 𝜌p𝜏1q Ñ 𝜌p𝜏2q^𝜌p𝜏3q Ñ 𝜌p𝜏4q, i.e., 𝜌pp𝜏1_
˛ 𝜏3q Ñ p𝜏2^

˛ 𝜏4qqě
˛ 𝜌p𝜏1 Ñ

𝜏2^𝜏3 Ñ 𝜏4q.

Case S-RcdDepth. By the definition of type substitution, 𝜌pt𝑥 : 𝜏 uq “ t𝑥 : 𝜌p𝜏q u. By IH on

the premise, we have ◁𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q. Then ◁𝜌pΣq $ t𝑥 : 𝜌p𝜏1q u ď t𝑥 : 𝜌p𝜏2q u by

S-RcdDepth, i.e., ◁𝜌pΣq $ 𝜌pt𝑥 : 𝜏1 uq ď 𝜌pt𝑥 : 𝜏2 uq.

Case S-RcdMrg˛. By the definition of type substitution, 𝜌pt𝑥 : 𝜏1_
˛ 𝜏2 uq “ t𝑥 : 𝜌p𝜏1_

˛ 𝜏2q u “

t𝑥 : 𝜌p𝜏1q_
˛ 𝜌p𝜏2q u and 𝜌pt𝑥 : 𝜏1 u_

˛ t𝑥 : 𝜏2 uq “ 𝜌pt𝑥 : 𝜏1 uq_
˛ 𝜌pt𝑥 : 𝜏2 uq “ t𝑥 :

𝜌p𝜏1q u_
˛ t𝑥 : 𝜌p𝜏2q u. By S-RcdMrg˛, t𝑥 : 𝜌p𝜏1q_

˛ 𝜌p𝜏2q uď
˛ t𝑥 : 𝜌p𝜏1q u_

˛ t𝑥 : 𝜌p𝜏2q u,

i.e., 𝜌pt𝑥 : 𝜏1_
˛ 𝜏2 uqď

˛ 𝜌pt𝑥 : 𝜏1 u_
˛ t𝑥 : 𝜏2 uq.

Case S-RcdTop. By the definition of type substitution, 𝜌pJq “ J and 𝜌pt𝑥 : 𝜏1 u _ 𝜏q “ 𝜌pt𝑥 :

𝜏1 uq_𝜌p𝜏q “ t𝑥 : 𝜌p𝜏1q u_𝜌p𝜏q. From the premise, we have 𝜌p𝜏q P t𝜌pt𝑦‰𝑥 : 𝜏2 uq, 𝜌p𝜏2 Ñ 𝜏3qu,

i.e., 𝜌p𝜏q P tt𝑦‰𝑥 : 𝜌p𝜏2q u 𝜌p𝜏2q Ñ 𝜌p𝜏3qu by the definition of type substitution. Then

𝜏 ď t𝑥 : 𝜌p𝜏1q u _ 𝜌p𝜏q by S-RcdTop, i.e., 𝜌p𝜏q ď 𝜌pt𝑥 : 𝜏1 u _ 𝜏q.

Case S-ClsSub. Note that the declaration context rooted in by the subtyping context contains

all the information required to determine the superclass relation, i.e., SD¨Σ “ SD¨Σ1 . Then

the premise 𝐶2 P Sp𝐶1r𝛼sq implies 𝐶2 P Sp𝐶1r𝛼sq. By the definition of type substitution,

𝜌p#𝐶q “ #𝐶 . Then 𝜌pΣq $ #𝐶1 ď #𝐶2 by S-ClsSub, i.e., 𝜌pΣq $ 𝜌p#𝐶1q ď 𝜌p#𝐶2q.

Case S-ClsBot. As noted in the case above, SD¨Σ “ SD¨Σ1 . By the definition of type substitution,

𝜌p#𝐶1^#𝐶2q “ 𝜌p#𝐶1q^𝜌p#𝐶2q “ #𝐶1^#𝐶2 and 𝜌pKq “ K. Then the premise𝐶1 R Sp𝐶2r𝛼sq

and 𝐶2 R Sp𝐶1r𝛽sq imply 𝐶1 R Sp𝐶2r𝛼sq and 𝐶2 R Sp𝐶1r𝛽sq. Then 𝜌pΣq $ #𝐶1 ^ #𝐶2 ď K

by S-ClsBot, i.e., 𝜌pΣq $ 𝜌p#𝐶1 ^ #𝐶2q ď 𝜌pKq.

Case S-Exp˛. We show that if Σ $ 𝜏 exp. 𝜏 1, where D wf, then 𝜌pΣq $ 𝜌p𝜏q exp. 𝜌p𝜏 1q. We

consider rules that can derive the judgement Σ $ 𝜏 exp. 𝜏 1.
Case S-AlsExp. Note that the declaration context contains all declarations, i.e., 𝑑 P Σ
implies 𝑑 P D¨Σ1. Then the premise implies ptype 𝐴r𝛼𝑖

𝑖 P𝑆
s “ 𝜏q P 𝜌pΣq. By the def-

inition of type substitution, 𝜌p𝐴r𝜏𝑖
𝑖 P𝑆
sq “ 𝐴r𝜌p𝜏𝑖q

𝑖 P𝑆
s. By the well-formedness of D,

TV p𝜏q Ď t𝛼𝑖
𝑖 P𝑆

u, which implies that all type variables in r𝛼𝑖 ÞÑ 𝜏𝑖
𝑖 P𝑆
s𝜏 are introduced

by the substitution t𝛼𝑖 ÞÑ 𝜏𝑖
𝑖 P𝑆

u, and 𝜌pr𝛼𝑖 ÞÑ 𝜏𝑖
𝑖 P𝑆
s𝜏q “ r𝛼𝑖 ÞÑ 𝜌p𝜏𝑖q

𝑖 P𝑆
s𝜏 . Then 𝜌pΣq $

𝐴r𝜌p𝜏𝑖q
𝑖 P𝑆
s exp. r𝛼𝑖 ÞÑ 𝜌p𝜏𝑖q

𝑖 P𝑆
s𝜏 by S-AlsExp, i.e., 𝜌pΣq $ 𝜌p𝐴r𝜏𝑖

𝑖 P𝑆
sq exp. 𝜌pr𝛼𝑖 ÞÑ 𝜏𝑖

𝑖 P𝑆
s𝜏q.

Case S-ClsExp. Similar to the case above, noting that 𝜌p#𝐶 ^ r𝛼𝑖 ÞÑ 𝜏𝑖
𝑖 P𝑆
s𝜏q “ 𝜌p#𝐶q ^

𝜌pr𝛼𝑖 ÞÑ 𝜏𝑖
𝑖 P𝑆
s𝜏q “ #𝐶 ^ 𝜌pr𝛼𝑖 ÞÑ 𝜏𝑖

𝑖 P𝑆
s𝜏q.

Then the premise Σ $ 𝜏 exp. 𝜏 1 implies 𝜌pΣq $ 𝜌p𝜏q exp. 𝜌p𝜏 1q, and 𝜌pΣq $ 𝜌p𝜏qě˛ 𝜌p𝜏 1q

follows from S-Exp˛.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 51

□

Corollary B.37 (Preservation of subtyping entailment under substitution). If Σ (Σ1

and D wf, then 𝜌pΣq (𝜌pΣ1q.

Proof. By induction on the derivation of subtyping entailment judgement Σ (Σ1.

Case S-Empty. Immediate.

Case S-Cons. By the definition of subtyping context substitution, 𝜌pΣ1¨p𝜏1 ď 𝜏2qq “

𝜌pΣ1q¨p𝜌p𝜏1q ď 𝜌p𝜏2qq. By IH on the premise Σ (Σ1, we have 𝜌pΣq (𝜌pΣ1q. By preser-

vation of subtyping under substitution (Lemma B.36) on the premise Σ $ 𝜏1 ď 𝜏2, we

have 𝜌pΣq $ 𝜌p𝜏1q ď 𝜌p𝜏2q. Then 𝜌pΣq (𝜌pΣ1q¨p𝜌p𝜏1q ď 𝜌p𝜏2qq follows from S-Cons, i.e.,

𝜌pΣq (𝜌pΣ1¨p𝜏1 ď 𝜏2qq.

□

Lemma B.38 (Congruence of substitution on types). If Σ $ 𝜋 ” 𝜋 1, then Σ $ r𝛼 ÞÑ 𝜋s𝜏 ”

r𝛼 ÞÑ 𝜋 1s𝜏 for all 𝜏 .

Proof. By straightforward induction on the syntax of 𝜏 . The only non-trivial cases are:

Case 𝜏 “ 𝜏1 Ñ 𝜏2. From the assumption, we have:

Σ $ 𝜋 ” 𝜋 1 (1)

By Lemma B.30 with Lemma B.25, (1) implies:

◁Σ $ 𝜋 ” 𝜋 1 (2)

By IH on (2), we have:

◁Σ $ r𝛼 ÞÑ 𝜋s𝜏1 ” r𝛼 ÞÑ 𝜋 1s𝜏1 (3)

◁Σ $ r𝛼 ÞÑ 𝜋s𝜏2 ” r𝛼 ÞÑ 𝜋 1s𝜏2 (4)

Then by S-FunDepth on (3) and (4), we have:

Σ $ r𝛼 ÞÑ 𝜋sp𝜏1 Ñ 𝜏2q ” r𝛼 ÞÑ 𝜋 1sp𝜏1 Ñ 𝜏2q (5)

Case 𝜏 “ t𝑥 : 𝜏1 u. From the assumption, we have:

Σ $ 𝜋 ” 𝜋 1 (6)

By Lemma B.30 with Lemma B.25, (6) implies:

◁Σ $ 𝜋 ” 𝜋 1 (7)

By IH on (7), we have:

◁Σ $ r𝛼 ÞÑ 𝜋s𝜏1 ” r𝛼 ÞÑ 𝜋 1s𝜏1 (8)

Then by S-RcdDepth on (8) and (4), we have:

Σ $ r𝛼 ÞÑ 𝜋st𝑥 : 𝜏1 u ” r𝛼 ÞÑ 𝜋 1st𝑥 : 𝜏1 u (9)

Case 𝜏 “ 𝛼 . From the assumption, we have:

Σ $ 𝜋 ” 𝜋 1

i.e., Σ $ r𝛼 ÞÑ 𝜋s𝛼 ” r𝛼 ÞÑ 𝜋 1s𝛼 (10)

□

Lemma B.39 (Congruence of substitution on guarded types). If Σ $ 𝜋 ” 𝜋 1 and𝛼 R TTV p𝜏q,

then ▷Σ $ r𝛼 ÞÑ 𝜋s𝜏 ” r𝛼 ÞÑ 𝜋 1s𝜏 .

52 Lionel Parreaux and Chun Yin Chau

Proof. By straightforward induction on the syntax of 𝜏 . The only non-trivial cases are:

Case 𝜏 “ 𝜏1 Ñ 𝜏2. From the assumption, we have:

Σ $ 𝜋 ” 𝜋 1 (1)

By Lemma B.30 with Lemma B.25, (1) implies:

◁Σ $ 𝜋 ” 𝜋 1 (2)

By Lemma B.38 on (2), we have:

◁Σ $ r𝛼 ÞÑ 𝜋s𝜏1 ” r𝛼 ÞÑ 𝜋 1s𝜏1 (3)

◁Σ $ r𝛼 ÞÑ 𝜋s𝜏2 ” r𝛼 ÞÑ 𝜋 1s𝜏2 (4)

Then by S-FunDepth on (3) and (4), we have:

▷Σ $ r𝛼 ÞÑ 𝜋sp𝜏1 Ñ 𝜏2q ” r𝛼 ÞÑ 𝜋 1sp𝜏1 Ñ 𝜏2q (5)

Case 𝜏 “ t𝑥 : 𝜏1 u. From the assumption, we have:

Σ $ 𝜋 ” 𝜋 1 (6)

By Lemma B.30 with Lemma B.25, (6) implies:

◁Σ $ 𝜋 ” 𝜋 1 (7)

By Lemma B.38 on (7), we have:

◁Σ $ r𝛼 ÞÑ 𝜋s𝜏1 ” r𝛼 ÞÑ 𝜋 1s𝜏1 (8)

Then by S-RcdDepth on (8) and (4), we have:

▷Σ $ r𝛼 ÞÑ 𝜋st𝑥 : 𝜏1 u ” r𝛼 ÞÑ 𝜋 1st𝑥 : 𝜏1 u (9)

Case 𝜏 “ 𝛼 . Impossible since 𝛼 R TTV p𝜏q.

□

Corollary B.40. Σ $ 𝜏 ” r𝛼 ÞÑ 𝛼 ^ ubΣp𝛼q _ lbΣp𝛼qs𝜏 for all 𝜏 .

Proof. By Lemma B.38 on Σ $ 𝛼 ” 𝛼 ^ ubΣp𝛼q _ lbΣp𝛼q. □

Corollary B.41. If 𝛼 R TTV p𝜏q, then ▷Σ $ 𝜏 ” r𝛼 ÞÑ 𝛼 ^ ubΣp𝛼q _ lbΣp𝛼qs𝜏 .

Proof. By Lemma B.39 on Σ $ 𝛼 ” 𝛼 ^ ubΣp𝛼q _ lbΣp𝛼q. □

Lemma B.42 (Inlining of bound). If Σ¨p𝛼 ď˛ 𝜋q $ 𝜏 ď 𝜏 1, then 𝜌Σ¨▷p𝛼 ď˛ 𝜋q $ 𝜌𝜏 ď 𝜌𝜏 1,

where 𝜌 “ r𝛼 ÞÑ 𝛼 ^˛ 𝜋s.

Proof. By straightforward induction on unassuming subtyping derivations. The only non-trivial

case is S-Hyp when p𝜏 ď 𝜏 1q “ p𝛼 ď˛ 𝜋q.

Case S-Hyp when p𝜏 ď 𝜏 1q “ p𝛼 ď˛ 𝜋q. Let cleanuppp𝛼 ď˛ 𝜋qq “ p𝛼 ď˛ 𝜋 1q. By Lemma B.8,

Lemma B.9, and Lemma B.10, we have:

p𝛼 ď˛ 𝜋q () p𝛼 ď˛ 𝜋 1q (1)

p𝛼 ď˛ 𝜋 1q guard. (2)

𝛼 ^˛ 𝜋 ” 𝛼 ^˛ 𝜋 1 (3)

By S-Trans on p𝛼 ď˛ 𝜋 1q $ 𝛼 ” 𝛼 ^˛ 𝜋 1 and (3), we have:

p𝛼 ď˛ 𝜋 1q $ 𝛼 ” 𝛼 ^˛ 𝜋 (4)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 53

By Lemma B.39 on (2) and (4), we have:

▷p𝛼 ď˛ 𝜋 1q $ 𝜋 1 ” 𝜌𝜋 1 (5)

By Lemma B.22 on (4) and (5), we have:

▷p𝛼 ď˛ 𝜋 1q $ 𝛼 ^˛ 𝜋 1 ” p𝛼 ^˛ 𝜋q ^˛ 𝜌𝜋 1

i.e., ▷p𝛼 ď˛ 𝜋 1q $ 𝛼 ^˛ 𝜋 1 ” 𝜌p𝛼 ^˛ 𝜋 1q (6)

By S-Trans on (3) and S-AndOr12¯̨, we have:

𝛼 ^˛ 𝜋 1 ď˛ 𝜋 (7)

By Lemma B.36, (7) implies:

𝜌p𝛼 ^˛ 𝜋q ď˛ 𝜌𝜋 (8)

Then by S-Trans on (3), (6), and (8), we have:

▷p𝛼 ď˛ 𝜋 1q $ 𝛼 ^˛ 𝜋 ď˛ 𝜌𝜋 (9)

Then by Lemma B.30 with (1), (9) implies:

▷p𝛼 ď˛ 𝜋q $ 𝛼 ^˛ 𝜋 ď˛ 𝜌𝜋

i.e., ▷p𝛼 ď˛ 𝜋q $ 𝜌𝛼 ď˛ 𝜌𝜋 (10)

□

B.6 Some Useful Lemmas on Consistency
Lemma B.43 (Congruence of substitution on consistency). If r𝛼 ÞÑ 𝜏sΣ $ ▷Ξ▷¨r𝛼 ÞÑ 𝜏sΞ ;

𝜌 cons. and ▷Ξ▷ $ 𝜏 ” 𝜏 1, where 𝜏 and 𝜏 1 are not type variables, then r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨r𝛼 ÞÑ 𝜏 1sΞ ;

𝜌 1 cons. for some 𝜌 1, where domp𝜌 1q “ domp𝜌q.

Proof. By induction on consistency derivations for the statement: if 𝜌2r𝛼 ÞÑ 𝜏sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏sΞ ;

𝜌 cons. and ▷Ξ▷ $ 𝜏 ” 𝜏 1 and Ξ▷ $ 𝛾 ” 𝜏𝛾
p𝛾 ÞÑ𝜏𝛾 q P 𝜌

2

, where 𝜏 and 𝜏 1 are not type variables and

𝛾 “ 𝛾 1
p𝛾 ÞÑ𝛾 1q P 𝜌2

and domp𝜌q X domp𝜌2q “ H, then 𝜌2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ ; 𝜌 1 cons.

for some 𝜌 1, where domp𝜌 1q “ domp𝜌q.

Base case. For the base case, we have Ξ “ 𝜖 . Then by the base case of the definition of consistency,

we have:

𝜌2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ ; id cons. (1)

Inductive case on 𝛼 . For the inductive case on 𝛼 , i.e., where 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 and 𝜌2,

where domp𝜌1q “ t𝛼 u, the preimses of the rule are:

▷Ξ▷¨▷Ξ
1
𝛼 ¨𝜌1Ξ

1
𝛼 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΣ (𝜌1Ξ
1
𝛼 (2)

𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΣ $ ▷Ξ▷¨▷Ξ

1
𝛼 ¨𝜌1Ξ

1
𝛼 ; 𝜌2 cons. (3)

where split𝛼p𝜌
2r𝛼 ÞÑ 𝜏sΞ, domp𝜌2qq “ pΞ1𝛼 , Ξ

1
𝛼 q and 𝜌1 “ r𝛼 ÞÑ 𝛼 ^ ub𝜌2r𝛼 ÞÑ𝜏sΞp𝛼q _

lb𝜌2r𝛼 ÞÑ𝜏sΞp𝛼qs. Since 𝜏 is not a type varialbe, we have:

Ξ1𝛼 “ 𝜖 (4)

Ξ1𝛼 “ 𝜌2r𝛼 ÞÑ 𝜏sΞ (5)

𝜌1 “ r𝛼 ÞÑ 𝛼s (6)

54 Lionel Parreaux and Chun Yin Chau

Then (3) implies:

𝜌2r𝛼 ÞÑ 𝜏sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏sΞ ; 𝜌2 cons. (7)

Then by IH on (7), we have:

𝜌2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ ; 𝜌2 cons.

i.e., 𝜌2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ ; 𝜌2 ˝ 𝜌1 cons. (8)

for some 𝜌 1
2
, where domp𝜌 1

2
q “ domp𝜌2q.

Inductive case not on 𝛼 . For the inductive case not on 𝛼 , i.e., where 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 and

𝜌2 and 𝛽 ‰ 𝛼 , where domp𝜌1q “ t 𝛽 u, the premises of the rule are:

▷Ξ▷¨▷Ξ
1
𝛽 ¨𝜌1Ξ

1
𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΣ (𝜌1Ξ
1
𝛽 (9)

𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΣ $ ▷Ξ▷¨▷Ξ

1
𝛽 ¨𝜌1Ξ

1
𝛽 ; 𝜌2 cons. (10)

where split𝛽p𝜌
2r𝛼 ÞÑ 𝜏sΞ, domp𝜌2qq “ pΞ1𝛽 , Ξ

1
𝛽 q and 𝜌1 “ r𝛽 ÞÑ 𝛽 ^ ub𝜌2r𝛼 ÞÑ𝜏sΞp𝛽q _

lb𝜌2r𝛼 ÞÑ𝜏sΞp𝛽qs. Let split𝛽pΞ, domp𝜌2qq “ pΞ𝛽 , Ξ𝛽 q. Since 𝜏 is not a type variable and

𝛾 “ 𝛾 1
p𝛾 ÞÑ𝛾 1q P 𝜌2

, we have Ξ1𝛽 “ 𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 and Ξ1𝛽 “ 𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 . Then (9) and

(10) imply:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 (11)

𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΣ $ ▷Ξ▷¨▷𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ; 𝜌2 cons. (12)

Expanding the composition, we have:

𝜌1 ˝ 𝜌
2 “ r𝛾 ÞÑ 𝜌1𝜏𝛾

p𝛾 ÞÑ𝜏𝛾 q P 𝜌
2

, 𝛽 ÞÑ 𝛽 ^ ub𝜌2r𝛼 ÞÑ𝜏sΞp𝛽q _ lb𝜌2r𝛼 ÞÑ𝜏sΞp𝛽qs (13)

From the assumption, we have:

▷Ξ▷ $ 𝛾 ” 𝜏𝛾
p𝛾 ÞÑ𝜏𝛾 q P 𝜌

2

(14)

By Corollary B.40, we have:

𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ub𝜌2r𝛼 ÞÑ𝜏sΞ𝛽
p𝛽q _ lb𝜌2r𝛼 ÞÑ𝜏sΞ𝛽

p𝛽qs𝜋 for all 𝜋

i.e., 𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ub𝜌2r𝛼 ÞÑ𝜏sΞp𝛽q _ lb𝜌2r𝛼 ÞÑ𝜏sΞp𝛽qs𝜋 for all 𝜋

i.e., 𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 $ 𝜋 ” 𝜌1𝜋 for all 𝜋 (15)

By S-Trans on (14) and (15), we have:

▷Ξ▷¨𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 $ 𝛾 ” 𝜌1𝜏𝛾
p𝛾 ÞÑ𝜏𝛾 q P 𝜌

2

(16)

Taking 𝜋 “ 𝛽 , (15) implies:

𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 $ 𝛽 ” 𝛽 ^ ub𝜌2r𝛼 ÞÑ𝜏sΞp𝛽q _ lb𝜌2r𝛼 ÞÑ𝜏sΞp𝛽q (17)

Then (16) and (17) imply:

▷Ξ▷¨𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 $ 𝛾 ” 𝜏𝛾
p𝛾 ÞÑ𝜏𝛾 q P 𝜌1˝𝜌

2

(18)

Then by IH on (12) and (18), we have:

𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨▷𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ; 𝜌 1

2
cons. (19)

for some 𝜌 1
2
, where domp𝜌 1

2
q “ domp𝜌2q.

From the assumptions, we have:

▷Ξ▷ $ 𝜏 ” 𝜏 1 (20)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 55

By Lemma B.38, (20) implies:

▷Ξ▷ $ r𝛼 ÞÑ 𝜏s𝜋 ” r𝛼 ÞÑ 𝜏 1s𝜋 for all 𝜋 (21)

By S-Trans on Lemma B.25 and (21), we have:

▷Ξ▷¨r𝛼 ÞÑ 𝜏 1sΞ𝛽 (r𝛼 ÞÑ 𝜏sΞ𝛽 (22)

By Lemma B.36, (22) implies:

▷𝜌2Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 (23)

By Lemma B.38, (14) implies:

Ξ▷ $ 𝜋 ” 𝜌2𝜋 for all 𝜋 (24)

By S-Trans on Lemma B.30 and (24), we have

Ξ▷ (𝜌2Ξ▷ (25)

Then by Lemma B.30 with (25), (23) implies:

▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 (26)

Then by Lemma B.30 with (26), (19) implies:

𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨▷𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ; 𝜌 1

2
cons. (27)

Similarly, we have:

▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌

2r𝛼 ÞÑ 𝜏 1sΣ (𝜌2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌
2r𝛼 ÞÑ 𝜏sΣ (28)

By Lemma B.36, (28) implies:

▷𝜌1Ξ▷¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΣ (29)

By S-Trans on Lemma B.25 and (15), we have:

Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 (𝜌1Ξ▷ (30)

Then by Lemma B.30 with (30), (29) implies:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏sΣ (31)

Then by Lemma B.30 with (31), (11) implies:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 (32)

Similarly, we have:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏sΞ𝛽 (𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (33)

Then by Lemma B.26 on (32) and (33), we have:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (34)

Then by Lemma B.30 with (26), (34) implies:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (35)

Let 𝜌 1
1
“ r𝛽 ÞÑ 𝛽^ub𝜌2r𝛼 ÞÑ𝜏 1sΞp𝛽q_ lb𝜌2r𝛼 ÞÑ𝜏 1sΞp𝛽qs. Since 𝜏 and 𝜏

1
are not type variables

and 𝛾 “ 𝛾 1
p𝛾 ÞÑ𝛾 1q P 𝜌2

, we have:

𝜌1 “ r𝛽 ÞÑ 𝛽 ^ 𝜌2r𝛼 ÞÑ 𝜏subΞp𝛽q _ 𝜌2r𝛼 ÞÑ 𝜏slbΞp𝛽qs (36)

𝜌 1
1
“ r𝛽 ÞÑ 𝛽 ^ 𝜌2r𝛼 ÞÑ 𝜏 1subΞp𝛽q _ 𝜌2r𝛼 ÞÑ 𝜏 1slbΞp𝛽qs (37)

56 Lionel Parreaux and Chun Yin Chau

By Lemma B.36, (21) implies:

▷𝜌2Ξ▷ $ 𝜌2r𝛼 ÞÑ 𝜏subΞp𝛽q ” 𝜌2r𝛼 ÞÑ 𝜏 1subΞp𝛽q (38)

▷𝜌2Ξ▷ $ 𝜌2r𝛼 ÞÑ 𝜏slbΞp𝛽q ” 𝜌2r𝛼 ÞÑ 𝜏 1slbΞp𝛽q (39)

By Lemma B.30 with (25), (38) and (39) imply:

▷Ξ▷ $ 𝜌2r𝛼 ÞÑ 𝜏subΞp𝛽q ” 𝜌2r𝛼 ÞÑ 𝜏 1subΞp𝛽q (40)

▷Ξ▷ $ 𝜌2r𝛼 ÞÑ 𝜏slbΞp𝛽q ” 𝜌2r𝛼 ÞÑ 𝜏 1slbΞp𝛽q (41)

Then by Lemma B.22 on S-Refl, (40), and (41), we have:

▷ Ξ▷ $ 𝛽 ^ 𝜌2r𝛼 ÞÑ 𝜏subΞp𝛽q _ 𝜌2r𝛼 ÞÑ 𝜏slbΞp𝛽q

” 𝛽 ^ 𝜌2r𝛼 ÞÑ 𝜏 1subΞp𝛽q _ 𝜌2r𝛼 ÞÑ 𝜏 1slbΞp𝛽q (42)

Then by IH on (27) and (42), we have:

𝜌 1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨▷𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌
1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ; 𝜌2

2
cons. (43)

for some 𝜌2
2
, where domp𝜌2

2
q “ domp𝜌 1

2
q.

By Lemma B.38, (42) implies:

▷Ξ▷ $ 𝜌1𝜋 ” 𝜌 1
1
𝜋 for all 𝜋 (44)

By S-Trans on Lemma B.25 and (44), we have:

▷Ξ▷¨𝜌
1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌

1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΣ (45)

▷Ξ▷¨𝜌1𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (𝜌 1

1
𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (46)

Then by Lemma B.30 with (45), (35) implies:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌

1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌

1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΣ (𝜌1𝜌

2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (47)

Then by Lemma B.26 on (47) and (46), we have:

▷Ξ▷¨▷𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌

1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 ¨𝜌

1
1
𝜌2r𝛼 ÞÑ 𝜏 1sΣ (𝜌 1

1
𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 (48)

Since𝜏 1 is not a type variable and𝛾 “ 𝛾 1
p𝛾 ÞÑ𝛾 1q P 𝜌2

, we have split𝛽p𝜌
2r𝛼 ÞÑ 𝜏 1sΞ, domp𝜌2

2
qq “

p𝜌2r𝛼 ÞÑ 𝜏 1sΞ𝛽 , 𝜌
2r𝛼 ÞÑ 𝜏 1sΞ𝛽 q. Then by the inductive case of the definition of consistency,

(43) and (48) imply:

𝜌2r𝛼 ÞÑ 𝜏 1sΣ $ ▷Ξ▷¨𝜌
2r𝛼 ÞÑ 𝜏 1sΞ ; 𝜌2

2
˝ 𝜌 1

1
cons. (49)

□

Lemma B.44 (Inversion of consistency). If Σ $ ▷Ξ▷¨Ξ ; 𝜌 cons., then for all 𝛼 , we have

▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ¨𝜌𝛼Σ (𝜌𝛼Ξ𝛼 and 𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ; 𝜌 1 cons. for some 𝜌 1, where split𝛼pΞ, domp𝜌
1qq “

pΞ𝛼 , Ξ𝛼 q, 𝜌𝛼 “ r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qs, and domp𝜌
1q “ domp𝜌qzt𝛼 u.

Proof. By induction on consistency derivations. If Ξ is not guarded, we can replace it with

cleanuppΞq before applying the lemma, and restore it back to Ξ in the conclusion. Therefore we

can assume Ξ guard..
Base case. For the base case, we have Ξ “ 𝜖 . Then we have Ξ𝛼 “ 𝜖 , Ξ𝛼 “ 𝜖 , and 𝜌𝛼 “ id. By

S-Empty, we have:

▷Ξ▷¨Σ (𝜖

i.e., ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ¨𝜌𝛼Σ (𝜌𝛼Ξ𝛼 (1)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 57

By the base case of the definition of consistency, we have:

Σ $ ▷Ξ▷ ; id cons.
i.e., 𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ; id cons. (2)

Inductive case on 𝛼 . For the inductive case on 𝛼 , i.e., where 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 and 𝜌2,

where domp𝜌1q “ t𝛼 u, we have the result immediately from the premises.

Inductive case not on 𝛼 . For the inductive case not on 𝛼 , i.e., where 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 and

𝜌2, where domp𝜌1q “ t 𝛽 u for some 𝛽 ‰ 𝛼 , the premises of the rule are:

▷Ξ▷¨▷Ξ𝛽 ¨𝜌1Ξ𝛽 ¨𝜌1Σ (𝜌1Ξ𝛽 (3)

𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨𝜌1Ξ𝛽 ; 𝜌2 cons. (4)

where split𝛽pΞ, domp𝜌2qq “ pΞ𝛽 , Ξ𝛽 q and 𝜌1 “ r𝛽 ÞÑ 𝛽 ^ ubΞp𝛽q _ lbΞp𝛽qs. By IH on (4),

we have:

▷Ξ▷¨▷Ξ𝛽 ¨▷Ξ
1
𝛼 ¨𝜌

1
𝛼Ξ
1
𝛼 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼Ξ

1
𝛼 (5)

𝜌 1𝛼𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨▷Ξ
1
𝛼 ¨𝜌

1
𝛼Ξ
1
𝛼 ; 𝜌3 cons. (6)

for some 𝜌3, where split𝛼p𝜌1Ξ𝛽 , domp𝜌3qq “ pΞ
1
𝛼 , Ξ

1
𝛼 q and 𝜌 1𝛼 “ r𝛼 ÞÑ 𝛼 ^ ub𝜌1Ξ𝛽

p𝛼q _

lb𝜌1Ξ𝛽
p𝛼qs and domp𝜌3q “ domp𝜌2qzt𝛼 u. It is easy to see that Ξ

1
𝛼 “ 𝜌1Ξ𝛼 and Ξ1𝛼 “ 𝜌1Ξ𝛽 𝛼 ,

where split𝛼pΞ𝛽 , domp𝜌3qq “ pΞ𝛼 , Ξ𝛽 𝛼 q. Then (5) and (6) imply:

▷Ξ▷¨▷Ξ𝛽 ¨▷𝜌1Ξ𝛼 ¨𝜌
1
𝛼𝜌1Ξ𝛽 𝛼 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛼 (7)

𝜌 1𝛼𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨▷𝜌1Ξ𝛼 ¨𝜌
1
𝛼𝜌1Ξ𝛽 𝛼 ; 𝜌3 cons. (8)

Since p𝛼 ď˛ 𝜌1𝜋q P 𝜌1Ξ𝛽 only if p𝛼 ď˛ 𝜋q P Ξ, we have ub𝜌1Ξ𝛽
p𝛽q “ 𝜌1ubΞp𝛽q and

lb𝜌1Ξ𝛽
p𝛽q “ 𝜌1lbΞp𝛽q. Then we have:

𝜌 1𝛼 “ r𝛼 ÞÑ 𝛼 ^ 𝜌1ubΞp𝛼q _ 𝜌1lbΞp𝛼qs (9)

Expanding the composition, we have:

𝜌 1𝛼 ˝ 𝜌1 “ r𝛼 ÞÑ 𝛼 ^ 𝜌1ubΞp𝛼q _ 𝜌1lbΞp𝛼q, 𝛽 ÞÑ 𝛽 ^ 𝜌 1𝛼ubΞp𝛽q _ 𝜌 1𝛼 lbΞp𝛼qs (10)

By Corollary B.40, we have:

Ξ𝛽 $ 𝛽 ” r𝛽 ÞÑ ubΞ𝛽
p𝛽q _ lbΞ𝛽

p𝛽qs𝛽

i.e., Ξ𝛽 $ 𝛽 ” r𝛽 ÞÑ ubΞp𝛽q _ lbΞp𝛽qs𝛽

i.e., Ξ𝛽 $ 𝛽 ” 𝜌1𝛽 (11)

Then by Lemma B.38, (11) implies:

Ξ𝛽 $ r𝛽 ÞÑ 𝛽sp𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq ” r𝛽 ÞÑ 𝜌1𝛽sp𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq

i.e., Ξ𝛽 $ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ” 𝛼 ^ 𝜌1ubΞp𝛼q _ 𝜌1lbΞp𝛼q

i.e., Ξ𝛽 $ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ” 𝛼 ^ ub𝜌1Ξ𝛽
p𝛼q _ lb𝜌1Ξ𝛽

p𝛼q (12)

Then by Lemma B.39, (12) implies:

▷Ξ𝛽 $ 𝜌𝛼ubΞp𝛽q ” 𝜌 1𝛼ubΞp𝛽q (13)

▷Ξ𝛽 $ 𝜌𝛼 lbΞp𝛽q ” 𝜌 1𝛼 lbΞp𝛽q (14)

By Lemma B.22 on S-Refl, (13) and (14), we have:

▷Ξ𝛽 $ 𝛽 ^ 𝜌𝛼ubΞp𝛽q _ 𝜌𝛼 lbΞp𝛽q ” 𝛽 ^ 𝜌 1𝛼ubΞp𝛽q _ 𝜌 1𝛼 lbΞp𝛽q (15)

58 Lionel Parreaux and Chun Yin Chau

Let 𝜌 1
1
“ r𝛽 ÞÑ 𝛽 ^ ub𝜌𝛼Σ𝛼

p𝛽q _ lb𝜌𝛼Σ𝛼
p𝛽qs. By the same reasoning, we have:

𝜌 1
1
˝ 𝜌𝛼 “ r𝛼 ÞÑ 𝛼 ^ 𝜌 1

1
ubΞp𝛼q _ 𝜌 1

1
lbΞp𝛼q, 𝛽 ÞÑ 𝛽 ^ 𝜌𝛼ubΞp𝛽q _ 𝜌𝛼 lbΞp𝛼qs (16)

▷Ξ𝛼 $ 𝛼 ^ 𝜌1ubΞp𝛼q _ 𝜌1lbΞp𝛼q ” 𝛼 ^ 𝜌 1
1
ubΞp𝛼q _ 𝜌 1

1
lbΞp𝛼q (17)

Then by Lemma B.38 on (15) and (17), we have:

▷Ξ𝛼 ¨▷Ξ𝛽 $ 𝜌 1𝛼𝜌1𝜋 ” 𝜌 1
1
𝜌𝛼𝜋 for all 𝜋 (18)

By S-Trans on Lemma B.25 and (18), we have:

▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Δ (𝜌 1𝛼𝜌1Δ for all Δ (19)

By Corollary B.40, we have

Ξ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ubΞ𝛽
p𝛽q _ lbΞ𝛽

p𝛽qs𝜋 for all 𝜋

i.e., Ξ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ubΞp𝛽q _ lbΞp𝛽qs𝜋 for all 𝜋

i.e., Ξ𝛽 $ 𝜋 ” 𝜌1𝜋 for all 𝜋 (20)

By S-Trans on Lemma B.25 and (20), we have:

Ξ𝛼 ¨Ξ𝛽 (𝜌1Ξ𝛼 (21)

By Lemma B.28, (21) implies:

▷Ξ𝛼 ¨▷Ξ𝛽 (▷𝜌1Ξ𝛼 (22)

By the same reasoning, we have:

▷𝜌1Ξ𝛼 ¨▷Ξ▷¨▷Ξ𝛽 (▷𝜌
1
𝛼Ξ▷¨▷𝜌

1
𝛼Ξ𝛽 (23)

▷Ξ𝛼 ¨▷𝜌𝛼Ξ𝛽 (▷Ξ𝛽 (24)

By Lemma B.36, (3) implies:

▷𝜌 1𝛼Ξ▷¨▷𝜌
1
𝛼Ξ𝛽 ¨𝜌

1
𝛼𝜌1Ξ𝛽 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽

i.e., ▷𝜌 1𝛼Ξ▷¨▷𝜌
1
𝛼Ξ𝛽 ¨𝜌

1
𝛼𝜌1Ξ𝛼 ¨𝜌

1
𝛼𝜌1Ξ𝛽 𝛼 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽 (25)

By Lemma B.30 with (7), (25) implies:

▷𝜌 1𝛼Ξ▷¨▷𝜌
1
𝛼Ξ𝛽 ¨▷Ξ▷¨▷Ξ𝛽 ¨▷𝜌1Ξ𝛼 ¨𝜌

1
𝛼𝜌1Ξ𝛽 𝛼 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽 (26)

Let split𝛽pΞ𝛼 , domp𝜌3qq “ pΞ𝛽 , Ξ𝛼 𝛽 q. It is easy to see that Ξ𝛼 𝛽 “ Ξ𝛽 𝛼 . Then (26) and (8)

imply:

▷𝜌 1𝛼Ξ▷¨▷𝜌
1
𝛼Ξ𝛽 ¨▷Ξ▷¨▷Ξ𝛽 ¨▷𝜌1Ξ𝛼 ¨𝜌

1
𝛼𝜌1Ξ𝛼 𝛽 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽 (27)

𝜌 1𝛼𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨▷𝜌1Ξ𝛼 ¨𝜌
1
𝛼𝜌1Ξ𝛼 𝛽 ; 𝜌3 cons. (28)

By Lemma B.30 with (23), (27) implies:

▷Ξ▷¨▷Ξ𝛽 ¨▷𝜌1Ξ𝛼 ¨𝜌
1
𝛼𝜌1Ξ𝛼 𝛽 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽 (29)

By Lemma B.30 and Lemma B.32 with (22), (29) and (28) imply:

▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌
1
𝛼𝜌1Ξ𝛼 𝛽 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽 (30)

𝜌 1𝛼𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌
1
𝛼𝜌1Ξ𝛼 𝛽 ; 𝜌3 cons. (31)

By Lemma B.30 and Lemma B.26 with (19), (30) implies:

▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Ξ𝛼 𝛽 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛽 (32)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 59

By Lemma B.43 with (15) and (17), (31) implies:

𝜌 1
1
𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌

1
1
𝜌𝛼Ξ𝛼 𝛽 ; 𝜌 1

3
cons. (33)

for some 𝜌 1
3
, where domp𝜌 1

3
q “ domp𝜌3q. By Lemma B.30 and Lemma B.32 with (24), (32) and

(33) imply:

▷Ξ▷¨▷Ξ𝛼 ¨▷𝜌𝛼Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Ξ𝛼 𝛽 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛽 (34)

𝜌 1
1
𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨▷𝜌𝛼Ξ𝛽 ¨𝜌

1
1
𝜌𝛼Ξ𝛼 𝛽 ; 𝜌 1

3
cons. (35)

It is easy to see that split𝛽p𝜌𝛼Ξ𝛼 , domp𝜌
1
3
qq “ p𝜌𝛼Ξ𝛽 , 𝜌𝛼Ξ𝛼 𝛽 q. Then by the inductive case

of the definition of consistency, (34) and (35) imply:

𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ; 𝜌 1
3
˝ 𝜌 1

1
cons. (36)

By Lemma B.30 with (22), (7) implies:

▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌
1
𝛼𝜌1Ξ𝛽 𝛼 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛼 (37)

By Lemma B.30 and Lemma B.26 with (19), (37) implies:

▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Ξ𝛽 𝛼 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛼 (38)

By Lemma B.30 with (24), (38) implies:

▷Ξ▷¨▷Ξ𝛼 ¨▷𝜌𝛼Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Ξ𝛽 𝛼 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛼 (39)

By Lemma B.30 with Lemma B.25, (39) implies:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Ξ𝛽 𝛼 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛼 (40)

By Corollary B.40, we have

𝜌𝛼Ξ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ub𝜌𝛼Ξ𝛽
p𝛽q _ lb𝜌𝛼Ξ𝛽

p𝛽qs𝜋 for all 𝜋

i.e., 𝜌𝛼Ξ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ub𝜌𝛼Ξ𝛼
p𝛽q _ lb𝜌𝛼Ξ𝛼

p𝛽qs𝜋 for all 𝜋

i.e., 𝜌𝛼Ξ𝛽 $ 𝜋 ” 𝜌 1
1
𝜋 for all 𝜋 (41)

By S-Trans on Lemma B.25 and (41), we have:

𝜌𝛼Ξ𝛽 ¨Δ (𝜌 1
1
Δ for all Δ (42)

Then by Lemma B.30 and Lemma B.26 with (42), (40) implies:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛽 ¨𝜌𝛼Ξ𝛽 𝛼 ¨𝜌𝛼Σ (𝜌𝛼Ξ𝛼

i.e., ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛽 ¨𝜌𝛼Ξ𝛼 𝛽 ¨𝜌𝛼Σ (𝜌𝛼Ξ𝛼

i.e., ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ¨𝜌𝛼Σ (𝜌𝛼Ξ𝛼 (43)

□

Lemma B.45 (Inlining of consistent bounds). If Σ $ Ξ ; 𝜌 cons. and Ξ¨Σ $ 𝜏 ď 𝜏 1, then

▷Ξ¨𝜌Σ $ 𝜌𝜏 ď 𝜌𝜏 1.

Proof. By induction on consistency derivations for the statement: if Σ $ ▷Ξ▷¨Ξ ; 𝜌 cons. and
▷Ξ▷¨Ξ¨Σ $ 𝜏 ď 𝜏 1, then ▷Ξ▷¨▷Ξ¨𝜌Σ $ 𝜌𝜏 ď 𝜌𝜏 1.

Base case. The base case is trivial since we have Ξ “ 𝜖 and 𝜌 “ id.

60 Lionel Parreaux and Chun Yin Chau

Inductive case. For the inductive case, we have 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 “ r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _

lbΞp𝛼qs and 𝜌2 and 𝛼 . The premises of the rule are:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ (𝜌1Ξ𝛼 (1)

𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ; 𝜌2 cons. (2)

where split𝛼pΞ, domp𝜌2qq “ pΞ𝛼 , Ξ𝛼 q. From the assumption, we have:

▷Ξ▷¨Ξ¨Σ $ 𝜏 ď 𝜏 1 (3)

By Lemma B.36, (3) implies:

▷𝜌1Ξ▷¨𝜌1Ξ¨𝜌1Σ $ 𝜌1𝜏 ď 𝜌1𝜏
1

i.e., ▷𝜌1Ξ▷¨𝜌1Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ $ 𝜌1𝜏 ď 𝜌1𝜏
1

(4)

By Lemma B.30 with (1), (4) implies:

▷𝜌1Ξ▷¨▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ $ 𝜌1𝜏 ď 𝜌1𝜏
1

(5)

By Corollary B.40, we have:

Ξ𝛼 $ 𝜋 ” r𝛼 ÞÑ 𝛼 ^ ubΞ𝛼
p𝛼q _ lbΞ𝛼

p𝛼qs𝜋 for all 𝜋

i.e., Ξ𝛼 $ 𝜋 ” r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qs𝜋 for all 𝜋

i.e., Ξ𝛼 $ 𝜋 ” 𝜌1𝜋 for all 𝜋 (6)

By S-Trans on Lemma B.25 and (6), we have:

Ξ▷¨Ξ𝛼 (𝜌1Ξ▷ (7)

Ξ𝛼 ¨Ξ𝛼 (𝜌1Ξ𝛼 (8)

Then by Lemma B.30 with (7), (5) implies:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ $ 𝜌1𝜏 ď 𝜌1𝜏
1

(9)

Then by IH on (2) and (9), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷𝜌1Ξ𝛼 ¨𝜌2𝜌1Σ $ 𝜌2𝜌1𝜏 ď 𝜌2𝜌1𝜏
1

i.e., ▷Ξ▷¨▷Ξ𝛼 ¨▷𝜌1Ξ𝛼 ¨𝜌Σ $ 𝜌𝜏 ď 𝜌𝜏 1 (10)

Then by Lemma B.30 with (8), (10) implies:

▷Ξ▷¨▷Ξ𝛼 ¨▷Ξ𝛼 ¨𝜌Σ $ 𝜌𝜏 ď 𝜌𝜏 1

i.e., ▷Ξ▷¨▷Ξ¨𝜌Σ $ 𝜌𝜏 ď 𝜌𝜏 1 (11)

□

Lemma B.46 (Eqivalence of inlining of consistent bounds). If Σ $ Ξ ; 𝜌 cons., then
Ξ¨Σ $ 𝛼 ” 𝜏

p𝛼 ÞÑ𝜏q P 𝜌
.

Proof. By induction on consistency derivations for the statement: if Σ $ ▷Ξ▷¨Ξ ; 𝜌 cons., then
▷Ξ▷¨Ξ¨Σ $ 𝛼 ” 𝜏

p𝛼 ÞÑ𝜏q P 𝜌
.

Base case. The base case holds vacuously since we have 𝜌 “ id.

Inductive case. For the inductive case, we have 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 “ r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _

lbΞp𝛼qs and 𝜌2 and 𝛼 . The premises of the rule are:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ (𝜌1Ξ𝛼 (1)

𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ; 𝜌2 cons. (2)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 61

where split𝛼pΞ, domp𝜌2qq “ pΞ𝛼 , Ξ𝛼 q. Let 𝜌2 “ r𝛼𝑖 ÞÑ 𝜏𝑖
𝑖
s for some 𝛼𝑖

𝑖
and 𝜏𝑖

𝑖
. Expanding

the composition, we have:

𝜌 “ r𝛼𝑖 ÞÑ 𝜏𝑖
𝑖 , 𝛼 ÞÑ 𝜌2p𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qqs (3)

By IH on (2), we have:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌1Ξ𝛼 ¨𝜌1Σ $ 𝛼𝑖 ” 𝜏𝑖
𝑖

(4)

By Corollary B.40, we have:

Ξ𝛼 $ 𝜋 ” r𝛼 ÞÑ 𝛼 ^ ubΞ𝛼
p𝛼q _ lbΞ𝛼

p𝛼qs𝜋 for all 𝜋

i.e., Ξ𝛼 $ 𝜋 ” r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qs𝜋 for all 𝜋

i.e., Ξ𝛼 $ 𝜋 ” 𝜌1𝜋 for all 𝜋 (5)

By S-Trans on Lemma B.25 and (5), we have:

Ξ𝛼 ¨Ξ𝛼 ¨Σ (𝜌1Ξ𝛼 ¨𝜌1Σ (6)

Then by Lemma B.30 with (6), (4) implies:

▷Ξ▷¨Ξ𝛼 ¨Ξ𝛼 ¨Σ $ 𝛼𝑖 ” 𝜏𝑖
𝑖

i.e., ▷Ξ▷¨Ξ¨Σ $ 𝛼𝑖 ” 𝜏𝑖
𝑖

(7)

By Lemma B.38 on (7), we have:

▷Ξ▷¨Ξ¨Σ $ 𝜋 ” 𝜌2𝜋 for all 𝜋 (8)

Then by S-Trans on (5) and (8), we have:

▷Ξ▷¨Ξ¨Σ $ 𝛼 ” 𝜌2p𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq (9)

Then (7) and (9) imply:

▷Ξ▷¨Ξ¨Σ $ 𝛼 ” 𝜏
p𝛼 ÞÑ𝜏q P 𝜌

(10)

□

Lemma B.47 (Congruence of inlining of consistent bounds on types). If Σ $ Ξ ; 𝜌 cons.,
then Ξ¨Σ $ 𝜏 ” 𝜌𝜏 for all 𝜏 .

Proof. By induction on the syntax of 𝜏 .

Case 𝜏 “ 𝜏1 Ñ 𝜏2. By IH, we have:

Ξ¨Σ $ 𝜏1 ” 𝜌𝜏1 (1)

Ξ¨Σ $ 𝜏2 ” 𝜌𝜏2 (2)

By Lemma B.30 with Lemma B.25, (1) and (2) imply:

◁Ξ¨◁Σ $ 𝜏1 ” 𝜌𝜏1 (3)

◁Ξ¨◁Σ $ 𝜏2 ” 𝜌𝜏2 (4)

Then by S-FunDepth on (3) and (4), we have:

Ξ¨Σ $ 𝜏1 Ñ 𝜏2 ” 𝜌𝜏1 Ñ 𝜌𝜏2

i.e., Ξ¨Σ $ 𝜏1 Ñ 𝜏2 ” 𝜌p𝜏1 Ñ 𝜏2q (5)

62 Lionel Parreaux and Chun Yin Chau

Case 𝜏 “ t𝑥 : 𝜏1 u. By IH, we have:

Ξ¨Σ $ 𝜏1 ” 𝜌𝜏1 (6)

By Lemma B.30 with Lemma B.25, (6) implies:

◁Ξ¨◁Σ $ 𝜏1 ” 𝜌𝜏1 (7)

Then by S-RcdDepth on (7), we have:

Ξ¨Σ $ t𝑥 : 𝜏1 u ” t𝑥 : 𝜌𝜏1 u

i.e., Ξ¨Σ $ t𝑥 : 𝜏1 u ” 𝜌t𝑥 : 𝜏1 u (8)

Cases 𝜏 “ #𝐶, 𝜏 “ J˛, 𝜏 “ 𝛼 R domp𝜌q. Then 𝜏 “ 𝜌𝜏 . By S-Refl, we have:

𝜏 ” 𝜌𝜏 (9)

Case 𝜏 “ 𝛼 P domp𝜌q. From the assumption, we have:

Σ $ Ξ ; 𝜌 cons. (10)

By Lemma B.46 on (10), we have:

Ξ¨Σ $ 𝛼 ” 𝜌𝛼 (11)

Case 𝜏 “ 𝜏1 _
˛ 𝜏2. By IH, we have:

Ξ¨Σ $ 𝜏1 ” 𝜌𝜏1 (12)

Ξ¨Σ $ 𝜏2 ” 𝜌𝜏2 (13)

Then by Lemma B.22˛ on (12) and (13), we have:

Ξ¨Σ $ 𝜏1 _
˛ 𝜏2 ” 𝜌𝜏1 _

˛ 𝜌𝜏2

i.e., Ξ¨Σ $ 𝜏1 _
˛ 𝜏2 ” 𝜌p𝜏1 _

˛ 𝜏2q (14)

Case 𝜏 “ ␣𝜏1. By IH, we have:

Ξ¨Σ $ 𝜏1 ” 𝜌𝜏1 (15)

Then by S-NegInv on (15), we have:

Ξ¨Σ $ ␣𝜏1 ” ␣𝜌𝜏1

i.e., Ξ¨Σ $ ␣𝜏1 ” 𝜌␣𝜏1 (16)

□

Lemma B.48 (Congruence of inlining of consistent bounds on guarded types). If Σ $ Ξ ;

𝜌 cons. and TTV p𝜏q “ H, then ▷Ξ¨▷Σ $ 𝜏 ” 𝜌𝜏 .

Proof. By induction on the syntax of 𝜏 .

Case 𝜏 “ 𝜏1 Ñ 𝜏2. By Lemma B.47, we have:

Ξ¨Σ $ 𝜏1 ” 𝜌𝜏1 (1)

Ξ¨Σ $ 𝜏2 ” 𝜌𝜏2 (2)

By Lemma B.30 with Lemma B.25, (1) and (2) imply:

◁Ξ¨◁Σ $ 𝜏1 ” 𝜌𝜏1 (3)

◁Ξ¨◁Σ $ 𝜏2 ” 𝜌𝜏2 (4)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 63

Then by S-FunDepth on (3) and (4), we have:

▷Ξ¨▷Σ $ 𝜏1 Ñ 𝜏2 ” 𝜌𝜏1 Ñ 𝜌𝜏2

i.e., ▷Ξ¨▷Σ $ 𝜏1 Ñ 𝜏2 ” 𝜌p𝜏1 Ñ 𝜏2q (5)

Case 𝜏 “ t𝑥 : 𝜏1 u. By Lemma B.47, we have:

Ξ¨Σ $ 𝜏1 ” 𝜌𝜏1 (6)

By Lemma B.30 with Lemma B.25, (6) implies:

◁Ξ¨◁Σ $ 𝜏1 ” 𝜌𝜏1 (7)

Then by S-RcdDepth on (7), we have:

▷Ξ¨▷Σ $ t𝑥 : 𝜏1 u ” t𝑥 : 𝜌𝜏1 u

i.e., ▷Ξ¨▷Σ $ t𝑥 : 𝜏1 u ” 𝜌t𝑥 : 𝜏1 u (8)

Cases 𝜏 “ #𝐶, 𝜏 “ J˛. Then 𝜏 “ 𝜌𝜏 . By S-Refl, we have:

𝜏 ” 𝜌𝜏 (9)

Case 𝜏 “ 𝛼 . Impossible since TTV p𝜏q “ H.

Case 𝜏 “ 𝜏1 _
˛ 𝜏2. By IH, we have:

▷Ξ¨▷Σ $ 𝜏1 ” 𝜌𝜏1 (10)

▷Ξ¨▷Σ $ 𝜏2 ” 𝜌𝜏2 (11)

Then by Lemma B.22˛ on (10) and (11), we have:

▷Ξ¨▷Σ $ 𝜏1 _
˛ 𝜏2 ” 𝜌𝜏1 _

˛ 𝜌𝜏2

i.e., ▷Ξ¨▷Σ $ 𝜏1 _
˛ 𝜏2 ” 𝜌p𝜏1 _

˛ 𝜏2q (12)

Case 𝜏 “ ␣𝜏1. By IH, we have:

▷Ξ¨▷Σ $ 𝜏1 ” 𝜌𝜏1 (13)

Then by S-NegInv on (13), we have:

▷Ξ¨▷Σ $ ␣𝜏1 ” ␣𝜌𝜏1

i.e., ▷Ξ¨▷Σ $ ␣𝜏1 ” 𝜌␣𝜏1 (14)

□

Lemma B.49 (Inlining of consistent bounds on guarded derivations). If Σ $ Ξ ; 𝜌 cons.
and Ξ¨Σ $ 𝜏 ď 𝜏 1 and TTV p𝜏q Y TTV p𝜏 1q “ H, then ▷Ξ¨▷Σ¨𝜌Σ $ 𝜏 ď 𝜏 1.

Proof. From the assumptions, we have:

Σ $ Ξ ; 𝜌 cons. (1)

Ξ¨Σ $ 𝜏 ď 𝜏 1 (2)

By Lemma B.45 on (1) and (2), we have:

▷Ξ¨𝜌Σ $ 𝜌𝜏 ď 𝜌𝜏 1 (3)

By Lemma B.48 on (1), we have:

▷Ξ¨▷Σ $ 𝜏 ” 𝜌𝜏 (4)

▷Ξ¨▷Σ $ 𝜏 1 ” 𝜌𝜏 1 (5)

64 Lionel Parreaux and Chun Yin Chau

Then by S-Trans on (4), (3), and (5), we have:

▷Ξ¨▷Σ¨𝜌Σ $ 𝜏 ď 𝜏 1 (6)

□

Lemma B.50 (Inlining of bound in consistency). If Σ¨p𝛼 ď˛ 𝜏q $ ▷Ξ▷¨Ξ ; 𝜌 cons., where
𝛼 R domp𝜌q, then 𝜌𝛼Σ $ ▷Ξ▷¨▷p𝛼 ď

˛ 𝜏q¨𝜌𝛼Ξ ; 𝜌 1 cons. for some 𝜌 1, where 𝜌𝛼 “ r𝛼 ÞÑ 𝛼 ^˛ 𝜏s and

domp𝜌 1q “ domp𝜌q.

Proof. By induction on consistency derivations. If Ξ is not guarded, we can replace it with

cleanuppΞq before applying the lemma, and restore it back to Ξ in the conclusion. Therefore we

can assume Ξ guard..
Base case. For the base case, we have Ξ “ 𝜖 . Then by the base case of the definition of consistency,

we have:

𝜌𝛼Σ $ ▷Ξ▷¨▷p𝛼 ď
˛ 𝜏q ; id cons. (1)

Inductive case. For the inductive case, we have 𝜌 “ 𝜌2 ˝ 𝜌1 for some 𝜌1 “ r𝛽 ÞÑ 𝛽 ^ ubΞp𝛽q _

lbΞp𝛽qs and 𝜌2 and 𝛽 ‰ 𝛼 . The premises of the rule are:

▷Ξ▷¨▷Ξ𝛽 ¨𝜌1Ξ𝛽 ¨𝜌1Σ¨𝜌1p𝛼 ď
˛ 𝜏q (𝜌1Ξ𝛽 (2)

𝜌1Σ¨𝜌1p𝛼 ď
˛ 𝜏q $ ▷Ξ▷¨▷Ξ𝛽 ¨𝜌1Ξ𝛽 ; 𝜌2 cons. (3)

where split𝛽pΞ, domp𝜌2qq “ pΞ𝛽 , Ξ𝛽 q. By IH on (3), we have:

𝜌 1𝛼𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨▷p𝛼 ď
˛ 𝜌1𝜏q¨𝜌

1
𝛼𝜌1Ξ𝛽 ; 𝜌 1

2
cons. (4)

for some 𝜌 1
2
, where 𝜌 1𝛼 “ r𝛼 ÞÑ 𝛼 ^˛ 𝜌1𝜏s and domp𝜌 1

2
q “ domp𝜌2q. Expanding the composi-

tion, we have:

𝜌 1𝛼 ˝ 𝜌1 “ r𝛼 ÞÑ 𝛼 ^˛ 𝜌1𝜏, 𝛽 ÞÑ 𝛽 ^ 𝜌 1𝛼ubΞp𝛽q _ 𝜌 1𝛼 lbΞp𝛽qs (5)

By Corollary B.40, we have:

p𝛼 ď˛ 𝜏q (𝛽 ^ ubΞp𝛽q _ lbΞp𝛽q ” r𝛼 ÞÑ 𝛼 ^˛ 𝜏sp𝛽 ^ ubΞp𝛽q _ lbΞp𝛽qq

i.e., p𝛼 ď˛ 𝜏q (𝛽 ^ ubΞp𝛽q _ lbΞp𝛽q ” 𝛽 ^ 𝜌𝛼ubΞp𝛽q _ 𝜌𝛼 lbΞp𝛽q

i.e., p𝛼 ď˛ 𝜏q (𝛽 ^ ubΞp𝛽q _ lbΞp𝛽q ” 𝛽 ^ ub𝜌𝛼Ξp𝛽q _ lb𝜌𝛼Ξp𝛽q (6)

Then by Lemma B.39, (6) implies:

▷p𝛼 ď˛ 𝜏q (𝜌1𝜏 ” 𝜌 1
1
𝜏 (7)

Then by Lemma B.22 on S-Refl and (7), we have:

▷p𝛼 ď˛ 𝜏q (𝛼 ^˛ 𝜌1𝜏 ” 𝛼 ^˛ 𝜌 1
1
𝜏 (8)

Let 𝜌 1
1
“ r𝛽 ÞÑ 𝛽 ^ ub𝜌𝛼Ξp𝛽q _ lb𝜌𝛼Ξp𝛽qs. By the same reasoning, we have:

𝜌 1
1
˝ 𝜌𝛼 “ r𝛼 ÞÑ 𝛼 ^˛ 𝜌 1

1
𝜏, 𝛽 ÞÑ 𝛽 ^ ub𝜌𝛼Ξp𝛽q _ lb𝜌𝛼Ξp𝛽qs

“ r𝛼 ÞÑ 𝛼 ^˛ 𝜌 1
1
𝜏, 𝛽 ÞÑ 𝛽 ^ 𝜌𝛼ubΞp𝛽q _ 𝜌𝛼 lbΞp𝛽qs

(9)

▷Ξ𝛽 (𝛽 ^ 𝜌𝛼ubΞp𝛽q _ 𝜌𝛼 lbΞp𝛽q ” 𝛽 ^ 𝜌 1𝛼ubΞp𝛽q _ 𝜌 1𝛼 lbΞp𝛽q (10)

Then by Lemma B.38 on (8) and (10), we have:

▷p𝛼 ^˛ 𝜏q¨▷Ξ𝛽 (𝜌 1𝛼𝜌1𝜋 ” 𝜌 1
1
𝜌𝛼𝜋 for all 𝜋 (11)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 65

By S-Trans on Lemma B.25 and (11), we have:

▷p𝛼 ^˛ 𝜏q¨▷Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Δ (𝜌 1𝛼𝜌1Δ for all Δ (12)

By Corollary B.40, we have

Ξ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ubΞ𝛽
p𝛽q _ lbΞ𝛽

p𝛽qs𝜋 for all 𝜋

i.e., Ξ𝛽 $ 𝜋 ” r𝛽 ÞÑ 𝛽 ^ ubΞp𝛽q _ lbΞp𝛽qs𝜋 for all 𝜋

i.e., Ξ𝛽 $ 𝜋 ” 𝜌1𝜋 for all 𝜋 (13)

By S-Trans on Lemma B.25 and (13), we have:

p𝛼 ď˛ 𝜏q¨Ξ𝛽 (p𝛼 ď
˛ 𝜌1𝜏q (14)

By Lemma B.28, (14) implies:

▷p𝛼 ď˛ 𝜏q¨▷Ξ𝛽 (▷p𝛼 ď
˛ 𝜌1𝜏q (15)

By the same reasoning, we have:

▷p𝛼 ď˛ 𝜌1𝜏q¨▷Ξ▷¨▷Ξ𝛽 (▷𝜌
1
𝛼Ξ▷¨▷𝜌

1
𝛼Ξ𝛽 (16)

▷Ξ𝛽 ¨▷p𝛼 ď
˛ 𝜏q (▷p𝛼 ď˛ 𝜌1𝜏q (17)

▷p𝛼 ď˛ 𝜏q¨▷𝜌𝛼Ξ𝛽 (▷Ξ𝛽 (18)

By Lemma B.42, (2) implies:

▷𝜌 1𝛼Ξ▷¨▷𝜌
1
𝛼Ξ𝛽 ¨𝜌

1
𝛼𝜌1Ξ𝛽 ¨𝜌

1
𝛼𝜌1Σ¨▷p𝛼 ď

˛ 𝜌1𝜏q (𝜌 1𝛼𝜌1Ξ𝛽 (19)

By Lemma B.30 with (16), (19) implies:

▷Ξ▷¨▷Ξ𝛽 ¨𝜌
1
𝛼𝜌1Ξ𝛽 ¨𝜌

1
𝛼𝜌1Σ¨▷p𝛼 ď

˛ 𝜌1𝜏q (𝜌 1𝛼𝜌1Ξ𝛽 (20)

By Lemma B.30 with (17), (20) and (4) implies:

▷Ξ▷¨▷Ξ𝛽 ¨▷p𝛼 ď
˛ 𝜏q¨𝜌 1𝛼𝜌1Ξ𝛽 ¨𝜌

1
𝛼𝜌1Σ (𝜌 1𝛼𝜌1Ξ𝛽 (21)

𝜌 1𝛼𝜌1Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨▷p𝛼 ď
˛ 𝜌1𝜏q¨𝜌

1
𝛼𝜌1Ξ𝛽 ; 𝜌 1

2
cons. (22)

By Lemma B.30 and Lemma B.26 with (12), (21) implies:

▷Ξ▷¨▷Ξ𝛽 ¨▷p𝛼 ď
˛ 𝜏q¨𝜌 1

1
𝜌𝛼Ξ𝛽 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛽 (23)

By Lemma B.43 with (8) and (10), (22) implies:

𝜌 1
1
𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛽 ¨▷p𝛼 ď

˛ 𝜌1𝜏q¨𝜌
1
1
𝜌𝛼Ξ𝛽 ; 𝜌2

2
cons. (24)

for some 𝜌2
2
, where domp𝜌2

2
q “ domp𝜌 1

2
q. By Lemma B.30 with (18), (23) and (24) implies:

▷Ξ▷¨▷p𝛼 ď
˛ 𝜏q¨▷𝜌𝛼Ξ𝛽 ¨𝜌

1
1
𝜌𝛼Ξ𝛽 ¨𝜌

1
1
𝜌𝛼Σ (𝜌 1

1
𝜌𝛼Ξ𝛽 (25)

𝜌 1
1
𝜌𝛼Σ $ ▷Ξ▷¨▷p𝛼 ď

˛ 𝜌1𝜏q¨▷𝜌𝛼Ξ𝛽 ¨𝜌
1
1
𝜌𝛼Ξ𝛽 ; 𝜌2

2
cons. (26)

It is easy to see that split𝛽p𝜌𝛼Ξ, domp𝜌
2
2
qq “ p𝜌𝛼Ξ𝛽 , 𝜌𝛼Ξ𝛽 q. Then by the inductive case of

the definition of consistency, (25) and (26) imply:

𝜌𝛼Σ $ ▷Ξ▷¨▷p𝛼 ď
˛ 𝜌1𝜏q¨𝜌𝛼Ξ ; 𝜌2

2
˝ 𝜌 1

1
cons. (27)

□

66 Lionel Parreaux and Chun Yin Chau

B.7 Reasoning Behind Proof Structure
The structure of the remaining proofs is quite complex, with many additional syntax forms and

relations introduced. We first shed some light on the reasoning behind them.

Our first goal is to prove subtyping consistency (Theorem B.88), which describes how the basic

type constructors of the language should or should not relate by subtyping, and in particular

prevents wrong relations, such as function types subtyping record types. However, its proof cannot

proceed by the standard technique of induction on subtyping derivations. Due to the restriction

of the type forms, the inductive hypothesis cannot be applied to the premises of S-Trans, as the

middle type introduced may not adhere to the restriction. A quick inspection reveals that the

problem lies within S-AndOr2. While some usages of S-AndOr2 can be removed by rewritting

the derivation, not all usages can be removed. The solution we adopted was to split the full ď

subtyping relation into two, with Ď covering the pure Boolean-algebraic relation and ĺ covering

the remaining relation between the atoms and coatoms in the form of elementary type forms, which

will be introduced later. This allows us to state them separately in Lemma B.89.

The statement of Lemma B.89 is quite complex. It helps to first look at the statement of our first

attempt, which does not hold in general:

(1) If ▷Σ $ 𝜏 ď 𝜋 and 𝜏 –
Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

, then there exists some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗

𝑗
and𝑉

𝐷 𝑗

𝑗

𝑗

such that 𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

and ▷Σ $
Ź

𝑖 P𝑆 𝑗
𝑈

𝐶𝑖

𝑖
ĺ 𝑉

𝐷 𝑗

𝑗

𝑗

for some 𝑆 𝑗
𝑗
.

(2) If ▷Σ $ 𝜏 ď 𝜋 and 𝜋 –
Ž

𝑗

´

𝜋 1𝑗 ^ 𝑌
𝐷 𝑗

𝑗

¯

, then there exists some 𝜏 1
𝑖

𝑖
and 𝐶𝑖

𝑖
and 𝑋

𝐶𝑖

𝑖

𝑖

such that 𝜏 –
Ž

𝑖

´

𝜏 1𝑖 ^ 𝑋
𝐶𝑖

𝑖

¯

and ▷Σ $ 𝑋
𝐶𝑖

𝑖
ĺ

Ž

𝑗 P𝑆𝑖
𝑌
𝐷 𝑗

𝑗

𝑖

for some 𝑆𝑖
𝑖
.

The proof of this lemma also cannot proceed by standard induction due to the interaction be-

tween S-AndOr2 and S-Distrib. As an example, consider the following derivation for some

𝜏 P tK, J, #𝐶 1, 𝜏1 Ñ 𝜏2, t𝑥𝑖 : 𝜏𝑖
𝑖
u u and unrelated classes 𝐶 and 𝐷 :

S-Trans

S-Distrib¨
#𝐶 ^ p#𝐷 _␣#𝐶q ď #𝐶 ^ #𝐷 _ #𝐶 ^␣#𝐶

.

.

.

#𝐶 ^ #𝐷 _ #𝐶 ^␣#𝐶 ď K

(1) #𝐶 ^ p#𝐷 _␣#𝐶q ď K

S-Trans

S-AndOr2

.

.

.

𝜏 ď #𝐶

.

.

.

𝜏 ď #𝐷 _␣#𝐶

𝜏 ď #𝐶 ^ p#𝐷 _␣#𝐶q (1)

𝜏 ď K

According to our goal of Theorem B.88, 𝜏 can only be K. However, from the subderivations for

𝜏 ď #𝐶 and 𝜏 ď #𝐷 _␣#𝐶 , nothing locally restricts 𝜏 to be K. This is because S-Distrib can split

a complement into two separate subderivations to be later merged back together by S-AndOr2. To

overcome this difficulty, we normalize the shape of subtyping derivations by introducing the CDN-

and DCN-normalized type forms and derivations. CDN- and DCN-normalized derivations require

S-Distrib˛ to be followed immediately by S-AndOr2˛. We show that all types and subtyping

derivations can be translated into an equivalent CDN-normalized one and an equivalent DCN-

normalized one. This allows us to perform the proof of Lemma B.89 by induction on CDN- and

DCN-normalized subtyping derivations.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 67

As we mentioned before, the above simplified version of Lemma B.89 does not hold in general.

The problematic cases arise when 𝜏 ” K for direction 1 and 𝜋 ” J for direction 2. Since the

relation holds by S-Trans with S-ToB for any type on the other side, we should not be able to

conclude anything about it. Fortunately, we do not need to care about such cases for proving

Theorem B.88. Therefore, we can exclude them by adding side conditions on the elementary type

forms, and making sure that they are preserved in the conclusion of the lemma, allowing us to

apply it successively to a transitivity chain. For direction 1, in order to reject cases where 𝜏 – K, we

require

Ź

𝑖 𝑈
𝐶𝑖

𝑖
to be complement-free, then we have 𝜏 –

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ě
Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ę K, which

implies 𝜏 Ę K by the antisymmetry and boundedness of Boolean algebras. For direction 2, we

symmetrically require

Ž

𝑗 𝑌
𝐷 𝑗

𝑗
to be complement-free. To reject cases where 𝜏 ” K but 𝜏 fl K for

direction 1, we add restrictions on the set of elementary type constructors t𝐶𝑖

𝑖
u. For example,

since we can derive 𝜏1 Ñ 𝜏2 ď 𝜏3 Ñ 𝜏4 for some 𝜏𝑖
𝑖 P 1..4

, which implies 𝜏1 Ñ 𝜏2 ^␣p𝜏3 Ñ 𝜏4q ď K

by Theorem B.20, we reject cases where bothÑ P t𝐶𝑖

𝑖
u and Ñ P t𝐶𝑖

𝑖
u. We can derive similar

restrictions from other subtyping rules, and symmetric restrictions for direction 2.

So far, we have ignored the subtyping context by requiring it to be guarded. Our handling of type

variables and the subtyping context relies on two key insights: for Theorem B.88, we do not care

about type variables on the top level; and we do not care about all possible subtyping contexts, only

the ones produced by type inference. We have previously defined the consistency of constraining

contexts, and by ensuring type inference only produces consistent contexts, this allows us to guard

the context in any subtyping derivations under consistent contexts and with no type variables

on the top level by Lemma B.49, which are all we care about for the remaining soundness and

completeness proofs.

B.8 Pure Boolean-Algebraic Subtyping
First, we define Ď as the standard Boolean lattice order.

Definition B.51 (Pure Boolean-Algebraic Subtyping). We define 𝜏1 Ď 𝜏2 to mean that 𝜏1 ď 𝜏2 can be

derived by using only “Boolean Lattice” subtyping rules, which are those that that are not specific

to 𝜆␣ types and simply encode their Boolean-Algebraic structure. More specifically, these rules are:

S-Refl, S-ToB, S-Compl, S-NegInv, S-AndOr11, S-AndOr12, S-AndOr2, S-Distrib, and S-Trans.

Theorem B.52 (Standard Boolean Lattice Order). Ď holds in every Boolean lattice, i.e., it

does not introduce any extra relations between its atoms, which are 𝜆␣ types.

Since Ď is itself a Boolean Algebra (see Section 4.4.4), this means our rules for Ď are a proper

axiomatization of Boolean Algebras.

Proof. We show that the Ď rules follow from the pure Boolean algebra axioms. ” is the pure

Boolean algebra equivalence, defined by the following axioms [Huntington 1904]:

B-Iden˛ : 𝜏 ^˛ J˛ ” 𝜏

B-Commut˛ : 𝜏1 _
˛ 𝜏2 ” 𝜏2 _

˛ 𝜏1

B-Distrib˛ : 𝜏 ^˛ p𝜏1 _
˛ 𝜏2q ” p𝜏 ^

˛ 𝜏1q _
˛ p𝜏 ^˛ 𝜏2q

B-Compl˛ : 𝜏 _˛ ␣𝜏 ” J˛

68 Lionel Parreaux and Chun Yin Chau

The following laws follow from the axioms [Huntington 1904]:

B-Idem˛ : 𝜏 _˛ 𝜏 ” 𝜏

B-Bound˛ : 𝜏 _˛ J˛ ” J˛

B-Absorp˛ : 𝜏1 ^
˛ p𝜏1 _

˛ 𝜏2q ” 𝜏1

B-DeMorgan˛ : ␣p𝜏1 _
˛ 𝜏2q ” p␣𝜏1 ^

˛ ␣𝜏2q

B-Assoc˛ : p𝜏1 _
˛ 𝜏2q _

˛ 𝜏3 ” 𝜏1 _
˛ p𝜏2 _

˛ 𝜏3q

Recall that 𝜏1 Ď 𝜏2 is taken to mean 𝜏1 ” 𝜏1 ^ 𝜏2 (Section 4.4.4).

S-Refl.

𝜏 ” 𝜏 ^ 𝜏 by B-Idem

S-ToB¨.

𝜏 ” 𝜏 ^J by B-Iden¨

S-ToB .

K ” 𝜏 ^K by B-Bound

” K^ 𝜏 by B-Commut

S-Compl¨.

J ” 𝜏 _␣𝜏 by B-Compl¨

” p𝜏 _␣𝜏q ^ J by B-Iden¨

” J ^ p𝜏 _␣𝜏q by B-Commut

S-Compl .

𝜏 ^␣𝜏 ” K by B-Compl

” p𝜏 ^␣𝜏q ^ K by B-Bound

S-NegInv.

␣𝜏2 ” ␣𝜏2 ^ p␣𝜏2 _␣𝜏1q by B-Absorp¨

” ␣𝜏2 ^ p␣𝜏1 _␣𝜏2q by B-Commut¨

” ␣𝜏2 ^␣p𝜏1 ^ 𝜏2q by B-DeMorgan

” ␣𝜏2 ^␣𝜏1 by assumption 𝜏1 Ď 𝜏2 ô 𝜏1 ” 𝜏1 ^ 𝜏2

S-AndOr11¨.

𝜏1 ” 𝜏1 ^ p𝜏1 _ 𝜏2q by B-Absorp¨

S-AndOr11 .

𝜏1 ^ 𝜏2 ” p𝜏1 ^ 𝜏1q ^ 𝜏2 by B-Idem

” 𝜏1 ^ p𝜏1 ^ 𝜏2q by B-Assoc

” p𝜏1 ^ 𝜏2q ^ 𝜏1 by B-Commut

S-AndOr12¨.

𝜏2 ” 𝜏2 ^ p𝜏2 _ 𝜏1q by B-Absorp¨

” 𝜏2 ^ p𝜏1 _ 𝜏2q by B-Commut¨

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 69

S-AndOr12 .

𝜏1 ^ 𝜏2 ” 𝜏1 ^ p𝜏2 ^ 𝜏2q by B-Idem

” p𝜏1 ^ 𝜏2q ^ 𝜏2 by B-Assoc

S-AndOr2¨.

𝜏1 _ 𝜏2 ” p𝜏1 ^ 𝜏q _ 𝜏2 by assumption 𝜏1 Ď 𝜏 ô 𝜏1 ” 𝜏1 ^ 𝜏

” p𝜏1 ^ 𝜏q _ p𝜏2 ^ 𝜏q by assumption 𝜏2 Ď 𝜏 ô 𝜏2 ” 𝜏2 ^ 𝜏

” p𝜏 ^ 𝜏1q _ p𝜏2 ^ 𝜏q by B-Commut

” p𝜏 ^ 𝜏1q _ p𝜏 ^ 𝜏2q by B-Commut

” 𝜏 ^ p𝜏1 _ 𝜏2q by B-Distrib¨

” p𝜏1 _ 𝜏2q ^ 𝜏 by B-Commut

S-AndOr2 .

𝜏 ” 𝜏 ^ 𝜏2 by assumption 𝜏 Ď 𝜏2 ô 𝜏 ” 𝜏 ^ 𝜏2

” p𝜏 ^ 𝜏1q ^ 𝜏2 by assumption 𝜏 Ď 𝜏1 ô 𝜏 ” 𝜏 ^ 𝜏1

” 𝜏 ^ p𝜏1 ^ 𝜏2q by B-Assoc

S-Distrib¨.

𝜏 ^ p𝜏1 _ 𝜏2q ” p𝜏 ^ p𝜏1 _ 𝜏2qq ^ p𝜏 ^ p𝜏1 _ 𝜏2qq by B-Idem

” p𝜏 ^ p𝜏1 _ 𝜏2qq ^ pp𝜏 ^ 𝜏1q _ p𝜏 ^ 𝜏2qq by B-Distrib¨

S-Distrib .

p𝜏 _ 𝜏1q ^ p𝜏 _ 𝜏2q ” pp𝜏 _ 𝜏1q ^ p𝜏 _ 𝜏2qq ^ pp𝜏 _ 𝜏1q ^ p𝜏 _ 𝜏2qq by B-Idem

” pp𝜏 _ 𝜏1q ^ p𝜏 _ 𝜏2qq ^ p𝜏 _ p𝜏1 ^ 𝜏2qq by B-Distrib

S-Trans.

𝜏0 ” 𝜏0 ^ 𝜏1 by assumption 𝜏0 Ď 𝜏1 ô 𝜏0 ” 𝜏0 ^ 𝜏1

” 𝜏0 ^ p𝜏1 ^ 𝜏2q by assumption 𝜏1 Ď 𝜏2 ô 𝜏1 ” 𝜏1 ^ 𝜏2

” p𝜏0 ^ 𝜏1q ^ 𝜏2 by B-Assoc

” 𝜏0 ^ 𝜏2 by assumption 𝜏0 Ď 𝜏1 ô 𝜏0 ” 𝜏0 ^ 𝜏1

□

Contrary to full ď-subtyping, Ď only relates concrete type constructors (function, record, and

nominal class tag types) in an obvious and syntactic way, making it easy to reason about. For

example, notice that t𝑥 : 𝜏1 u Ď t𝑦 : 𝜏2 u holds iff 𝑥 “ 𝑦 and 𝜏1 “ 𝜏2 (i.e., iff they are syntactically

the same).

Definition B.53 (Boolean algebra equivalence). We define p–q as Boolean Algebra equivalence:

𝜏1 – 𝜏2 ô 𝜏1 Ď 𝜏2 and 𝜏2 Ď 𝜏1

Remark: It is easy to show that 𝜏1 – 𝜏 1
1
_𝜏2 implies 𝜏2 Ď 𝜏1. Indeed, it implies 𝜏 1

1
_𝜏2 Ď 𝜏1, which

implies 𝜏2 Ď 𝜏1. Similarly, 𝜏 1
1
^ 𝜏2 – 𝜏1 implies 𝜏1 Ď 𝜏2.

Lemma B.54. If

Ž

𝑖 𝜏𝑖 Ď
Ź

𝑗 𝜋 𝑗 , then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗
. Additionally, if

Ž

𝑖 𝜏𝑖 “ 𝜏1 where 𝜏1 is not an

intersection; or if

Ź

𝑗 𝜋 𝑗 “ 𝜋1 where 𝜋1 is not a union, then the derivation for 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

has a size not

larger than that of the assumption

Ž

𝑖 𝜏𝑖 Ď
Ź

𝑗 𝜋 𝑗 .

70 Lionel Parreaux and Chun Yin Chau

Proof. By induction on right-leaning Ď derivations.

Case S-Refl.

Case

Ź

𝑗 𝜋 𝑗 “ 𝜋1 “
Ž

𝑖 𝜏𝑖 . By repeated applications of S-Trans with S-AndOr11¨, followed

by an application of S-Trans with S-AndOr12¨, we have 𝜏𝑖 Ď
Ž

𝑖 𝜏𝑖
𝑖
, i.e., 𝜏𝑖 Ď 𝜋 𝑗

𝑖, 𝑗
.

If

Ž

𝑖 𝜏𝑖 “ 𝜏1 where 𝜏1 is not an intersection, then

Ž

𝑖 𝜏𝑖 “ 𝜏1. Then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

is just

𝜏1 Ď 𝜋1, which is the assumption itself.

If

Ź

𝑗 𝜋 𝑗 “ 𝜋1 where 𝜋1 is not a union, then 𝜋1 “
Ž

𝑖 𝜏𝑖 is not a union, i.e.,
Ž

𝑖 𝜏𝑖 “ 𝜏1.

Then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

is just 𝜏1 Ď 𝜋1, which is the assumption itself.

Case

Ž

𝑖 𝜏𝑖 “ 𝜏1 “
Ź

𝑗 𝜋 𝑗 . By repeated applications of S-Trans with S-AndOr11 , followed

by an application of S-Trans with S-AndOr12 , we have

Ź

𝑗 𝜋 𝑗 Ď 𝜋 𝑗

𝑗
, i.e., 𝜏𝑖 Ď 𝜋 𝑗

𝑖, 𝑗
.

If

Ž

𝑖 𝜏𝑖 “ 𝜏1 where 𝜏1 is not an intersection, then 𝜏1 “
Ź

𝑗 𝜋 𝑗 is not an intersection, i.e.,

Ź

𝑗 𝜋 𝑗 “ 𝜋1. Then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

is just 𝜏1 Ď 𝜋1, which is the assumption itself.

If

Ź

𝑗 𝜋 𝑗 “ 𝜋1 where 𝜋1 is not a union, then

Ź

𝑗 𝜋 𝑗 “ 𝜋1. Then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

is just 𝜏1 Ď 𝜋1,

which is the assumption itself.

Case S-ToB¨.
Ź

𝑗 𝜋 𝑗 “ J. The result follows from S-ToB¨ on each of 𝜏𝑖
𝑖
.

Case S-ToB .

Ž

𝑖 𝜏𝑖 “ K. The result follows from S-ToB on each of 𝜋 𝑗
𝑗
.

Case S-Compl¨.
Ž

𝑖 𝜏𝑖 “ J and

Ź

𝑗 𝜋 𝑗 “ 𝜋1 “ 𝜋 1 _␣𝜋 1 for some 𝜋 1. The result follows immedi-

ately.

Case S-Compl .

Ź

𝑗 𝜋 𝑗 “ K and

Ž

𝑖 𝜏𝑖 “ 𝜏1 “ 𝜏 1 ^␣𝜏 1 for some 𝜏 1. The result follows immedi-

ately.

Case S-NegInv.

Ž

𝑖 𝜏𝑖 “ 𝜏1 “ ␣𝜏
1
and

Ź

𝑗 𝜋 𝑗 “ 𝜋1 “ ␣𝜋
1
for some 𝜏 1 and 𝜋 1. The result follows

immediately.

Case S-AndOr11¨.
Ź

𝑗 𝜋 𝑗 “ 𝜋1 “
Ž

𝑖 𝜏𝑖 _ 𝜋 1 for some 𝜋 1. By repeated applications of S-

Trans with S-AndOr11¨, followed by an application of S-Trans with S-AndOr12¨, we

have 𝜏𝑖 Ď
Ž

𝑖 𝜏𝑖 _ 𝜋 1
𝑖
, i.e., 𝜏𝑖 Ď 𝜋 𝑗

𝑖, 𝑗
.

If

Ž

𝑖 𝜏𝑖 “ 𝜏1 where 𝜏1 is not an intersection, then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

is just 𝜏 Ď 𝜏 _ 𝜋 1, which is

the assumption itself.

It is impossible to have

Ź

𝑗 𝜋 𝑗 “ 𝜋1 where 𝜋1 is not a union since 𝜋1 “
Ž

𝑖 𝜏𝑖 _ 𝜋 1.

Case S-AndOr11 .

Ž

𝑖 𝜏𝑖 “ 𝜏1 “
Ź

𝑗 𝜋 𝑗 ^ 𝜏 1 for some 𝜏 1. By repeated applications of S-Trans

with S-AndOr11 , followed by an application of S-Trans with S-AndOr12 , we have

Ź

𝑗 𝜋 𝑗 ^ 𝜏 1 Ď 𝜋 𝑗

𝑗
, i.e., 𝜏𝑖 Ď 𝜋 𝑗

𝑖, 𝑗
.

It is impossible to have

Ž

𝑖 𝜏𝑖 “ 𝜏1 where 𝜏1 is not an intersection since 𝜋1 “
Ž

𝑖 𝜏𝑖 _ 𝜋 1.

If

Ź

𝑗 𝜋 𝑗 “ 𝜋1 where 𝜋1 is not a union, then 𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗

is just 𝜏 Ď 𝜏 _ 𝜋 1, which is the

assumption itself.

Cases S-AndOr12˛. Similar to the cases S-AndOr11˛.

Case S-AndOr2¨. Let the range of 𝑖 be 1..𝑚. We have

Ž

𝑖 𝜏𝑖 “
Ž

𝑖 P 1..𝑚´1
𝜏𝑖 _ 𝜏𝑚 . The premises

of the rule are

Ž

𝑖 P 1..𝑚´1
𝜏𝑖 Ď

Ź

𝑗 𝜋 𝑗 and 𝜏𝑚 Ď
Ź

𝑗 𝜋 𝑗 . By IH on the first premise, we have

𝜏𝑖 Ď 𝜋 𝑗
𝑖 P 1..𝑚´1, 𝑗

. By IH on the second premise, we have 𝜏𝑚 Ď 𝜋 𝑗
𝑗
. Then we have 𝜏𝑖 Ď 𝜋 𝑗

𝑖, 𝑗
.

Case S-AndOr2 . Let the range of 𝑗 be 1..𝑛. We have

Ź

𝑗 𝜋 𝑗 “
Ź

𝑗 P 1..𝑛´1
𝜋 𝑗 ^ 𝜋 𝑗 . The premises

of the rule are

Ž

𝑖 𝜏𝑖 Ď
Ź

𝑗 P 1..𝑛´1
𝜋 𝑗 and

Ž

𝑖 𝜏𝑖 Ď 𝜋𝑛 . By IH on the first premise, we have

𝜏𝑖 Ď 𝜋 𝑗
𝑖, 𝑗 P 1..𝑛´1

. By IH on the second premise, we have 𝜏𝑖 Ď 𝜋𝑛
𝑖
. Then we have 𝜏𝑖 Ď 𝜋 𝑗

𝑖, 𝑗
.

Case S-Distrib¨.
Ž

𝑖 𝜏𝑖 “ 𝜏1 “ 𝜏 1 ^ p𝜏 1
1
_ 𝜏 1

2
q and

Ź

𝑗 𝜋 𝑗 “ 𝜋1 “ p𝜏
1 ^ 𝜏 1

1
q _ p𝜏 1 ^ 𝜏 1

2
q for some 𝜏 1

and 𝜏 1
1
and 𝜏 1

2
. The result follows immediately.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 71

Case S-Distrib .

Ź

𝑗 𝜋 𝑗 “ 𝜋1 “ 𝜏 1 _ p𝜏 1
1
^ 𝜏 1

2
q and

Ž

𝑖 𝜏𝑖 “ 𝜏1 “ p𝜏
1 _ 𝜏 1

1
q ^ p𝜏 1 _ 𝜏 1

2
q for some

𝜏 1 and 𝜏 1
1
and 𝜏 1

2
. The result follows immediately.

Case S-Trans. The premises of the rule are

Ž

𝑖 𝜏𝑖 Ď 𝜏 1 and 𝜏 1 Ď
Ź

𝑗 𝜋 𝑗 for some 𝜏 1. By IH on the

former premise, we have 𝜏𝑖 Ď 𝜏 1
𝑖
. By IH on the latter premise, we have 𝜏 1 Ď 𝜋 𝑗

𝑗
. The result

follows from S-Trans on each of 𝜏𝑖 Ď 𝜏 1
𝑖
with each of 𝜏𝑖 Ď 𝜏 1

𝑖
.

□

B.9 Elementary type forms
B.9.1 Definition.

Definition B.55 (Constructors and negated constructors). The syntax of constructors and negated

constructors is presented in Figure 11.

𝐵 ::“ Ñ | 𝑥 | #𝐶 | K | J

𝐶, 𝐷 ::“ 𝐵 | 𝐵

Notation: 𝐶 “

"

𝐵 if 𝐶 “ 𝐵

𝐵 if 𝐶 “ 𝐵

Fig. 11. Syntax of constructor and negated constructor.

Definition B.56 (Elementary type forms). The “elementary” type forms are defined in Figure 12.

These are conceptually the type forms we need to care about for the system to be sound.

Elementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union types 𝑈𝐶 , 𝑉𝐶

𝑈Ñ ::“ 𝜏1 Ñ 𝜋1 _ ¨ ¨ ¨ _ 𝜏𝑛 Ñ 𝜋𝑛

𝑈 𝑥
::“ t𝑥 : 𝜏1 u _ ¨ ¨ ¨ _ t𝑥 : 𝜏𝑛 u

𝑈 #𝐶
::“ #𝐶

𝑈J ::“ J | t𝑥1 : 𝜏1 u _ t𝑥2 : 𝜏2 u pwhere 𝑥1 ‰ 𝑥2q

| t𝑥1 : 𝜏1 u _ p𝜏 Ñ 𝜋q

𝑈 𝐵
::“ ␣𝑋𝐵

Elementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection types 𝑋𝐶 , 𝑌𝐶

𝑋Ñ ::“ p𝜏1 Ñ 𝜋1q ^ ¨ ¨ ¨ ^ p𝜏𝑛 Ñ 𝜋𝑛q

𝑋𝑥
::“ t𝑥 : 𝜏1 u ^ ¨ ¨ ¨ ^ t𝑥 : 𝜏𝑛 u

𝑋 #𝐶
::“ #𝐶

𝑋K ::“ K | #𝐶1 ^ #𝐶2 pwhere 𝐶1 and 𝐶2 are unrelatedq

𝑋 𝐵
::“ ␣𝑈 𝐵

Fig. 12. Elementary type form definition.

72 Lionel Parreaux and Chun Yin Chau

Lemma B.57 (Inversion of negated elementary types).

(A) For all 𝐶 and𝑈𝐶
, we have ␣𝑈𝐶 – 𝑋 𝐶

for some 𝑋 𝐶
.

(B) For all 𝐶 and 𝑋𝐶
, we have ␣𝑋𝐶 – 𝑈 𝐶

for some𝑈 𝐶
.

Proof. By case analysis on 𝐶 .

(A) If 𝐶 “ 𝐵 for some B, then pick 𝑋 𝐶 “ 𝑋 𝐵 “ ␣𝑈 𝐵 “ ␣𝑈𝐶
. If 𝐶 “ 𝐵 for some 𝐵, then

𝑈𝐶 “ 𝑈 𝐵 “ ␣𝑋𝐵
by the definition of𝑈 𝐵

, so ␣𝑈𝐶 “ ␣␣𝑋𝐵 – 𝑋𝐵 “ 𝑋 𝐶
.

(B) If 𝐶 “ 𝐵 for some B, then pick 𝑈 𝐶 “ 𝑈 𝐵 “ ␣𝑋𝐵 “ ␣𝑋𝐶
. If 𝐶 “ 𝐵 for some 𝐵, then

𝑋𝐶 “ 𝑋 𝐵 “ ␣𝑈 𝐵
by the definition of 𝑋 𝐵

, so ␣𝑋𝐶 “ ␣␣𝑈 𝐵 – 𝑈 𝐵 “ 𝑈 𝐶
.

□

Definition B.58 (Helper pseudo-subtyping relation). The rules of the helper pseudo-subtyping

relation are defined in Figure 13. It is easy to show that ĺ implies ď.

Σ $
Ź

𝑖 𝑈
𝐶
𝑖 ĺ 𝑉𝐷

Σ $ 𝑋𝐶 ĺ
Ž

𝑖 𝑌
𝐷
𝑖 Σ $

Ź

𝑖 𝑈
𝐶
𝑖 ĺ 𝑉J Σ $ 𝑋K ĺ

Ž

𝑖 𝑌
𝐶
𝑖

Σ $ 𝑌𝐷 ĺ
Ž

𝑖 𝑋
𝐶
𝑖

Σ $
Ź

𝑖 𝑈
𝐶
𝑖

ĺ 𝑉 𝐷

Σ $
Ź

𝑖 𝑉
𝐷
𝑖 ĺ 𝑈𝐶

Σ $ 𝑋 𝐶 ĺ
Ž

𝑖 𝑌
𝐷
𝑖

◁Σ $ 𝜏 1 ď 𝜏 ◁Σ $ 𝜋 ď 𝜋 1

Σ $ 𝜏 Ñ 𝜋 ĺ 𝜏 1 Ñ 𝜋 1

Σ $ 𝑈𝐶 ĺ p
Ź

𝑖 𝜏𝑖q Ñ p
Ž

𝑖 𝜋𝑖q

Σ $ 𝑈𝐶 ĺ
Ž

𝑖 𝜏𝑖 Ñ 𝜋𝑖

Σ $ p
Ž

𝑖 𝜏𝑖q Ñ p
Ź

𝑖 𝜋𝑖q ĺ 𝑌𝐶

Σ $
Ź

𝑖 𝜏𝑖 Ñ 𝜋𝑖 ĺ 𝑌𝐶

Σ $ p
Ž

𝑖

Ź

𝑗 𝜏𝑖 𝑗 q Ñ p
Ź

𝑖

Ž

𝑗 𝜋𝑖 𝑗 q ĺ 𝑈𝐶

Σ $
Ź

𝑖

Ž

𝑗 𝜏𝑖 𝑗 Ñ 𝜋𝑖 𝑗 ĺ 𝑈𝐶

Σ $ 𝑋𝐶 ĺ p
Ź

𝑖

Ž

𝑗 𝜏𝑖 𝑗 q Ñ p
Ž

𝑖

Ź

𝑗 𝜋𝑖 𝑗 q

Σ $ 𝑋𝐶 ĺ
Ž

𝑖

Ź

𝑗 𝜏𝑖 𝑗 Ñ 𝜋𝑖 𝑗

◁Σ $ 𝜏 ď 𝜏 1

Σ $ t𝑥 : 𝜏 u ĺ t𝑥 : 𝜏 1 u

Σ $ 𝑈𝐶 ĺ t𝑥 :

Ž

𝑖 𝜏𝑖 u

Σ $ 𝑈𝐶 ĺ
Ž

𝑖 t𝑥 : 𝜏𝑖 u

Σ $ t𝑥 :

Ź

𝑖 𝜏𝑖 u ĺ 𝑌𝐶

Σ $
Ź

𝑖 t𝑥 : 𝜏𝑖 u ĺ 𝑌𝐶

Σ $ t𝑥 :

Ź

𝑖

Ž

𝑗 𝜏𝑖 𝑗 u ĺ 𝑈𝐶

Σ $
Ź

𝑖

Ž

𝑗 t𝑥 : 𝜏𝑖 𝑗 u ĺ 𝑈𝐶

Σ $ 𝑋𝐶 ĺ t𝑥 :

Ž

𝑖

Ź

𝑗 𝜏𝑖 𝑗 u

Σ $ 𝑋𝐶 ĺ
Ž

𝑖

Ź

𝑗 t𝑥 : 𝜏𝑖 𝑗 u

𝐶2 P Sp#𝐶1q

Σ $
Ź

𝑖 #𝐶1 ĺ #𝐶2

𝐶2 P Sp#𝐶1q

Σ $ #𝐶1 ĺ
Ž

𝑖 #𝐶2

𝑥 ‰ 𝑦

Σ $
Ź

𝑖 𝑈
𝑥
𝑖

ĺ 𝑉 𝑦 Σ $
Ź

𝑖 𝑈
𝑥
𝑖

ĺ 𝑉Ñ

Σ $
Ź

𝑖 𝑈
Ñ

𝑖
ĺ 𝑉 𝑥

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

Σ $ 𝑋 #𝐶1 ĺ
Ž

𝑖 𝑌
#𝐶2

Fig. 13. Helper pseudo-subtyping relation rules.

B.9.2 Some useful lemmas.

Lemma B.59.

(A) If

Ź

𝑖 𝑈
𝐶
𝑖 ĺ 𝑉𝐷

, then either one of the following is true:

‚ 𝐷 P t𝐶,J, K u

‚ 𝐶 “ #𝐶1 and 𝐷 “ #𝐶2 and 𝐶2 P Sp#𝐶1q

‚ 𝐶 “ #𝐶1 and 𝐷 “ #𝐶2 and 𝐶1 P Sp#𝐶2q

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 73

‚ 𝐶 “ 𝑥 and 𝐷 “ 𝑦 ‰ 𝑥

‚ 𝐶 “ 𝑥 and 𝐷 “ Ñ

‚ 𝐶 “ Ñ and 𝐷 “ 𝑥

‚ 𝐶 “ #𝐶1 and 𝐷 “ #𝐶2 and 𝐶1 R Sp#𝐶2q and 𝐶2 R Sp#𝐶1q

(B) If 𝑋𝐶 ĺ
Ž

𝑖 𝑌
𝐷
𝑖 , then either one of the following is true:

‚ 𝐶 P t𝐷,K, J u

‚ 𝐷 “ #𝐶1 and 𝐶 “ #𝐶2 and 𝐶1 P Sp#𝐶2q

‚ 𝐷 “ #𝐶1 and 𝐶 “ #𝐶2 and 𝐶2 P Sp#𝐶1q

‚ 𝐷 “ 𝑥 and 𝐶 “ 𝑦 ‰ 𝑥

‚ 𝐷 “ Ñ and 𝐶 “ 𝑥

‚ 𝐷 “ 𝑥 and 𝐶 “ Ñ

‚ 𝐷 “ #𝐶1 and 𝐶 “ #𝐶2 and 𝐶1 R Sp#𝐶2q and 𝐶2 R Sp#𝐶1q

Proof. By straightforward induction on ĺ rules. □

Lemma B.60. For 𝜏 P t𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u,

(A) If𝑈𝐶 Ď 𝜏 , then𝑈𝐶 “
Ž

𝑖 𝜏 .

(B) If 𝜏 Ď 𝑋𝐶
, then 𝑋𝐶 “

Ź

𝑖 𝜏 .

Proof.

(A) By induction on right-leaning Ď derivations. We only consider rules that can syntactically

apply. Denote the size of the current derivation as 𝑛.

Case S-Refl. Immediate.

Case S-AndOr2¨. 𝑈𝐶 “ 𝑈
𝐶1

1
_𝑈

𝐶2

2
for some𝑈

𝐶1

1
and𝑈

𝐶2

2
, where𝑈

𝐶2

2
is not a union. The

premises of the rule are𝑈
𝐶1

1
Ď 𝜏 and𝑈

𝐶2

2
Ď 𝜏 . By IH, we have𝑈

𝐶1

1
“

Ž

𝑘 𝜏 and𝑈
𝐶2

2
“

Ž

𝑙 𝜏 .

Since𝑈
𝐶2

2
is not a union,𝑈

𝐶2

2
“ 𝜏 . Then𝑈𝐶 “ 𝑈

𝐶1

1
_𝑈

𝐶2

2
“

Ž

𝑘 𝜏 _ 𝜏 .

Case S-Trans. Then the premises are𝑈𝐶 Ď 𝜏 1 and 𝜏 1 Ď 𝜏 for some 𝜏 1, both of size 𝑛´ 1. By

induction on the size of the subderivation for the former premise, denoted by𝑚. Denote

the inner induction hypothesis as IH
1
.

Cases (S-Refl, ˚), (˚, S-Refl). By IH on the other premise.

Cases (S-ToB¨, ˚). Then 𝜏 1 “ J. The latter premise is J Ď 𝜏 , which is impossible by

Lemma B.87. Therefore this case is impossible.

Cases (S-Compl¨, ˚). Then 𝑈𝐶 “ J. The conclusion is J Ď 𝜏 , which is impossible by

Lemma B.87. Therefore this case is impossible.

Cases (S-AndOr11¨, ˚). Then 𝜏 1 “ 𝑈𝐶 _ 𝜏 1
1
for some 𝜏 1

1
. By Lemma B.54 on the latter

premise, we have𝑈𝐶 Ď 𝜏 with a derivation of size at most 𝑛 ´ 1. The result then follows

from IH.

Cases (S-AndOr12¨, ˚). Then 𝜏 1 “ 𝜏 1
1
_ 𝑈𝐶

for some 𝜏 1
1
. By Lemma B.54 on the latter

premise, we have𝑈𝐶 Ď 𝜏 with a derivation of size at most 𝑛 ´ 1. The result then follows

from IH.

Cases (S-AndOr2¨, ˚). Then𝑈𝐶 “ 𝑈
𝐶1

1
_𝑈

𝐶2

2
for some𝑈

𝐶1

1
and𝑈

𝐶2

2
, where𝑈

𝐶2

2
is not a

union. The premises of the former rule are𝑈
𝐶1

1
Ď 𝜏 1 and𝑈

𝐶2

2
Ď 𝜏 1, both of size𝑚´ 1. By

S-Transwith 𝜏 1 Ď 𝜏 , we have𝑈
𝐶1

1
Ď 𝜏 and𝑈

𝐶2

2
Ď 𝜏 , both of size 𝑛 with a former premise

of size𝑚 ´ 1. Then by IH
1
, we have 𝑈

𝐶1

1
– 𝜏 and𝑈

𝐶2

2
– 𝜏 , which imply 𝑈

𝐶1

1
_𝑈

𝐶2

2
– 𝜏 .

Cases (S-AndOr2 , ˚). Then 𝜏 1 “ 𝜏 1
1
^ 𝜏 1

2
for some 𝜏 1

1
and 𝜏 1

2
. The premises of the former

rule are 𝑈𝐶 Ď 𝜏 1
1
and 𝑈𝐶 Ď 𝜏 1

2
, both of size𝑚 ´ 1. By Lemma B.82 on the latter premise,

we have 𝜏 1
𝑙
Ď 𝜏 of size at most 𝑛 ´ 1 for some 𝑙 P t 1, 2 u. By S-Trans on 𝑈𝐶 Ď 𝜏 1

𝑙
and

74 Lionel Parreaux and Chun Yin Chau

𝜏 1
𝑙
Ď 𝜏 , we have 𝑈𝐶 Ď 𝜏 of size 𝑛 with a former premise of size𝑚 ´ 1. The result then

follows from IH
1
.

(B) By induction on right-leaning Ď derivations. We only consider rules that can syntactically

apply. Denote the size of the current derivation as 𝑛.

Case S-Refl. Immediate.

Case S-AndOr2 . 𝑋𝐶 “ 𝑋
𝐶1

1
^𝑋

𝐶2

2
for some 𝑋

𝐶1

1
and 𝑋

𝐶2

2
, where 𝑋

𝐶2

2
is not a intersection.

The premises of the rule are 𝜏 Ď 𝑋
𝐶1

1
and 𝜏 Ď 𝑋

𝐶2

2
. By IH, we have 𝑋

𝐶1

1
“

Ź

𝑘 𝜏 and

𝑋
𝐶2

2
“

Ź

𝑙 𝜏 . Since 𝑋
𝐶2

2
is not a intersection, 𝑋

𝐶2

2
“ 𝜏 . Then 𝑋𝐶 “ 𝑋

𝐶1

1
^ 𝑋

𝐶2

2
“

Ź

𝑘 𝜏 ^ 𝜏 .

Case S-Trans. Then the premises are 𝜏 Ď 𝜏 1 and 𝜏 1 Ď 𝑋𝐶
for some 𝜏 1, both of size 𝑛 ´ 1.

By induction on the size of the subderivation of the former premise, denoted by𝑚. Denote

the inner induction hypothesis as IH
1
.

Cases (S-Refl, ˚), (˚, S-Refl). By IH on the other premise.

Cases (S-ToB¨, ˚). Then 𝜏 1 “ J. The latter premise is J Ď 𝑋𝐶
, which implies J Ď 𝑋

𝐶2

2

for some 𝑋
𝐶2

2
P t𝜋1 Ñ 𝜋2, t𝑥

1
: 𝜋1 u, #𝐶

1 u by Lemma B.54, where 𝑋𝐶 “ 𝑋
𝐶1

1
^ 𝑋

𝐶2

2
,

which is impossible by Lemma B.87. Therefore this case is impossible.

Cases (S-AndOr11¨, ˚). Then 𝜏 1 “ 𝜏 _ 𝜏 1
1
for some 𝜏 1

1
. By Lemma B.54 on the latter

premise, we have 𝜏 Ď 𝑋𝐶
with a derivation of size at most 𝑛 ´ 1. The result then follows

from IH.

Cases (S-AndOr12¨, ˚). Then 𝜏 1 “ 𝜏 1
1
_ 𝜏 for some 𝜏 1

1
. By Lemma B.54 on the latter

premise, we have 𝜏 Ď 𝑋𝐶
with a derivation of size at most 𝑛 ´ 1. The result then follows

from IH.

Cases (S-AndOr2 , ˚). Then 𝜏 1 “ 𝜏 1
1
^ 𝜏 1

2
for some 𝜏 1

1
and 𝜏 1

2
. The premises of the former

rule are 𝜏 Ď 𝜏 1
1
and 𝜏 Ď 𝜏 1

2
, both of size𝑚 ´ 1. By Lemma B.54 on the latter premise, we

have 𝜏 1
1
^ 𝜏 1

2
Ď 𝑋

𝐶𝑖

𝑖

𝑖

, where 𝑋𝐶 “
Ź

𝑖 𝑋
𝐶𝑖

𝑖
and 𝑋

𝐶𝑖

𝑖

𝑖

are not intersections, each of size at

most 𝑛´ 1. Then by Lemma B.82, we have 𝜏 1
𝑙𝑖
Ď 𝑋

𝐶𝑖

𝑖

𝑖

for some 𝑙𝑖 P t 1, 2 u
𝑖
, each of size at

most 𝑛 ´ 1. By S-Trans on 𝜏 Ď 𝜏 1
𝑙
and 𝜏 1

𝑙
Ď 𝑋

𝐶𝑖

𝑖
, we have 𝜏 Ď 𝑋

𝐶𝑖

𝑖

𝑖

, each of size 𝑛 with a

former premise of size𝑚´ 1. Then 𝑋
𝐶𝑖

𝑖
“ 𝜏

𝑖

by IH
1
(note that 𝑋

𝐶𝑖

𝑖

𝑖

are not intersections),

i.e., 𝑋𝐶 “
Ź

𝑖 𝜏 .

□

Corollary B.61. For 𝜏 P t𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u,

(A) If𝑈𝐶 Ď ␣𝜏 , then𝑈𝐶 “
Ž

𝑖 ␣𝜏 .

(B) If ␣𝜏 Ď 𝑋𝐶
, then 𝑋𝐶 “

Ź

𝑖 ␣𝜏 .

Proof.

(A) We have 𝑈𝐶 “
Ž

𝑖 𝑈
𝐶𝑖

𝑖
for some 𝑈

𝐶𝑖

𝑖

𝑖

, where 𝑈
𝐶𝑖

𝑖

𝑖

are not unions. Then by S-NegInv,

Theorem B.12, Theorem B.13, and Theorem B.19, we have 𝜏 Ď
Ź

𝑖 𝑈
𝐶𝑖

𝑖
, which implies

Ź

𝑖 𝑈
𝐶𝑖

𝑖
“

Ź

𝑖 𝜏 by Lemma B.60, i.e.,𝑈
𝐶𝑖

𝑖
“ 𝜏

𝑖

. Then we have𝑈𝐶 “
Ž

𝑖 ␣𝜏 .

(B) We have 𝑋𝐶 “
Ź

𝑖 𝑋
𝐶𝑖

𝑖
for some 𝑋

𝐶𝑖

𝑖

𝑖

, where 𝑋
𝐶𝑖

𝑖

𝑖

are not intersections. Then by S-NegInv,

Theorem B.12, Theorem B.13, and Theorem B.19, we have

Ž

𝑖 𝑋
𝐶𝑖

𝑖
Ď 𝜏 , which implies

Ž

𝑖 𝑋
𝐶𝑖

𝑖
“

Ž

𝑖 𝜏 by Lemma B.60, i.e., 𝑋
𝐶𝑖

𝑖
“ 𝜏

𝑖

. Then we have 𝑋𝐶 “
Ź

𝑖 ␣𝜏 .

□

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 75

Lemma B.62.

(A) If J ď 𝜏 , then𝑈𝐶 Ď 𝜏 for some𝑈𝐶
and 𝐶 P tJ, K u.

(B) If 𝜏 ď K, then 𝜏 Ď 𝑋𝐶
for some 𝑋𝐶

and 𝐶 P tK, J u.

Proof. By straightforward induction on subtyping derivations. □

B.10 CDN- and DCN-normalized type forms and derivations
Since the intersection, union, and negation connectives can freely nest within and intertwine

with each other, they introduce significant difficulty for the proof of subtyping consistency. We

introduce the CDN- and DCN-normalized forms to order them one after the other, using only the

Boolean-algebraic relation, i.e., not normalizing deeply under constructors as in RDNF.

We also present alternative sets of subtyping rules where only the respective normalized forms

appear in the top level, and show that any subtyping derivations can be translated into a normalized

one. Thus we can prove any property by induction on normalized derivations.

B.10.1 CDN-normalized type forms and derivations.

Definition B.63 (CDN-normalized form). The syntax of CDN-normalized (conjunction-disjunction-

negation) form is presented in Figure 14.We say that a CDN-normalized form 𝜏cdn is complement-free

if 𝜏cdn “
Ź

𝑖

Ž

𝑗 P 1..𝑛𝑖
𝜏n𝑖 𝑗 , where @ 𝑗𝑖 P 1..𝑛𝑖

𝑖
.

Ź

𝑖 𝜏
n
𝑖 𝑗𝑖
Ę K.

𝜏0 ::“ 𝜏 Ñ 𝜏 | t𝑥 : 𝜏 u | #𝐶 | 𝛼 | J

𝜏n ::“ 𝜏0 | ␣𝜏0

𝜏dn ::“ 𝜏n | 𝜏n _ 𝜏dn

𝜏cdn ::“ 𝜏dn | 𝜏dn ^ 𝜏cdn

Fig. 14. Syntax of CDN-normalized form.

In the proofs below, we sometimes abuse the notations 𝜏dn
1
_ 𝜏dn

2
and 𝜏cdn

1
^ 𝜏cdn

2
to mean their

properly associated versions, i.e., disp𝜏dn
1
, 𝜏dn

2
q and conp𝜏cdn

1
, 𝜏cdn

2
q in Figure 16 respectively.

Definition B.64 (CDN-normalized derivations). The CDN-normalized subtyping relation ďcdn
is

defined in Figure 15. The following are the difference compared to the full subtyping relation ď in

Figure 4:

‚ On the top level, the relation is restricted to Σ $ 𝜏cdn ď 𝜏cdn.

‚ On the top level, all occurrences of K are replaced with ␣J.

‚ The rule S-Distrib˛ is replaced by S-DistribCdn˛, which requires an application of S-

Distrib˛ to be followed immediately by an application of S-AndOr2¨ in a transitivity chain

by merging the two rules into one.

‚ The negated-inverted versions of the algebraic rules are added.

Notice that the premises of S-FunDepth and S-RcdDepth still refer to the full ď relation, even

though their conclusions are about the ďcdn
relation.

The CDN-normalized boolean subtyping relation Ďcdn
is defined similarly.

Notice that Lemma B.21 and Lemma B.22 extend to CDN-normalized derivations. In the proofs

below, we also make use of extended versions of commutativity (𝜏1_
˛𝜏2p_

˛𝜏3q ď
cdn 𝜏2_

˛𝜏1p_
˛𝜏3q)

and idempotence (𝜏1 _
˛ 𝜏1p_

˛𝜏2q ď
cdn 𝜏1p_

˛𝜏2q).

76 Lionel Parreaux and Chun Yin Chau

Σ $ 𝜏cdn ďcdn 𝜏cdn 𝜏cdn ďcdn 𝜏cdn ◁Ξ “ Ξ ◁pΣ ¨ 𝐻q “ ◁Σ ¨ 𝐻 ◁pΣ ¨ ▷𝐻q “ ◁Σ ¨ 𝐻

S-Refl

𝜏cdn ďcdn 𝜏cdn

S-ToB¨

𝜏cdn ďcdn J

S-ToB

␣J ďcdn 𝜏cdn

S-Compl¨

J ďcdn 𝜏0 _␣𝜏0

S-Compl

𝜏0 ^␣𝜏0 ďcdn ␣J

S-NegInv

Σ $ 𝜏0
1
ďcdn 𝜏0

2

Σ $ ␣𝜏0
2
ďcdn ␣𝜏0

1

S-AndOr1¨

𝑆 Ď t 𝑖 u
Ž

𝑖1 P𝑆 𝜏
n
𝑖1 ď

cdn Ž

𝑖 𝜏
n
𝑖

S-AndOr1

𝑆 Ď t 𝑖 u
Ź

𝑖 𝜏
dn
𝑖
ďcdn Ź

𝑖1 P𝑆 𝜏
dn
𝑖1

S-AndOr2¨

Σ $ 𝜏n
𝑖
ďcdn 𝜏cdn

𝑖

Σ $
Ž

𝑖 𝜏
n
𝑖
ďcdn 𝜏cdn

S-AndOr2

Σ $ 𝜏cdn ďcdn 𝜏dn
𝑖

𝑖

Σ $ 𝜏cdn ďcdn Ź

𝑖 𝜏
dn
𝑖

S-DistribCdn¨

Σ $ 𝜏n
𝑖
^ 𝜏cdn ďcdn 𝜋cdn

𝑖

Σ $ p
Ž

𝑖 𝜏
n
𝑖
q ^ 𝜏cdn ďcdn 𝜋cdn

S-DistribCdn

Σ $ 𝜏n ďcdn 𝜋cdn Σ $
Ź

𝑖 𝜏
dn
𝑖
ďcdn 𝜋cdn

Σ $
Ź

𝑖 p𝜏
n _ 𝜏dn

𝑖
q ďcdn 𝜋cdn

S-Trans

Σ $ 𝜏cdn
0

ďcdn 𝜏cdn
1

Σ $ 𝜏cdn
1

ďcdn 𝜏cdn
2

Σ $ 𝜏cdn
0

ďcdn 𝜏cdn
2

S-Weaken

𝐻

Σ $ 𝐻

S-Assum

Σ¨▷𝐻 $ 𝐻

Σ $ 𝐻

S-Hyp

𝐻 P Σ

Σ $ 𝐻

S-ClsSub

𝐶2 P Sp#𝐶1q

#𝐶1 ď
cdn

#𝐶2

S-ClsBot

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

#𝐶1 ^ #𝐶2 ď
cdn ␣J

S-ClsBotNegInv

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

J ďcdn ␣#𝐶1 _␣#𝐶2

S-FunDepth

◁Σ $ 𝜏0 ď 𝜏1 ◁Σ $ 𝜏2 ď 𝜏3

Σ $ 𝜏1 Ñ 𝜏2 ď
cdn 𝜏0 Ñ 𝜏3

S-FunMrg˛

𝜏1 Ñ 𝜏2 ^
˛ 𝜏3 Ñ 𝜏4ď

˛cdnp𝜏1 _
˛ 𝜏3q Ñ p𝜏2 ^

˛ 𝜏4q

S-FunMrgNegInv˛

␣pp𝜏1 _
˛ 𝜏3q Ñ p𝜏2 ^

˛ 𝜏4qqď
˛cdn␣p𝜏1 Ñ 𝜏2q _

˛ ␣p𝜏3 Ñ 𝜏4q

S-RcdDepth

◁Σ $ 𝜏1 ď 𝜏2

Σ $ t𝑥 : 𝜏1 u ď
cdn t𝑥 : 𝜏2 u

S-RcdMrg˛

t𝑥 : 𝜏1 _
˛ 𝜏2 uď

˛cdnt𝑥 : 𝜏1 u _
˛ t𝑥 : 𝜏2 u

S-RcdMrgNegInv˛

␣t𝑥 : 𝜏1 u ^
˛ ␣t𝑥 : 𝜏2 uď

˛cdn␣t𝑥 : 𝜏1 _
˛ 𝜏2 u

S-RcdTop

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

J ďcdn t𝑥 : 𝜏1 u _ 𝜏

S-RcdTopNegInv

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

␣t𝑥 : 𝜏1 u ^ ␣𝜏 ď
cdn ␣J

Fig. 15. CDN-normalized subtyping rules.

Definition B.65 (CDN-normalized form translation). The translation from arbitrary types into

CDN-normalized types cdnp¨q is defined in Figure 16.

Lemma B.66. Σ $ 𝜏cdn
1
ď 𝜏cdn

2
if Σ $ 𝜏cdn

1
ďcdn 𝜏cdn

2
. Similarly, 𝜏cdn

1
Ď 𝜏cdn

2
if 𝜏cdn

1
Ďcdn 𝜏cdn

2
.

Proof. It is easy to see that every rule of ďcdn
is admissible in ď. □

Lemma B.67. For any 𝜏 , cdnp𝜏q – 𝜏 .

Proof. By straightforward induction. □

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 77

cdnp𝜏q : 𝜏cdn

cdnp𝜏0q “ 𝜏0

cdnpKq “ ␣J

cdnp␣𝜏q “ negpcdnp𝜏qq

cdnp𝜏1 _ 𝜏2q “ dispcdnp𝜏1q, cdnp𝜏2qq

cdnp𝜏1 ^ 𝜏2q “ conpcdnp𝜏1q, cdnp𝜏2qq

negp𝜏cdnq : 𝜏cdn

negp𝜏0q “ ␣𝜏0

negp␣𝜏0q “ 𝜏0

negp𝜏n
1
_ 𝜏dn

2
q “ conpnegp𝜏n

1
q, negp𝜏dn

2
qq

negp𝜏dn
1
^ 𝜏cdn

2
q “ dispnegp𝜏dn

1
q, negp𝜏cdn

2
qq

disp𝜏cdn, 𝜏cdnq : 𝜏cdn

disp𝜏dn
11
^ 𝜏cdn

12
, 𝜏cdn

2
q “ conpdisp𝜏dn

11
, 𝜏cdn

2
q, disp𝜏cdn

12
, 𝜏cdn

2
qq

disp𝜏n
11
_ 𝜏dn

12
, 𝜏cdn

2
q “ disp𝜏n

11
, disp𝜏dn

12
, 𝜏cdn

2
qq

disp𝜏n
1
, 𝜏dn

21
^ 𝜏cdn

22
q “ conpdisp𝜏n

1
, 𝜏dn

21
q, disp𝜏n

1
, 𝜏cdn

22
qq

disp𝜏n
1
, 𝜏dn

2
q “ 𝜏n

1
_ 𝜏dn

2

Dis𝑖 P𝑚..𝑛 𝜏
cdn
𝑖 “ disp𝜏cdn𝑚 , Dis𝑖 P𝑚`1..𝑛 𝜏

cdn
𝑖 q

Dis𝑖 P𝑛..𝑛 𝜏cdn𝑖 “ 𝜏cdn𝑛

conp𝜏cdn, 𝜏cdnq : 𝜏cdn

conp𝜏dn
11
^ 𝜏cdn

12
, 𝜏cdn

2
q “ conp𝜏dn

11
, conp𝜏cdn

12
, 𝜏cdn

2
qq

conp𝜏dn
1
, 𝜏cdn

2
q “ 𝜏dn

1
^ 𝜏cdn

2

Con𝑖 P𝑚..𝑛 𝜏
cdn
𝑖 “ conp𝜏cdn𝑚 , Con𝑖 P𝑚`1..𝑛 𝜏

cdn
𝑖 q

Con𝑖 P𝑛..𝑛 𝜏cdn𝑖 “ 𝜏cdn𝑛

Fig. 16. CDN-normalized form translation

Definition B.68 (CDN-normalized subtyping context). Σ is CDN-normalized if for all 𝐻 P Σ, either
one of the following is true:

(1) 𝐻 “ pJ ď
Ž

𝑖 𝜏
n
𝑖 q, where @𝛼. t𝛼, ␣𝛼 u X t𝜏

n
𝑖

𝑖
u “ H;

(2) 𝐻 “ p𝛼 ď
Ž

𝑖 𝜏
n
𝑖 q, where the following are true:

‚ t𝛼, ␣𝛼 u X t𝜏n
𝑖

𝑖
u “ H;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u.␣𝛽 R t𝜏n

𝑖

𝑖
u;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u. Dp

Ź

𝑗 𝜋
n
𝑗 ď 𝛽q P Σ. t𝜋n

𝑗

𝑗
u “ t negp𝜏n

𝑖
q
𝑖 |𝜏n

𝑖
‰𝛽

, 𝛼 u;

‚ @␣𝛽 P t𝜏n
𝑖

𝑖
u. Dp𝛽 ď

Ž

𝑗 𝜋
n
𝑗 q P Σ. t𝜋n

𝑗

𝑗
u “ t𝜏n

𝑖

𝑖 |𝜏n
𝑖
‰␣𝛽

, ␣𝛼 u;

78 Lionel Parreaux and Chun Yin Chau

(3) 𝐻 “ p
Ź

𝑖 𝜏
n
𝑖 ď 𝛼q, where the following are true:

‚ t𝛼, ␣𝛼 u X t𝜏n
𝑖

𝑖
u “ H;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u.␣𝛽 R t𝜏n

𝑖

𝑖
u;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u. Dp𝛽 ď

Ž

𝑗 𝜋
n
𝑗 q P Σ. t𝜋n

𝑗

𝑗
u “ t negp𝜏n

𝑖
q
𝑖 |𝜏n

𝑖
‰𝛽

, 𝛼 u;

‚ @␣𝛽 P t𝜏n
𝑖

𝑖
u. Dp

Ź

𝑗 𝜋
n
𝑗 ď 𝛽q P Σ. t𝜋n

𝑗

𝑗
u “ t𝜏n

𝑖

𝑖 |𝜏n
𝑖
‰␣𝛽

, ␣𝛼 u;

Definition B.69 (CDN-normalized subtyping context translation). The translation from arbitrary

subtyping contexts into CDN-normalized subtyping contexts cdnp¨q is defined in Figure 17.

cdnpΣq : Σ

cdnpΣq “ cdnpJ ď cdnp␣𝜏 _ 𝜋qq
p𝜏ď𝜋q P Σ

¨ ▷𝐻
▷𝐻 P Σ

cdnpJ ď 𝜏cdnq : Σ

cdnpJ ď
Ź

𝑖

Ž

𝑗𝑖
𝜏n
𝑖 𝑗𝑖
q “ cdnpJ ď

Ž

𝑗𝑖
𝜏n
𝑖 𝑗𝑖
q
𝑖

cdnpJ ď
Ž

𝑖 𝜏
n
𝑖
q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

𝜖 if D𝛼. t𝛼, ␣𝛼 u Ď t𝜏n
𝑖

𝑖
u

p
Ź

𝑖 |𝜏n
𝑖
‰𝛼 negp𝜏n

𝑖
q ď 𝛼q

𝛼 P t𝜏n
𝑖

𝑖
u
¨ p𝛼 ď

Ž

𝑖 |𝜏n
𝑖
‰␣𝛼 𝜏

n
𝑖
q
𝛼 |␣𝛼 P t𝜏n

𝑖

𝑖
u

if pD𝛼. t𝛼, ␣𝛼 u X t𝜏n
𝑖

𝑖
u ‰ Hq and p@𝛼 P t𝜏n

𝑖

𝑖
u.␣𝛼 R t𝜏n

𝑖

𝑖
uq

pJ ď
Ž

𝑖 𝜏
n
𝑖
q if @𝛼. t𝛼, ␣𝛼 u X t𝜏n

𝑖

𝑖
u “ H

Fig. 17. CDN-normalized subtyping context translation

Lemma B.70. For any Σ, we have Σ (cdnpΣq and cdnpΣq (Σ.

Proof. Straightforward, notably making use of Theorem B.20 and Lemma B.67. □

Lemma B.71. If Σ $ 𝜏 ď 𝜋 , then cdnpΣq $ cdnp𝜏q ďcdn cdnp𝜋q. Similarly, if 𝜏 Ď 𝜋 , then

cdnp𝜏q Ďcdn cdnp𝜋q.

Proof. By induction on unassuming subtyping derivations.

Case S-Refl. Then 𝜏 “ 𝜋 , which implies cdnp𝜏q “ cdnp𝜋q. Then we have cdnp𝜏q ďcdn cdnp𝜋q
by S-cdn.

Case S-ToB¨. Then 𝜋 “ J and cdnp𝜋q “ J. Then we have cdnp𝜏q ďcdn J by S-ToB¨.

Case S-ToB . Then 𝜏 “ K and cdnp𝜏q “ ␣J. Then we have ␣J ďcdn cdnp𝜋q by S-ToB .

Case S-Compl¨. Then 𝜏 “ J and 𝜋 “ 𝜋 1_␣𝜋 1 for some 𝜋 1. Let cdnp𝜋 1q “
Ź

𝑖 P 1..𝑚

Ž

𝑗𝑖 P 1..𝑛𝑖
𝜋n
𝑖 𝑗𝑖
.

Then cdnp␣𝜋 1q “ negpcdnp𝜋 1qq “
Ź

𝑗𝑖1 P 1..𝑛𝑖1
𝑖1 P 1..𝑚

Ž

𝑖 P 1..𝑚 negp𝜋n
𝑖 𝑗𝑖
q. Then cdnp𝜋 1_␣𝜋 1q “

dispcdnp𝜋q, cdnp𝜋 1qq “
Ź

𝑖 P 1..𝑚, 𝑗𝑖1 P 1..𝑛𝑖1
𝑖1 P 1..𝑚

´

Ž

𝑗 1
𝑖
P 1..𝑛𝑖

𝜋n
𝑖 𝑗 1
𝑖

_
Ž

𝑖1 P 1..𝑚 negp𝜋n
𝑖1 𝑗𝑖1
q

¯

. For

each 𝑖 , 𝑗𝑖1
𝑖1 P 1..𝑚

,

Ž

𝑗 1
𝑖
P 1..𝑛𝑖

𝜋n
𝑖 𝑗 1
𝑖

contains the disjunct 𝜋n
𝑖 𝑗𝑖
, and

Ž

𝑖1 P 1..𝑚 negp𝜋n
𝑖1 𝑗𝑖1
q contains the

disjunct negp𝜋n
𝑖 𝑗𝑖
q. Then by commutativity, we have

Ž

𝑗 1
𝑖
P 1..𝑛𝑖

𝜋n
𝑖 𝑗 1
𝑖

_
Ž

𝑖1 P 1..𝑚 negp𝜋n
𝑖1 𝑗𝑖1
q ěcdn

Ž

𝑗 1
𝑖
P 1..𝑛𝑖zt 𝑗𝑖 u

𝜋n
𝑖 𝑗 1
𝑖

_
Ž

𝑖1 P 1..𝑚zt 𝑖 u negp𝜋
n
𝑖1 𝑗𝑖1
q_𝜋n

𝑖 𝑗𝑖
_negp𝜋n

𝑖 𝑗𝑖
q, which impliesJ ďcdn Ž

𝑗 1
𝑖
P 1..𝑛𝑖

𝜋n
𝑖 𝑗 1
𝑖

_
Ž

𝑖1 P 1..𝑚 negp𝜋n
𝑖1 𝑗𝑖1
q. Finally by S-AndOr2 , we have J ďcdn cdnp𝜋 1 _␣𝜋 1q.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 79

Case S-Compl . Then 𝜏 “ 𝜏 1 ^␣𝜏 1 and 𝜋 “ K for some 𝜏 1. Let cdnp𝜏 1q “
Ź

𝑖 P 1..𝑚

Ž

𝑗𝑖 P 1..𝑛𝑖
𝜏n𝑖 𝑗𝑖 .

Then cdnp␣𝜏 1q “ negpcdnp𝜏 1qq “
Ź

𝑗𝑖 P 1..𝑛𝑖
𝑖 P 1..𝑚

Ž

𝑖 P 1..𝑚 negp𝜏n𝑖 𝑗𝑖 q. We want to show

Ź

𝑖 P 1..𝑚

Ž

𝑗𝑖 P 1..𝑛𝑖
𝜏n𝑖 𝑗𝑖 ^

Ź

𝑗𝑖 P 1..𝑛𝑖
𝑖 P 1..𝑚

Ž

𝑖 P 1..𝑚 negp𝜏n𝑖 𝑗𝑖 q ď ␣J. By S-DistribCdn¨, it suffices

to show 𝜏n
1𝑗 1

1

^
Ź

𝑖 P 2..𝑚

Ž

𝑗𝑖 P 1..𝑛𝑖
𝜏n
𝑖 𝑗𝑖
^

Ź

𝑗𝑖 P 1..𝑛𝑖
𝑖 P 1..𝑚

Ž

𝑖 P 1..𝑚 negp𝜏n
𝑖 𝑗𝑖
q ď ␣J

𝑗 1
1
P 1..𝑛1

, i.e.,

𝜏n
1𝑗 1

1

^
Ź

𝑖 P 2..𝑚

Ž

𝑗𝑖 P 1..𝑛𝑖
𝜏n
𝑖 𝑗𝑖
^

Ź

𝑗𝑖 P 1..𝑛𝑖
𝑖 P 1..𝑚

Ž

𝑖 P 1..𝑚zt 𝑖1 P 1..1 | 𝑗𝑖1“𝑗 1

𝑖1 u
negp𝜏n

𝑖 𝑗𝑖
q ď ␣J

𝑗 1
1
P 1..𝑛1

since 𝜏n
1𝑗 1

1

^ pnegp𝜏n
1𝑗 1

1

q _ 𝜏2q ď 𝜏n
1𝑗 1

1

^ 𝜏2 for any 𝜏2. Repeating the process, it suffices to show

𝜏n
1𝑗 1

1

^ 𝜏n
2𝑗 1

2

^
Ź

𝑖 P 3..𝑚

Ž

𝑗𝑖 P 1..𝑛𝑖
𝜏n
𝑖 𝑗𝑖
^

Ź

𝑗𝑖 P 1..𝑛𝑖
𝑖 P 1..𝑚

Ž

𝑖 P 1..𝑚zt 𝑖1 P 1..2 | 𝑗𝑖1 “𝑗 1

𝑖1 u negp𝜏
n
𝑖 𝑗𝑖
q ď ␣J

𝑗 1
1

P 1..𝑛1, 𝑗
1
2

P 1..𝑛2

.

Repeating the process 𝑚 times, it suffices to show

Ź

𝑖 P 1..𝑚 𝜏n
𝑖 𝑗 1
𝑖

^
Ź

𝑗𝑖 P 1..𝑛𝑖
𝑖 P 1..𝑚

Ž

𝑖 P 1..𝑚zt 𝑖1 P 1..𝑚 | 𝑗𝑖1“𝑗 1

𝑖1 u
negp𝜏n

𝑖 𝑗𝑖
q ď ␣J

𝑗 1
𝑖
P 1..𝑛𝑖

𝑖 P 1..𝑚

, which is in-

deed true since one of the conjuncts is an empty union, i.e., ␣J, when 𝑗𝑖 “ 𝑗 1
𝑖

𝑖 P 1..𝑚
.

Case S-NegInv. Wedefine a function negp¨q that takes a CDN-normalized subtyping derivation for

Σ $ 𝜏cdn ďcdn 𝜋 cdn
, where Σ is CDN-normalized, and returns a CDN-normalized subtyping

derivation for Σ $ negp𝜏cdnq ďcdn negp𝜋 cdnq. We prove its correctness by induction.

Case S-Refl. neg

˜

S-Refl

𝜏cdn ďcdn 𝜏cdn

¸

“ S-Refl

negp𝜏cdnq ďcdn negp𝜏cdnq

Case S-ToB¨. neg

˜

S-ToB¨
𝜏cdn ďcdn J

¸

“ S-ToB

␣J ďcdn negp𝜏cdnq

Case S-ToB . neg

˜

S-ToB

␣J ďcdn 𝜏cdn

¸

“ S-ToB¨
negp𝜏cdnq ďcdn J

Case S-Compl¨. neg

˜

S-Compl¨
J ďcdn 𝜏0 _␣𝜏0

¸

“

S-Trans

S-Commut

␣𝜏0 ^ 𝜏0 ďcdn 𝜏0 ^␣𝜏0
S-Compl

𝜏0 ^␣𝜏0 ďcdn ␣J

␣𝜏0 ^ 𝜏0 ďcdn J

Case S-Compl . neg

˜

S-Compl

𝜏0 ^␣𝜏0 ďcdn ␣J

¸

“

S-Trans

S-Compl¨
J ďcdn 𝜏0 _␣𝜏0

S-Commut¨
𝜏0 _␣𝜏0 ďcdn ␣𝜏0 _ 𝜏0

J ďcdn ␣𝜏0 _ 𝜏0

Case S-NegInv. neg

˜

S-NegInv

Σ $ 𝜋0 ďcdn 𝜏0

Σ $ ␣𝜏0 ďcdn ␣𝜋0

¸

“ Σ $ 𝜋0 ďcdn 𝜏0

Case S-AndOr1¨. neg

˜

S-AndOr1¨
𝑆 Ď t 𝑖 u

Ž

𝑖1 P𝑆 𝜏
n
𝑖1 ď

cdn Ž

𝑖 𝜏
n
𝑖

¸

“

S-AndOr1

𝑆 Ď t 𝑖 u

negp
Ž

𝑖 𝜏
n
𝑖
q ďcdn negp

Ž

𝑖1 P𝑆 𝜏
n
𝑖1q

80 Lionel Parreaux and Chun Yin Chau

Case S-AndOr1 . neg

˜

S-AndOr1

𝑆 Ď t 𝑖 u
Ź

𝑖 𝜏
dn
𝑖
ďcdn Ź

𝑖1 P𝑆 𝜏
dn
𝑖1

¸

:

We have𝜏dn
𝑖
“

Ž

𝑗𝑖
𝜏n
𝑖 𝑗𝑖

𝑖

for some𝜏n
𝑖 𝑗𝑖

𝑗𝑖
𝑖

. Then negp𝜏dn
𝑖
q “

Ź

𝑗𝑖
negp𝜏n

𝑖 𝑗𝑖
q
𝑖

. Then negp
Ź

𝑖 𝜏
dn
𝑖 q “

Dis𝑖 negp𝜏dn𝑖 q “
Ź

𝑗𝑖
𝑖

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q and negp

Ź

𝑖1 P𝑆 𝜏
dn
𝑖1 q “ Dis𝑖1 P𝑆 negp𝜏dn𝑖1 q “

Ź

𝑗𝑖
𝑖 P𝑆

Ž

𝑖 P𝑆 negp𝜏
n
𝑖 𝑗𝑖
q.

For each 𝑗𝑖
𝑖 P𝑆

, we have

Ž

𝑖 P𝑆 negp𝜏
n
𝑖 𝑗𝑖
q ďcdn

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q
𝑗𝑖
𝑖 R𝑆

by S-AndOr1¨, which imply

Ž

𝑖 P𝑆 negp𝜏
n
𝑖 𝑗𝑖
q ďcdn Ź

𝑗𝑖
𝑖 R𝑆

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q by S-AndOr2 . Then by Lemma B.22 ,

Ž

𝑖 P𝑆 negp𝜏
n
𝑖 𝑗𝑖
q ďcdn

Ź

𝑗𝑖
𝑖 R𝑆

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q
𝑗𝑖
𝑖 P𝑆

imply

Ź

𝑗𝑖
𝑖 P𝑆

Ž

𝑖 P𝑆 negp𝜏
n
𝑖 𝑗𝑖
q ďcdn Ź

𝑗𝑖
𝑖

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q,

i.e., negp
Ź

𝑖1 P𝑆 𝜏
dn
𝑖1 q ď

cdn negp
Ź

𝑖 𝜏
dn
𝑖 q.

Case S-AndOr2¨. neg

˜

S-AndOr2¨
Σ $ 𝜏n

𝑖
ďcdn 𝜏cdn

𝑖

Σ $
Ž

𝑖 𝜏
n
𝑖
ďcdn 𝜏cdn

¸

“

S-AndOr2

negpΣ $ 𝜏n
𝑖
ďcdn 𝜋cdnq

𝑖

Σ $ negp𝜋cdnq ďcdn Ž

𝑖 negp𝜏
n
𝑖
q

Case S-AndOr2 . neg

¨

˝

S-AndOr2

Σ $ 𝜏cdn ďcdn 𝜏dn
𝑖

𝑖

Σ $ 𝜏cdn ďcdn Ź

𝑖 𝜏
dn
𝑖

˛

‚:

By Corollary B.73 on negpΣ $ 𝜏cdn ďcdn 𝜏dn
𝑖
q
𝑖

.

Case S-DistribCdn¨. neg

˜

S-DistribCdn¨
Σ $ 𝜏n

𝑖
^ 𝜏cdn ďcdn 𝜋cdn

𝑖

Σ $ p
Ž

𝑖 𝜏
n
𝑖
q ^ 𝜏cdn ďcdn 𝜋cdn

¸

:

Then for each 𝑖 , negpΣ $ 𝜏n𝑖 ^ 𝜏cdn ďcdn 𝜋 cdnq is a derivation for Σ $ negp𝜋 cdnq ďcdn

negp𝜏n𝑖 ^𝜏
cdnq. Let negp𝜏n𝑖 ^𝜏

cdnq “
Ź

𝑗𝑖
𝜏dn𝑖 𝑗𝑖 . Then by LemmaB.21, we have Σ $ negp𝜋 cdnq ďcdn 𝜏dn

𝑖 𝑗𝑖

𝑗𝑖
.

Then combining the results for 𝑖 , by S-AndOr2 on Σ $ negp𝜋 cdnq ďcdn 𝜏dn
𝑖 𝑗𝑖

𝑗𝑖
𝑖

, we have

Σ $ negp𝜋 cdnq ďcdn Ź

𝑖

Ź

𝑗𝑖
𝜏dn𝑖 𝑗𝑖 , where by definition:

Ź

𝑖

Ź

𝑗𝑖
𝜏dn𝑖 𝑗𝑖 “ Con𝑖 negp𝜏n𝑖 ^ 𝜏cdnq

“ Con𝑖 dispnegp𝜏n𝑖 q, negp𝜏
cdnqq

“ disp
Ź

𝑖 negp𝜏
n
𝑖 q, negp𝜏

cdnqq

“ dispCon𝑖 negp𝜏n𝑖 q, negp𝜏
cdnqq

“ dispnegp
Ž

𝑖 𝜏
n
𝑖 q, negp𝜏

cdnqq

“ negpp
Ž

𝑖 𝜏
n
𝑖 q ^ 𝜏cdnq

Case S-DistribCdn . neg

˜

S-DistribCdn

Σ $ 𝜏n ďcdn 𝜋cdn Σ $
Ź

𝑖 𝜏
dn
𝑖
ďcdn 𝜋cdn

Σ $
Ź

𝑖 p𝜏
n _ 𝜏dn

𝑖
q ďcdn 𝜋cdn

¸

:

Then negpΣ $ 𝜏n ďcdn 𝜋 cdnq and negpΣ $
Ź

𝑖 𝜏
dn
𝑖 ďcdn 𝜋 cdnq are derivations for Σ $

negp𝜋 cdnq ďcdn negp𝜏nq and Σ $ negp𝜋 cdnq ďcdn negp
Ź

𝑖 𝜏
dn
𝑖 q respectively. We have

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 81

𝜏dn
𝑖
“

Ž

𝑗𝑖
𝜏n
𝑖 𝑗𝑖

𝑖

for some 𝜏n
𝑖 𝑗𝑖

𝑗𝑖
𝑖

. By definition, we have:

negp
Ź

𝑖 𝜏
dn
𝑖 q “ negp

Ź

𝑖

Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 q

“ Dis𝑖 negp
Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 q

“ Dis𝑖 Con𝑗𝑖 negp𝜏
n
𝑖 𝑗𝑖
q

“ Dis𝑖
Ź

𝑗𝑖
negp𝜏n𝑖 𝑗𝑖 q

“ Con
𝑗𝑖
𝑖Dis𝑖 negp𝜏n𝑖 𝑗𝑖 q

“
Ź

𝑗𝑖
𝑖

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q

Then by Lemma B.21, we have Σ $ negp𝜋 cdnq ďcdn
Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q
𝑗𝑖
𝑖

. Let 𝜏n
𝑖0
“ 𝜏n

𝑖
. Then we

have Σ $ negp𝜋 cdnq ďcdn
Ž

𝑖 negp𝜏
n
𝑖 𝑗 1
𝑖

q
𝑗 1
𝑖
P t 0, 𝑗𝑖 u

𝑖

| 0P t 𝑗 1
𝑖

𝑖
u

by S-Trans on negp𝜋 cdnq ďcdn

negp𝜏nq and S-AndOr11¨/S-AndOr12¨. Then by S-AndOr2 , we have Σ $ negp𝜋 cdnq ďcdn
Ź

𝑗 1
𝑖
P t 0, 𝑗𝑖 u

𝑖

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q, where by definition:

Ź

𝑗 1
𝑖
P t 0, 𝑗𝑖 u

𝑖

Ž

𝑖 negp𝜏
n
𝑖 𝑗𝑖
q “ Con

𝑗 1
𝑖
P t 0, 𝑗𝑖 u

𝑖Dis𝑖 negp𝜏n𝑖 𝑗𝑖 q

“ Dis𝑖
Ź

𝑗 1
𝑖
P t 0, 𝑗𝑖 u

negp𝜏n
𝑖 𝑗 1
𝑖

q

“ Dis𝑖 Con𝑗 1
𝑖
P t 0, 𝑗𝑖 u

negp𝜏n
𝑖 𝑗 1
𝑖

q

“ Dis𝑖 negp
Ž

𝑗 1
𝑖
P t 0, 𝑗𝑖 u

𝜏n
𝑖 𝑗 1
𝑖

q

“ negp
Ź

𝑖

Ž

𝑗 1
𝑖
P t 0, 𝑗𝑖 u

𝜏n
𝑖 𝑗 1
𝑖

q

“ negp
Ź

𝑖 p𝜏
n _ 𝜏dn𝑖 qq

Case S-Trans. neg

˜

S-Trans

Σ $ 𝜏cdn ďcdn 𝜏 1
cdn

Σ $ 𝜏 1
cdn
ďcdn 𝜋cdn

Σ $ 𝜏cdn ďcdn 𝜋cdn

¸

“

S-Trans

negpΣ $ 𝜏 1
cdn
ďcdn 𝜋cdnq negpΣ $ 𝜏cdn ďcdn 𝜏 1

cdn
q

Σ $ negp𝜋cdnq ďcdn negp𝜏cdnq

Case S-Hyp. neg

˜

S-Hyp

p𝜏cdn ď 𝜋cdnq P Σ

Σ $ 𝜏cdn ďcdn 𝜋cdn

¸

:

Since Σ is CDN-normalized, 𝜏cdn “
Ź

𝑖 𝜏
n
𝑖 and 𝜋 cdn “

Ž

𝑗 𝜋
n
𝑗 for some 𝜏n

𝑖

𝑖
and 𝜋n

𝑗

𝑗
.

By repeated applications of Theorem B.20 on Σ $
Ź

𝑖 𝜏
n
𝑖 ď

cdn Ž

𝑗 𝜋
n
𝑗 , we have Σ $

Ź

𝑗 negp𝜋
n
𝑗 q ď

cdn Ž

𝑖 negp𝜏
n
𝑖 q, i.e., Σ $ negp𝜋 cdnq ďcdn negp𝜏cdnq.

Case S-ClsSub. neg

˜

S-ClsSub

𝐶2 P Sp#𝐶1q

#𝐶1 ď
cdn

#𝐶2

¸

“ S-NegInv

S-ClsSub

𝐶2 P Sp#𝐶1q

#𝐶1 ď
cdn

#𝐶2

␣#𝐶2 ď
cdn ␣#𝐶1

Case S-ClsBot. neg

˜

S-ClsBot

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

#𝐶1 ^ #𝐶2 ď
cdn ␣J

¸

“

S-ClsBotNegInv

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

J ďcdn ␣#𝐶1 _␣#𝐶2

82 Lionel Parreaux and Chun Yin Chau

Case S-ClsBotNegInv. neg

˜

S-ClsBotNegInv

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

J ďcdn ␣#𝐶1 _␣#𝐶2

¸

“

S-ClsBot

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

#𝐶1 ^ #𝐶2 ď
cdn ␣J

Case S-FunDepth. neg

˜

S-FunDepth

◁Σ $ 𝜏0 ď 𝜏1 ◁Σ $ 𝜏2 ď 𝜏3

Σ $ 𝜏1 Ñ 𝜏2 ď
cdn 𝜏0 Ñ 𝜏3

¸

“

S-NegInv

S-FunDepth

◁Σ $ 𝜏0 ď 𝜏1 ◁Σ $ 𝜏2 ď 𝜏3

Σ $ 𝜏1 Ñ 𝜏2 ď
cdn 𝜏0 Ñ 𝜏3

Σ $ ␣p𝜏0 Ñ 𝜏3q ď
cdn ␣p𝜏1 Ñ 𝜏2q

Case S-FunMrg˛. neg

˜

S-FunMrg˛
𝜏1 Ñ 𝜏2^

˛ 𝜏3 Ñ 𝜏4ď
˛ cdnp𝜏1_

˛ 𝜏3q Ñ p𝜏2^
˛ 𝜏4q

¸

“

S-FunMrgNegInv˛
␣pp𝜏1_

˛ 𝜏3q Ñ p𝜏2^
˛ 𝜏4qqď

˛ cdn␣p𝜏1 Ñ 𝜏2q_
˛␣p𝜏3 Ñ 𝜏4q

Case S-FunMrgNegInv˛.

neg

˜

S-FunMrgNegInv˛
␣pp𝜏1_

˛ 𝜏3q Ñ p𝜏2^
˛ 𝜏4qqď

˛ cdn␣p𝜏1 Ñ 𝜏2q_
˛␣p𝜏3 Ñ 𝜏4q

¸

“

S-FunMrg˛
𝜏1 Ñ 𝜏2^

˛ 𝜏3 Ñ 𝜏4ď
˛ cdnp𝜏1_

˛ 𝜏3q Ñ p𝜏2^
˛ 𝜏4q

Case S-RcdDepth. neg

˜

S-RcdDepth

◁Σ $ 𝜏1 ď 𝜏2

Σ $ t𝑥 : 𝜏1 u ď
cdn t𝑥 : 𝜏2 u

¸

“

S-NegInv

S-RcdDepth

◁Σ $ 𝜏1 ď 𝜏2

Σ $ t𝑥 : 𝜏1 u ď
cdn t𝑥 : 𝜏2 u

Σ $ ␣t𝑥 : 𝜏2 u ď
cdn ␣t𝑥 : 𝜏1 u

Case S-RcdMrg˛. neg

˜

S-RcdMrg˛
t𝑥 : 𝜏1_

˛ 𝜏2 uď
˛ cdnt𝑥 : 𝜏1 u_

˛ t𝑥 : 𝜏2 u

¸

“

S-RcdMrgNegInv˛
␣t𝑥 : 𝜏1 u^

˛␣t𝑥 : 𝜏2 uď
˛ cdn␣t𝑥 : 𝜏1_

˛ 𝜏2 u

Case S-RcdMrgNegInv˛.

neg

˜

S-RcdMrgNegInv˛
␣t𝑥 : 𝜏1 u^

˛␣t𝑥 : 𝜏2 uď
˛ cdn␣t𝑥 : 𝜏1_

˛ 𝜏2 u

¸

“

S-RcdMrg˛
t𝑥 : 𝜏1_

˛ 𝜏2 uď
˛ cdnt𝑥 : 𝜏1 u_

˛ t𝑥 : 𝜏2 u

Case S-RcdTop. neg
ˆ

S-RcdTop

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

J ď t𝑥 : 𝜏1 u _ 𝜏

˙

“

S-RcdTopNegInv

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

␣t𝑥 : 𝜏1 u ^ ␣𝜏 ď
˛␣J

Case S-RcdTopNegInv. neg
ˆ

S-RcdTopNegInv

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

␣t𝑥 : 𝜏1 u ^ ␣𝜏 ď
˛␣J

˙

“

S-RcdTop

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

J ď t𝑥 : 𝜏1 u _ 𝜏

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 83

Then 𝜏 “ ␣𝜏 1 and 𝜋 “ ␣𝜋 1 for some 𝜏 1 and 𝜋 1. Then by IH on the premise, we have cdnpΣq $
cdnp𝜋 1q ďcdn cdnp𝜏 1q. The result follows from negpcdnpΣq $ cdnp𝜋 1q ďcdn cdnp𝜏 1qq.

Case S-AndOr11¨. Then 𝜋 “ 𝜏 _ 𝜋 1 for some 𝜋 1. Then cdnp𝜋q “ dispcdnp𝜏q, cdnp𝜋 1qq. Let
cdnp𝜏q “

Ź

𝑖 𝜏
dn
𝑖 and cdnp𝜋 1q “

Ź

𝑗 𝜋
dn
𝑗 . Then dispcdnp𝜏q, cdnp𝜋 1qq “

Ź

𝑖, 𝑗 p𝜏
dn
𝑖 _ 𝜋dn

𝑗 q.

By S-AndOr1¨, we have 𝜏dn
𝑖
ďcdn 𝜏dn

𝑖
_ 𝜋dn

𝑗

𝑖, 𝑗

, which imply 𝜏dn
𝑖
ďcdn

Ź

𝑗 p𝜏
dn
𝑖
_ 𝜋dn

𝑗
q
𝑖

by S-

AndOr2 , which imply

Ź

𝑖 𝜏
dn
𝑖 ďcdn Ź

𝑖, 𝑗 p𝜏
dn
𝑖 _ 𝜋dn

𝑗 q by Lemma B.22 , i.e., cdnp𝜏q ďcdn

cdnp𝜋q.
Case S-AndOr11 . Then 𝜏 “ 𝜋 ^ 𝜏 1 for some 𝜏 1. Then cdnp𝜏q “ conpcdnp𝜋q, cdnp𝜏 1qq “

cdnp𝜋q ^ cdnp𝜏 1q. Let cdnp𝜏 1q “
Ź

𝑖 𝜏
dn
𝑖 and cdnp𝜋q “

Ź

𝑗 𝜋
dn
𝑗 . By S-AndOr1 , we have

Ź

𝑗 𝜋
dn
𝑗 ^

Ź

𝑖 𝜏
dn
𝑖 ďcdn Ź

𝑗 𝜋
dn
𝑗 , i.e., cdnp𝜏q ďcdn cdnp𝜋q.

Cases S-AndOr12˛. Similar to the cases above.

Case S-AndOr2¨. Then 𝜏 “ 𝜏1 _ 𝜏2 for some 𝜏1 and 𝜏2. By IH on the premises, we have cdnpΣq $
cdnp𝜏1q ď

cdn cdnp𝜋q and cdnpΣq $ cdnp𝜏2q ď
cdn cdnp𝜋q. Then by Corollary B.73, we have

cdnpΣq $ dispcdnp𝜏1q, cdnp𝜏2qq ď
cdn cdnp𝜋q, i.e., cdnpΣq $ cdnp𝜏1 _ 𝜏2q ď

cdn cdnp𝜋q.
Case S-AndOr2 . Then 𝜋 “ 𝜋1 ^ 𝜋2 for some 𝜋1 and 𝜋2. By IH on the premises, we have

cdnpΣq $ cdnp𝜏q ďcdn cdnp𝜋1q and cdnpΣq $ cdnp𝜏q ďcdn cdnp𝜋2q. Let cdnp𝜋1q “
Ź

𝑖 𝜋
dn
1𝑖 and cdnp𝜋2q “

Ź

𝑗 𝜋
dn
2𝑗 . By Lemma B.21, we have cdnpΣq $ cdnp𝜏q ďcdn 𝜋dn

1𝑖

𝑖

and

cdnpΣq $ cdnp𝜏q ďcdn 𝜋dn
2𝑗

𝑗

. Then by S-AndOr2 , we have cdnpΣq $ cdnp𝜏q ďcdn Ź

𝑖 𝜋
dn
1𝑖 ^

Ź

𝑗 𝜋
dn
2𝑗 “ cdnp𝜋1 ^ 𝜋2q.

Case S-Distrib¨. Then 𝜏 “ 𝜏0 ^ p𝜏1 _ 𝜏2q and 𝜋 “ p𝜏0 ^ 𝜏1q _ p𝜏0 ^ 𝜏2q for some 𝜏0 and 𝜏1 and 𝜏2.

Let cdnp𝜏0q “
Ź

𝑘 𝜏
dn
0𝑘
, cdnp𝜏1q “

Ź

𝑖 𝜏
dn
1𝑖 , and cdnp𝜏2q “

Ź

𝑗 𝜏
dn
2𝑗 . Then we have:

cdnp𝜏q “ conpcdnp𝜏0q, dispcdnp𝜏1q, cdnp𝜏2qqq

“
Ź

𝑘 𝜏
dn
0𝑘
^

Ź

𝑖, 𝑗 p𝜏
dn
1𝑖 _ 𝜏dn

2𝑗 q

cdnp𝜋q “ dispconpcdnp𝜏0q, cdnp𝜏1qq, conpcdnp𝜏0q, cdnp𝜏2qqq

“ disp
Ź

𝑘 𝜏
dn
0𝑘
^

Ź

𝑖 𝜏
dn
1𝑖 ,

Ź

𝑘 𝜏
dn
0𝑘
^

Ź

𝑗 𝜏
dn
2𝑗 q

“ disp
Ź

𝑖1 P t 0𝑘
𝑘
,1𝑖

𝑖
u
𝜏dn
𝑖1 ,

Ź

𝑗 1 P t 0𝑘
𝑘
,2𝑗

𝑗
u
𝜏dn
𝑗 1 q

“
Ź

𝑖1 P t 0𝑘
𝑘
,1𝑖

𝑖
u, 𝑗 1 P t 0𝑘

𝑘
,2𝑗

𝑗
u
p𝜏dn

𝑖1 _ 𝜏dn
𝑗 1 q

For each 𝑖 1 P t 0𝑘
𝑘
, 1𝑖

𝑖
u, 𝑗 1 P t 0𝑘

𝑘
, 2 𝑗

𝑗
u, we have the following: If 𝑖 1 “ 0𝑘1 for some 𝑘1,

then we have 𝜏dn
0𝑘1

ďcdn 𝜏dn
0𝑘1

_ 𝜏dn
𝑗 1 by S-AndOr1¨. If 𝑗 1 “ 0𝑘2 for some 𝑘2, then we have

𝜏dn
0𝑘2

ďcdn 𝜏dn
𝑖1 _ 𝜏dn

0𝑘2

by S-AndOr1¨. Otherwise, we have 𝜏dn
1𝑖 _ 𝜏dn

2𝑗 ď
cdn 𝜏dn

1𝑖 _ 𝜏dn
2𝑗 by S-Refl.

Thenwe have

Ź

𝑘 𝜏
dn
0𝑘
^

Ź

𝑖, 𝑗 p𝜏
dn
1𝑖 _ 𝜏dn

2𝑗 q ď
cdn Ź

𝑖1 P t 0𝑘
𝑘
,1𝑖

𝑖
u, 𝑗 1 P t 0𝑘

𝑘
,2𝑗

𝑗
u
p𝜏dn

𝑖1 _ 𝜏dn
𝑗 1 q by LemmaB.22 ,

commutativity, and idempotence, i.e., cdnp𝜏0 ^ p𝜏1 _ 𝜏2qq ď
cdn cdnpp𝜏0 ^ 𝜏1q _ p𝜏0 ^ 𝜏2qq.

Case S-Distrib . Then 𝜏 “ p𝜏0 _ 𝜏1q ^ p𝜏0 _ 𝜏2q and 𝜋 “ 𝜏0 _ p𝜏1 ^ 𝜏2q for some 𝜏0 and 𝜏1

and 𝜏2. Let cdnp𝜏0q “
Ź

𝑘 𝜏
dn
0𝑘
, cdnp𝜏1q “

Ź

𝑖 𝜏
dn
1𝑖 , and cdnp𝜏2q “

Ź

𝑗 𝜏
dn
2𝑗 . Then we have

cdnpp𝜏0 _ 𝜏1q ^ p𝜏0 _ 𝜏2qq “
Ź

𝑘,𝑖 p𝜏
dn
0𝑘
_ 𝜏cdn

1𝑖 q ^ p𝜏
dn
0𝑘
_ 𝜏dn

2𝑗 q and cdnp𝜏0 _ p𝜏1 ^ 𝜏2qq “
Ź

𝑘,𝑖 p𝜏
dn
0𝑘
_ 𝜏cdn

1𝑖 q ^ p𝜏
dn
0𝑘
_ 𝜏dn

2𝑗 q. Then we have cdnpp𝜏0_𝜏1q^p𝜏0_𝜏2qq ď
cdn cdnp𝜏0_p𝜏1^

𝜏2qq by S-Refl.

Case S-Trans. By IH on the premises, followed by S-Trans.

84 Lionel Parreaux and Chun Yin Chau

Case S-Hyp. Then the premise of the rule is p𝜏 ď 𝜋q P Σ. Let cdnp␣𝜏 _ 𝜋q “
Ź

𝑖

Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 . Then

we have cdnpJ ď
Ž

𝑗𝑖
𝜏n
𝑖 𝑗𝑖
q Ď cdnpΣq

𝑖
. For each 𝑖 , we have:

Case D𝛼. t𝛼, ␣𝛼 u Ď t𝜏n
𝑖 𝑗𝑖

𝑗𝑖
u. Then we have J ďcdn 𝛼 _␣𝛼 by S-Compl¨ and 𝛼 _␣𝛼 ďcdn

Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 by S-AndOr1¨ for some 𝛼 , which imply J ďcdn Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 by S-Trans.

Case pD𝛼. 𝛼 P t𝜏n
𝑖 𝑗𝑖

𝑗𝑖
uq and p@𝛼 P t𝜏n

𝑖 𝑗𝑖

𝑗𝑖
u.␣𝛼 R t𝜏n

𝑖 𝑗𝑖

𝑗𝑖
uq. Then p

Ź

𝑗𝑖 |𝜏
n
𝑖 𝑗𝑖
‰𝛼 negp𝜏

n
𝑖 𝑗𝑖
q ď 𝛼q P

cdnpΣq for some 𝛼 and we have cdnpΣq $
Ź

𝑗𝑖 |𝜏
n
𝑖 𝑗𝑖
‰𝛼 negp𝜏

n
𝑖 𝑗𝑖
q ďcdn 𝛼 by S-Hyp, which

implies cdnpΣq $ J ďcdn Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 by Theorem B.20.

Case pD𝛼.␣𝛼 P t𝜏n
𝑖 𝑗𝑖

𝑗𝑖
uq and p@𝛼 P t𝜏n

𝑖 𝑗𝑖

𝑗𝑖
u.␣𝛼 R t𝜏n

𝑖 𝑗𝑖

𝑗𝑖
uq. Then p𝛼 ď

Ž

𝑗𝑖 |𝜏
n
𝑖 𝑗𝑖
‰␣𝛼 𝜏

n
𝑖 𝑗𝑖
q P

cdnpΣq for some 𝛼 and we have cdnpΣq $ 𝛼 ďcdn Ž

𝑗𝑖 |𝜏
n
𝑖 𝑗𝑖
‰␣𝛼 𝜏

n
𝑖 𝑗𝑖

by S-Hyp, which implies

cdnpΣq $ J ďcdn Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 by Theorem B.20.

Case @𝛼. t𝛼, ␣𝛼 u X t𝜏n
𝑖 𝑗𝑖

𝑗𝑖
u “ H. Then pJ ď

Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 q P cdnpΣq and we have cdnpΣq $

J ďcdn Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 by S-Hyp.

Then cdnpΣq $ J ďcdn
Ž

𝑗𝑖
𝜏n
𝑖 𝑗𝑖

𝑖
imply cdnpΣq $ J ďcdn Ź

𝑖

Ž

𝑗𝑖
𝜏n𝑖 𝑗𝑖 by S-AndOr2 , i.e.,

cdnpΣq $ J ďcdn cdnp␣𝜏 _ 𝜋q. Let cdnp𝜏q “
Ź

𝑝

Ž

𝑞𝑝
𝜏 1

n
𝑝𝑞𝑝

and cdnp𝜋q “
Ź

𝑟

Ž

𝑠𝑟
𝜋 1

n
𝑟𝑠𝑟

.

Then by definition, cdnp␣𝜏 _ 𝜋q “
Ź

𝑞𝑝
𝑝 , 𝑟 p

Ž

𝑝 negp𝜏
1n
𝑝𝑞𝑝
q _

Ž

𝑠𝑟
𝜋 1

n
𝑟𝑠𝑟
q. cdnpΣq $ J ďcdn

Ź

𝑞𝑝
𝑝 , 𝑟 p

Ž

𝑝 negp𝜏
1n
𝑝𝑞𝑝
q_

Ž

𝑠𝑟
𝜋 1

n
𝑟𝑠𝑟
q implies cdnpΣq $ J ďcdn

Ž

𝑝 negp𝜏 1
n
𝑝𝑞𝑝
q _

Ž

𝑠𝑟
𝜋 1n𝑟𝑠𝑟

𝑞𝑝
𝑝 , 𝑟

by LemmaB.21, which imply cdnpΣq $
Ź

𝑝 𝜏
1n
𝑝𝑞𝑝

ďcdn
Ž

𝑠𝑟
𝜋 1n𝑟𝑠𝑟

𝑞𝑝
𝑝 , 𝑟

by TheoremB.20, which

imply cdnpΣq $
Ź

𝑝 𝜏
1n
𝑝𝑞𝑝

ďcdn
Ź

𝑟

Ž

𝑠𝑟
𝜋 1n𝑟𝑠𝑟

𝑞𝑝
𝑝

by S-AndOr2 , which imply cdnpΣq $
Ź

𝑝

Ž

𝑞𝑝
𝜏 1

n
𝑝𝑞𝑝

ďcdn Ź

𝑟

Ž

𝑠𝑟
𝜋 1

n
𝑟𝑠𝑟

by repeated applications of S-DistribCdn¨ and commuta-

tivity i.e., cdnpΣq $ cdnp𝜏q ďcdn cdnp𝜋q.
Case S-FunDepth. Then 𝜏 “ 𝜏1 Ñ 𝜏2 and 𝜋 “ 𝜋1 Ñ 𝜋2 for some 𝜏1, 𝜏2, 𝜋1, 𝜋2. The premises of the

rule are ◁Σ $ 𝜋1 ď 𝜏1 and ◁Σ $ 𝜏2 ď 𝜋2. Each application of S-Hyp in the subderivations

of the premises has a premise 𝐻 P ◁Σ for some 𝐻 “ p𝜏 1 ď 𝜋 1q, which implies either

▷𝐻 P Σ or 𝐻 P Σ. If ▷𝐻 P Σ, we have ▷𝐻 P cdnpΣq, which implies 𝐻 P ◁cdnpΣq, which
implies ◁cdnpΣq $ 𝐻 by S-Hyp. If 𝐻 P Σ, we have cdnpΣq $ cdnp𝜏 1q ďcdn cdnp𝜋 1q by
the same reasoning as case S-Hyp, which implies cdnpΣq $ 𝜏 1 ď 𝜋 1 by Lemma B.66 and

Lemma B.67, which implies ◁cdnpΣq $ 𝜏 1 ď 𝜋 1. Then by replacing each application of S-Hyp

for ◁Σ $ 𝐻 in the subderivations of the premises with the derivation for ◁cdnpΣq $ 𝐻 ,

we obtain derivations for ◁cdnpΣq $ 𝜋1 ď 𝜏1 and ◁cdnpΣq $ 𝜏2 ď 𝜋2, which imply

cdnpΣq $ 𝜏1 Ñ 𝜏2 ď
cdn 𝜋1 Ñ 𝜋2 by S-FunDepth.

Case S-RcdDepth. Then 𝜏 “ t𝑥 : 𝜏1 u and 𝜋 “ t𝑥 : 𝜋1 u for some 𝜏1, 𝜋1, and 𝑥 . The premise of

the rule are ◁Σ $ 𝜏1 ď 𝜋1. Each application of S-Hyp in the subderivations of the premise has

a premise 𝐻 P ◁Σ for some 𝐻 “ p𝜏 1 ď 𝜋 1q, which implies either ▷𝐻 P Σ or 𝐻 P Σ. If ▷𝐻 P Σ,
we have ▷𝐻 P cdnpΣq, which implies𝐻 P ◁cdnpΣq, which implies ◁cdnpΣq $ 𝐻 by S-Hyp. If

𝐻 P Σ, we have cdnpΣq $ cdnp𝜏 1q ďcdn cdnp𝜋 1q by the same reasoning as case S-Hyp, which

implies cdnpΣq $ 𝜏 1 ď 𝜋 1 by Lemma B.66 and Lemma B.67, which implies◁cdnpΣq $ 𝜏 1 ď 𝜋 1.

Then by replacing each application of S-Hyp for ◁Σ $ 𝐻 in the subderivations of the premise

with the derivation for ◁cdnpΣq $ 𝐻 , we obtain a derivation for ◁cdnpΣq $ 𝜏1 ď 𝜋1, which

imply cdnpΣq $ t𝑥 : 𝜏1 u ď
cdn t𝑥 : 𝜋1 u by S-RcdDepth.

Other cases. Immediate since they are already in the desired form.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 85

□

Lemma B.72. If Σ $
Ź

𝑖 𝜏
dn
1𝑖 ď

cdn 𝜏dn and Σ $
Ź

𝑗 𝜏
dn
2𝑗 ď

cdn 𝜏dn, then Σ $
Ź

𝑖, 𝑗 p𝜏
dn
1𝑖 _ 𝜏dn

2𝑗 q ď
cdn

𝜏dn.

Proof. For each 𝑖 , we have

S-DistribCdn

S-AndOr12¨
𝜏dn

1𝑖 ď
cdn 𝜏dn _ 𝜏dn

1𝑖

S-Trans

Ź

𝑗 𝜏
dn
2𝑗
ďcdn 𝜏dn

S-AndOr11¨
𝜏dn ďcdn 𝜏dn _ 𝜏dn

1𝑖
Ź

𝑗 𝜏
dn
2𝑗
ďcdn 𝜏dn _ 𝜏dn

1𝑖

(i)

Ź

𝑗 p𝜏
dn
1𝑖
_ 𝜏dn

2𝑗
q ďcdn 𝜏dn _ 𝜏dn

1𝑖

Then we have

S-Trans

Lemma B.22

(i)

𝑖

Ź

𝑖, 𝑗 p𝜏
dn
1𝑖
_ 𝜏dn

2𝑗
q ďcdn Ź

𝑖 p𝜏
dn _ 𝜏dn

1𝑖
q

S-DistribCdn

S-Refl

𝜏dn ďcdn 𝜏dn
Ź

𝑖 𝜏
dn
1𝑖
ďcdn 𝜏dn

Ź

𝑖 p𝜏
dn _ 𝜏dn

1𝑖
q ďcdn 𝜏dn

Ź

𝑖, 𝑗 p𝜏
dn
1𝑖
_ 𝜏dn

2𝑗
q ďcdn 𝜏cdn

□

Corollary B.73. If Σ $
Ź

𝑖 𝜏
dn
1𝑖 ď

cdn 𝜏cdn and Σ $
Ź

𝑗 𝜏
dn
2𝑗 ď

cdn 𝜏cdn, then Σ $
Ź

𝑖, 𝑗 p𝜏
dn
1𝑖 _ 𝜏dn

2𝑗 q

ďcdn 𝜏cdn. In other words, if Σ $ 𝜏cdn
1
ďcdn 𝜏cdn and Σ $ 𝜏cdn

2
ďcdn 𝜏cdn, then Σ $ disp𝜏cdn

1
, 𝜏cdn

2
q

ďcdn 𝜏cdn.

Proof. We have 𝜏cdn “
Ź

𝑘 𝜏
dn
0𝑘

for some 𝜏dn
0𝑘

𝑘

. By Lemma B.21, we have Σ $
Ź

𝑖 𝜏
dn
1𝑖
ďcdn 𝜏dn

0𝑘

𝑘

and Σ $
Ź

𝑗 𝜏
dn
2𝑗
ďcdn 𝜏dn

0𝑘

𝑘

, which imply Σ $
Ź

𝑖, 𝑗 p𝜏
dn
1𝑖
_ 𝜏dn

2𝑗
q ďcdn 𝜏dn

0𝑘

𝑘

by Lemma B.72, which

imply Σ $
Ź

𝑖, 𝑗 p𝜏
dn
1𝑖 _ 𝜏dn

2𝑗 q ď
cdn Ź

𝑘 𝜏
dn
0𝑘
“ 𝜏cdn by S-AndOr2 . □

B.10.2 DCN-normalized type forms and derivations.

Definition B.74 (DCN-normalized form). The syntax of DCN-normalized (disjunction-conjunction-

negation) form is presented in Figure 18.We say that a DCN-normalized form 𝜏dcn is complement-free

if 𝜏dcn “
Ž

𝑖

Ź

𝑗 P 1..𝑛𝑖
𝜏n𝑖 𝑗 , where @ 𝑗𝑖 P 1..𝑛𝑖

𝑖
.J Ę

Ž

𝑖 𝜏
n
𝑖 𝑗𝑖
.

𝜏0 ::“ 𝜏 Ñ 𝜏 | t𝑥 : 𝜏 u | #𝐶 | 𝛼 | K

𝜏n ::“ 𝜏0 | ␣𝜏0

𝜏cn ::“ 𝜏n | 𝜏n ^ 𝜏cn

𝜏dcn ::“ 𝜏cn | 𝜏cn _ 𝜏dcn

Fig. 18. Syntax of DCN-normalized form.

In the proofs below, we sometimes abuse the notations 𝜏cn
1
^ 𝜏cn

2
and 𝜏dcn

1
_ 𝜏dcn

2
to mean their

properly associated versions, i.e., conp𝜏cn
1
, 𝜏cn

2
q and disp𝜏dcn

1
, 𝜏dcn

2
q in Figure 20 respectively.

Definition B.75 (DCN-normalized derivations). The DCN-normalized subtyping relation ďdcn
is

defined in Figure 19. The following are the difference compared to the full subtyping relation ď in

Figure 4:

‚ On the top level, the relation is restricted to Σ $ 𝜏dcn ď 𝜏dcn.

‚ On the top level, all occurrences of J are replaced with ␣K.

86 Lionel Parreaux and Chun Yin Chau

Σ $ 𝜏dcn ďdcn 𝜏dcn 𝜏dcn ďdcn 𝜏dcn ◁Ξ “ Ξ ◁pΣ ¨ 𝐻q “ ◁Σ ¨ 𝐻 ◁pΣ ¨ ▷𝐻q “ ◁Σ ¨ 𝐻

S-Refl

𝜏dcn ďdcn 𝜏dcn

S-ToB¨

𝜏dcn ďdcn ␣K

S-ToB

K ďdcn 𝜏dcn

S-Compl¨

␣K ďdcn 𝜏0 _␣𝜏0

S-Compl

𝜏0 ^␣𝜏0 ďdcn K

S-NegInv

Σ $ 𝜏0
1
ďdcn 𝜏0

2

Σ $ ␣𝜏0
2
ďdcn ␣𝜏0

1

S-AndOr1¨

𝑆 Ď t 𝑖 u
Ž

𝑖1 P𝑆 𝜏
cn
𝑖1 ď

dcn Ž

𝑖 𝜏
cn
𝑖

S-AndOr1

𝑆 Ď t 𝑖 u
Ź

𝑖 𝜏
n
𝑖
ďdcn Ź

𝑖1 P𝑆 𝜏
n
𝑖1

S-AndOr2¨

Σ $ 𝜏cd
𝑖
ďdcn 𝜏dcn

𝑖

Σ $
Ž

𝑖 𝜏
cd
𝑖
ďdcn 𝜏dcn

S-AndOr2

Σ $ 𝜏dcn ďdcn 𝜏n
𝑖

𝑖

Σ $ 𝜏dcn ďdcn Ź

𝑖 𝜏
n
𝑖

S-DistribDcn¨

Σ $ 𝜋dcn ďdcn 𝜏n Σ $ 𝜋dcn ďdcn Ž

𝑖 𝜏
cn
𝑖

Σ $ 𝜋dcn ďdcn Ž

𝑖 p𝜏
n ^ 𝜏cn

𝑖
q

S-DistribDcn

Σ $ 𝜋dcn ďdcn 𝜏n
𝑖
_ 𝜏dcn

𝑖

Σ $ 𝜋dcn ďdcn p
Ź

𝑖 𝜏
n
𝑖
q _ 𝜏dcn

S-Trans

Σ $ 𝜏dcn
0

ďdcn 𝜏dcn
1

Σ $ 𝜏dcn
1

ďdcn 𝜏dcn
2

Σ $ 𝜏dcn
0

ďdcn 𝜏dcn
2

S-Weaken

𝐻

Σ $ 𝐻

S-Assum

Σ¨▷𝐻 $ 𝐻

Σ $ 𝐻

S-Hyp

𝐻 P Σ

Σ $ 𝐻

S-ClsSub

𝐶2 P Sp#𝐶1q

#𝐶1 ď
dcn

#𝐶2

S-ClsBot

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

#𝐶1 ^ #𝐶2 ď
dcn K

S-ClsBotNegInv

𝐶1 R Sp#𝐶2q 𝐶2 R Sp#𝐶1q

K ďdcn ␣#𝐶1 _␣#𝐶2

S-FunDepth

◁Σ $ 𝜏0 ď 𝜏1 ◁Σ $ 𝜏2 ď 𝜏3

Σ $ 𝜏1 Ñ 𝜏2 ď
dcn 𝜏0 Ñ 𝜏3

S-FunMrg˛

𝜏1 Ñ 𝜏2 ^
˛ 𝜏3 Ñ 𝜏4ď

˛dcnp𝜏1 _
˛ 𝜏3q Ñ p𝜏2 ^

˛ 𝜏4q

S-FunMrgNegInv˛

␣pp𝜏1 _
˛ 𝜏3q Ñ p𝜏2 ^

˛ 𝜏4qqď
˛dcn␣p𝜏1 Ñ 𝜏2q _

˛ ␣p𝜏3 Ñ 𝜏4q

S-RcdDepth

◁Σ $ 𝜏1 ď 𝜏2

Σ $ t𝑥 : 𝜏1 u ď
dcn t𝑥 : 𝜏2 u

S-RcdMrg˛

t𝑥 : 𝜏1 _
˛ 𝜏2 uď

˛dcnt𝑥 : 𝜏1 u _
˛ t𝑥 : 𝜏2 u

S-RcdMrgNegInv˛

␣t𝑥 : 𝜏1 u ^
˛ ␣t𝑥 : 𝜏2 uď

˛dcn␣t𝑥 : 𝜏1 _
˛ 𝜏2 u

S-RcdTop

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

K ďdcn t𝑥 : 𝜏1 u _ 𝜏

S-RcdTopNegInv

𝜏 P tt𝑦‰𝑥 : 𝜏2 u, 𝜏2 Ñ 𝜏3 u

␣t𝑥 : 𝜏1 u ^ ␣𝜏 ď
dcn K

Fig. 19. DCN-normalized subtyping rules.

‚ The rule S-Distrib˛ is replaced by S-DistribDcn˛, which requires an application of S-

Distrib˛ to be preceeded immediately by an application of S-AndOr2 in a transitivity

chain by merging the two rules into one.

‚ The negated-inverted versions of the algebraic rules are added.

Notice that the premises of S-FunDepth and S-RcdDepth still refer to the full ď relation, even

though their conclusions are about the ďdcn
relation.

The DCN-normalized boolean subtyping relation Ďdcn
is defined similarly.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 87

Notice that Lemma B.21 Lemma B.22 extends to DCN-normalized derivations. In the proofs below,

we also make use of extended versions of commutativity (𝜏1 _
˛ 𝜏2p_

˛𝜏3q ď
dcn 𝜏2 _

˛ 𝜏1p_
˛𝜏3q) and

idempotence (𝜏1 _
˛ 𝜏1p_

˛𝜏2q ď
dcn 𝜏1p_

˛𝜏2q).

Definition B.76 (DCN-normalized form translation). The translation from arbitrary types into

DCN-normalized types dcnp¨q is defined in Figure 20.

dcnp𝜏q : 𝜏dcn

dcnp𝜏0q “ 𝜏0

dcnpJq “ ␣K

dcnp␣𝜏q “ negpdcnp𝜏qq

dcnp𝜏1 ^ 𝜏2q “ conpdcnp𝜏1q, dcnp𝜏2qq

dcnp𝜏1 _ 𝜏2q “ dispdcnp𝜏1q, dcnp𝜏2qq

negp𝜏dcnq : 𝜏dcn

negp𝜏0q “ ␣𝜏0

negp␣𝜏0q “ 𝜏0

negp𝜏n
1
^ 𝜏cn

2
q “ dispnegp𝜏n

1
q, negp𝜏cn

2
qq

negp𝜏cn
1
_ 𝜏dcn

2
q “ conpnegp𝜏cn

1
q, negp𝜏dcn

2
qq

conp𝜏dcn, 𝜏dcnq : 𝜏dcn

conp𝜏cn
11
_ 𝜏dcn

12
, 𝜏dcn

2
q “ dispconp𝜏cn

11
, 𝜏dcn

2
q, conp𝜏dcn

12
, 𝜏dcn

2
qq

conp𝜏n
11
^ 𝜏cn

12
, 𝜏dcn

2
q “ conp𝜏n

11
, conp𝜏cn

12
, 𝜏dcn

2
qq

conp𝜏n
1
, 𝜏cn

21
_ 𝜏dcn

22
q “ dispconp𝜏n

1
, 𝜏cn

21
q, conp𝜏n

1
, 𝜏dcn

22
qq

conp𝜏n
1
, 𝜏cn

2
q “ 𝜏n

1
^ 𝜏cn

2

Con𝑖 P𝑚..𝑛 𝜏
dcn
𝑖 “ conp𝜏dcn𝑚 , Con𝑖 P𝑚`1..𝑛 𝜏

dcn
𝑖 q

Con𝑖 P𝑛..𝑛 𝜏dcn𝑖 “ 𝜏dcn𝑛

disp𝜏dcn, 𝜏dcnq : 𝜏dcn

disp𝜏cn
11
_ 𝜏dcn

12
, 𝜏dcn

2
q “ disp𝜏cn

11
, disp𝜏dcn

12
, 𝜏dcn

2
qq

disp𝜏cn
1
, 𝜏dcn

2
q “ 𝜏cn

1
_ 𝜏dcn

2

Dis𝑖 P𝑚..𝑛 𝜏
dcn
𝑖 “ disp𝜏dcn𝑚 , Dis𝑖 P𝑚`1..𝑛 𝜏

dcn
𝑖 q

Dis𝑖 P𝑛..𝑛 𝜏dcn𝑖 “ 𝜏dcn𝑛

Fig. 20. DCN-normalized form translation

Lemma B.77. Σ $ 𝜏dcn
1
ď 𝜏dcn

2
if Σ $ 𝜏dcn

1
ďdcn 𝜏dcn

2
. Similarly, 𝜏dcn

1
Ď 𝜏dcn

2
if 𝜏dcn

1
Ďdcn 𝜏dcn

2
.

Proof. It is easy to see that every rule of ďdcn
is admissible in ď. □

Lemma B.78. For any 𝜏 , dcnp𝜏q – 𝜏 .

88 Lionel Parreaux and Chun Yin Chau

Proof. By straightforward induction. □

Definition B.79 (DCN-normalized subtyping context). Σ is DCN-normalized if for all 𝐻 P Σ, either
one of the following is true:

(1) 𝐻 “ p
Ź

𝑖 𝜏
n
𝑖 ď Kq, where @𝛼. t𝛼, ␣𝛼 u X t𝜏

n
𝑖

𝑖
u “ H;

(2) 𝐻 “ p𝛼 ď
Ž

𝑖 𝜏
n
𝑖 q, where the following are true:

‚ t𝛼, ␣𝛼 u X t𝜏n
𝑖

𝑖
u “ H;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u.␣𝛽 R t𝜏n

𝑖

𝑖
u;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u. Dp

Ź

𝑗 𝜋
n
𝑗 ď 𝛽q P Σ. t𝜋n

𝑗

𝑗
u “ t negp𝜏n

𝑖
q
𝑖 |𝜏n

𝑖
‰𝛽

, 𝛼 u;

‚ @␣𝛽 P t𝜏n
𝑖

𝑖
u. Dp𝛽 ď

Ž

𝑗 𝜋
n
𝑗 q P Σ. t𝜋n

𝑗

𝑗
u “ t𝜏n

𝑖

𝑖 |𝜏n
𝑖
‰␣𝛽

, ␣𝛼 u;

(3) 𝐻 “ p
Ź

𝑖 𝜏
n
𝑖 ď 𝛼q, where the following are true:

‚ t𝛼, ␣𝛼 u X t𝜏n
𝑖

𝑖
u “ H;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u.␣𝛽 R t𝜏n

𝑖

𝑖
u;

‚ @𝛽 P t𝜏n
𝑖

𝑖
u. Dp𝛽 ď

Ž

𝑗 𝜋
n
𝑗 q P Σ. t𝜋n

𝑗

𝑗
u “ t negp𝜏n

𝑖
q
𝑖 |𝜏n

𝑖
‰𝛽

, 𝛼 u;

‚ @␣𝛽 P t𝜏n
𝑖

𝑖
u. Dp

Ź

𝑗 𝜋
n
𝑗 ď 𝛽q P Σ. t𝜋n

𝑗

𝑗
u “ t𝜏n

𝑖

𝑖 |𝜏n
𝑖
‰␣𝛽

, ␣𝛼 u;

dcnpΣq : Σ

dcnpΣq “ dcnpdcnp𝜏 ^␣𝜋q ď Kq
p𝜏ď𝜋q P Σ

¨ ▷𝐻
▷𝐻 P Σ

dcnp𝜏dcn ď Kq : Σ

dcnp
Ž

𝑖

Ź

𝑗𝑖
𝜏n
𝑖 𝑗𝑖
ď Kq “ dcnp

Ź

𝑗𝑖
𝜏n
𝑖 𝑗𝑖
ď Kq

𝑖

dcnp
Ź

𝑖 𝜏
n
𝑖
ď Kq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

𝜖 if D𝛼. t𝛼, ␣𝛼 u Ď t𝜏n
𝑖

𝑖
u

p𝛼 ď
Ž

𝑖 |𝜏n
𝑖
‰𝛼 negp𝜏n

𝑖
qq
𝛼 P t𝜏n

𝑖

𝑖
u
¨ p

Ź

𝑖 |𝜏n
𝑖
‰␣𝛼 𝜏

n
𝑖
ď 𝛼q

𝛼 |␣𝛼 P t𝜏n
𝑖

𝑖
u

if pD𝛼. t𝛼, ␣𝛼 u X t𝜏n
𝑖

𝑖
u ‰ Hq and p@𝛼 P t𝜏n

𝑖

𝑖
u.␣𝛼 R t𝜏n

𝑖

𝑖
uq

p
Ź

𝑖 𝜏
n
𝑖
ď Kq if @𝛼. t𝛼, ␣𝛼 u X t𝜏n

𝑖

𝑖
u “ H

Fig. 21. DCN-normalized subtyping context translation

Lemma B.80. For any Σ, we have Σ (dcnpΣq and dcnpΣq (Σ.

Proof. Straightforward, notably making use of Theorem B.20 and Lemma B.78. □

Lemma B.81. If Σ $ 𝜏 ď 𝜋 , then dcnpΣq $ dcnp𝜏q ďdcn dcnp𝜋q. Similarly, if 𝜏 Ď 𝜋 , then

dcnp𝜏q Ďdcn dcnp𝜋q.

Proof. Symmetric to Lemma B.71. □

B.10.3 Some useful lemmas.

Lemma B.82.

(A) For 𝜏 P tJ, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u and
Ź

𝑖 𝜋
dn
𝑖 in complement-free CDN-normalized form, if

Ź

𝑖 𝜋
dn
𝑖 Ď 𝜏 with a derivation of size 𝑛, then 𝜋dn

𝑘
Ď 𝜏 for some 𝑘 with a derivation of size 𝑛.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 89

(B) For 𝜏 P tK, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u and
Ž

𝑖 𝜋
cn
𝑖 in complement-free DCN-normalized form, if

𝜏 Ď
Ž

𝑖 𝜋
cn
𝑖 with a derivation of size 𝑛, then either 𝜏 Ď 𝜋 cn

𝑘
for some 𝑘 with a derivation of size

𝑛.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof. By induction on right-leaning Ď derivations.

Case S-Refl. Immediate.

Case S-ToB¨. Then 𝜏 “ J and we have 𝜋dn
𝑖
Ď J

𝑖

by S-ToB¨, with a derivation of size 1.

Case S-ToB . Then

Ź

𝑖 𝜋
dn
𝑖 “ 𝜋dn

1
“ K. The result is immediate.

Case S-Compl¨. Impossible since 𝜏 is not a union.

Case S-Compl . Impossible since 𝜏 ‰ K.

Case S-NegInv. Impossible since 𝜏 is not a negation.

Case S-AndOr11¨. Impossible since 𝜏 is not a union.

Case S-AndOr11 . Then 𝜋dn
1
“ 𝜏 and we have 𝜋dn

1
Ď 𝜏 by S-Refl, with a derivation of size 1.

Cases S-AndOr12¨. Impossible since 𝜏 is not a union.

Cases S-AndOr12 . Then

Ź

𝑖ą1
𝜋dn
𝑖 “ 𝜋dn

2
“ 𝜏 andwe have 𝜋dn

2
Ď 𝜏 by S-Refl, with a derivation

of size 1.

Case S-AndOr2¨. Then
Ź

𝑖 𝜋
dn
𝑖 “ 𝜋dn

1
“ 𝜋n

11
_𝜋dn

12
for some 𝜋n

11
and 𝜋dn

12
. The result is immediate.

Case S-AndOr2 . Impossible since 𝜏 is not an intersection.

Case S-Trans. Then the premises are

Ź

𝑖 𝜋
dn
𝑖 Ď 𝜏 1 and 𝜏 1 Ď 𝜏 for some 𝜏 1, both with a derivation

of size 𝑛 ´ 1. By induction on the size of the subderivation for the former premise, denoted

by𝑚. Denote the inner induction hypothesis as IH
1
.

Cases (S-Refl, ˚), (˚, S-Refl). By IH on the other premise.

Cases (S-ToB¨, ˚). Then 𝜏 1 “ J. By S-ToB¨, we have 𝜋dn
𝑖
Ď J

𝑖

. By S-Trans with J Ď 𝜏 , we

have 𝜋dn
𝑖
Ď 𝜏

𝑖

with a derivation of size 𝑛.

Cases (S-ToB , ˚). Then
Ź

𝑖 𝜋
dn
𝑖 “ 𝜋dn

1
“ K. The result is immediate.

Cases (S-Compl¨, ˚). Then
Ź

𝑖 𝜋
dn
𝑖 “ 𝜋dn

1
“ J. The result is immediate.

Cases (S-Compl , ˚). Impossible since

Ź

𝑖 𝜋
dn
𝑖 is a complement-free CDN-normalized form.

Cases (S-AndOr11¨, ˚). Then 𝜏 1 “
Ź

𝑖 𝜋
dn
𝑖 _ 𝜏 1

1
for some 𝜏 1

1
. By Lemma B.54 on the latter

premise, we have

Ź

𝑖 𝜋
dn
𝑖 Ď 𝜏 with a derivation of size 𝑛 ´ 1. The result then follows from

IH.

Cases (S-AndOr11 , ˚). Then 𝜏 1 “ 𝜋dn
1
. The result is immediate from the latter premise.

Cases (S-AndOr12¨, ˚). Then 𝜏 1 “ 𝜏 1
1
_

Ź

𝑖 𝜋
dn
𝑖 for some 𝜏 1

1
. By Lemma B.54 on the latter

premise, we have

Ź

𝑖 𝜋
dn
𝑖 Ď 𝜏 with a derivation of size 𝑛 ´ 1. The result then follows from

IH.

Cases (S-AndOr12 , ˚). Then 𝜏 1 “
Ź

𝑖ą1
𝜋dn
𝑖 . By IH on the latter rule, we have 𝜋dn

𝑘
Ď 𝜏

for some 𝑘 ą 1.

Cases (S-AndOr2¨, ˚). Then
Ź

𝑖 𝜋
dn
𝑖 “ 𝜋dn

1
“ 𝜋n

11
_ 𝜋dn

12
for some 𝜋n

11
and 𝜋dn

12
. The result

is immediate.

Cases (S-AndOr2 , ˚). Then 𝜏 1 “ 𝜏 1
1
^ 𝜏 1

2
for some 𝜏 1

1
and 𝜏 1

2
. Since 𝜏 is not an intersection,

it is easy to see that the intersection must be consumed by an application of S-AndOr11 ,

S-AndOr12 , or S-Distrib˛ in the transitivity chain. Then it is possible to rewrite the

derivation into a smaller one by dropping the application of S-AndOr2 . The result then

follows from IH.

Cases (S-Distrib¨, ˚). Then 𝜋dn
2
“ 𝜋n

21
_ 𝜋dn

22
and 𝜏 1 “ p𝜋dn

1
^ 𝜋n

21
q _ p𝜋dn

1
^ 𝜋dn

22
q for some

𝜋n
21
and 𝜋dn

22
. By Lemma B.54 on the latter rule, we have 𝜋dn

1
^ 𝜋n

21
Ď 𝜏 and 𝜋dn

1
^ 𝜋dn

22
Ď 𝜏 ,

90 Lionel Parreaux and Chun Yin Chau

both with a derivation of size 𝑛 ´ 1. By IH on 𝜋dn
1
^ 𝜋n

21
Ď 𝜏 , we have 𝜋dn

1
Ď 𝜏 or 𝜋n

21
Ď 𝜏 ,

both with a derivation of size 𝑛 ´ 1. By IH on 𝜋dn
1
^ 𝜋dn

22
Ď 𝜏 , we have 𝜋dn

1
Ď 𝜏 or 𝜋dn

22
Ď 𝜏 ,

both with a derivation of size 𝑛 ´ 1. If 𝜋dn
1
Ď 𝜏 , then we have the result immediately.

Otherwise, we have 𝜋n
21
Ď 𝜏 and 𝜋dn

22
Ď 𝜏 , which imply 𝜋dn

2
“ 𝜋n

21
_𝜋dn

22
Ď 𝜏 by S-AndOr2¨,

with a derivation of size 𝑛.

Cases (S-Distrib , ˚). Then 𝜋dn
1
“ 𝜋n

0
_𝜋dn

12
and 𝜋dn

2
“ 𝜋n

0
_𝜋dn

22
for some 𝜋n

0
and 𝜋dn

12
and

𝜋dn
22
, and 𝜏 1 “ 𝜋n

0
_ p𝜏 1

1
^ 𝜏 1

2
q. By Lemma B.54 on the latter rule, we have 𝜋dn

12
^ 𝜋dn

22
Ď 𝜏

and 𝜋n
0
Ď 𝜏 , both with a derivation of size 𝑛 ´ 1. By IH, we have 𝜋dn

12
Ď 𝜏 or 𝜋dn

22
Ď 𝜏 ,

which implies 𝜋dn
1
“ 𝜋n

0
_ 𝜋dn

12
Ď 𝜏 or 𝜋dn

2
“ 𝜋n

0
_ 𝜋dn

22
Ď 𝜏 with a derivation of size 𝑛 by

S-AndOr2¨ with 𝜋n
0
Ď 𝜏 .

□

Lemma B.83.

(A) For 𝜏 P tJ, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u, if 𝜋n
1
^ 𝜋 cn

2
Ď 𝜏 , then either 𝜋n

1
Ď 𝜏 or 𝜋 cn

2
Ď 𝜏 or

𝜋n
1
^ 𝜋 cn

2
Ď K.

(B) For 𝜏 P tK, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u, if 𝜏 Ď 𝜋n
1
_ 𝜋dn

2
, then either 𝜏 Ď 𝜋n

1
or 𝜏 Ď 𝜋dn

2
or

J Ď 𝜋n
1
_ 𝜋dn

2
.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof. By induction on right-leaning Ďdcn
derivations for the following statements, where

S-AndOr2¨ does not occur as the first premise of S-Trans in any of the judgements (in both the

assumptions and conclusions). It is easy to see that we can rewrite any subderivations with S-

AndOr2¨ as the first premise of S-Trans into an equivalent one by applying S-Trans to the premises

of S-AndOr2¨ and the second premise of S-Trans, followed by an application of S-AndOr2¨.

(1) For 𝜏 P t␣K, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u, if 𝜋
n
1
^ 𝜋 cn

2
Ď 𝜏 with a derivation of size 𝑛, then either

𝜋n
1
Ď 𝜏 or 𝜋 cn

2
Ď 𝜏 with a derivation of size 𝑛, or 𝜋n

1
^ 𝜋 cn

2
Ď K.

(2) For 𝜏𝑐 P t𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u, if
Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 with a derivation of size 𝑛, then 𝜋 cn

𝑖
Ď 𝜏𝑐

𝑖
,

all with a derivation of size 𝑛 ´ 1.

In the remainder of this proof, we abbreviate Ďdcn
as Ď.

Case S-Refl. Impossible

Case S-ToB¨.

(1) Then 𝜏 “ ␣K and we have both 𝜋n
1
Ď 𝜏 and 𝜋 cn

2
Ď 𝜏 by S-ToB¨.

(2) Impossible.

Cases S-ToB , S-Compl˛, S-NegInv, S-AndOr1¨. Impossible.

Case S-AndOr1 .

(1) Then 𝜏 “ 𝜋n
𝑘
for some 𝑘 , where 𝜋 cn

2
“

Ź

𝑖ą1
𝜋n
𝑖 for some 𝜋n

𝑖

𝑖ą1

. If 𝑘 “ 1, then we have

𝜋n
1
Ď 𝜏 by S-Refl. Otherwise, we have 𝜋 cn

2
Ď 𝜏 by S-AndOr1 .

(2) Impossible.

Case S-AndOr2¨.

(1) Impossible.

(2) The premises of the rule are 𝜋 cn
𝑖
Ď 𝜏𝑐

𝑖
, all of size 𝑛 ´ 1.

Cases S-AndOr2 , S-DistribDcn˛. Impossible.

Case S-Trans.

(1) Then the premises of the rule are 𝜋n
1
^ 𝜋 cn

2
Ď 𝜏dcn and 𝜏dcn Ď 𝜏 for some 𝜏dcn, both of size

𝑛 ´ 1.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 91

(2) Then the premises of the rule are

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏dcn and 𝜏dcn Ď 𝜏𝑐 for some 𝜏dcn, both of size

𝑛 ´ 1.

By induction on the size of the former premise of S-Trans, denoted by𝑚. Denote the inner

induction hypothesis as IH
1
.

Cases (S-Refl, ˚). By IH on the latter premise.

Cases (S-ToB¨, ˚).

(1) Then 𝜏dcn “ ␣K. We have both 𝜋n
1
Ď ␣K and 𝜋 cn

2
Ď ␣K by S-ToB¨. Then we have both

𝜋n
1
Ď 𝜏 and 𝜋 cn

2
Ď 𝜏 by S-Trans with the latter premise, both with a derivation of size 𝑛.

(2) Impossible since ␣K Ď 𝜏𝑐 cannot be derived (Lemma B.87).

Cases (S-ToB , ˚), (S-Compl¨, ˚). Impossible.

Cases (S-Compl , ˚).

(1) Then 𝜏dcn “ K. 𝜋n
1
^ 𝜋 cn

2
Ď K is immediate from the former premise.

(2) Impossible.

Cases (S-NegInv, ˚). Impossible.

Cases (S-AndOr1¨, ˚).

(1) Then 𝜏dcn “ p𝜋n
1
^ 𝜋 cn

2
q _ 𝜏dcn

2
for some 𝜏dcn

2
. If 𝜏 “ J, then we have both 𝜋n

1
Ď

𝜏 and 𝜋 cn
2
Ď 𝜏 with a derivation of size 1 by S-ToB¨. Otherwise, the latter premise

p𝜋n
1
^ 𝜋 cn

2
q _ 𝜏dcn

2
Ď 𝜏 implies 𝜋n

1
^ 𝜋 cn

2
Ď 𝜏 with a derivation of size 𝑛´ 2 by IH (2). The

result then follows from IH (1).

(2) Then 𝜏dcn “ p
Ž

𝑖 𝜋
cn
𝑖 q _ 𝜏dcn

2
for some 𝜏dcn

2
. The latter premise p

Ž

𝑖 𝜋
cn
𝑖 q _ 𝜏dcn

2
Ď 𝜏𝑐

implies

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 with a derivation of size 𝑛 ´ 2 by IH (2), which implies 𝜋 cn

𝑖
Ď 𝜏𝑐

𝑖
,

all with a derivation of size 𝑛 ´ 3 by IH (2).

Cases (S-AndOr1 , ˚).

(1) Then 𝜏dcn “
Ź

𝑖1 P𝑆 𝜋
n
𝑖1 for some 𝑆 Ď t 𝑖 u, where 𝜋 cn

2
“

Ź

𝑖ą1
𝜋n
𝑖 for some 𝜋n

𝑖

𝑖ą1

.

Case 1 P 𝑆 . By IH (1) on the latter premise, we have either 𝜋n
1

Ď 𝜏 or
Ź

𝑖1 P𝑆zt 1 u 𝜋
n
𝑖1 Ď 𝜏 with a derivation of size 𝑛 ´ 1, or

Ź

𝑖1 P𝑆 𝜋
n
𝑖1 Ď K. If 𝜋n

1
Ď 𝜏 ,

the result is immediate. If

Ź

𝑖1 P𝑆zt 1 u 𝜋
n
𝑖1 Ď 𝜏 , then we have 𝜋 cn

2
Ď 𝜏 with a derivation

of size 𝑛 by S-Trans with S-AndOr1 . If

Ź

𝑖1 P𝑆 𝜋
n
𝑖1 Ď K, then we have 𝜋n

1
^ 𝜋 cn

2
Ď K

by S-Trans with S-AndOr1 .

Case 1 R 𝑆 . Then 𝜋 cn
2
Ď 𝜏 follows by IH (1) on the latter premise, followed by S-Trans

with S-AndOr1 , with a derivation of size 𝑛.

(2) Impossible.

Cases (S-AndOr2¨, ˚). Impossible by assumption.

Cases (S-AndOr2 , ˚).

(1) Then 𝜏dcn “
Ź

𝑗 𝜏
n
𝑗 for some 𝜏n

𝑗

𝑗
. The premises of the former rule are

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏n

𝑗

𝑗
, all of size𝑚 ´ 1. By repeated applications of IH (1), the latter premise

Ź

𝑗 𝜏
n
𝑗 Ď 𝜏 implies 𝜏n

𝑘
Ď 𝜏 for some 𝑘 with a derivation of size 𝑛 ´ 1, or

Ź

𝑗 𝜏
n
𝑗 Ď K.

Case 𝜏n
𝑘
Ď 𝜏 . Then by S-Trans with one of the premises of the former rule, we have

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏 with a derivation of size 𝑛 and a former premise of size𝑚´ 1. The result

then follows from IH
1
(1).

Case

Ź

𝑗 𝜏
n
𝑗 Ď K. Then we have 𝜋n

1
^ 𝜋 cn

2
Ď K by S-Trans with the former premise.

(2) Then 𝜏dcn “
Ź

𝑗 𝜏
n
𝑗 for some 𝜏n

𝑗

𝑗
. The premises of the former rule are

Ž

𝑖 𝜋
cn
𝑖
Ď 𝜏n

𝑗

𝑗
, all

of size𝑚 ´ 1. By IH (1), the latter premise

Ź

𝑗 𝜏
n
𝑗 Ď 𝜏𝑐 implies 𝜏n

𝑘
Ď 𝜏𝑐 for some 𝑘 with a

derivation of size 𝑛 ´ 1, or

Ź

𝑗 𝜏
n
𝑗 Ď K.

92 Lionel Parreaux and Chun Yin Chau

Case 𝜏n
𝑘
Ď 𝜏𝑐 . Then by S-Trans with one of the premises of the former rule, we have

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 with a derivation of size 𝑛 and a former premise of size𝑚 ´ 1. The result

then follows from IH
1
(2).

Case

Ź

𝑗 𝜏
n
𝑗 Ď K. Then it is easy to see that the transitivity chain in the derivation for

one of

Ž

𝑖 𝜋
cn
𝑖
Ď 𝜏n

𝑗

𝑗
must pass through K, i.e.,

Ž

𝑖 𝜋
cn
𝑖 Ď K can be derived with size

𝑛 ´ 2. Then we have

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 with a derivation of size 𝑛 ´ 1 by S-Trans with

S-ToB . The result then follows from IH (2).

Cases (S-DistribDcn¨, ˚).

(1) Then 𝜏dcn “
Ž

𝑗 p𝜏
n
0
^ 𝜏cn𝑗 q for some 𝜏n

0
and 𝜏cn

𝑗

𝑗
. The premises of the former rule are:

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏n

0
(1)

𝜋n
1
^ 𝜋 cn

2
Ď

Ž

𝑗 𝜏
cn
𝑗 (2)

both of size𝑚 ´ 1. The latter premise is:

Ž

𝑗 p𝜏
n
0
^ 𝜏cn𝑗 q Ď 𝜏 (3)

By IH (2), (3) implies:

𝜏n
0
^ 𝜏cn

𝑗
Ď 𝜏

𝑗
(4)

all with derivations of size 𝑛 ´ 2. For each 𝑗 , by IH (1), (4) implies 𝜏n
0
Ď 𝜏 or 𝜏cn𝑗 Ď 𝜏 with

a derivation of size 𝑛 ´ 2, or 𝜏n
0
^ 𝜏cn𝑗 Ď K.

Case 𝜏n
0
Ď 𝜏 . Then by S-Trans with (1), we have:

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏 (5)

with a derivation of size 𝑛 ´ 1. The result then follows from IH (1).

Case 𝜏n
0
Ę 𝜏 . Then for each 𝑗 , we have𝜏cn𝑗 Ď 𝜏 or𝜏n

0
^𝜏cn𝑗 Ď K. Let 𝑆 “ t 𝑗 | 𝜏

n
0
^ 𝜏cn𝑗 Ď Ku.

By S-AndOr2¨, we have
Ž

𝑗 R𝑆 𝜏
cn
𝑗 Ď 𝜏 (6)

with a derivation of size 𝑛 ´ 1. From the definiton of 𝑆 , we have:

𝜏n
0
^ 𝜏cn

𝑗
Ď K

𝑗 P𝑆
(7)

By Theorem B.20, (7) implies:

𝜏cn
𝑗
Ď 𝜏n

0
1

𝑗 P𝑆
(8)

where 𝜏n
0

1 “ negp𝜏n
0
q. By Lemma B.22¨ on (8) and S-Refl, we have:

Ž

𝑗 𝜏
cn
𝑗 Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 _ 𝜏n

0
1 (9)

Then by S-Trans on (2) and (9), we have:

𝜋n
1
^ 𝜋 cn

2
Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 _ 𝜏n

0
1 (10)

By Theorem B.20, (10) implies:

𝜏n
0
^ 𝜋n

1
^ 𝜋 cn

2
Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 (11)

By S-Trans with S-AndOr2 on (1) and S-Refl, (11) implies:

𝜋n
1
^ 𝜋 cn

2
Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 (12)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 93

Since we have (2) with a derivation of size𝑚´ 1 and (12), it is easy to see that (12) can

be derived with size𝑚 ´ 1. Then by S-Trans with (6), we have:

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏 (13)

with a derivation of size 𝑛 and a former premise of size𝑚 ´ 1. The result then follows

from IH
1
(1).

(2) Then 𝜏dcn “
Ž

𝑗 p𝜏
n
0
^ 𝜏cn𝑗 q for some 𝜏n

0
and 𝜏cn

𝑗

𝑗
. The premises of the former rule are:

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏n

0
(14)

Ž

𝑖 𝜋
cn
𝑖 Ď

Ž

𝑗 𝜏
cn
𝑗 (15)

both with a derivation of size𝑚 ´ 1. The latter premise is:

Ž

𝑗 p𝜏
n
0
^ 𝜏cn𝑗 q Ď 𝜏𝑐 (16)

By IH (2), (16) implies:

𝜏n
0
^ 𝜏cn

𝑗
Ď 𝜏𝑐

𝑗
(17)

all with a derivation of size 𝑛 ´ 2. For each 𝑗 , by IH (1), (17) implies 𝜏n
0
Ď 𝜏𝑐 or 𝜏

cn
𝑗 Ď 𝜏𝑐

with a derivation of size 𝑛 ´ 2, or 𝜏n
0
^ 𝜏cn𝑗 Ď K.

Case 𝜏n
0
Ď 𝜏𝑐 . Then by S-Trans with (14), we have:

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 (18)

with a derivation of size 𝑛 ´ 1. The result then follows from IH.

Case 𝜏n
0
Ę 𝜏𝑐 . Then for each 𝑗 , we have𝜏cn𝑗 Ď 𝜏𝑐 or𝜏

n
0
^𝜏cn𝑗 Ď K. Let 𝑆 “ t 𝑗 | 𝜏

n
0
^ 𝜏cn𝑗 Ď Ku.

By S-AndOr2¨, we have:
Ž

𝑗 R𝑆 𝜏
cn
𝑗 Ď 𝜏𝑐 (19)

with a derivation of size 𝑛 ´ 1. From the definiton of 𝑆 , we have:

𝜏n
0
^ 𝜏cn

𝑗
Ď K

𝑗 P𝑆
(20)

By Theorem B.20, (20) implies:

𝜏cn
𝑗
Ď 𝜏n

0
1

𝑗 P𝑆
(21)

where 𝜏n
0

1 “ negp𝜏n
0
q. By Lemma B.22¨ on (21) and S-Refl, we have:

Ž

𝑗 𝜏
cn
𝑗 Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 _ 𝜏n

0
1 (22)

Then by S-Trans on (15) and (22), we have:

Ž

𝑖 𝜋
cn
𝑖 Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 _ 𝜏n

0
1 (23)

By Theorem B.20, (23) implies:

𝜏n
0
^

Ž

𝑖 𝜋
cn
𝑖 Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 (24)

By S-Trans with S-AndOr2 on (14) and S-Refl, (24) implies:

Ž

𝑖 𝜋
cn
𝑖 Ď

Ž

𝑗 R𝑆 𝜏
cn
𝑗 (25)

Since we have (15) with a derivation of size𝑚 ´ 1 and (25), it is easy to see that (25)

can be derived with size𝑚 ´ 1. Then by S-Trans with (19), we have:

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 (26)

94 Lionel Parreaux and Chun Yin Chau

with a derivation of size 𝑛 and a former premise of size𝑚 ´ 1. The result then follows

from IH
1
(2).

Cases (S-DistribDcn , ˚).

(1) Then 𝜏dcn “ p
Ź

𝑗 𝜏
n
𝑗 q _

Ž

𝑘 𝜏
cn
𝑘

for some 𝜏n
𝑗

𝑗
and 𝜏cn

𝑘

𝑘
. The premises of the former rule

are:

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏n

𝑗
_

Ž

𝑘 𝜏
cn
𝑘

𝑗
(27)

all with a derivation of size𝑚 ´ 1. The latter premise is:

p
Ź

𝑗 𝜏
n
𝑗 q _

Ž

𝑘 𝜏
cn
𝑘
Ď 𝜏 (28)

By IH (2), (28) implies:

Ź

𝑗 𝜏
n
𝑗 Ď 𝜏 (29)

𝜏cn
𝑘
Ď 𝜏

𝑘
(30)

all with a derivation of size 𝑛 ´ 2. By repeated applications of IH (1), (29) implies 𝜏n
𝑙
Ď 𝜏

for some 𝑙 P t 𝑗 u with a derivation of size 𝑛 ´ 2, or

Ź

𝑗 𝜏
n
𝑗 Ď K.

Case 𝜏n
𝑙
Ď 𝜏 . Then by S-AndOr2¨ with (30), we have:

𝜏n
𝑙
_

Ž

𝑘 𝜏
cn
𝑘
Ď 𝜏 (31)

with a derivation of size 𝑛 ´ 1. Then by S-Trans on (27) for 𝑗 “ 𝑘 and (31), we have:

𝜋n
1
^ 𝜋 cn

2
Ď 𝜏 (32)

with a derivation of size 𝑛 and a former premise of size𝑚 ´ 1. The result then follows

from IH
1
(1).

Case

Ź

𝑗 𝜏
n
𝑗 Ď K. Then it is easy to see that the transitivity chain in the derivation

for one of (27) must pass through either

Ž

𝑘 𝜏
cn
𝑘

or K, i.e., 𝜋n
1
^ 𝜋 cn

2
Ď

Ž

𝑘 𝜏
cn
𝑘

or

𝜋n
1
^ 𝜋 cn

2
Ď K can be derived with size𝑚 ´ 1.

Case 𝜋n
1
^ 𝜋 cn

2
Ď

Ž

𝑘 𝜏
cn
𝑘
. Then by S-Trans with S-AndOr2¨ on (30), we have (32)

with a derivation of size 𝑛 and a former derivation of size𝑚 ´ 1. The result then

follows from IH
1
(1).

Case 𝜋n
1
^ 𝜋 cn

2
Ď K. then we have the result immediately.

(2) Then 𝜏dcn “ p
Ź

𝑗 𝜏
n
𝑗 q _

Ž

𝑘 𝜏
cn
𝑘

for some 𝜏n
𝑗

𝑗
and 𝜏cn

𝑘

𝑘
. The premises of the former rule

are:

Ž

𝑖 𝜋
cn
𝑖
Ď 𝜏n

𝑗
_

Ž

𝑘 𝜏
cn
𝑘

𝑗
(33)

all with a derivation of size𝑚 ´ 1. The latter premise is:

p
Ź

𝑗 𝜏
n
𝑗 q _

Ž

𝑘 𝜏
cn
𝑘
Ď 𝜏𝑐 (34)

By IH (2), (34) implies:

Ź

𝑗 𝜏
n
𝑗 Ď 𝜏𝑐 (35)

𝜏cn
𝑘
Ď 𝜏𝑐

𝑘
(36)

all with a derivation of size 𝑛´ 2. By repeated applications of IH (1), (35) implies 𝜏n
𝑙
Ď 𝜏𝑐

for some 𝑙 P t 𝑗 u with a derivation of size 𝑛 ´ 2, or

Ź

𝑗 𝜏
n
𝑗 Ď K.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 95

Case 𝜏n
𝑙
Ď 𝜏𝑐 . Then by S-AndOr2¨ with (36), we have:

𝜏n
𝑙
_

Ž

𝑘 𝜏
cn
𝑘
Ď 𝜏𝑐 (37)

with a derivation of size 𝑛 ´ 1. Then by S-Trans on (33) for 𝑗 “ 𝑙 and (37), we have:

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 (38)

with a derivation of size 𝑛 and a former premise of size𝑚 ´ 1. The result then follows

from IH
1
(1).

Case

Ź

𝑗 𝜏
n
𝑗 Ď K. Then it is easy to see that the transitivity chain in the derivation for

one of (33) must pass through either

Ž

𝑘 𝜏
cn
𝑘

orK, i.e.,
Ž

𝑖 𝜋
cn
𝑖 Ď

Ž

𝑘 𝜏
cn
𝑘

or

Ž

𝑖 𝜋
cn
𝑖 Ď K

can be derived with size𝑚 ´ 1.

Case

Ž

𝑖 𝜋
cn
𝑖 Ď

Ž

𝑘 𝜏
cn
𝑘
. Then by S-Trans with S-AndOr2¨ on (36), we have:

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 (39)

with a derivation of size 𝑛 and a former derivation of size𝑚 ´ 1. The result then

follows from IH
1
(2).

Case

Ž

𝑖 𝜋
cn
𝑖 Ď K. Then by S-Trans with S-ToB , we have:

Ž

𝑖 𝜋
cn
𝑖 Ď 𝜏𝑐 (40)

with a derivation of size𝑚 ď 𝑛 ´ 1. The result then follows from IH (2).

□

Corollary B.84. For 𝜏 P tJ˛, 𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u, if
Ź˛

𝑖 𝜋
n
𝑖 Ď

˛ 𝜏 , then either 𝜋n
𝑘
Ď˛ 𝜏 for

some 𝑘 or

Ź˛

𝑖 𝜋
n
𝑖 Ď

˛ K˛.

Proof. By repeated applications of Lemma B.83. □

Lemma B.85.

(A) If

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

with a derivation of size 𝑛, where
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 is a complement-free CDN-

normalized form, then either 𝜏dn
1
Ď 𝜋dn

or

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

with a derivation of size 𝑛.

(B) If 𝜋 cn Ď
Ž

𝑖 P 1..𝑛 𝜏
cn
𝑖 with a derivation of size 𝑛, where

Ž

𝑖 P 1..𝑛 𝜏
cn
𝑖 is a complement-free DCN-

normalized form, then either 𝜋 cn Ď 𝜏cn
1

or 𝜋 cn Ď
Ž

𝑖 P 2..𝑛 𝜏
cn
𝑖 with a derivation of size 𝑛.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof. By induction on right-leaning Ďcdn
derivations, where S-DistribCdn˛ does not occur

as the first premise of S-Trans in any of the judgements (in both the assumptions and conclusions).

It is easy to see that we can rewrite any subderivations with S-DistribCdn˛ as the first premise of

S-Trans into an equivalent one by applying S-Trans to the premises of S-DistribCdn˛ and the

second premise of S-Trans, followed by an application of S-DistribCdn˛.

In the remainder of this proof, we abbreviate Ďcdn
as Ď.

Case S-Refl. Then

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ 𝜋dn

, i.e., we have 𝜏dn
1
Ď 𝜋dn

.

Case S-ToB¨. Then 𝜋dn “ J and we have both 𝜏dn
1
Ď J and

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď J by S-ToB¨.

Case S-ToB . Then

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ ␣J, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Case S-Compl¨. Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ J, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Case S-Compl . Impossible since

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 is a complement-free CDN-normalized form.

Case S-NegInv. Then

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ ␣𝜏0 for some 𝜏0, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Case S-AndOr1¨. Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 is not an intersection, i.e.,

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
and we have

𝜏dn
1
Ď 𝜋dn

.

96 Lionel Parreaux and Chun Yin Chau

Case S-AndOr1 . Then 𝜋dn “ 𝜏dn
𝑘

for some 𝑘 P t 𝑖 u. If 𝑘 “ 1, then we have 𝜏dn
1
Ď 𝜋dn

by S-Refl.

Otherwise, we have

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

by S-AndOr1 .

Case S-AndOr2¨. Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Case S-AndOr2 . Impossible since 𝜋dn
is not an intersection.

Case S-DistribCdn¨. Then 𝜏dn
1

“
Ž

𝑗 𝜏
n
𝑗 for some 𝜏n

𝑗

𝑗
. The premises of the rule are

𝜏n
𝑗
^

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖
Ď 𝜋dn

𝑗

, all with a derivation of size 𝑛 ´ 1. By IH on the premises, we

have 𝜏n
𝑗
Ď 𝜋dn

or

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖
Ď 𝜋dn

𝑗

. If

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

, then we have the result immedi-

ately. Otherwise, we have 𝜏n
𝑗
Ď 𝜋dn

𝑗
, which imply

Ž

𝑗 𝜏
n
𝑗 Ď 𝜋dn

with a derivation of size 𝑛

by S-AndOr2¨, i.e., 𝜏dn
1
Ď 𝜋dn

.

Case S-DistribCdn . Then 𝜏dn
𝑖
“ 𝜏n _ 𝜏dn

𝑖1

𝑖 P 1..𝑛

for some 𝜏n and 𝜏dn
𝑖1

𝑖 P 1..𝑛

. The premises of the

rule are 𝜏n Ď 𝜋dn
and

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖1 Ď 𝜋dn

. By IH on the latter premise, we have 𝜏dn
1

1 Ď 𝜋dn

or

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖1 Ď 𝜋dn

with a derivation of size 𝑛 ´ 1. If 𝜏dn
1

1 Ď 𝜋dn
, then by S-AndOr2¨ with

𝜏n Ď 𝜋dn
, we have 𝜏dn

1
“ 𝜏n _ 𝜏dn

1
1 Ď 𝜋dn

with a derivation of size 𝑛. If
Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖1 Ď 𝜋dn

,

then by S-DistribCdn with 𝜏n Ď 𝜋dn
, we have

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 “

Ź

𝑖 P 2..𝑛p𝜏
n _ 𝜏dn

𝑖1 q Ď 𝜋dn

with a derivation of size 𝑛.

Case S-Trans. Then the premises of the rule are

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 Ď 𝜏cdn and 𝜏cdn Ď 𝜋dn

for some 𝜏cdn.

By induction on the size of the former premise of S-Trans, denoted by𝑚. Denote the inner

induction hypothesis by IH
1
.

Cases (S-Refl, ˚). By IH on the latter premise.

Cases (S-ToB¨). Then 𝜏cdn “ J. By S-ToB¨, we have both 𝜏dn
1
Ď J and

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď J.

Then we have 𝜏dn
1
Ď 𝜋dn

and

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

by S-Trans with the latter premise

J Ď 𝜋dn
.

Cases (S-ToB , ˚). Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ ␣J, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Cases (S-Compl¨, ˚). Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ J, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Cases (S-Compl , ˚). Impossible since

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 is a complement-free CDN-normalized

form.

Cases (S-NegInv, ˚). Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
“ ␣𝜏0 for some 𝜏0, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Cases (S-AndOr1¨, ˚). Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 is not an intersection, i.e.,

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
and

we have 𝜏dn
1
Ď 𝜋dn

.

Cases (S-AndOr1 , ˚). Then 𝜏cdn “
Ź

𝑖1 P𝑆 𝜏
dn
𝑖1 for some 𝑆 Ď t 𝑖 u. If 1 P 𝑆 , by IH on the

latter premise, we have 𝜏dn
1
Ď 𝜋dn

or

Ź

𝑖1 P𝑆zt 1 u Ď 𝜋dn
with a derivation of size 𝑛 ´ 1. If

𝜏dn
1
Ď 𝜋dn

, the result is immediate. If

Ź

𝑖1 P𝑆zt 1 u Ď 𝜋dn
, then we have

Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

with a derivation of size 𝑛 by S-Trans with S-AndOr1 . If 1 R 𝑆 , then
Ź

𝑖 P 2..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

with a derivation of size 𝑛 follows from IH on the latter premise, followed by S-Trans with

S-AndOr1 .

Cases (S-AndOr2¨, ˚). Then
Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 “ 𝜏dn

1
, i.e., we have 𝜏dn

1
Ď 𝜋dn

.

Cases (S-AndOr2 , ˚). Then 𝜏cdn “
Ź

𝑗 𝜋
dn
𝑗 for some 𝜋dn

𝑗

𝑗

. The premises of the former

rule are

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖
Ď 𝜋dn

𝑗

𝑗

. The latter premise is

Ź

𝑗 𝜋
dn
𝑗 Ď 𝜋dn

, which implies 𝜋dn
𝑘
Ď 𝜋dn

for some 𝑘 P t 𝑗 u with a derivation of size 𝑛 ´ 1 by repeated applications of IH, which

implies

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

with a derivation of size 𝑛 and a former premise of size𝑚 ´ 1

by S-Trans with

Ź

𝑖 P 1..𝑛 𝜏
dn
𝑖 Ď 𝜋dn

𝑘
. The result then follows from IH

1
.

Cases (S-DistribCdn˛, ˚). Impossible by assumption.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 97

□

Corollary B.86.

(A) If

Ź

𝑖 𝜏
dn
𝑖 Ď 𝜋dn

, where

Ź

𝑖 𝜏
dn
𝑖 is a complement-free CDN-normalized form, then 𝜏dn

𝑘
Ď 𝜋dn

for

some 𝑘 P t 𝑖 u.

(B) If 𝜋 cn Ď
Ž

𝑖 𝜏
cn
𝑖 , where

Ž

𝑖 𝜏
cn
𝑖 is a complement-free DCN-normalized form, then 𝜋 cn Ď 𝜏cn

𝑘
for

some 𝑘 P t 𝑖 u.

Proof. By repeated application of Lemma B.85. □

Lemma B.87. J˛ Ď˛ 𝜏 is not derivable for 𝜏 P t𝜏1 Ñ 𝜏2, t𝑥 : 𝜏1 u, #𝐶 u.

Proof. By induction on Ďcdn
and Ďdcn

derivations respectively. □

B.11 Consistency of Subtyping
The reason we can soundly define rules such as S-FunMrg, S-RcdMrg, and S-RcdTop is that they

do not threaten any of the properties we actually need for the type soundness proofs. As a first step

towards showing that, and in order to support the next important lemmas, we prove that subtyping

is consistent.

Theorem B.88 (Subtyping consistency). If Ξ cons. and Ξ $ 𝜏 ď 𝜋 , where:

𝜏 P tK, J, #𝐶, 𝜏1 Ñ 𝜏2, t𝑥𝑖 : 𝜏𝑖
𝑖
u u

𝜋 P tK, J, #𝐶 1, 𝜋1 Ñ 𝜋2, t𝑥
1

: 𝜋1 u u

then exactly one of the following is true:

(a) 𝜏 “ K or 𝜋 “ J;

(b) 𝜏 “ #𝐶 and 𝜋 “ #𝐶 1 and 𝐶 1 P Sp#𝐶q;
(c) 𝜏 “ 𝜏1 Ñ 𝜏2 and 𝜋 “ 𝜋1 Ñ 𝜋2 and Ξ $ 𝜋1 ď 𝜏1 and Ξ $ 𝜏2 ď 𝜋2;

(d) 𝜏 “ t𝑥𝑖 : 𝜏𝑖
𝑖
u and 𝜋 “ t𝑥𝑘 : 𝜋1 u and Ξ $ 𝜏𝑘 ď 𝜋1 for some 𝑘 .

Proof. By Lemma B.49 on the assumption, we have:

▷Ξ $ 𝜏 ď 𝜋 (1)

Then proceed by case analysis on 𝜏 .

Case 𝜏 “ K. Then (a) is true and (b), (c), (d) are false.

Case 𝜏 “ J. Then (b), (c), (d) are false. Since 𝜏 – K_J, by Lemma B.89 on (1), we have:

𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(2)

▷Ξ $ J ĺ 𝑉
𝐷 𝑗

𝑗

𝑗

(3)

for some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗

𝑗
and 𝑉

𝐷 𝑗

𝑗

𝑗

, where

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free. By Lemma B.59, (3)

implies:

𝐷 𝑗 P tJ, K u
𝑗

(4)

By Lemma B.22 on S-AndOr12¨, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď

Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(5)

By S-Trans on (5) and (2), we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď 𝜋 (6)

98 Lionel Parreaux and Chun Yin Chau

Since

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ę K (7)

Then (6) and (7) imply:

𝜋 Ę K (8)

By Lemma B.82, (6) implies:

𝑉
𝐷𝑘

𝑘
Ď 𝜋 (9)

for some 𝑘 . By case analysis on the syntax of 𝑉
𝐷𝑘

𝑘
and the assumption on the form of 𝜋 , (9)

can only be derived when 𝜋 “ J. Then we have 𝜋 “ J, i.e., (a) is true.

Case 𝜏 “ #𝐶. Then (c), (d) are false. Since 𝜏 – K_ #𝐶 , by Lemma B.89 on (1), we have:

𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(10)

▷Ξ $ #𝐶 ĺ 𝑉
𝐷 𝑗

𝑗

𝑗

(11)

for some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗

𝑗
and 𝑉

𝐷 𝑗

𝑗

𝑗

, where

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free. By Lemma B.59, (11)

implies:

𝐷 𝑗 P t #𝐶1, #𝐶2 ,J, K u
𝑗

(12)

where 𝐶1 P Sp#𝐶q and 𝐶2 R Sp#𝐶q and 𝐶 R Sp#𝐶2q. By Lemma B.22 on S-AndOr12¨, we

have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď

Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(13)

By S-Trans on (13) and (10), we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď 𝜋 (14)

Since

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ę K (15)

Then (14) and (15) imply:

𝜋 Ę K (16)

By Lemma B.82, (14) implies:

𝑉
𝐷𝑘

𝑘
Ď 𝜋 (17)

for some 𝑘 . By Lemma B.60, (17) implies either 𝜋 “ J or 𝑉
𝐷𝑘

𝑘
“

Ž

𝑙 𝜋 .

Case 𝜋 “ J. Then (a) is true and (b) is false.

Case 𝜋 ‰ J. Then we have:

𝜋 –
Ž

𝑙 𝜋 “ 𝑉
𝐷𝑘

𝑘
(18)

By the syntax of𝑈J and𝑈 K , we have:

𝐷𝑘 R tJ, K u (19)

Then (12) and (19) imply:

𝐷𝑘 P t #𝐶1, #𝐶2 u (20)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 99

By case analysis on the assumption on the form of 𝜋 , we have:

𝜋 “ #𝐶1 (21)

where 𝐶1 P Sp#𝐶q. Then (b) is true and (a) is false.

Case 𝜏 “ 𝜏1 Ñ 𝜏2. Then (b), (d) are false. Since 𝜏 – K_p𝜏1 Ñ 𝜏2q, by Lemma B.89 on (1), we have:

𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(22)

▷Ξ $ 𝜏1 Ñ 𝜏2 ĺ 𝑉
𝐷 𝑗

𝑗

𝑗

(23)

for some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗

𝑗
and 𝑉

𝐷 𝑗

𝑗

𝑗

, where

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free. By Lemma B.59, (23)

implies:

𝐷 𝑗 P tÑ,J, K u
𝑗

(24)

By Lemma B.22 on S-AndOr12¨, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď

Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(25)

By S-Trans on (25) and (10), we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď 𝜋 (26)

Since

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ę K (27)

Then (26) and (27) imply:

𝜋 Ę K (28)

By Lemma B.82, (26) implies:

𝑉
𝐷𝑘

𝑘
Ď 𝜋 (29)

for some 𝑘 . By Lemma B.60, (29) implies either 𝜋 “ J or 𝑉
𝐷𝑘

𝑘
“

Ž

𝑙 𝜋 .

Case 𝜋 “ J. Then (a) is true and (c) is false.

Case 𝜋 ‰ J. Then we have:

𝜋 –
Ž

𝑙 𝜋 “ 𝑉
𝐷𝑘

𝑘
(30)

By the syntax of𝑈J and𝑈 K , we have:

𝐷𝑘 R tJ, K u (31)

Then (24) and (31) imply:

𝐷𝑘 “Ñ (32)

By case analysis on the assumption on the form of 𝜋 , we have:

𝜋 “ 𝜋1 Ñ 𝜋2 (33)

Then (23) implies:

▷Ξ $ 𝜏1 Ñ 𝜏2 ĺ
Ž

𝑙 𝜋1 Ñ 𝜋2 (34)

By case analysis on the ĺ rules, (34) implies:

▷Ξ $ 𝜏1 Ñ 𝜏2 ĺ p
Ź

𝑙 𝜋1q Ñ p
Ž

𝑙 𝜋2q (35)

100 Lionel Parreaux and Chun Yin Chau

Again by case analysis on the ĺ rules, (35) implies:

Ξ $
Ź

𝑙 𝜋1 ď 𝜏1 (36)

Ξ $ 𝜏2 ď
Ž

𝑙 𝜋2 (37)

By S-Trans with S-AndOr2˛ on S-Refl, (36) and (37) imply:

Ξ $ 𝜋1 ď 𝜏1 (38)

Ξ $ 𝜏2 ď 𝜋2 (39)

Then (c) is true and (a) is false.

Case 𝜏 “ t𝑥𝑖 : 𝜏𝑖
𝑖
u. Then (b), (c) are false. Since 𝜏 –

Ź

𝑖 pK _ t𝑥𝑖 : 𝜏𝑖 uq, by Lemma B.89 on (1),

we have:

𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(40)

▷Ξ $ t𝑥𝑘 𝑗
: 𝜏𝑘 𝑗

u ĺ 𝑉
𝐷 𝑗

𝑗

𝑗

(41)

for some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗

𝑗
and 𝑉

𝐷 𝑗

𝑗

𝑗

and 𝑘 𝑗
𝑗
, where

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free. By Lemma B.59,

(41) implies:

𝐷 𝑗 P t𝑥𝑘 𝑗
,J, K u

𝑗
(42)

By Lemma B.22 on S-AndOr12¨, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď

Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(43)

By S-Trans on (43) and (10), we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď 𝜋 (44)

Since

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free, we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ę K (45)

Then (44) and (45) imply:

𝜋 Ę K (46)

By Lemma B.82, (44) implies:

𝑉
𝐷𝑘

𝑘
Ď 𝜋 (47)

for some 𝑘 . By Lemma B.60, (47) implies either 𝜋 “ J or 𝑉
𝐷𝑘

𝑘
“

Ž

𝑙 𝜋 .

Case 𝜋 “ J. Then (a) is true and (d) is false.

Case 𝜋 ‰ J. Then we have:

𝜋 –
Ž

𝑙 𝜋 “ 𝑉
𝐷𝑘

𝑘
(48)

By the syntax of𝑈J and𝑈 K , we have:

𝐷𝑘 R tJ, K u (49)

Then (42) and (49) imply:

𝐷𝑘 “ 𝑥𝑘𝑘 (50)

By case analysis on the assumption on the form of 𝜋 , we have:

𝜋 “ t𝑥𝑘𝑘 : 𝜋1 u (51)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 101

Then (41) implies:

▷Ξ $ t𝑥𝑘𝑘 : 𝜏𝑘𝑘 u ĺ
Ž

𝑙 t𝑥𝑘𝑘 : 𝜋1 u (52)

By case analysis on the ĺ rules, (52) implies:

▷Ξ $ t𝑥𝑘𝑘 : 𝜏𝑘𝑘 u ĺ t𝑥𝑘𝑘 :

Ž

𝑙 𝜋1 u (53)

Again by case analysis on the ĺ rules, (53) implies:

Ξ $ 𝜏𝑘𝑘 ď
Ž

𝑙 𝜋1 (54)

By S-Trans with S-AndOr2¨ on S-Refl, (54) implies:

Ξ $ 𝜏𝑘𝑘 ď 𝜋1 (55)

Then (d) is true and (a) is false.

□

Lemma B.89 (Subtyping consistency).

(A) If ▷Σ $ 𝜏 ď 𝜋 and 𝜏 –
Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

, where the following are true:

‚
Ź

𝑖 𝑈
𝐶𝑖

𝑖
is a complement-free CDN-normalized form

‚ Ñ R t𝐶𝑖

𝑖
u or Ñ R t𝐶𝑖

𝑖
u

‚ @𝑥 P t𝐶𝑖

𝑖
u. 𝑥 R t𝐶𝑖

𝑖
u

‚ @#𝐶 P t𝐶𝑖

𝑖
u. #𝐶 R t𝐶𝑖

𝑖
u

‚ @#𝐶1 P t𝐶𝑖

𝑖
u, #𝐶2 P t𝐶𝑖

𝑖
u.𝐶1 P Sp#𝐶2q or 𝐶2 P Sp#𝐶1q

‚ |t 𝑥 | 𝑥 P t𝐶𝑖

𝑖
u u| ď 1

‚ |t 𝑥 | 𝑥 P t𝐶𝑖

𝑖
u u| “ 0 or Ñ R t𝐶𝑖

𝑖
u

then there exists some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗 P t𝐶𝑖

𝑖
u Y tJ, K u Y t𝑥 𝑥 R t𝐶𝑖

𝑖
u
u Y t #𝐶

#𝐶 R t𝐶𝑖
𝑖
u
u

𝑗

and

𝑉
𝐷 𝑗

𝑗

𝑗

such that 𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

and

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is a complement-free CDN-normalized form

and ▷Σ $
Ź

𝑖 P𝑆 𝑗
𝑈

𝐶𝑖

𝑖
ĺ 𝑉

𝐷 𝑗

𝑗

𝑗

for some 𝑆 𝑗
𝑗
.

(B) If ▷Σ $ 𝜏 ď 𝜋 and 𝜋 –
Ž

𝑗

´

𝜋 1𝑗 ^ 𝑌
𝐷 𝑗

𝑗

¯

, where the following are true:

‚
Ž

𝑗 𝑌
𝐷 𝑗

𝑗
is a complement-free DCN-normalized form

‚ Ñ R t𝐷 𝑗

𝑗
u or Ñ R t𝐷 𝑗

𝑗
u

‚ @𝑥 P t𝐷 𝑗

𝑗
u. 𝑥 R t𝐷 𝑗

𝑗
u

‚ @#𝐶 P t𝐷 𝑗

𝑗
u. #𝐶 R t𝐷 𝑗

𝑗
u

‚ @#𝐶1 P t𝐶𝑖

𝑖
u, #𝐶2 P t𝐶𝑖

𝑖
u.𝐶1 P Sp#𝐶2q or 𝐶2 P Sp#𝐶1q

‚ |t𝑥 | 𝑥 P t𝐷 𝑗

𝑗
u u| ď 1

‚ |t𝑥 | 𝑥 P t𝐷 𝑗

𝑗
u u| “ 0 orÑ R t𝐷 𝑗

𝑗
u

then there exists some 𝜏 1
𝑖

𝑖
and 𝐶𝑖 P t𝐷 𝑗

𝑗
u Y tK, J u Y t 𝑥

𝑥 R t𝐷 𝑗
𝑗
u
u Y t #𝐶

#𝐶 R t𝐷 𝑗
𝑗
u
u

𝑖

and

𝑋
𝐶𝑖

𝑖

𝑖

such that 𝜏 –
Ž

𝑖

´

𝜏 1𝑖 ^ 𝑋
𝐶𝑖

𝑖

¯

and

Ž

𝑖 𝑋
𝐶𝑖

𝑖
is a complement-free DCN-normalized form and

▷Σ $ 𝑋
𝐶𝑖

𝑖
ĺ

Ž

𝑗 P𝑆𝑖
𝑌
𝐷 𝑗

𝑗

𝑖

for some 𝑆𝑖
𝑖
.

Only the proof for (A) is shown below. The proof for (B) is mostly symmetric.

102 Lionel Parreaux and Chun Yin Chau

Proof. By Lemma B.67, there exists some 𝜏cdn and 𝜋 cdn
such that 𝜏 – 𝜏cdn and 𝜋 – 𝜋 cdn

. Then

by Lemma B.71, we only need to consider CDN-normalized derivations for 𝜏cdn ďcdn 𝜋 cdn
, and

the result would also apply to the original derivation for 𝜏 ď 𝜋 . By induction on unassuming

CDN-normalized subtyping derivations.

Notice that the property to prove has a conclusion that can itself be used as a hypothesis for

another application of the property. When proving (A), we consider the leftmost rule application in

a transitivity chain, show the property for it, and this allows us to apply the induction hypothesis

on the rest of the chain; this works even if the chain is of length 1 (with no uses of S-Trans). When

proving (B), we proceed in the same way but from the right. So we do not have to consider uses of

S-Trans explicitly, and only consider uses of the other rules here:

Case S-Refl. Immediate since 𝜏 – 𝜋 . Pick 𝜋 1
𝑖
“ 𝜏 1

𝑖

𝑖
and 𝑉

𝐷𝑖

𝑖
“ 𝑈

𝐶𝑖

𝑖

𝑖

. Then 𝜋 –
Ź

𝑖

´

𝜋 1𝑖 _𝑉
𝐷𝑖

𝑖

¯

and𝑈
𝐶𝑖

𝑖
ĺ 𝑉

𝐷𝑖

𝑖

𝑖

.

Case S-ToB¨. Then 𝜋 “ J. Pick 𝜋 1
1
“ K and𝑉

𝐷1

1
“ 𝑉J

1
“ J. Then 𝜋 – 𝜋 1

1
_𝑉

𝐷1

1
and𝑈

𝐶𝑖

𝑖
ĺ 𝑉

𝐷1

1

𝑖

.

Case S-ToB . Then 𝜏 “ ␣J. So 𝜋 – 𝜋 _ 𝜏 – 𝜋 _
Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

. By distributivity, we have

𝜋 –
Ź

𝑖

´

𝜋 _ 𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

. Pick 𝜋 1
𝑖
“ 𝜋 _ 𝜏 1

𝑖

𝑖
and 𝑉

𝐷𝑖

𝑖
“ 𝑈

𝐶𝑖

𝑖

𝑖

. Then 𝜋 –
Ź

𝑖

´

𝜋 1𝑖 _𝑉
𝐷𝑖

𝑖

¯

and

𝑈
𝐶𝑖

𝑖
ĺ 𝑉

𝐷𝑖

𝑖

𝑖

.

Cases S-Compl˛. Immediate since 𝜏 – 𝜋 . Proceed with the same reasoning as case S-Refl.

Case S-NegInv. Then 𝜏 “ ␣𝜏 1 and 𝜋 “ ␣𝜋 1 for some 𝜏 1 and 𝜋 1. The premise of the rule is:

𝜋 1 ď 𝜏 1 (1)

From the assumptions, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

– ␣𝜏 1

i.e., 𝜏 1 –
Ž

𝑖

´

␣𝜏 1𝑖 ^␣𝑈
𝐶𝑖

𝑖

¯

(2)

Let 𝑋
𝐶𝑖

𝑖
“ ␣𝑈

𝐶𝑖

𝑖

𝑖

(Lemma B.57). By IH on (1) and (2), we have:

𝜋 1 –
Ž

𝑗

´

𝜋2𝑗 ^ 𝑌
𝐷2

𝑗

𝑗

¯

(3)

▷Σ $ 𝑌
𝐷2

𝑗

𝑗
ĺ

Ž

𝑖 P𝑆 𝑗
𝑋

𝐶𝑖

𝑖

𝑗

(4)

for some 𝜋2
𝑗

𝑗
and 𝑌

𝐷2
𝑗

𝑗

𝑗

and 𝑆 𝑗
𝑗
. (3) implies:

𝜋 – ␣
Ž

𝑗

´

𝜋2𝑗 ^ 𝑌
𝐷2

𝑗

𝑗

¯

–
Ź

𝑗

´

␣𝜋2𝑗 _␣𝑌
𝐷2

𝑗

𝑗

¯

(5)

Pick 𝜋 1
𝑗
“ ␣𝜋2

𝑗

𝑗
, 𝐷 𝑗 “ 𝐷2𝑗

𝑗

, and 𝑉
𝐷 𝑗

𝑗
“ ␣𝑌

𝐷2
𝑗

𝑗
or ␣𝑉

𝐷 𝑗

𝑗
“ 𝑌

𝐷2
𝑗

𝑗

𝑗

(Lemma B.57). Then we

have:

𝜋 –
Ź

𝑗

´

𝜋 1𝑗 _𝑉
𝐷 𝑗

𝑗

¯

(6)

Then (4) implies:

▷Σ $
Ź

𝑖 P𝑆 𝑗
𝑈

𝐶𝑖

𝑖
ĺ 𝑉

𝐷 𝑗

𝑗

𝑗

(7)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 103

Case S-AndOr1¨. 𝜋 “ 𝜏 _𝜋 1 for some 𝜋 1. Then 𝜋 –
Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

_𝜋 1 –
Ź

𝑖

´

𝜏 1𝑖 _ 𝜋 1 _𝑈
𝐶𝑖

𝑖

¯

.

Pick 𝜋 1
𝑖
“ 𝜏 1

𝑖
_ 𝜋 1

𝑖
and 𝑉

𝐷𝑖

𝑖
“ 𝑈

𝐶𝑖

𝑖

𝑖

. Then 𝜋 –
Ź

𝑖

´

𝜋 1𝑖 _𝑉
𝐷𝑖

𝑖

¯

and𝑈
𝐶𝑖

𝑖
ĺ 𝑉

𝐷𝑖

𝑖

𝑖

.

Case S-AndOr1 . 𝜏 “ 𝜋 ^ 𝜏 1 for some 𝜏 1. Then from the assumption, we have:

𝜏 “ 𝜋 ^ 𝜏 1 –
Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

(8)

By Lemma B.22¨ on S-Refl and (8), we have:

p𝜋 ^␣𝜏 1q _ p𝜋 ^ 𝜏 1q – p𝜋 ^␣𝜏 1q _
Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

i.e., 𝜋 –
Ź

𝑖

´

p𝜋 ^␣𝜏 1q _ 𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

(9)

Pick 𝜋 1
𝑖
“ p𝜋 ^␣𝜏 1q _ 𝜏 1

𝑖

𝑖
and 𝑉

𝐷𝑖

𝑖
“ 𝑈

𝐶𝑖

𝑖

𝑖

. Then 𝜋 –
Ź

𝑖

´

𝜋 1𝑖 _𝑉
𝐷𝑖

𝑖

¯

and𝑈
𝐶𝑖

𝑖
ĺ 𝑉

𝐷𝑖

𝑖

𝑖

.

Case S-AndOr2¨. By induction on the number of premises. Denote the inner induction hypothesis

as IH
1
. We have 𝜏 “

Ž

ℎ P 1..𝑛 𝜏
n
ℎ
for some 𝜏n

ℎ

ℎ P 1..𝑛
. Let 𝜏dn

2
“

Ž

ℎ P 2..𝑛 𝜏
n
ℎ
, then 𝜏 “ 𝜏n

1
_ 𝜏dn

2
.

The premises of the rule are:

𝜏n
ℎ
ď 𝜋

ℎ P 1..𝑛
(10)

By S-AndOr2¨ on (10) for ℎ P 2..𝑛, we have:

𝜏dn
2
ď 𝜋 (11)

with the same size as the current derivation and one fewer premise. From the assumption,

we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ 𝜏n
1
_ 𝜏dn

2
(12)

By S-Trans with Lemma B.22 on S-AndOr12¨, (12) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď 𝜏n

1
_ 𝜏dn

2
(13)

By Corollary B.86, (13) implies:

𝑈
𝐶𝑘

𝑘
Ď 𝜏n

1
_ 𝜏dn

2
(14)

for some 𝑘 .

Case 𝐶𝑘 “ 𝐵. If 𝐶𝑘 “ 𝐵 for some 𝐵, then by Lemma B.54, (14) implies:

𝑈 1
𝐶1

𝑙

𝑙
Ď 𝜏n

1
_ 𝜏dn

2

𝑙

(15)

where 𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 𝑈
1𝐶

1
𝑙

𝑙
and 𝑈 1

𝐶1
𝑙

𝑙

𝑙

are not unions. By Lemma B.83, (15) implies either

𝑈 1
𝐶1

𝑙

𝑙
Ď 𝜏n

1
or𝑈 1

𝐶1
𝑙

𝑙
Ď 𝜏dn

2

𝑙

or J Ď 𝜏n
1
_ 𝜏dn

2
.

Case𝑈 1
𝐶1

𝑙

𝑙
Ď 𝜏n

1
or𝑈 1

𝐶1
𝑙

𝑙
Ď 𝜏dn

2

𝑙

. By S-AndOr2¨, we have:

𝑈 1
𝐶1

:“
Ž

𝑙 | 𝑈 1
𝐶1

𝑙
𝑙
Ď𝜏n

1

𝑈 1
𝐶1

𝑙

𝑙
Ď 𝜏n

1
(16)

𝑈 2
𝐶2

:“
Ž

𝑙 | 𝑈 1
𝐶1

𝑙
𝑙
Ď𝜏dn

2

𝑈 1
𝐶1

𝑙

𝑙
Ď 𝜏dn

2
(17)

104 Lionel Parreaux and Chun Yin Chau

By S-AndOr2¨ with S-Refl, (16) and (17) imply:

𝜏n
1
_𝑈 1

𝐶1

Ď 𝜏n
1

(18)

𝜏dn
2
_𝑈 2

𝐶2

Ď 𝜏dn
2

(19)

Since we have the other direction by S-AndOr11¨, (18) and (19) imply:

𝜏n
1
– 𝜏n

1
_𝑈 1

𝐶1

(20)

𝜏dn
2
– 𝜏dn

2
_𝑈 2

𝐶2

(21)

Then by IH on the (10) for ℎ “ 1 and (20), we have:

𝜋 –
Ź

𝑝

´

𝜋1

𝑝 _𝑉 1
𝐷1

𝑝

𝑝

¯

(22)

▷Σ $ 𝑈 1
𝐶1

ĺ 𝑉 1
𝐷1

𝑝

𝑝

𝑝

(23)

By IH
1
on (11) and (21), we have:

𝜋 –
Ź

𝑞

´

𝜋2

𝑞 _𝑉 2
𝐷2

𝑞

𝑞

¯

(24)

▷Σ $ 𝑈 2
𝐶2

ĺ 𝑉 2
𝐷2

𝑞

𝑞

𝑞

(25)

By distributivity, (22) and (24) imply:

𝜋 –
Ź

𝑝,𝑞

´

𝜋1

𝑝 _ 𝜋2

𝑞 _𝑉 1
𝐷1

𝑝

𝑝 _𝑉 2
𝐷2

𝑞

𝑞

¯

(26)

For each pair p𝑝, 𝑞q, we pick 𝜋 1𝑝𝑞 and 𝑉
𝐷𝑝𝑞

𝑝𝑞 as follows:

‚ If 𝐷1

𝑝 P tJ, K u, pick 𝜋
1
𝑝𝑞 “ 𝜋1

𝑝 _ 𝜋2

𝑞 _𝑉 2
𝐷2

𝑞

𝑞 and 𝑉
𝐷𝑝𝑞

𝑝𝑞 “ 𝑉 1
𝐷1

𝑝

𝑝 . Then ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ

𝑉
𝐷𝑝𝑞

𝑝𝑞 .

‚ If 𝐷2

𝑞 P tJ, K u, pick 𝜋
1
𝑝𝑞 “ 𝜋1

𝑝 _ 𝜋2

𝑞 _𝑉 1
𝐷1

𝑝

𝑝 and 𝑉
𝐷𝑝𝑞

𝑝𝑞 “ 𝑉 2
𝐷2

𝑞

𝑞 . Then ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ

𝑉
𝐷𝑝𝑞

𝑝𝑞 .

‚ If 𝐷1

𝑝 R tJ, K u and 𝐷
2

𝑞 R tJ, K u and 𝐷
1

𝑝 ‰ 𝐷2

𝑞 , then we have at least one of the

following by Lemma B.59 (note that since 𝐶𝑘 “ 𝐵, we have 𝐶1 “ 𝐵1
and 𝐶2 “ 𝐵2

for

some 𝐵1
and 𝐵2

):

– 𝐷1

𝑝 “ 𝐶1
and𝐷2

𝑞 “ 𝐶2
, which implies𝐶1 ‰ 𝐶2

. Since𝑈
𝐶𝑘

𝑘
– 𝑈 1

𝐶1

_𝑈 2
𝐶2

, we have

𝐶𝑘 “ J and p𝐶1,𝐶2q P t p𝑥,𝑦‰𝑥 q, p𝑥,Ñq, pÑ, 𝑥q u for some 𝑥 and 𝑦. Then 𝑉 1
𝐷1

𝑝

𝑝 _

𝑉 2
𝐷2

𝑞

𝑞 – 𝜋3

𝑝𝑞 _𝑉J𝑝𝑞 for some 𝜋3

𝑝𝑞 and 𝑉J𝑝𝑞 . Then we can pick 𝜋 1𝑝𝑞 “ 𝜋1

𝑝 _ 𝜋2

𝑞 _ 𝜋3

𝑝𝑞

and 𝑉
𝐷𝑝𝑞

𝑝𝑞 “ 𝑉J𝑝𝑞 , where we have ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷𝑝𝑞

𝑝𝑞 .

– 𝐶1 “ #𝐶1 and 𝐷1

𝑝 “ #𝐶2, where 𝐶2 P Sp#𝐶1q. Since 𝑈
𝐶𝑘

𝑘
– 𝑈 1

𝐶1

_𝑈 2
𝐶2

, we have

𝐶𝑘 “ 𝐶1 “ 𝐶2 “ #𝐶1 Then we can pick 𝜋 1𝑝𝑞 “ 𝜋1

𝑝 _ 𝜋2

𝑞 _𝑉 2
𝐷2

𝑞

𝑞 and 𝑉
𝐷𝑝𝑞

𝑝𝑞 “ 𝑉 1
𝐷1

𝑝

𝑝 ,

where we have ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷𝑝𝑞

𝑝𝑞 .

– 𝐶1 “ #𝐶1 and 𝐷1

𝑝 “ #𝐶2 , where 𝐶1 R Sp#𝐶2q and 𝐶2 R Sp#𝐶1q. Proceed similarly

as above.

– 𝐶2 “ #𝐶1 and 𝐷2

𝑞 “ #𝐶2, where 𝐶2 P Sp#𝐶1q. Since 𝑈
𝐶𝑘

𝑘
– 𝑈 1

𝐶1

_𝑈 2
𝐶2

, we have

𝐶𝑘 “ 𝐶1 “ 𝐶2 “ #𝐶1 Then we can pick 𝜋 1𝑝𝑞 “ 𝜋1

𝑝 _ 𝜋2

𝑞 _𝑉 1
𝐷1

𝑝

𝑝 and 𝑉
𝐷𝑝𝑞

𝑝𝑞 “ 𝑉 2
𝐷2

𝑞

𝑞 ,

where we have ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷𝑝𝑞

𝑝𝑞 .

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 105

– 𝐶2 “ #𝐶1 and 𝐷2

𝑞 “ #𝐶2 , where 𝐶1 R Sp#𝐶2q and 𝐶2 R Sp#𝐶1q. Proceed similarly

as above.

‚ If 𝐷1

𝑝 “ 𝐷2

𝑞 R tJ, K u, then we have 𝐶1 “ 𝐶2 “ 𝐷1

𝑝 “ 𝐷2

𝑞 . Then 𝑈
𝐶𝑘

𝑘
–

𝑈 1
𝐶1

_𝑈 2
𝐶2

and 𝑈 1
𝐶1

ĺ 𝑉 1
𝐷1

𝑝

𝑝 and 𝑈 2
𝐶2

ĺ 𝑉 2
𝐷2

𝑞

𝑞 imply 𝑈
𝐶𝑘

𝑘
ĺ 𝑉 1

𝐷1

𝑝

𝑝 _𝑉 2
𝐷2

𝑞

𝑞 , so

we can pick 𝜋 1𝑝𝑞 “ 𝜋1

𝑝 _ 𝜋2

𝑞 and 𝑉
𝐷𝑝𝑞

𝑝𝑞 “ 𝑉 1
𝐷1

𝑝

𝑝 _𝑉 2
𝐷2

𝑞

𝑞 .

Then we have:

𝜋 –
Ź

𝑝,𝑞

´

𝜋 1𝑝𝑞 _𝑉
𝐷𝑝𝑞

𝑝𝑞

¯

(27)

𝐷𝑝𝑞 P t𝐶𝑖

𝑖
u Y tJ, K u Y t𝑥 𝑥 R t𝐶𝑖

𝑖
u
u Y t #𝐶

#𝐶 R t𝐶𝑖
𝑖
u
u

𝑝,𝑞

(28)

▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷𝑝𝑞

𝑝𝑞

𝑝,𝑞

(29)

The conditions on 𝐷𝑝𝑞 in (28) ensures that we can rewrite

Ź

𝑝,𝑞

´

𝜋 1𝑝𝑞 _𝑉
𝐷𝑝𝑞

𝑝𝑞

¯

to an

equivalent complement-free form, where the ĺ relation is still satisfyable.

Case J Ď 𝜏n
1
_ 𝜏dn

2
. By Lemma B.62, we have 𝑉𝐷 Ď 𝜋 for some 𝑉𝐷

and 𝐷 P tJ, K u.

Then we can pick 𝜋 1
1
“ 𝜋 and 𝑉

𝐷1

1
“ 𝑉𝐷

, which indeed satisfies 𝜋 – 𝜋1 _ 𝑉
𝐷1

1
and

𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷1

1
.

Case 𝐶𝑘 “ 𝐵 . If 𝐶𝑘 “ 𝐵 for some 𝐵, then we proceed symmetrically to the case above on

the negation-inversion of𝑈
𝐶𝑘

𝑘
Ď 𝜏n

1
_ 𝜏dn

2
, i.e., 𝜏 1

n
1
_ 𝜏 1

cn
2
Ď 𝑋

𝐶𝑘

𝑘
for some 𝜏 1

n
1
and 𝜏 1

cn
2

and

𝑋
𝐶𝑘

𝑘
, and finally apply negation-inversion again to obtain the desired result.

Case S-AndOr2 . Then 𝜋 “
Ź

ℎ 𝜋
dn
ℎ

for some 𝜋dn
ℎ

ℎ

. The premises are 𝜏 ď 𝜋dn
ℎ

ℎ

. By IH on each

premise, we have 𝜋dn
ℎ
–

Ź

𝑝ℎ

ˆ

𝜋ℎ
𝑝ℎ
_𝑉ℎ

𝐷ℎ
𝑝ℎ

𝑝ℎ

˙

and ▷Σ $ 𝑈
𝐶
𝑘ℎ𝑝ℎ

𝑘ℎ𝑝ℎ

ĺ 𝑉ℎ
𝐷ℎ
𝑝ℎ

𝑝ℎ

𝑝ℎ

for some 𝜋ℎ
𝑝ℎ

𝑝ℎ

and 𝑉ℎ
𝐷ℎ
𝑝ℎ

𝑝ℎ

𝑝ℎ

and 𝑘ℎ𝑝ℎ

𝑝ℎ
. Then we have 𝜋 –

Ź

ℎ

Ź

𝑝ℎ

ˆ

𝜋ℎ
𝑝ℎ
_𝑉ℎ

𝐷ℎ
𝑝ℎ

𝑝ℎ

˙

.

Cases S-DistribCdn˛. Similar to case S-AndOr2¨.

Case S-RcdDepth. Then 𝜏 “ t𝑥 : 𝜏1 u and 𝜋 “ t𝑥 : 𝜋1 u for some 𝜏1 and 𝜋1. From the assump-

tion, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ t𝑥 : 𝜏1 u (30)

By S-Trans with Lemma B.22 on S-AndOr12¨, (30) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď t𝑥 : 𝜏1 u (31)

By Lemma B.82, (31) implies:

𝑈
𝐶𝑘

𝑘
Ď t𝑥 : 𝜏1 u (32)

for some 𝑘 . By Lemma B.60, (32) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 t𝑥 : 𝜏1 u (33)

The premise of the rule is:

▷Σ $ 𝜏1 ď 𝜋1 (34)

106 Lionel Parreaux and Chun Yin Chau

By the definition of ĺ, (34) implies:

▷Σ $ t𝑥 : 𝜏1 u ĺ t𝑥 : 𝜋1 u

i.e., ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ t𝑥 : 𝜋1 u (35)

So we can pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ t𝑥 : 𝜋1 u, which indeed yields 𝜋 “ t𝑥 : 𝜋1 u – 𝜋 1

1
_𝑉

𝐷1

1
.

Case S-RcdMrg¨. Then 𝜏 “ t𝑥 : 𝜏1 _ 𝜏2 u and 𝜋 “ t𝑥 : 𝜏1 u _ t𝑥 : 𝜏2 u for some 𝜏1 and 𝜏2. From

the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ t𝑥 : 𝜏1 _ 𝜏2 u (36)

By S-Trans with Lemma B.22 on S-AndOr12¨, (36) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď t𝑥 : 𝜏1 _ 𝜏2 u (37)

By Lemma B.82, (37) implies:

𝑈
𝐶𝑘

𝑘
Ď t𝑥 : 𝜏1 _ 𝜏2 u (38)

for some 𝑘 . By Lemma B.60, (38) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 t𝑥 : 𝜏1 _ 𝜏2 u (39)

Pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ t𝑥 : 𝜏1 u _ t𝑥 : 𝜏2 u, which indeed satisfies 𝜋 “ t𝑥 : 𝜏1 u _ t𝑥 :

𝜏2 u – 𝜋 1
1
_𝑉

𝐷1

1
and𝑈

𝐶𝑘

𝑘
ĺ 𝑉

𝐷1

1
.

Case S-RcdMrg . Then 𝜏 “ t𝑥 : 𝜏1 u ^ t𝑥 : 𝜏2 u and 𝜋 “ t𝑥 : 𝜏1 ^ 𝜏2 u for some 𝜏1 and 𝜏2. From

the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ t𝑥 : 𝜏1 u ^ t𝑥 : 𝜏2 u (40)

By S-Trans with Lemma B.22 on S-AndOr12¨, (40) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď t𝑥 : 𝜏1 u ^ t𝑥 : 𝜏2 u (41)

Let 𝑙 range from 1 to 2. By Lemma B.54, (41) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď t𝑥 : 𝜏𝑙 u

𝑙

(42)

By Lemma B.82, (42) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
Ď t𝑥 : 𝜏𝑙 u

𝑙

(43)

for some 𝑘𝑙
𝑙
. By Lemma B.60, (43) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
“

Ž

𝑙𝑙
t𝑥 : 𝜏𝑙 u

𝑙

(44)

Pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ t𝑥 : 𝜏1 ^ 𝜏2 u, which indeed satisfies 𝜋 “ t𝑥 : 𝜏1 ^ 𝜏2 u – 𝜋 1

1
_𝑉

𝐷1

1

and

Ź

𝑙 𝑈
𝐶𝑘𝑙

𝑘𝑙
ĺ 𝑉

𝐷1

1
.

Case S-RcdMrgNegInv¨. Then 𝜏 “ ␣t𝑥 : 𝜏1 u ^ ␣t𝑥 : 𝜏2 u and 𝜋 “ ␣t𝑥 : 𝜏1 _ 𝜏2 u for some

𝜏1 and 𝜏2. From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ ␣t𝑥 : 𝜏1 u ^ ␣t𝑥 : 𝜏2 u (45)

By S-Trans with Lemma B.22 on S-AndOr12¨, (45) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣t𝑥 : 𝜏1 u ^ ␣t𝑥 : 𝜏2 u (46)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 107

Let 𝑙 range from 1 to 2. By Lemma B.54, (46) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣t𝑥 : 𝜏𝑙 u

𝑙

(47)

By Corollary B.86, (47) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
Ď ␣t𝑥 : 𝜏𝑙 u

𝑙

(48)

for some 𝑘𝑙
𝑙
. By Corollary B.61, (48) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
“

Ž

𝑙𝑙
␣t𝑥 : 𝜏𝑙 u

𝑙

(49)

Pick 𝜋 1
1
“ K and𝑉

𝐷1

1
“ ␣t𝑥 : 𝜏1_𝜏2 u, which indeed satisfies 𝜋 “ 𝜋 1

1
_𝑉

𝐷1

1
and

Ź

𝑙 𝑈
𝐶𝑘𝑙

𝑘𝑙
ĺ

𝑉
𝐷1

1
.

Case S-RcdMrgNegInv . Then 𝜏 “ ␣t𝑥 : 𝜏1 ^ 𝜏2 u and 𝜋 “ ␣t𝑥 : 𝜏1 u _ ␣t𝑥 : 𝜏2 u for some

𝜏1 and 𝜏2. From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ ␣t𝑥 : 𝜏1 ^ 𝜏2 u (50)

By S-Trans with Lemma B.22 on S-AndOr12¨, (50) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣t𝑥 : 𝜏1 ^ 𝜏2 u (51)

By Corollary B.86, (51) implies:

𝑈
𝐶𝑘

𝑘
Ď ␣t𝑥 : 𝜏1 ^ 𝜏2 u (52)

for some 𝑘 . By Corollary B.61, (52) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 ␣t𝑥 : 𝜏1 ^ 𝜏2 u (53)

Pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ ␣t𝑥 : 𝜏1 u _ ␣t𝑥 : 𝜏2 u, which indeed satisfies 𝜋 – 𝜋 1

1
_𝑉

𝐷1

1
and

𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷1

1
.

Case S-RcdTop. Then 𝜏 “ J and 𝜋 “ t𝑥 : 𝜋1 u _ 𝜋0, where 𝜋0 P tt𝑦
‰𝑥

: 𝜏2 u, 𝜏2 Ñ 𝜏3 u. Pick

𝜋 1
1
“ K and 𝐷1 “ J and 𝑉

𝐷1

1
“ t𝑥 : 𝜋1 u _ 𝜋0, which indeed satisfies 𝜋 “ t𝑥 : 𝜋1 u _ 𝜋0 –

𝜋 1
1
_𝑉

𝐷1

1
and𝑈

𝐶𝑖

𝑖
ĺ 𝑉

𝐷1

1

𝑖

.

Case S-RcdTopNegInv. Then𝜏 “ ␣t𝑥 : 𝜏1 u^␣𝜏0 and𝜋 “ ␣J, where𝜏0 P tt𝑦
‰𝑥

: 𝜏2 u, 𝜏2 Ñ 𝜏3 u.

From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ ␣t𝑥 : 𝜏1 u ^ ␣𝜏0 (54)

By S-Trans with Lemma B.22 on S-AndOr12¨, (54) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣t𝑥 : 𝜏1 u ^ ␣𝜏0 (55)

By Lemma B.54, (55) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣t𝑥 : 𝜏1 u (56)

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣𝜏0 (57)

By Corollary B.86, (56) and (57) imply:

𝑈
𝐶𝑘

1

𝑘1

Ď ␣t𝑥 : 𝜏1 u (58)

𝑈
𝐶𝑘

2

𝑘2

Ď ␣𝜏0 (59)

108 Lionel Parreaux and Chun Yin Chau

for some 𝑘1 and 𝑘2. By Corollary B.61, (58) and (59) imply:

𝑈
𝐶𝑘

1

𝑘1

“
Ž

𝑖1
␣t𝑥 : 𝜏1 u (60)

𝑈
𝐶𝑘

2

𝑘2

“
Ž

𝑖2
␣𝜏0 (61)

Case 𝜏0 “ t𝑦 : 𝜏2 u. Then𝐶𝑘1
“ 𝑥 and𝐶𝑘2

“ 𝑦 , which is impossible since |t 𝑥 | 𝑥 P t𝐶𝑖

𝑖
u u| ď

1.

Case 𝜏0 “ 𝜏2 Ñ 𝜏3. Then𝐶𝑘1
“ 𝑥 and𝐶𝑘2

“ Ñ , which is impossible since |t 𝑥 | 𝑥 P t𝐶𝑖

𝑖
u u| “

0 or Ñ R t𝐶𝑖

𝑖
u.

Case S-FunDepth. Then 𝜏 “ 𝜏1 Ñ 𝜏2 and 𝜋 “ 𝜏0 Ñ 𝜏3 for some 𝜏𝑙
𝑙 P 0..3

. From the assumption,

we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ 𝜏1 Ñ 𝜏2 (62)

By S-Trans with Lemma B.22 on S-AndOr12¨, (62) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď 𝜏1 Ñ 𝜏2 (63)

By Lemma B.82, (63) implies:

𝑈
𝐶𝑘

𝑘
Ď 𝜏1 Ñ 𝜏2 (64)

for some 𝑘 . By Lemma B.60, (64) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 𝜏1 Ñ 𝜏2 (65)

The premises of the rule are:

▷Σ $ 𝜏0 ď 𝜏1 (66)

▷Σ $ 𝜏2 ď 𝜏3 (67)

By the definition of ĺ, (66) and (67) imply:

▷Σ $ 𝜏1 Ñ 𝜏2 ĺ 𝜏0 Ñ 𝜏3

i.e., ▷Σ $ 𝑈
𝐶𝑘

𝑘
ĺ 𝜏0 Ñ 𝜏3 (68)

So we can pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ 𝜏0 Ñ 𝜏3, which indeed yields 𝜋 “ 𝜏0 Ñ 𝜏3 – 𝜋 1

1
_𝑉

𝐷1

1
.

Case S-FunMrg¨. Then 𝜏 “ 𝜏11 Ñ 𝜏12 ^ 𝜏21 Ñ 𝜏22 and 𝜋 “ p𝜏11 _ 𝜏21q Ñ p𝜏12 ^ 𝜏22q for some

𝜏11, 𝜏12, 𝜏21, and 𝜏22. From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ 𝜏11 Ñ 𝜏12 ^ 𝜏21 Ñ 𝜏22 (69)

By S-Trans with Lemma B.22 on S-AndOr12¨, (69) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď 𝜏11 Ñ 𝜏12 ^ 𝜏21 Ñ 𝜏22 (70)

Let 𝑙 range from 1 to 2. By Lemma B.54, (70) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď 𝜏𝑙1 Ñ 𝜏𝑙2

𝑙

(71)

By Lemma B.82, (71) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
Ď 𝜏𝑙1 Ñ 𝜏𝑙2

𝑙

(72)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 109

for some 𝑘𝑙
𝑙
. By Lemma B.60, (72) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
“

Ž

𝑙𝑙
𝜏𝑙1 Ñ 𝜏𝑙2

𝑙

(73)

Pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ p𝜏11 _ 𝜏21q Ñ p𝜏12 ^ 𝜏22q, which indeed satisfies 𝜋 “ p𝜏11 _ 𝜏21q Ñ

p𝜏12 ^ 𝜏22q – 𝜋 1
1
_𝑉

𝐷1

1
and

Ź

𝑙 𝑈
𝐶𝑘𝑙

𝑘𝑙
ĺ 𝑉

𝐷1

1
.

Case S-FunMrg . Then 𝜏 “ p𝜏1 ^ 𝜏3q Ñ p𝜏2 _ 𝜏4q and 𝜋 “ 𝜏1 Ñ 𝜏2 _ 𝜏3 Ñ 𝜏4 for some 𝜏𝑙
𝑙 P 1..4

.

From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ p𝜏1 ^ 𝜏3q Ñ p𝜏2 _ 𝜏4q (74)

By S-Trans with Lemma B.22 on S-AndOr12¨, (74) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď p𝜏1 ^ 𝜏3q Ñ p𝜏2 _ 𝜏4q (75)

By Lemma B.82, (75) implies:

𝑈
𝐶𝑘

𝑘
Ď p𝜏1 ^ 𝜏3q Ñ p𝜏2 _ 𝜏4q (76)

for some 𝑘 . By Lemma B.60, (76) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 p𝜏1 ^ 𝜏3q Ñ p𝜏2 _ 𝜏4q (77)

Pick 𝜋 1
1
“ K and𝑉

𝐷1

1
“ 𝜏1 Ñ 𝜏2 _ 𝜏3 Ñ 𝜏4, which indeed satisfies 𝜋 “ 𝜏1 Ñ 𝜏2 _ 𝜏3 Ñ 𝜏4 –

𝜋 1
1
_𝑉

𝐷1

1
and𝑈

𝐶𝑘

𝑘
ĺ 𝑉

𝐷1

1
.

Case S-FunMrgNegInv¨. Then 𝜏 “ ␣pp𝜏1_𝜏3q Ñ p𝜏2^𝜏4qq and 𝜋 “ ␣p𝜏1 Ñ 𝜏3q_␣p𝜏2 Ñ 𝜏4q

for some 𝜏𝑙
𝑙 P 1..4

. From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ ␣pp𝜏1 _ 𝜏3q Ñ p𝜏2 ^ 𝜏4qq (78)

By S-Trans with Lemma B.22 on S-AndOr12¨, (78) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣pp𝜏1 _ 𝜏3q Ñ p𝜏2 ^ 𝜏4qq (79)

By Corollary B.86, (79) implies:

𝑈
𝐶𝑘

𝑘
Ď ␣pp𝜏1 _ 𝜏3q Ñ p𝜏2 ^ 𝜏4qq (80)

for some 𝑘 . By Corollary B.61, (80) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 ␣pp𝜏1 _ 𝜏3q Ñ p𝜏2 ^ 𝜏4qq (81)

Pick 𝜋 1
1
“ K and𝑉

𝐷1

1
“ ␣p𝜏1 Ñ 𝜏3q _␣p𝜏2 Ñ 𝜏4q, which indeed satisfies 𝜋 – 𝜋 1

1
_𝑉

𝐷1

1
and

𝑈
𝐶𝑘

𝑘
ĺ 𝑉

𝐷1

1
.

Case S-FunMrgNegInv . Then 𝜏 “ ␣p𝜏11 Ñ 𝜏12q ^ ␣p𝜏21 Ñ 𝜏22q and 𝜋 “ ␣pp𝜏11 ^ 𝜏21q Ñ

p𝜏12 _ 𝜏22qq for some 𝜏11, 𝜏12, 𝜏21, and 𝜏22. From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ ␣p𝜏11 Ñ 𝜏12q ^ ␣p𝜏21 Ñ 𝜏22q (82)

By S-Trans with Lemma B.22 on S-AndOr12¨, (82) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣p𝜏11 Ñ 𝜏12q ^ ␣p𝜏21 Ñ 𝜏22q (83)

Let 𝑙 range from 1 to 2. By Lemma B.54, (83) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď ␣p𝜏𝑙1 Ñ 𝜏𝑙2q

𝑙

(84)

110 Lionel Parreaux and Chun Yin Chau

By Corollary B.86, (84) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
Ď ␣p𝜏𝑙1 Ñ 𝜏𝑙2q

𝑙

(85)

for some 𝑘𝑙
𝑙
. By Corollary B.61, (85) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
“

Ž

𝑙𝑙
␣p𝜏𝑙1 Ñ 𝜏𝑙2q

𝑙

(86)

Pick 𝜋 1
1
“ K and𝑉

𝐷1

1
“ ␣pp𝜏11^𝜏21q Ñ p𝜏12_𝜏22qq. Then 𝜋 “ 𝜋 1

1
_𝑉

𝐷1

1
and

Ź

𝑙 𝑈
𝐶𝑘𝑙

𝑘𝑙
ĺ 𝑉

𝐷1

1
.

Case S-ClsSub. Then 𝜏 “ #𝐶1 and 𝜋 “ #𝐶2 for some #𝐶1 and #𝐶2. From the assumption, we have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ #𝐶1 (87)

By S-Trans with Lemma B.22 on S-AndOr12¨, (87) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď #𝐶1 (88)

By Lemma B.82, (88) implies:

𝑈
𝐶𝑘

𝑘
Ď #𝐶1 (89)

By Lemma B.60, (89) implies:

𝑈
𝐶𝑘

𝑘
“

Ž

𝑙 #𝐶1 (90)

The premise of the rule is:

𝐶2 P Sp#𝐶1q (91)

By the definition of ĺ, (91) implies:

#𝐶1 ĺ #𝐶2

i.e., 𝑈
𝐶𝑘

𝑘
ĺ #𝐶2 (92)

So we can pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ #𝐶2, which indeed yields 𝜋 “ #𝐶2 – 𝜋 1

1
_𝑉

𝐷1

1
.

Case S-ClsBot. Then 𝜏 “ #𝐶1 ^ #𝐶2 and 𝜋 “ K for some #𝐶1 and #𝐶2. From the assumption, we

have:

Ź

𝑖

´

𝜏 1𝑖 _𝑈
𝐶𝑖

𝑖

¯

Ď 𝜏 “ #𝐶1 ^ #𝐶2 (93)

By S-Trans with Lemma B.22 on S-AndOr12¨, (93) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď #𝐶1 ^ #𝐶2 (94)

Let 𝑙 range from 1 to 2. By Lemma B.54, (94) implies:

Ź

𝑖 𝑈
𝐶𝑖

𝑖
Ď #𝐶𝑙

𝑙

(95)

By Lemma B.82, (95) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
Ď #𝐶𝑙

𝑙

(96)

for some 𝑘𝑙
𝑙
. By Lemma B.60, (96) implies:

𝑈
𝐶𝑘𝑙

𝑘𝑙
“

Ž

𝑘𝑙
#𝐶𝑙

𝑙

(97)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 111

Then (97) implies:

𝐶𝑘𝑙 “ #𝐶𝑙

𝑙
(98)

The premises of the rule are:

𝐶1 R Sp#𝐶2q (99)

𝐶2 R Sp#𝐶1q (100)

which is impossible by the condition on 𝐶𝑖

𝑖
.

Case S-ClsBotNegInv. Then 𝜏 “ J and 𝜋 “ ␣#𝐶1 _␣#𝐶1 for some 𝐶1 and 𝐶2. The premises

are 𝐶1 R Sp#𝐶2q and 𝐶2 R Sp#𝐶1q. Pick 𝜋 1
1
“ K and 𝑉

𝐷1

1
“ ␣#𝐶1 _ ␣#𝐶1, which indeed

satisfies 𝜋 “ 𝜋 1
1
_𝑉

𝐷1

1
and𝑈

𝐶𝑖

𝑖
ĺ 𝑉

𝐷1

1

𝑖

.

□

B.12 Progress Proofs
Lemma B.90 (Progress — general). If 𝜖, 𝜖 $ 𝑃 : 𝜏 and bodyp𝑃q is not a value then 𝑃 ù 𝑃 1 for

some 𝑃 1.

Proof. By induction on program typing derivations.

Case T-Body. By progress for terms (Lemma B.91).

Case T-Def. By E-Def.

□

Lemma B.91 (Term progress). If 𝜖, 𝜖 $ 𝑡 : 𝜏 and 𝑡 is not a value then 𝑡 ù 𝑡 1 for some 𝑡 1.

Proof. By induction on typing derivations.

Case T-Subs. Immediate from the induction hypothesis.

Case T-Obj. 𝑡 “ 𝐶 t𝑥 “ 𝑡 1 u If all 𝑡 1 are values, then 𝑡 is a value; otherwise 𝑡 reduces by E-Ctx

and IH.

Case T-Proj. 𝑡 “ 𝑡 1.𝑥

If 𝑡 1 is not a value, by IH we have 𝑡 1 ù 𝑡2, and thus 𝑡 ù 𝑡2.𝑥 by E-Ctx. Otherwise, by

canonical form for record types (Lemma B.92), we have 𝑡 1 “ 𝐶 𝑅 and t𝑥 “ 𝑣 1 u P 𝑅, and

therefore 𝑡 ù 𝑣 1 by E-Proj.

Cases T-Var1, T-Var2. 𝑡 “ 𝑥

Impossible since there is no rule that would type 𝑥 in an empty typing context.

Case T-Abs. 𝑡 “ 𝜆𝑥 . 𝑡 1 Immediate since 𝑡 is a value.

Case T-App. 𝑡 “ 𝑡0 𝑡1
We can apply the induction hypothesis on 𝑡0 and 𝑡1, which are given types in the premises

of this typing rule. If either 𝑡0 or 𝑡1 is not a value, then 𝑡 can progress by E-Ctx, so we only

have to consider the case where 𝑡0 “ 𝑣0 and 𝑡1 “ 𝑣1. By canonical form for function types

(Lemma B.93), we have 𝑣0 “ 𝜆𝑥 . 𝑡 1. Then 𝑡 ù r𝑥 ÞÑ 𝑣2s𝑡
1
by E-App.

Case T-Asc. 𝑡 “ 𝑡1 : 𝜏 Immediate since 𝑡1 : 𝜏 ù 𝑡1 by E-Asc.

Case T-Case1. 𝑡 “ case 𝑥 “ 𝑡1 of 𝜖
By IH, if 𝑡1 is not a value, then 𝑡 progresses by E-Ctx. Moreover, by canonical form for bottom

types (Lemma B.95), 𝑡1 cannot be a value.

Case T-Case2. 𝑡 “ case 𝑥 “ 𝑡1 of _Ñ 𝑡2
By IH, if 𝑡1 is not a value, then 𝑡 progresses by E-Ctx. On the other hand, if 𝑡1 “ 𝑣1, then

𝑡 ù 𝑡2 by E-CaseWld.

112 Lionel Parreaux and Chun Yin Chau

Case T-Case3. 𝑡 “ case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀

By IH, if 𝑡1 is not a value, then 𝑡 progresses by E-Ctx. On the other hand, if 𝑡1 “ 𝑣1, either

𝑣1 “ 𝐶1 𝑅 with 𝐶2 P Sp𝐶1q, in which case E-CaseCls1 applies, or E-CaseCls2 applies since

scrutinees can only be classes by Lemma B.96 and canonical form for class types (Lemma B.94);

in either case, 𝑡 progresses.

□

Lemma B.92 (Canonical form for record types). If 𝜖, Γ $ 𝑣 : t𝑥 : 𝜏 u then we have 𝑣 “ 𝐶 𝑅

for some 𝐶 and 𝑅, and t𝑥 “ 𝑣 1 u P 𝑅.

Proof. By induction on typing derivations for the statement: if 𝜖, Γ $ 𝑣 : 𝜏 and 𝜖 $ 𝜏 ď t𝑥 : 𝜏 1 u

then t𝑥 “ 𝑣 1 u P 𝑣 . The only cases to consider are those rules that can type values:

Case T-Subs. Then the premises of the rule are 𝑣 : 𝜏2 and 𝜏2 ď 𝜏 for some 𝜏2. By S-Trans on

𝜏2 ď 𝜏 and 𝜏 ď t𝑥 : 𝜏 1 u, we have 𝜏2 ď t𝑥 : 𝜏 1 u. This allows us to apply the IH on the

premise 𝑣 : 𝜏2, by which we have t𝑥 “ 𝑣 1 u P 𝑣 .

Case T-Abs. Then 𝜏 “ 𝜏1 Ñ 𝜏2. By consistency of subtyping (Theorem B.88), 𝜏1 Ñ 𝜏2 ď t𝑥 : 𝜏 1 u

cannot be true, therefore this case is impossible.

Case T-Obj. Then 𝜏 “ #𝐶 ^ t𝑥𝑖 : 𝜏𝑖
𝑖
u and 𝑣 “ 𝐶 t𝑥𝑖 “ 𝑣𝑖

𝑖
u. Then by consistency of subtyping

(Theorem B.88) we know that there is an 𝑖 such that 𝑥𝑖 “ 𝑥 . Given the conclusion of T-Obj

and the definition of field projection (Section 4.2), this implies that there is a 𝑣 1 “ 𝑣𝑖 such

that t𝑥 “ 𝑣 1 u P 𝑣 .

□

Lemma B.93 (Canonical form for function types). If 𝜖, Γ $ 𝑣 : 𝜏1 Ñ 𝜏2 then we have

𝑣 “ 𝜆𝑥 . 𝑡 for some 𝑥 and 𝑡 .

Proof. By induction on typing derivations for the statement: if 𝜖, Γ $ 𝑣 : 𝜏 , and 𝜖 $ 𝜏 ď 𝜏1 Ñ 𝜏2

then 𝑣 “ 𝜆𝑥 . 𝑡 for some 𝑥 and 𝑡 . The only cases to consider are those rules that can type values:

Case T-Subs. Then the premises of the rule are 𝑣 : 𝜏 1 and 𝜏 1 ď 𝜏 for some 𝜏 1. By S-Trans on 𝜏 1 ď 𝜏

and 𝜏 ď 𝜏1 Ñ 𝜏2, we have 𝜏
1 ď 𝜏1 Ñ 𝜏2. Then the result follows from IH on 𝑣 : 𝜏 1.

Case T-Abs. Immediate.

Case T-Obj. Then 𝜏 “ t𝑥𝑖 : 𝜏𝑖
𝑖
u for some 𝑥𝑖

𝑖
and 𝑣𝑖

𝑖
. By consistency of subtyping (Theorem B.88),

𝜏 ď 𝜏1 Ñ 𝜏2 cannot be true, therefore this case is impossible.

□

Lemma B.94 (Canonical form for class types). If 𝜖, Γ $ 𝑣 : #𝐶 then we have 𝑣 “ 𝐶 𝑅 for some

𝑅.

Proof. By induction on typing derivations for the statement: if 𝜖, Γ $ 𝑣 : 𝜏 , and 𝜖 $ 𝜏 ď #𝐶

then 𝑣 “ 𝐶 𝑅 for some 𝑅. The only cases to consider are those rules that can type values:

Case T-Subs. Then the premises of the rule are 𝑣 : 𝜏 1 and 𝜏 1 ď 𝜏 for some 𝜏 1. By S-Trans on 𝜏 1 ď 𝜏

and 𝜏 ď #𝐶 , we have 𝜏 1 ď #𝐶 . Then the result follows from IH on 𝑣 : 𝜏 1.

Case T-Abs. Then 𝜏 “ 𝜏1 Ñ 𝜏2 for some 𝜏1 and 𝜏2. By consistency of subtyping (Theorem B.88),

𝜏 ď #𝐶 cannot be true, therefore this case is impossible.

Case T-Obj. Immediate.

□

Lemma B.95 (Canonical form for bottom type). For all 𝑣 , 𝜖, Γ $ 𝑣 : K cannot be derived.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 113

Proof. By case analysis on the last typing rule used in the typing derivation, assuming without

loss of generality that this typing derivation is in subsumption-normalized form (Lemma B.6). The

only cases to consider are those rules that can type values:

Cases T-Abs, T-Obj. Immediate.

Case T-Subs. The premises are 𝜖, Γ $ 𝑣 : 𝜏 and 𝜖 $ 𝜏 ď 𝜏 1 and the goal is to show that we cannot

have 𝜏 1 “ K, i.e., that 𝜏 ď K cannot be derived. The typing derivation being subsumption-

normalized, the first premise is not an application of T-Subs, so it must be an application

of either T-Abs or T-Obj, meaning that 𝜏 P t𝜏1 Ñ 𝜏2, #𝐶 ^ t𝑥𝑖 : 𝜏𝑖
𝑖
u u. We conclude that

𝜏 ď K cannot be derived by consistency of subtyping (Theorem B.88).

□

Lemma B.96 (Scrutinee types). If 𝜖, Γ $ case 𝑥 “ 𝑡 of 𝑀 : 𝜏 then we have 𝜖, Γ $ 𝑡 : #𝐶 for

some 𝐶 .

Proof. By induction of typing derivations.

Case T-Subs. Then the former premise of the rule is 𝜖, Γ $ case 𝑥 “ 𝑣 of 𝑀 : 𝜏 1 for some 𝜏 1. The

result follows from IH.

Case T-Case1. Then the premise of the rule is 𝜖, Γ $ 𝑣 : K, which is impossible by canonical

form for bottom type (Lemma B.95).

Case T-Case2. Then the former premise of the rule is 𝜖, Γ $ 𝑣 : 𝜏1 ^ #𝐶 for some 𝜏1 and 𝐶 . Then

by T-Subs with 𝜏1 ^ #𝐶 ď #𝐶 (S-AndOr12), we have 𝜖, Γ $ 𝑣 : #𝐶 .

Case T-Case3. Then the first premise of the rule is 𝜖, Γ $ 𝑡 : #𝐶 ^ 𝜏1_␣#𝐶 ^ 𝜏2 for some 𝜏1 and

𝜏2 We have either 𝜖, Γ $ 𝑡 : #𝐶 1 or 𝜖, Γ $ 𝑡 : ␣#𝐶 1 for some 𝐶 1. For the former, the result is

immediate. For the latter, we have 𝜖, Γ $ 𝑡 : p#𝐶 ^ 𝜏1 _ ␣#𝐶 ^ 𝜏2q ^ ␣#𝐶 , which implies

𝜖, Γ $ 𝑡 : 𝜏2 by T-Subs since p#𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2q ^ ␣#𝐶 ” ␣#𝐶 ^ 𝜏2 ď 𝜏2. By IH on the

last premise 𝜖, Γ¨p𝑥 : 𝜏2q $ case 𝑥 “ 𝑥 of 𝑀 : 𝜏 , we have 𝜖, Γ¨p𝑥 : 𝜏2q $ 𝑥 : #𝐶2 for some

𝐶2, i.e., 𝜏2 ď #𝐶2. Then we have 𝜖, Γ $ 𝑡 : #𝐶2 by T-Subs.

□

B.13 Preservation Proofs
Lemma B.97 (Preservation — general). If 𝜖, Γ $‹ 𝑃 : 𝜏 and 𝑃 ù 𝑃 1, then we have 𝜖, Γ $‹

𝑃 1 : 𝜏 .

Proof. By induction on program typing derivations.

Case T-Body. By preservation for terms (Lemma B.101).

Case T-Def. 𝑃 “ def 𝑥 “ 𝑡 ; 𝑃 1

The only applicable reduction rule is E-Def. The premises of the rule are Ξ, Γ $ 𝑡 : 𝜏

and 𝜖, Γ¨p𝑥 : @Ξ. 𝜏q $‹ 𝑃 1 : 𝜏𝑃 for some Ξ and 𝜏 . By substitution (Lemma B.98), we have

𝜖, Γ $ r𝑥 ÞÑ 𝑡s𝑃 1 : 𝜏𝑃 .

□

Lemma B.98 (Substitution). For all D wf, Γ and Ξ such that TV pΓq X TV p@Ξ. 𝜏q “ H:

(1) If 𝜖, Γ¨p𝑥 : @Ξ. 𝜏q $‹ 𝑃 : 𝜏𝑃 and Ξ, Γ $ 𝑡 : 𝜏 , then 𝜖, Γ $‹ r𝑥 ÞÑ 𝑡s𝑃 : 𝜏𝑃 .

(2) If Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡𝑃 : 𝜏𝑃 and Ξ0¨Ξ, Γ $ 𝑡 : 𝜏 , then Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡𝑃 : 𝜏𝑃 .

Proof. By induction on program typing derivations of 𝜖, Γ¨p𝑥 : @Ξ. 𝜏q $‹ 𝑃 : 𝜏𝑃 and typing

derivations of Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡𝑃 : 𝜏𝑃 . Note that the TV pΓq X TV p@Ξ. 𝜏q “ H condition can

always be obtained by renaming variables quantified in definitions, when necessary. The only

difficult cases are for T-Body and T-Var2:

114 Lionel Parreaux and Chun Yin Chau

Case T-Body. 𝑃 “ 𝑡𝑃
The premises of the rule are 𝜖 cons. and 𝜖, Γ¨p𝑥 : @Ξ.𝜏q $ 𝑡𝑃 : 𝜏𝑃 . By assumption, we have

Ξ, Γ $ 𝑡 : 𝜏 By IH, we have 𝜖, Γ $ r𝑥 ÞÑ 𝑡s𝑡𝑃 : 𝜏𝑃 . The result 𝜖, Γ $
‹ r𝑥 ÞÑ 𝑡s𝑡𝑃 : 𝜏𝑃 then

follows by T-Body, as 𝑃 “ 𝑡𝑃 .

Case T-Def. 𝑃 “ def 𝑥 1 “ 𝑡 1 ; 𝑃 1

If 𝑥 1 “ 𝑥 , then r𝑥 ÞÑ 𝑡s𝑃 “ 𝑃 and the result is immediate.

Otherwise, r𝑥 ÞÑ 𝑡s𝑃 “ def 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡 1 ; r𝑥 ÞÑ 𝑡s𝑃 . We can apply the IH on the sec-

ond premise of T-Def, Ξ1, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡 1 : 𝜏 1, to get Ξ1, Γ $ r𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏 1. Then,

the third premise of T-Def, 𝜖, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 1 : @Ξ1. 𝜏 1q $‹ 𝑃 : 𝜏𝑃 , can be commuted

(Lemma B.100) to 𝜖, Γ¨p𝑥 1 : @Ξ1. 𝜏 1q¨p𝑥 : @Ξ. 𝜏q $‹ 𝑃 : 𝜏𝑃 , on which we can apply the IH to

get 𝜖, Γ¨p𝑥 1 : @Ξ1. 𝜏 1q $‹ r𝑥 ÞÑ 𝑡s𝑃 : 𝜏𝑃 . We then conclude by T-Def, for which we have just

derived the last two premises (the first premise is unchanged).

Case T-Subs. The premises of the rule are Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡𝑃 : 𝜏1 and Ξ0 $ 𝜏1 ď 𝜏𝑃 . By IH on

the first premise, we have Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡𝑃 : 𝜏1. Then Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡𝑃 : 𝜏𝑃 by T-Subs

with the second premise.

Case T-Obj. 𝑡𝑃 “ 𝐶 t𝑥 1 “ 𝑡 1 u 𝜏𝑃 “ #𝐶 ^ t𝑥 1 : 𝜏 1 u

The premises of the rule are Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡 1 : 𝜏 1. By IH, we have Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏 1.

Then Ξ0, Γ $ 𝐶 t𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡 1 u : #𝐶^t𝑥 1 : 𝜏 1 u byT-Obj, i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡sp𝐶 t𝑥 1 “ 𝑡 1 uq :

#𝐶 ^ t𝑥 1 : 𝜏 1 u by the definition of substitution.

Case T-Proj. 𝑡𝑃 “ 𝑡 1.𝑥 1

The premise of the rule is Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡 1 : t𝑥 1 : 𝜏𝑃 u. By IH, we have Ξ0, Γ $ r𝑥 ÞÑ
𝑡s𝑡 1 : t𝑥 1 : 𝜏𝑃 u. Then Ξ0, Γ $ pr𝑥 ÞÑ 𝑡s𝑡 1q.𝑥 1 : 𝜏𝑃 by T-Proj, i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡 1.𝑥 1 : 𝜏𝑃 by

the definition of substitution.

Case T-Var1. 𝑡𝑃 “ 𝑥 1 pΓ¨p𝑥 : @Ξ. 𝜏qqp𝑥 1q “ 𝜏𝑃
Since 𝑥 1 is mapped to a simple type in the context Γ¨p𝑥 : @Ξ. 𝜏q, 𝑥 ‰ 𝑥 1, then Γp𝑥 1q “ 𝜏𝑃 .

Then Ξ0, Γ $ 𝑥 1 : 𝜏𝑃 , i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑥 1 : 𝜏𝑃 by the definition of substitution.

Case T-Var2. 𝑡𝑃 “ 𝑥 1 𝜌p𝜏 1
𝑃
q ď 𝜏𝑃 pΓ¨p𝑥 : @Ξ. 𝜏qqp𝑥 1q “ @Ξ1. 𝜏 1

𝑃
Ξ0 (𝜌pΞ1q

There are two cases to consider:

Case 𝑥 1 ‰ 𝑥 . Then r𝑥 ÞÑ 𝑡s𝑡𝑃 “ 𝑡𝑃 and the result is immediate.

Case 𝑥 1 “ 𝑥 . Then r𝑥 ÞÑ 𝑡s𝑡𝑃 “ 𝑡 and moreover pΓ¨p𝑥 : @Ξ. 𝜏qqp𝑥q “ @Ξ1. 𝜏 1
𝑃
, thus @Ξ. 𝜏 “

@Ξ1. 𝜏 1
𝑃
, and thus Ξ “ Ξ1 and 𝜏 “ 𝜏 1

𝑃
.

By assumption, Ξ, Γ $ 𝑡 : 𝜏 so Ξ1, Γ $ 𝑡 : 𝜏 1
𝑃
. By preservation of typing under substitution

(Lemma B.35), 𝜌pΞ1q, 𝜌pΓq $ 𝑡 : 𝜌p𝜏 1
𝑃
q, i.e., 𝜌pΞ1q, Γ $ 𝑡 : 𝜏𝑃 by T-Subs and since TV pΓq X

domp𝜌q “ H by assumption.

Moreover, since we have Ξ0 (𝜌pΞ1q, this implies that Ξ0, Γ $ 𝑡 : 𝜏𝑃 (Lemma B.34), which

is what we wanted to prove (remember 𝑡 “ r𝑥 ÞÑ 𝑡s𝑡𝑃).

Case T-Abs. 𝑡𝑃 “ 𝜆𝑥 1. 𝑡 1 𝜏𝑃 “ 𝜏1 Ñ 𝜏2

There are two cases to consider:

Case 𝑥 1 “ 𝑥 . The premise of the rule is Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 : 𝜏1q $ 𝑡 1 : 𝜏2. Since the binding

p𝑥 : @Ξ. 𝜏q is shadowed, we can remove it from the typing context (Lemma B.99), i.e.,

Ξ0, Γ¨p𝑥 : 𝜏1q $ 𝑡 1 : 𝜏2. Then Ξ0, Γ $ 𝜆𝑥. 𝑡 1 : 𝜏1 Ñ 𝜏2 by T-Abs, which is the desired result

since r𝑥 ÞÑ 𝑡s𝑡𝑃 “ 𝑡𝑃 and 𝑥 1 “ 𝑥 .

Case 𝑥 1 ‰ 𝑥 . The premise of the rule is Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 1 : 𝜏1q $ 𝑡 1 : 𝜏2, which can

be commuted (Lemma B.100) to Ξ0, Γ¨p𝑥
1

: 𝜏1q¨p𝑥 : @Ξ. 𝜏q $ 𝑡 1 : 𝜏2. By IH, we have

Ξ0, Γ¨p𝑥
1

: 𝜏1q $ r𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏2. Then Ξ0, Γ $ 𝜆𝑥 1. r𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏1 Ñ 𝜏2, i.e., Ξ0, Γ $
r𝑥 ÞÑ 𝑡s𝜆𝑥 1. 𝑡 1 : 𝜏1 Ñ 𝜏2 by the definition of substitution.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 115

Case T-App. 𝑡𝑃 “ 𝑡0𝑡1
The premises of the rule are Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡0 : 𝜏1 Ñ 𝜏𝑃 and Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡1 : 𝜏1

for some 𝜏1. By IH, we have Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡0 : 𝜏1 Ñ 𝜏𝑃 and Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡1 : 𝜏1. Then

Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡0 r𝑥 ÞÑ 𝑡s𝑡1 : 𝜏𝑃 by T-App, i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡sp𝑡0 𝑡1q : 𝜏𝑃 by the definition

of substitution.

Case T-Asc. 𝑡𝑃 “ 𝑡 1 : 𝜏𝑃
The premise of the rule is Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡 1 : 𝜏𝑃 . By IH, we have Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏𝑃 .

Then Ξ0, Γ $ pr𝑥 ÞÑ 𝑡s𝑡 1 : 𝜏𝑃 q : 𝜏𝑃 by T-Asc, i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡sp𝑡 1 : 𝜏𝑃 q : 𝜏𝑃 by the

definition of substitution.

Case T-Case1. 𝑡𝑃 “ case 𝑥 1 “ 𝑡1 of 𝜖 𝜏𝑃 “ K

The premise of the rule is Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡1 : K. By IH, we have Ξ0, Γ $ r𝑥 ÞÑ

𝑡s𝑡1 : K. Then Ξ0, Γ $ case 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡1 of 𝜖 : K by T-Case1, i.e., Ξ0, Γ $ r𝑥 ÞÑ

𝑡scase 𝑥 1 “ 𝑡1 of 𝜖 : K by the definition of substitution.

Case T-Case2. 𝑡𝑃 “ case 𝑥 1 “ 𝑡1 of _Ñ 𝑡2
There are two cases to consider:

Case 𝑥 1 “ 𝑥 . The premises of the rule are Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡1 : 𝜏1 and Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 : 𝜏1q $

𝑡2 : 𝜏𝑃 . Since the binding p𝑥 : @Ξ. 𝜏q in the second premise is shadowed, we can remove

it from the typing context (Lemma B.99), i.e., Ξ0, Γ¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏𝑃 . By IH on the first

premise, we have Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡1 : 𝜏1. Then Ξ0, Γ $ case 𝑥 “ r𝑥 ÞÑ 𝑡s𝑡1 of _Ñ 𝑡2 : 𝜏𝑃 ,

i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡scase 𝑥 “ 𝑡1 of _Ñ 𝑡2 : 𝜏𝑃 by the definition of substitution.

Case 𝑥 1 ‰ 𝑥 . The premises of the rule are Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡1 : 𝜏1 and Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 1 : 𝜏1q $

𝑡2 : 𝜏𝑃 . The latter can be commuted (Lemma B.100) to Ξ0, Γ¨p𝑥
1

: 𝜏1q¨p𝑥 : @Ξ. 𝜏q $ 𝑡2 :

𝜏𝑃 . By IH, we have Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡1 : 𝜏1 and Ξ0, Γ¨p𝑥
1

: 𝜏1q $ r𝑥 ÞÑ 𝑡s𝑡2 : 𝜏𝑃 .

Then Ξ0, Γ $ case 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡1 of _Ñ r𝑥 ÞÑ 𝑡s𝑡2 by T-Case2, i.e., Ξ0, Γ $ r𝑥 ÞÑ

𝑡scase 𝑥 1 “ 𝑡1 of _Ñ 𝑡2 by the definition of substitution.

Case T-Case3. 𝑡𝑃 “ case 𝑥 1 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀

There are two cases to consider:

Case 𝑥 1 “ 𝑥 . The premises of the rule are:

Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 (1)

Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏𝑃 (2)

Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 : 𝜏2q $ case 𝑥 1 “ 𝑥 1 of 𝑀 : 𝜏𝑃 (3)

By IH on (1), we have:

Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 (4)

Since the binding p𝑥 : @Ξ. 𝜏q in (2) and (3) are shadowed, we can remove them from the

typing contexts (Lemma B.99):

Ξ0, Γ¨p𝑥 : 𝜏1q $ 𝑡2 : 𝜏𝑃 (5)

Ξ0, Γ¨p𝑥 : 𝜏2q $ case 𝑥 “ 𝑥 of 𝑀 : 𝜏𝑃 (6)

Then by T-Case3 on (4) and (5) and (6), we have:

Ξ0, Γ $ case 𝑥 “ r𝑥 ÞÑ 𝑡s𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏𝑃

i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡scase 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏𝑃 (7)

116 Lionel Parreaux and Chun Yin Chau

Case 𝑥 1 ‰ 𝑥 . The premises of the rule are:

Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q $ 𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 (8)

Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 1 : 𝜏1q $ 𝑡2 : 𝜏𝑃 (9)

Ξ0, Γ¨p𝑥 : @Ξ. 𝜏q¨p𝑥 1 : 𝜏2q $ case 𝑥 1 “ 𝑥 1 of 𝑀 : 𝜏𝑃 (10)

The typing contexts in (9) and (10) can be commuted (Lemma B.100) to:

Ξ0, Γ¨p𝑥
1

: 𝜏1q¨p𝑥 : @Ξ. 𝜏q $ 𝑡2 : 𝜏𝑃 (11)

Ξ0, Γ¨p𝑥
1

: 𝜏2q¨p𝑥 : @Ξ. 𝜏q $ case 𝑥 1 “ 𝑥 1 of 𝑀 : 𝜏𝑃 (12)

By IH on (8) and (11) and (12) respectively, we have:

Ξ0, Γ $ r𝑥 ÞÑ 𝑡s𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2 (13)

Ξ0, Γ¨p𝑥
1

: 𝜏1q $ r𝑥 ÞÑ 𝑡s𝑡2 : 𝜏𝑃 (14)

Ξ0, Γ¨p𝑥
1

: 𝜏2q $ case 𝑥 1 “ 𝑥 1 of r𝑥 ÞÑ 𝑡s𝑀 : 𝜏𝑃 (15)

Then by T-Case3 on (13) and (14) and (15), we have:

Ξ0, Γ $ case 𝑥 1 “ r𝑥 ÞÑ 𝑡s𝑡1 of 𝐶 Ñ r𝑥 ÞÑ 𝑡s𝑡2, r𝑥 ÞÑ 𝑡s𝑀 : 𝜏𝑃

i.e., Ξ0, Γ $ r𝑥 ÞÑ 𝑡scase 𝑥 1 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏𝑃 (16)

□

Lemma B.99 (Shadowing of typing contexts). For all 𝛾 “ 𝜏 or 𝜎 , and 𝛾 1 “ 𝜏 1 or 𝜎 1:

(1) If Ξ, Γ¨p𝑥 : 𝛾q¨Γ1¨p𝑥 : 𝛾 1q¨Γ2 $‹ 𝑃 : 𝜏𝑃 , then Ξ, Γ¨Γ1¨p𝑥 : 𝛾q¨p𝑥 : 𝛾 1q¨Γ2 $‹ 𝑃 : 𝜏𝑃 and

Ξ, Γ¨Γ1¨p𝑥 : 𝛾 1q¨Γ2 $‹ 𝑃 : 𝜏𝑃 .

(2) If Ξ, Γ¨p𝑥 : 𝛾q¨Γ1¨p𝑥 : 𝛾 1q¨Γ2 $ 𝑡𝑃 : 𝜏𝑃 , then Ξ, Γ¨Γ1¨p𝑥 : 𝛾q¨p𝑥 : 𝛾 1q¨Γ2 $ 𝑡𝑃 : 𝜏𝑃 and

Ξ, Γ¨Γ1¨p𝑥 : 𝛾 1q¨Γ2 $ 𝑡𝑃 : 𝜏𝑃 .

Proof. By straightforward induction on typing derivations. The only non-trivial cases are T-Var1

and T-Var2.

Case T-Var1. By the definition of Γp¨q, if pΓ¨p𝑦 : 𝛾q¨Γ1¨p𝑦 : 𝛾 1q¨Γ2qp𝑥q “ 𝜏2 for some 𝜏2, then

pΓ¨Γ1¨p𝑦 : 𝛾q¨p𝑦 : 𝛾 1q¨Γ2qp𝑥q “ 𝜏2 and pΓ¨Γ1¨p𝑦 : 𝛾 1q¨Γ2qp𝑥q “ 𝜏2. The result then follows

from T-Var1.

Case T-Var2. Similarly.

□

Lemma B.100 (Commutativity of typing contexts). For all Γ1 such that 𝑥 R dompΓ1q, and
𝛾 “ 𝜏 or 𝜎 :

(1) If 𝜖, Γ¨p𝑥 : 𝛾q¨Γ1 $‹ 𝑃 : 𝜏𝑃 , then 𝜖, Γ¨Γ1¨p𝑥 : 𝛾q $‹ 𝑃 : 𝜏𝑃 .

(2) If Ξ, Γ¨p𝑥 : 𝛾q¨Γ1 $ 𝑡𝑃 : 𝜏𝑃 , then Ξ, Γ¨Γ1¨p𝑥 : 𝛾q $ 𝑡𝑃 : 𝜏𝑃 .

Proof. By induction on typing derivations.

Case T-Body. By IH, followed by T-Body.

Case T-Def. 𝑃 “ def 𝑥 1 “ 𝑡 1 ; 𝑃 1

The premises are 𝜖 cons., Ξ1, Γ¨p𝑥 : 𝛾q¨Γ1 $ 𝑡 1 : 𝜏 1, and 𝜖, Γ¨p𝑥 : 𝛾q¨Γ1¨p𝑥 1 : @Ξ1. 𝜏 1q $‹ 𝑃 1 : 𝜏𝑃 .

By IH on the second premise, we have Ξ1, Γ¨Γ1¨p𝑥 : 𝛾q $ 𝑡 1 : 𝜏 1. If 𝑥 1 “ 𝑥 , we can rearrange

the third premise (Lemma B.99) to 𝜖, Γ¨Γ1¨p𝑥 : 𝛾q¨p𝑥 1 : @Ξ1. 𝜏 1q $‹ 𝑃 1 : 𝜏𝑃 . If 𝑥
1 ‰ 𝑥 , then

𝑥 R dompΓ1¨p𝑥 1 : @Ξ1 . 𝜏 1qq and 𝑥 1 R dompp𝑥 : 𝛾qq, so we have 𝜖, Γ¨Γ1¨p𝑥 : 𝛾q¨p𝑥 1 : @Ξ1. 𝜏 1q $‹

𝑃 1 : 𝜏𝑃 by IH. The result 𝜖, Γ¨Γ1¨p𝑥 : 𝛾q $‹ def 𝑥 1 “ 𝑡 1 ; 𝑃 1 : 𝜏𝑃 then follows from T-Def.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 117

Cases T-Subs, T-Rcd, T-Proj, T-App, T-Asc, T-Case1. By IH on the premises, followed by

the respective rules.

Case T-Var1. By the definition of Γp¨q, since 𝑥 R dompΓ1q by assumption, if pΓ¨p𝑥 : 𝛾q¨Γ1qp𝑥 1q “ 𝜏 1

for some 𝜏 1, then pΓ¨Γ1¨p𝑥 : 𝛾qqp𝑥 1q “ 𝜏 1. The result then follows from T-Var1.

Case T-Var2. Similar to the case above.

Case T-Abs. 𝑡𝑃 “ 𝜆𝑥 1. 𝑡 1 𝜏𝑃 “ 𝜏1 Ñ 𝜏2

The premise is Ξ, Γ¨p𝑥 : 𝛾q¨Γ1¨p𝑥 1 : 𝜏1q $ 𝑡 1 : 𝜏2. If 𝑥
1 “ 𝑥 , we can rearrange it (Lemma B.99) to

Ξ, Γ¨Γ1¨p𝑥 : 𝛾q¨p𝑥 1 : 𝜏1q $ 𝑡 1 : 𝜏2. If 𝑥
1 ‰ 𝑥 , then 𝑥 R dompΓ1¨p𝑥 1 : 𝜏1qq and 𝑥

1 R dompp𝑥 : 𝛾qq,

so we haveΞ, Γ¨Γ1¨p𝑥 : 𝛾q¨p𝑥 1 : 𝜏1q $ 𝑡 1 : 𝜏2 by IH. The resultΞ, Γ¨Γ
1¨p𝑥 : 𝛾q $ 𝜆𝑥 1. 𝑡 1 : 𝜏1 Ñ 𝜏2

then follows from T-Abs.

Cases T-Case2, T-Case3. Similar to the case above.

□

Lemma B.101 (Term preservation). If 𝜖, Γ $ 𝑡 : 𝜏 and 𝑡 ù 𝑡 1, then 𝜖, Γ $ 𝑡 1 : 𝜏 .

Proof. By induction on typing derivations. In the following, we sometimes abbreviate 𝜖, Γ $ 𝑡 : 𝜏

to 𝑡 : 𝜏 .

Case T-Subs. Immediate from the induction hypothesis.

Case T-Obj. 𝑡 “ 𝐶 t𝑥 “ 𝑡 u 𝜏 “ #𝐶 ^ t𝑥 : 𝜏 u

There is only one rule that reduces objects, E-Ctx. By straightforward application of the

induction hypothesis with the respective premises of T-Obj and E-Obj and by reapplication

of T-Obj on 𝑡 1.

Case T-Proj. 𝑡 “ 𝑡0.𝑥 𝑡0 : t𝑥 : 𝜏 u

If 𝑡 ù 𝑡 1
0
.𝑥 by E-Ctx, we conclude by IH.

Otherwise, 𝑡 ù 𝑣2 reduces by E-Proj, meaning that 𝑡0 “ 𝑣1 and t𝑥 “ 𝑣2 u P 𝑣1. We conclude

by inversion of object types (Lemma B.105), which gives us 𝑣2 : 𝜏 .

Cases T-Var1,T-Var2. Immediate since 𝑡 cannot reduce.

Case T-Abs. 𝑡 “ 𝜆𝑥 . 𝑡0 Immediate since 𝑡 cannot reduce.

Case T-App. 𝑡 “ 𝑡0 𝑡1 𝑡0 : 𝜏1 Ñ 𝜏 𝑡1 : 𝜏1

There are two rules by which 𝑡 ù 𝑡 1 can hold:

Case E-Ctx. The result holds by IH and T-App.

Case E-App 𝑡0 “ 𝜆𝑥 . 𝑡 1
0

𝑡1 “ 𝑣1 𝑡 ù r𝑥 ÞÑ 𝑣1s𝑡
1
0

By inversion (Lemma B.102), 𝜖, Γ¨p𝑥 : 𝜏1q $ 𝑡 1
0

: 𝜏 . Together with substitution (Lemma B.98,

applicable since 𝜖, Γ $ 𝑣1 : 𝜏1), this gives us 𝜖, Γ $ r𝑥 ÞÑ 𝑣1s𝑡
1
0

: 𝜏 , i.e., 𝜖, Γ $ 𝑡 1 : 𝜏 .

Case T-Asc. 𝑡 “ 𝑡0 : 𝜏 𝑡 1 “ 𝑡0
Immediate by the premise of the rule.

Case T-Case1. 𝑡 “ case 𝑥 “ 𝑡1 of 𝜖
Immediate since the only rule that can apply is E-Ctx, and it yields a term 𝑡 1 that can still be

typed at K by T-Case1.

Case T-Case2. 𝑡 “ case 𝑥 “ 𝑡1 of _Ñ 𝑡2
If the rule that applies is E-Ctx, by IH. Otherwise, the rule that applies is E-CaseWld, and

we conclude by substitution.

Case T-Case3. 𝑡 “ case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 𝑡1 : #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2

If the rule that applies is E-Ctx, by IH.

Otherwise, if E-CaseCls1 is the rule that applies, it means 𝑡1 is an instance of a subclass of

𝐶2, so by Lemma B.107 we know that 𝜖, Γ $ 𝑡1 : 𝜏1, and we can conclude by substitution

(Lemma B.98).

118 Lionel Parreaux and Chun Yin Chau

Otherwise, E-CaseCls2 must be the rule that applies, so by Lemma B.107 we know that

𝜖, Γ $ 𝑡1 : 𝜏2, and we can conclude by substitution (Lemma B.98) and IH.

□

Lemma B.102 (Inversion of function types). If 𝜖, Γ $ 𝜆𝑥. 𝑡 : 𝜏0 and 𝜖 $ 𝜏0 ď 𝜏1 Ñ 𝜏2, then

𝜖, Γ¨p𝑥 : 𝜏1q $ 𝑡 : 𝜏2.

Proof. Straightforward induction on typing derivations. The only rules that can be used to type

such a lambda expression are:

Case T-Subs. Then the premises of the rule are 𝜖, Γ $ 𝜆𝑥. 𝑡 : 𝜏 1
0
and 𝜖 $ 𝜏 1

0
ď 𝜏0 for some 𝜏 1

0
, on

which we can apply the IH by S-Trans (𝜏 1
0
ď 𝜏0 ď 𝜏1 Ñ 𝜏2).

Case T-Abs. Then 𝜏0 “ 𝜏 1
1
Ñ 𝜏 1

2
for some 𝜏 1

1
and 𝜏 1

2
. The premise is 𝜖, Γ¨p𝑥 : 𝜏 1

1
q $ 𝑡 : 𝜏 1

2
. By

Lemma B.103 we have 𝜖 $ 𝜏1 ď 𝜏 1
1
and 𝜖 $ 𝜏 1

2
ď 𝜏2. Combined with strengthening

(Lemma B.104) and T-Subs, this gives us the desired result.

□

Lemma B.103 (Inversion of function subtyping). If 𝜖 $ 𝜏0 Ñ 𝜏1 ď 𝜏2 Ñ 𝜏3, then 𝜖 $ 𝜏2 ď 𝜏0

and 𝜖 $ 𝜏1 ď 𝜏3.

Proof. By consistency of subtyping (Theorem B.88). □

Lemma B.104 (Strengthening). If 𝜖, Γ¨p𝑥 : 𝜏1q $ 𝑡 : 𝜏 and 𝜖 $ 𝜏2 ď 𝜏1, then we have

𝜖, Γ¨p𝑥 : 𝜏2q $ 𝑡 : 𝜏 .

Proof. By straightforward induction on typing derivations, using T-Subs for the T-Var1 case. □

Lemma B.105 (Inversion of object types). If 𝜖, Γ $ 𝐶 𝑅 : 𝜏0 and t𝑥 “ 𝑣 u P 𝐶 𝑅 and

𝜖 $ 𝜏0 ď t𝑥 : 𝜏 u, then 𝜖 $ 𝑣 : 𝜏 .

Proof. Straightforward induction on typing derivations. The only rules that can be used to type

such a lambda expression are:

Case T-Subs. Then the premises of the rule are 𝜖, Γ $ 𝜆𝑥. 𝑡 : 𝜏 1
0
and 𝜖 $ 𝜏 1

0
ď 𝜏0 for some 𝜏 1

0
, on

which we can apply the IH by S-Trans (𝜏 1
0
ď 𝜏0 ď t𝑥 : 𝜏 u).

Case T-Obj. Then 𝜏0 “ #𝐶 ^ t𝑥𝑖 : 𝜏𝑖
𝑖
u for some 𝐶 and 𝜏𝑖

𝑖
. One of the premises is 𝜖, Γ $ 𝑣 : 𝜏𝑘 ,

where 𝑥𝑘 “ 𝑥 . By Lemma B.106 we have 𝜖 $ 𝜏𝑘 ď 𝜏 . Combined with T-Subs, this gives us

the desired result.

□

Lemma B.106 (Inversion of object subtyping). If 𝜖 $ #𝐶 ^ t𝑥𝑖 : 𝜏𝑖
𝑖
u ď t𝑥𝑘 : 𝜏 u, then

𝜖 $ 𝜏𝑘 ď 𝜏 .

Proof. Let 𝑈
𝐶0

0
“ #𝐶 and 𝑈

𝐶𝑖

𝑖
“ t𝑥𝑖 : 𝜏𝑖 u

𝑖

. Since #𝐶 ^ t𝑥𝑖 : 𝜏𝑖
𝑖
u –

Ź

𝑖1 P t 0,𝑖 u pK _𝑈
𝐶𝑖

𝑖
q, by

Lemma B.89, we have:

t𝑥𝑘 : 𝜏 u –
Ź

𝑗 p𝜋
1
𝑗 _𝑉

𝐷 𝑗

𝑗
q (1)

𝑈
𝐶𝑘𝑗

𝑘 𝑗
ĺ 𝑉

𝐷 𝑗

𝑗

𝑗

(2)

for some 𝜋 1
𝑗

𝑗
and 𝑉

𝐷 𝑗

𝑗

𝑗

and 𝑘 𝑗
𝑗
. By S-Trans with Lemma B.22 on S-AndOr12¨, (1) implies:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď t𝑥𝑘 : 𝜏 u (3)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 119

By Lemma B.82, (3) implies:

𝑉
𝐷𝑙

𝑙
Ď t𝑥𝑘 : 𝜏 u (4)

for some 𝑙 . By Lemma B.60, (4) implies:

𝑉
𝐷𝑙

𝑙
“

Ž

𝑝 t𝑥𝑘 : 𝜏 u (5)

Then 𝐷𝑙 “ 𝑥𝑘 . By Lemma B.59, (2) for 𝑗 “ 𝑙 implies:

𝐶𝑘𝑙 “ 𝑥𝑘 (6)

i.e., 𝑘𝑙 “ 𝑘 . Then (2) for 𝑗 “ 𝑙 becomes:

t𝑥𝑘 : 𝜏𝑘 u ĺ
Ž

𝑝 t𝑥𝑘 : 𝜏 u (7)

By case analysis on the ĺ rules, (7) implies:

𝜏𝑘 ď
Ž

𝑝 𝜏

i.e., 𝜏𝑘 ď 𝜏 (8)

□

Lemma B.107 (Inversion of discriminated class types). Assume 𝜖, Γ $ 𝑣 : 𝜏 where 𝑣 is the

scrutinee of a case expression and 𝜖 $ 𝜏 ď #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2. Then we have:

‚ If 𝑣 “ 𝐶0 𝑅 and 𝐶0 is a subclass of 𝐶 (i.e., 𝐶 P Sp𝐶0q), then 𝜖, Γ $ 𝑣 : 𝜏1.

‚ Otherwise, 𝜖, Γ $ 𝑣 : 𝜏2.

Proof. By induction on typing derivations.The only rules that can be used to type a value are:

Case T-Subs. Then the premises of the rule are 𝜖, Γ $ 𝑣 : 𝜏 1 and 𝜖 $ 𝜏 1 ď 𝜏 for some 𝜏 1, on which

we can apply the IH by S-Trans (𝜏 1 ď 𝜏 ď #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2).

Case T-Abs. 𝑣 “ 𝜆𝑥 . 𝑡

Impossible since scrutinees can only be classes (Lemma B.96).

Case T-Obj. 𝑣 “ 𝐶0 𝑅

We have 𝑅 “ t𝑥 “ 𝑡 u and 𝜏 “ #𝐶0 ^ t𝑥 : 𝜏 u and 𝑡 : 𝜏 and 𝐶0 is final.

So we have #𝐶0 ^ t𝑥 : 𝜏 u ď #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2

i.e., #𝐶0 ^ t𝑥 : 𝜏 u ^ p#𝐶 _␣𝜏2q ď #𝐶 ^ 𝜏1

i.e., (1) #𝐶0 ^ #𝐶 ^ t𝑥 : 𝜏 u _ #𝐶0 ^ t𝑥 : 𝜏 u ^␣𝜏2 ď #𝐶 ^ 𝜏1 Then from the assumption, we

have:

#𝐶0 ^ t𝑥 : 𝜏 u ď #𝐶 ^ 𝜏1 _␣#𝐶 ^ 𝜏2

i.e., #𝐶0 ^ t𝑥 : 𝜏 u ^ p#𝐶 _␣𝜏2q ď #𝐶 ^ 𝜏1

i.e., #𝐶0 ^ #𝐶 ^ t𝑥 : 𝜏 u _ #𝐶0 ^ t𝑥 : 𝜏 u ^ ␣𝜏2 ď #𝐶 ^ 𝜏1 (1)

Case 𝐶 P Sp𝐶0q. Then by S-ClsSub, we have:

#𝐶0 ď #𝐶

i.e., #𝐶0 ^ #𝐶 ” #𝐶0 (2)

Then (1) and (2) imply:

#𝐶0 ^ t𝑥 : 𝜏 u _ #𝐶0 ^ t𝑥 : 𝜏 u ^ ␣𝜏2 ď #𝐶 ^ 𝜏1

i.e., #𝐶0 ^ t𝑥 : 𝜏 u ď #𝐶 ^ 𝜏1

i.e., 𝜏 ď #𝐶 ^ 𝜏1 (3)

120 Lionel Parreaux and Chun Yin Chau

By S-Trans on (3) and S-AndOr12 , we have:

𝜏 ď 𝜏1 (4)

Then by T-Subs, the assumption 𝜖, Γ $ 𝑣 : 𝜏 and (4) imply:

𝜖, Γ $ 𝑣 : 𝜏1 (5)

Case 𝐶 R Sp𝐶0q. By S-Trans on S-AndOr12¨ and (1), we have:

#𝐶0 ^ t𝑥 : 𝜏 u ^ ␣𝜏2 ď #𝐶

i.e., #𝐶0 ^ t𝑥 : 𝜏 u ď #𝐶 _ 𝜏2 (6)

Case 𝐶0 P Sp𝐶q. This case is impossible because 𝐶0 is final and 𝐶0 ‰ 𝐶 (since 𝐶 R Sp𝐶0q).

Case 𝐶0 R Sp𝐶q. Then by S-ClsBot and Theorem B.20, we have:

#𝐶0 ď ␣#𝐶 (7)

Then (6) and (7) imply:

#𝐶0 ^ t𝑥 : 𝜏 u ^ ␣#𝐶 ď 𝜏2

i.e., #𝐶0 ^ t𝑥 : 𝜏 u ď 𝜏2

i.e., 𝜏 ď 𝜏2 (8)

Then by T-Subs, the assumption 𝜖, Γ $ 𝑣 : 𝜏 and (8) imply:

𝜖, Γ $ 𝑣 : 𝜏2 (9)

□

B.14 Type Inference Soundness Proofs
We first define a few judgements to be used in the remainder of this chapter.

The consistency of subtyping contexts is lifted to typing contexts through the bounds in the

polymorphic bindings.

Definition B.108 (Consistency of typing contexts). The consistency of typing contexts is defined as

follows:

Γ cons.
𝜖 cons.

Γ cons.

Γ¨p𝑥 : 𝜏q cons.

Γ cons. Ξ cons.

Γ¨p𝑥 : @Ξ. 𝜏q cons.

A constraining context is said to be guarded if none of the type variables appear on the top level

of its bounds. Guardedness is also similarly raised to typing contexts.

Definition B.109 (Guardedness of constraining contexts). The guardedness of constraining contexts

is defined as follows:

Ξ guard.
𝜖 guard.

𝛼 R TTV p𝜏q Ξ guard.

Ξ¨p𝛼 ď˛ 𝜏q guard.

Definition B.110 (Guardedness of typing contexts). The guardedness of typing contexts is defined

as follows:

Γ guard.
𝜖 guard.

Γ guard.

Γ¨p𝑥 : 𝜏q guard.

Γ guard. Ξ guard.

Γ¨p𝑥 : @Ξ. 𝜏q guard.

Lemma B.111 (Soundness of type inference — general). If Γ ,‹ 𝑃 : 𝜋 ñ Ξ and Γ cons. and
err R Ξ, then Ξ, Γ $‹ 𝑃 : 𝜋 .

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 121

Proof. By induction on type inference derivations.

Case I-Body. By soundness of term inference (Lemma B.112).

Case I-Def. By soundness of term inference (Lemma B.112), we get the subtyping relationship

necessary to apply the IH on 𝑃 .

□

Lemma B.112 (Soundness of term type inference). If Ξ0, Γ , 𝑠 : 𝜋 ñ Ξ1
and Ξ0, Γ cons.

and Ξ0, Γ guard. and err R Ξ1
, then Ξ0¨Ξ1, Γ $ 𝑠 : 𝜋 and Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard..

Proof. By induction on term type inference derivations.

Case I-Proj. 𝑠 “ 𝑡 .𝑥

By IH, we have Ξ0¨Ξ1 $ 𝑡 : 𝜏 and Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard.. And by sound constraining
(Lemma 5.6), we have Ξ0¨Ξ1¨Ξ2 $ 𝜏 ď t𝑥 : 𝛼 u and Ξ0¨Ξ1¨Ξ2 cons. and Ξ0¨Ξ1¨Ξ2 guard..
Therefore, by weakening (Lemma B.34) and T-Subs we have Ξ0¨Ξ1¨Ξ2 $ 𝑡 : t𝑥 : 𝛼 u and by

T-Proj we have Ξ0¨Ξ1¨Ξ2 $ 𝑡 .𝑥 : 𝛼 .

Case I-Obj. By straightforward applications of the IH and weakening.

Case I-Var1. By T-Var1.

Case I-Var2. 𝑡 “ 𝑥 Γp𝑥q “ @Ξ1 . 𝜏1

Let 𝜌 “ r𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

s. We have Ξ0¨𝜌Ξ1 (𝜌Ξ1 by S-Cons and S-Hyp. We also have Ξ0¨𝜌Ξ1 $

𝜌𝜏1 ď 𝜌𝜏1 by S-Refl. Then we have Ξ0¨𝜌Ξ1 $ @Ξ1. 𝜏1 ď
@ 𝜌𝜏1 by S-All, and by S-Var2, we

have Ξ0¨𝜌Ξ1, Γ $ 𝑥 : 𝜌𝜏1 Since Γ cons., we have r𝛼 ÞÑ 𝜏𝛼
𝛼 P𝑆

sΞ1 cons. for some 𝜏𝛼
𝛼 P𝑆

. Since

𝛾𝛼 fresh
𝛼 P𝑆

, we have r𝛼 ÞÑ 𝜏𝛼
𝛼 P𝑆

sΞ1 “ r𝛾𝛼 ÞÑ 𝜏𝛼
𝛼 P𝑆

s𝜌Ξ1. Then r𝛼 ÞÑ 𝜏𝛼
𝛼 P𝑆

sΞ1 cons.
implies 𝜌Ξ1 cons.. Similarly, we also have 𝜌Ξ1 guard..

Case I-Abs. By straightforward applications of the IH.

Cases I-App I-Asc, I-Case1. By analogous reasoning to the I-Proj case, applying the IH and

sound constraining (Lemma 5.6) successively on the premises, threading the inferred con-

straints through and weakening accordingly.

Case I-Case2. 𝑡 “ case 𝑥 “ 𝑡1 of _Ñ 𝑡2
By IH, we have Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard. and Ξ0¨Ξ1, Γ $ 𝑡1 : 𝜏1, which implies

Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ $ 𝑡1 : 𝜏1 by weakening. By sound constraining (Lemma 5.6), we have

Ξ0¨Ξ1¨Ξ2 cons. andΞ0¨Ξ1¨Ξ2 guard. andΞ0¨Ξ1¨Ξ2 $ 𝜏1 ď #𝐶 , which impliesΞ0¨Ξ1¨Ξ2¨Ξ3 $

𝜏1 ď 𝜏1^#𝐶 byweakening S-AndOr2 with S-Refl. Then byT-Subs, we haveΞ0¨Ξ1¨Ξ2¨Ξ3, Γ $
𝑡1 : 𝜏1^#𝐶 . By IH,we haveΞ0¨Ξ1¨Ξ2¨Ξ3 cons. andΞ0¨Ξ1¨Ξ2¨Ξ3 guard. andΞ0¨Ξ1¨Ξ2¨Ξ3, Γ¨p𝑥 : 𝜏1q $

𝑡2 : 𝜏 . Therefore, by T-Case2, we have Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ $ case 𝑥 “ 𝑡1 of _Ñ 𝑡2 : 𝜏 .

Case I-Case3. 𝑡 “ case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀

By IH, we have Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard. and Ξ0¨Ξ1, Γ $ 𝑡1 : 𝜏1, which implies

Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ $ 𝑡1 : 𝜏1 by weakening. Then by IH, we have Ξ0¨Ξ1¨Ξ2 cons. and
Ξ0¨Ξ1¨Ξ2 guard. andΞ0¨Ξ1¨Ξ2, Γ¨p𝑥 : 𝛼q $ 𝑡2 : 𝜏2, which impliesΞ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ¨p𝑥 : 𝛼q $

𝑡2 : 𝜏2 _ 𝜏3 by weakening and S-Trans with S-AndOr11¨. Then by IH again, we have

Ξ0¨Ξ1¨Ξ2¨Ξ3 cons. and Ξ0¨Ξ1¨Ξ2¨Ξ3 guard. and Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ¨p𝑥 : 𝛽q $ case 𝑥 “ 𝑥 of 𝑀 :

𝜏3, which implies Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ¨p𝑥 : 𝛽q $ case 𝑥 “ 𝑥 of 𝑀 : 𝜏2_𝜏3 by weakening and S-

Trans with S-AndOr12¨. By sound constraining (Lemma 5.6), we have Ξ4¨Ξ0¨Ξ1¨Ξ2¨Ξ3 cons.
and Ξ4¨Ξ0¨Ξ1¨Ξ2¨Ξ3 guard. and Ξ4¨Ξ0¨Ξ1¨Ξ2¨Ξ3 $ 𝜏1 ď #𝐶 ^ 𝛼 _ ␣#𝐶 ^ 𝛽 , which imply

Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4 cons. and Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4 guard. and Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4 $ 𝜏1 ď #𝐶 ^ 𝛼 _

␣#𝐶^𝛽 by commutation. Then by T-Subs, we haveΞ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ $ 𝑡1 : #𝐶^𝛼_␣#𝐶^𝛽 .

Therefore, by T-Case3, we have Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ $ case 𝑥 “ 𝑡1 of 𝐶 Ñ 𝑡2, 𝑀 : 𝜏2 _ 𝜏3.

□

122 Lionel Parreaux and Chun Yin Chau

Proof 5.6 (Soundness of Constraining). By Lemma B.113 and Theorem B.114. □

Lemma B.113 (Sufficiency of Constraining).

(1) If Σ $ 𝜏1 ! 𝜏2 ñ Ξ and 𝜏1, 𝜏2 wf and err R Ξ, then Ξ¨Σ $ 𝜏1 ď 𝜏2.

(2) If Σ $ D0 ñ Ξ and D0 wf and err R Ξ, then Ξ¨Σ $ D0 ď K.

Proof. By induction on constraining derivations.

Case C-Hyp. Immediate by S-Hyp.

Case C-Assum. By IH on the latter premise, we have Ξ¨Σ¨▷p𝜏1 ď 𝜏2q $ dnf0p𝜏1 ^␣𝜏2q ď K. By

Lemma 5.3, we have dnf0p𝜏1^␣𝜏2q ” 𝜏1^␣𝜏2. Thenwe haveΞ¨Σ¨▷p𝜏1 ď 𝜏2q $ 𝜏1^␣𝜏2 ď K,

which implies Ξ¨Σ¨▷p𝜏1 ď 𝜏2q $ 𝜏1 ď 𝜏2 by Theorem B.20, which implies Ξ¨Σ $ 𝜏1 ď 𝜏2 by

S-Assum.

Case C-Or. Then D0 “ D0

1
_ C0

1
for some D0

1
and C0

1
, and Ξ “ Ξ1¨Ξ2 for some Ξ1 and Ξ2. By

IH on the former premise, we have Ξ1¨Σ $ D0

1
ď K. By IH on the latter premise, we have

Ξ2¨Ξ1¨Σ $ C0

1
ď K, which implies Ξ¨Σ $ C0

1
ď K by commutation. Ξ1¨Σ $ D0

1
ď K implies

Ξ¨Σ $ D0

1
ď K by Lemma B.30. Then by S-AndOr2¨, we have Ξ¨Σ $ D0

1
_ C0

1
ď K.

Case C-Bot. Immediate by S-Refl.

Case C-Cls1. Then D0 “ Ir#𝐶1s ^ ␣pU_ #𝐶2q for some 𝐶1 and 𝐶2 and U. From the premise, we

have Σ $ #𝐶1 ď #𝐶2 by S-ClsSub, which implies Σ $ #𝐶1 ^ F ^ R ď U_ #𝐶2 by S-Trans

with S-AndOr11 and S-AndOr12¨, which implies Σ $ #𝐶1 ^ F ^R ^␣pU_ #𝐶2q ď K by

Theorem B.20, i.e., Σ $ Ir#𝐶1s ^ ␣pU_ #𝐶2q ď K.

Case C-Cls2. Then D0 “ Ir#𝐶1s ^ ␣pU _ #𝐶2q for some 𝐶1 and 𝐶2 and U. By IH on the latter

premise, we have Ξ¨Σ $ Ir#𝐶1s ^ ␣U ď K. Since ␣pU_ #𝐶2q ď ␣U by S-AndOr11¨ and

S-NegInv, we have Ξ¨Σ $ Ir#𝐶1s ^ ␣pU _ #𝐶2q ď Ir#𝐶1s ^ ␣U by Lemma B.22 with

S-Refl. Then we have Ξ¨Σ $ Ir#𝐶1s ^ ␣pU_ #𝐶2q ď K by S-Trans.

Case C-Cls3. Then D0 “ INrJs ^ ␣pU_ #𝐶q for some 𝐶 and U. By IH on the premise, we have

Ξ¨Σ $ INrJs ^ ␣U ď K. Since ␣pU_ #𝐶q ď ␣U by S-AndOr11¨ and S-NegInv, we have

Ξ¨Σ $ INrJs ^ ␣pU_ #𝐶q ď INrJs ^ ␣U by Lemma B.22 with S-Refl. Then we have

Ξ¨Σ $ INrJs ^ ␣pU_ #𝐶q ď K by S-Trans.

Case C-Fun1. Then D0 “ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q for some D1 and D2 and D3 and D4, and

Ξ “ Ξ1¨Ξ2 for some Ξ1 and Ξ2. By IH on the former premise, we have Ξ1¨◁Σ $ D3 ď D1,

which implies ◁pΞ¨Σq $ D3 ď D1 by Lemma B.30. By IH on the latter premise, we have

Ξ2¨Ξ1¨◁Σ $ D2 ď D4, which implies ◁pΞ¨Σq $ D2 ď D4 by Lemma B.30. Then by S-

FunDepth, we have Ξ¨Σ $ D1 Ñ D2 ď D3 Ñ D4, which implies Ξ¨Σ $ N ^ D1 Ñ

D2 ^ R ď D3 Ñ D4 by S-Trans with S-AndOr11 and S-AndOr12 , i.e., Ξ¨Σ $ IrD1 Ñ

D2s ď D3 Ñ D4, which implies Ξ¨Σ $ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q ď K by Theorem B.20.

Case C-Rcd1. Then D0 “ Irt𝑥 : D𝑥

𝑥 P𝑆
us ^ ␣t𝑦 : D u for some D𝑥

𝑥 P𝑆
and D. By IH on the

premise, we have Ξ¨◁Σ $ D𝑦 ď D, which implies ◁pΞ¨Σq $ D𝑦 ď D by Lemma B.30.

Then by S-RcdDepth, we have Ξ¨Σ $ t𝑦 : D𝑦 u ď t𝑦 : D u, which implies Ξ¨Σ $ N ^

F ^ t𝑥 : D𝑥

𝑥 P𝑆
u ď t𝑦 : D u by S-Trans with S-AndOr11 and S-AndOr12 , i.e., Ξ¨Σ $

Irt𝑥 : D𝑥

𝑥 P𝑆
us ď t𝑦 : D u, which implies Ξ¨Σ $ Irt𝑥 : D𝑥

𝑥 P𝑆
us ^ ␣t𝑦 : D u ď K by

Theorem B.20.

Cases C-NotBot, C-Fun2, C-Rcd2, C-Rcd3. Then err P Ξ.
Case C-Var1. By S-Hyp, we have Ξ¨p𝛼 ď ␣Cq¨Σ $ 𝛼 ď ␣C, which implies Ξ¨p𝛼 ď ␣Cq¨Σ $

C^ 𝛼 ď K by Theorem B.20.

Case C-Var2. By S-Hyp, we haveΞ¨p𝛼 ď Cq¨Σ $ 𝛼 ď C, which impliesΞ¨p𝛼 ď Cq¨Σ $ 𝛼^␣C ď
K by Theorem B.20.

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 123

Ξ, Σ $ 𝜏 ! 𝜏 ñ Ξ

C-Hyp

p𝜏1 ď 𝜏2q P Ξ¨Σ

Ξ, Σ $ 𝜏1 ! 𝜏2 ñ 𝜖

C-Assum

p𝜏1 ď 𝜏2q R Ξ¨Σ Ξ, Σ¨▷p𝜏1 ď 𝜏2q $ dnf0p𝜏1 ^␣𝜏2q ñ Ξ1

Ξ, Σ $ 𝜏1 ! 𝜏2 ñ Ξ1

Ξ, Σ $ D0 ñ Ξ

C-Or

Ξ, Σ $ D0 ñ Ξ1 Ξ¨Ξ1, Σ $ C0 ñ Ξ2

Ξ, Σ $ D0 _ C0 ñ Ξ1¨Ξ2

C-Bot

Ξ, Σ $ K ñ 𝜖

C-NotBot

Ξ, Σ $ I0 ^␣K ñ err

C-Cls1

𝐶2 P Sp#𝐶1q

Ξ, Σ $ Ir#𝐶1s ^ ␣pU_ #𝐶2q ñ 𝜖

C-Cls2

𝐶2 R Sp#𝐶1q Ξ, Σ $ Ir#𝐶1s ^ ␣Uñ Ξ1

Ξ, Σ $ Ir#𝐶1s ^ ␣pU_ #𝐶2q ñ Ξ1

C-Cls3

Ξ, Σ $ INrJs ^ ␣Uñ Ξ1

Ξ, Σ $ INrJs ^ ␣pU_ #𝐶q ñ Ξ1

C-Fun1

Ξ,◁Σ $ D3 ! D1 ñ Ξ1 Ξ¨Ξ1,◁Σ $ D2 ! D4 ñ Ξ2

Ξ, Σ $ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q ñ Ξ1¨Ξ2

C-Fun2

Ξ, Σ $ IÑrJs ^ ␣pD1 Ñ D2q ñ err

C-Rcd1

𝑦 P 𝑆 Ξ,◁Σ $ D𝑦 ! Dñ Ξ1

Ξ, Σ $ Irt𝑥 : D𝑥
𝑥 P𝑆

us ^ ␣t𝑦 : D u ñ Ξ1

C-Rcd2

𝑦 R 𝑆

Ξ, Σ $ Irt𝑥 : D𝑥
𝑥 P𝑆

us ^ ␣t𝑦 : D u ñ err

C-Rcd3

Ξ, Σ $ IturJs ^ ␣t𝑥 : D u ñ err

C-Var1

Ξ¨p𝛼 ď ␣Cq, Σ $ lbΞp𝛼q ! ␣Cñ Ξ1

Ξ, Σ $ C^ 𝛼 ñ Ξ1¨p𝛼 ď ␣Cq

C-Var2

Ξ¨pC ď 𝛼q, Σ $ C ! ubΞp𝛼q ñ Ξ1

Ξ, Σ $ C^␣𝛼 ñ Ξ1¨pC ď 𝛼q

Fig. 22. Reformulated normal form constraining rules. The only difference with the rules of Figure 8 is that
we now explicitly split the subtyping context into a constraining part Ξ and a plain subtyping part Σ.

□

Theorem B.114 (Consistency of constraining). IfΞ cons. andΞ guard. andΞ $ 𝜏 ! 𝜋 ñ Ξ1

and err R Ξ1, then Ξ¨Ξ1 cons. and Ξ¨Ξ1 guard..

Proof. By Lemma B.115. □

In the remainder of this section, we consider the reformulated type constraining rules in Figure 22.

In these rules, we assume that we always start derivations with an empty Σ, so that we start only

with bounds, and all these bounds are in Ξ. It is easy to see that they are equivalent to the ones

presented in Figure 8.

Lemma B.115 (Consistency of constraining).

(1) If◁Σ¨Δ $ Ξ ; 𝜌 cons. andΞ guard. andΞ, Σ $ 𝜏 ! 𝜋 ñ Ξ1 and err R Ξ1, then◁Σ¨Δ $ Ξ¨Ξ1 ;
𝜌 1 cons. and Ξ¨Ξ1 guard. for some 𝜌 1.

(2) If◁Σ¨Δ $ Ξ ; 𝜌 cons. andΞ guard. andΞ, Σ $
Ž

𝑖 P 1..𝑛 C
0

𝑖 ñ Ξ1 and TTV 1pC0

𝑖
q are distinct

𝑖 P 1..𝑛

and err R Ξ1, then ◁Σ¨Δ $ Ξ¨Ξ1 ; 𝜌 1 cons. and Ξ¨Ξ1 guard. for some 𝜌 1.

Proof. By induction on constraining derivations.

Cases C-Hyp, C-Bot, C-Cls1. Immediate since Ξ1 “ 𝜖 .

124 Lionel Parreaux and Chun Yin Chau

Case C-Assum. Then the premise of the rule is:

Ξ, Σ¨▷p𝜏 ď 𝜋q $ dnf0p𝜏 ^␣𝜋q ñ Ξ1 (1)

From the assumptions, we have:

◁Σ¨Δ $ Ξ ; 𝜌 1 cons. (2)

By Lemma B.33 with Lemma B.25, (2) implies:

◁pΣ¨▷p𝜏 ď 𝜋qq¨Δ $ Ξ ; 𝜌 1 cons. (3)

for some 𝜌 1. Then by IH on (3) and (1), we have:

◁pΣ¨▷p𝜏 ď 𝜋qq¨Δ $ Ξ¨Ξ1 ; 𝜌 1 cons.

i.e., ◁Σ¨p𝜏 ď 𝜋q¨Δ $ Ξ¨Ξ1 ; 𝜌 1 cons. (4)

By Lemma B.113, Ξ, Σ $ 𝜏 ! 𝜋 ñ Ξ1 implies:

Ξ¨Ξ1¨Σ $ 𝜏 ď 𝜋 (5)

By Lemma B.30 with Lemma B.25, (5) implies:

Ξ¨Ξ1¨◁Σ¨Δ $ 𝜏 ď 𝜋 (6)

Then by Lemma B.33 with (6), (4) implies:

◁Σ¨Δ $ Ξ¨Ξ1 ; 𝜌 1 cons. (7)

Case C-Or. Then the premises of the rule are:

Ξ, Σ $
Ž

𝑖 P 1..𝑛´1
C0

𝑖 ñ Ξ1
1

(8)

Ξ¨Ξ1
1
, Σ $ C0

𝑛 ñ Ξ1
2

(9)

where Ξ1 “ Ξ1
1
¨Ξ1

2
. Then by IH on (8), we have:

◁Σ¨Δ $ Ξ¨Ξ1
1

; 𝜌2 cons. (10)

for some 𝜌2. Then by IH on (10) and (9), we have:

◁Σ¨Δ $ Ξ¨Ξ1
1
¨Ξ1

2
; 𝜌 1 cons.

i.e., ◁Σ¨Δ $ Ξ¨Ξ1 ; 𝜌 1 cons. (11)

for some 𝜌 1.

Cases C-Cls2, C-Cls3, C-Rcd1. Immediate by IH on the premise.

Case C-Fun1. Similar to case C-Or.

Case C-Var1. Then the premise of the rule is:

Ξ¨p𝛼 ď ␣Cq, Σ $ lbΞp𝛼q ! ␣Cñ Ξ1
1

(12)

where

Ž

𝑖 P 1..𝑛 C
0
i “ C ^ 𝛼 and Ξ1 “ Ξ1

1
¨p𝛼 ď ␣Cq for some 𝛼 and C and Ξ1

1
. From the

assumption, we have:

◁Σ¨Δ $ Ξ ; 𝜌 cons. (13)

By Lemma B.33 with Lemma B.25, (13) implies:

p𝛼 ď ␣Cq¨Ξ1
1
¨◁Σ¨Δ $ Ξ ; 𝜌 cons. (14)

Since TTV
1pC^ 𝛼q are distinct, by the syntax of RDNF, we have 𝛼 R TTV pCq. Then we have:

Ξ¨p𝛼 ď ␣Cq guard. (15)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 125

Since (15) implies 𝛼 R TTV plbΞp𝛼qq Y TTV p␣Cq, by Lemma B.117 on (12) followed by

Lemma B.30, we have:

▷Ξ𝛼 ¨▷p𝛼 ď ␣Cq¨𝜌 1𝛼pΞ𝛼 ¨Ξ
1
1
¨Σq $ lbΞp𝛼q ď ␣C (16)

where split𝛼pΞ, domp𝜌qzt𝛼 uq “ pΞ𝛼 , Ξ𝛼 q and 𝜌
1
𝛼 “ r𝛼 ÞÑ 𝛼^ubΞ¨p𝛼ď𝜏qp𝛼q_ lbΞ¨p𝛼ď𝜏qp𝛼qs.

By Lemma B.30 with Lemma B.25, (16) implies:

▷Ξ𝛼 ¨▷p𝛼 ď ␣Cq¨𝜌 1𝛼pΞ𝛼 ¨Ξ
1
1
¨◁Σq $ lbΞp𝛼q ď ␣C (17)

Then by Lemma B.116 on (14), (15), and (17), we have:

Ξ1
1
¨◁Σ¨Δ $ Ξ¨p𝛼 ď ␣Cq ; 𝜌 1 cons.

i.e., ◁Σ¨pΞ1
1
¨Δq $ Ξ¨p𝛼 ď ␣Cq ; 𝜌 1 cons. (18)

for some 𝜌 1. Then by IH on (18) and (12), we have:

◁Σ¨pΞ1
1
¨Δq $ Ξ¨p𝛼 ď ␣Cq¨Ξ1

1
; 𝜌 1 cons. (19)

By Lemma B.25, we have:

Ξ¨p𝛼 ď ␣Cq¨Ξ1
1
¨◁Σ¨Δ (◁Σ¨pΞ1

1
¨Δq (20)

Then by Lemma B.33 with (20), (19) implies:

◁Σ¨Δ $ Ξ¨p𝛼 ď ␣Cq¨Ξ1
1

; 𝜌 1 cons.

i.e., ◁Σ¨Δ $ Ξ¨Ξ1 ; 𝜌 1 cons. (21)

Case C-Var2. Similar to case C-Var1.

□

Lemma B.116. If p𝛼 ď˛ 𝜏q¨Σ $ ▷Ξ▷¨Ξ ; 𝜌 cons. andΞ¨p𝛼 ď˛ 𝜏q guard. and▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď
˛ 𝜏q

¨𝜌 1𝛼pΞ𝛼 ¨Σq $ lb
˛
Ξp𝛼q ď

˛ 𝜏 , where split𝛼pΞ, domp𝜌qzt𝛼 uq “ pΞ𝛼 , Ξ𝛼 q, then Σ $ ▷Ξ▷¨Ξ¨p𝛼 ď
˛ 𝜏q ;

𝜌 1 cons. for some 𝜌 1, where 𝜌 1𝛼 “ r𝛼 ÞÑ 𝛼 ^ ubΞ¨p𝛼ď˛𝜏qp𝛼q _ lbΞ¨p𝛼ď˛𝜏qp𝛼qs.

The proof for the ¨ direction is shown below. The direction is symmetric.

Proof. By Lemma B.44, p𝛼 ď 𝜏q¨Σ $ ▷Ξ▷¨Ξ ; 𝜌 cons. implies:

▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ¨𝜌𝛼pp𝛼 ď 𝜏q¨Σq (𝜌𝛼Ξ𝛼 (1)

𝜌𝛼pp𝛼 ď 𝜏q¨Σq $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ; 𝜌 1
1
cons. (2)

for some 𝜌 1
1
, where 𝜌𝛼 “ r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qs and domp𝜌 1

1
q “ domp𝜌qzt𝛼 u.

Let 𝜌𝜏 “ r𝛼 ÞÑ 𝛼 ^ 𝜏s. By Lemma B.36 on (1), we have:

𝜌𝜏 p▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ¨𝜌𝛼pp𝛼 ď 𝜏q¨Σqq (𝜌𝜏𝜌𝛼Ξ𝛼 (3)

By Corollary B.40 and Corollary B.41, we have:

p𝛼 ď 𝜏q $ 𝜋 ” 𝜌𝜏𝜋 for all 𝜋 (4)

▷p𝛼 ď 𝜏q $ 𝜋 ” 𝜌𝜏𝜋 for all 𝜋 where 𝛼 R TTV p𝜋q (5)

By S-Trans on Lemma B.25 and (4), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q (𝜌𝜏 p▷Ξ▷¨▷Ξ𝛼q (6)

Then by Lemma B.30 on (3) with (6), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌𝜏𝜌𝛼pΞ𝛼 ¨p𝛼 ď 𝜏q¨Σq (𝜌𝜏𝜌𝛼Ξ𝛼 (7)

126 Lionel Parreaux and Chun Yin Chau

Expanding the composition, we have:

𝜌𝜏 ˝ 𝜌𝛼 “ r𝛼 ÞÑ 𝛼 ^ 𝜏 ^ 𝜌𝜏ubΞp𝛼q _ 𝜌𝜏 lbΞp𝛼qs (8)

By Lemma B.22 on S-Refl and (5), we have:

▷p𝛼 ď 𝜏q $ 𝛼 ^ 𝜏 ^ ubΞp𝛼q _ lbΞp𝛼q ” 𝛼 ^ 𝜏 ^ 𝜌𝜏ubΞp𝛼q _ 𝜌𝜏 lbΞp𝛼q

i.e., ▷p𝛼 ď 𝜏q $ 𝛼 ^ ubΞ¨p𝛼ď𝜏qp𝛼q _ lbΞ¨p𝛼ď𝜏qp𝛼q ” 𝛼 ^ 𝜏 ^ 𝜌𝜏ubΞp𝛼q _ 𝜌𝜏 lbΞp𝛼q (9)

Then by Lemma B.38 on (9), we have:

▷p𝛼 ď 𝜏q $ 𝜌 1𝛼𝜋 ” 𝜌𝜏𝜌𝛼𝜋 for all 𝜋 (10)

By S-Trans on Lemma B.25 and (10), we have:

▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨p𝛼 ď 𝜏q¨Σq (𝜌𝜏𝜌𝛼pΞ𝛼 ¨p𝛼 ď 𝜏q¨Σq (11)

𝜌𝜏𝜌𝛼Ξ𝛼 (𝜌 1𝛼Ξ𝛼 (12)

Then by Lemma B.30 on (7) with (11), followed by Lemma B.26 with (12), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨p𝛼 ď 𝜏q¨Σq (𝜌 1𝛼Ξ𝛼 (13)

From the assumption, we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq $ lbΞp𝛼q ď 𝜏 (14)

By S-AndOr2¨ on S-AndOr11 /S-AndOr12 and (14), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq $ 𝛼 ^ 𝜏 ^ ubΞp𝛼q _ lbΞp𝛼q ď 𝜏 (15)

By Corollary B.41, we have:

▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q $ 𝜏 ” 𝜌 1𝛼𝜏 (16)

Then by S-Trans on (15) and (16), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq $ 𝜌 1𝛼𝛼 ď 𝜌 1𝛼𝜏 (17)

Then by Lemma B.30 on (13) with (17), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq (𝜌 1𝛼Ξ𝛼 (18)

By S-Cons on (18) with (17), we have:

▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq (𝜌 1𝛼Ξ𝛼 ¨𝜌
1
𝛼p𝛼 ď 𝜏q (19)

By S-Trans on S-AndOr11 , we have:

p𝛼 ď 𝜏q $ 𝛼 ^ ubΞp𝛼q ď 𝜏 (20)

Then by S-AndOr2¨ on (20) and (14), we have:

▷Ξ▷¨▷Ξ𝛼 ¨p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq $ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ď 𝜏 (21)

By Corollary B.41, we have:

▷Ξ𝛼 $ 𝜏 ” 𝜌𝛼𝜏 (22)

Then by S-Trans on (21) and (22), we have:

▷Ξ▷¨▷Ξ𝛼 ¨p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq $ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ď 𝜌𝛼𝜏

i.e., ▷Ξ▷¨▷Ξ𝛼 ¨p𝛼 ď 𝜏q¨𝜌 1𝛼pΞ𝛼 ¨Σq $ 𝜌𝛼𝛼 ď 𝜌𝛼𝜏 (23)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 127

By S-AndOr2 and Lemma B.22 on S-Hyp and S-Refl, we have:

p𝛼 ď 𝜏q $ 𝛼 ^ 𝜏 ^ ubΞp𝛼q _ lbΞp𝛼q ” 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q

i.e., p𝛼 ď 𝜏q $ 𝛼 ^ ubΞ¨p𝛼ď𝜏qp𝛼q _ lbΞ¨p𝛼ď𝜏qp𝛼q ” 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q (24)

By Lemma B.38 on (24), we have:

p𝛼 ď 𝜏q $ 𝜌 1𝛼𝜋 ” 𝜌𝛼𝜋 for all 𝜋 (25)

By S-Trans on Lemma B.25 and (25), we have:

𝜌𝛼pΞ𝛼 ¨Σq (𝜌 1𝛼pΞ𝛼 ¨Σq (26)

Then by Lemma B.30 on (23) with (26), we have:

▷Ξ▷¨▷Ξ𝛼 ¨p𝛼 ď 𝜏q¨𝜌𝛼pΞ𝛼 ¨Σq $ 𝜌𝛼𝛼 ď 𝜌𝛼𝜏 (27)

Then by Lemma B.36 and Lemma B.30 with (27), (2) implies:

p𝛼 ď 𝜏q¨𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨𝜌𝛼Ξ𝛼 ; 𝜌 1
1
cons. (28)

Then by Lemma B.50 on (28), we have:

𝜌𝜏𝜌𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌𝜏𝜌𝛼Ξ𝛼 ; 𝜌 1
2
cons. (29)

for some 𝜌 1
2
. By Lemma B.43 on (29) with (9), we have:

𝜌 1𝛼Σ $ ▷Ξ▷¨▷Ξ𝛼 ¨▷p𝛼 ď 𝜏q¨𝜌 1𝛼Ξ𝛼 ; 𝜌 1
3
cons. (30)

for some 𝜌 1
3
. Then by the definition of consistency on (19) and (30), we have:

Σ $ Ξ¨p𝛼 ď 𝜏q ; 𝜌 1
3
˝ 𝜌 1𝛼 cons. (31)

□

Lemma B.117.

(1) If Ξ, Σ $ 𝜏1 ! 𝜏2 ñ Ξ1 and 𝛼 R TTV p𝜏1q Y TTV p𝜏2q and err R Ξ1, then ▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $

𝜏1 ď 𝜏2, where split𝛼pΞ, Hq “ pΞ𝛼 , Ξ𝛼 q and 𝜌 “ r𝛼 ÞÑ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qs.

(2) If Ξ, Σ $ D0 ñ Ξ1 and 𝛼 R TTV pD0q and err R Ξ1, where D0 “
Ž

𝑖 P 1..𝑛 C
0

𝑖 , then ▷Ξ𝛼

¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ D0 ď K, where split𝛼pΞ, Hq “ pΞ𝛼 , Ξ𝛼 q and 𝜌 “ r𝛼 ÞÑ 𝛼^ubΞp𝛼q_lbΞp𝛼qs.

Proof. By induction on constraining derivations.

Case C-Hyp. Since 𝛼 R TTV p𝜏1q Y TTV p𝜏2q, we have from the premise:

p𝜏1 ď 𝜏2q P Ξ𝛼 ¨Σ

i.e., p𝜌𝜏1 ď 𝜌𝜏2q P 𝜌pΞ𝛼 ¨Σq (1)

Then by S-Hyp on (1), we have:

𝜌pΞ𝛼 ¨Σq $ 𝜌𝜏1 ď 𝜌𝜏2 (2)

By Corollary B.41, we have:

▷Σ𝛼 $ 𝜏1 ” 𝜌𝜏1 (3)

▷Σ𝛼 $ 𝜏2 ” 𝜌𝜏2 (4)

Then by S-Trans on (2), (3), and (4), we have:

▷Σ𝛼 ¨𝜌pΞ𝛼 ¨Σq $ 𝜏1 ď 𝜏2 (5)

128 Lionel Parreaux and Chun Yin Chau

Case C-Assum. Then the premise of the rule is:

Ξ, Σ¨▷p𝜏1 ď 𝜏2q $ dnf0p𝜏1 ^␣𝜏2q ñ Ξ1 (6)

By IH on (6), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σ¨▷p𝜏1 ď 𝜏2qq $ dnf0p𝜏1 ^␣𝜏2q ď K (7)

By Corollary B.40, we have:

Ξ𝛼 $ 𝜏1 ” 𝜌𝜏1 (8)

Ξ𝛼 $ 𝜏2 ” 𝜌𝜏2 (9)

Then by S-Trans on Lemma B.25, (8), and (9), we have:

▷Ξ𝛼 ¨▷p𝜏1 ď 𝜏2q (𝜌 ▷ p𝜏1 ď 𝜏2q (10)

Then by Lemma B.30 with (10), (7) implies:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq¨▷p𝜏1 ď 𝜏2q $ dnf0p𝜏1 ^␣𝜏2q ď K (11)

By S-Trans on Lemma 5.3 and (11), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq¨▷p𝜏1 ď 𝜏2q $ 𝜏1 ^␣𝜏2 ď K (12)

By Theorem B.20 on (12), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq¨▷p𝜏1 ď 𝜏2q $ 𝜏1 ď 𝜏2 (13)

By S-Assum on (13), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ 𝜏1 ď 𝜏2 (14)

Case C-Or. It is easy to see that if TTV
1pC0

𝑘
q are not distinct for some 𝑘 , we can deduplicate them

before preceeding, and duplicate them again in the conclusion. Therefore we can assume

that TTV
1pC0

𝑖
q are distinct

𝑖 P 1..𝑛

.

The premises of the rule are:

Ξ, Σ $
Ž

𝑖 P 1..𝑛´1
C0

𝑖 ñ Ξ1
1

(15)

Ξ¨Ξ1, Σ $ C0

𝑛 ñ Ξ1
2

(16)

where Ξ1 “ Ξ1
1
¨Ξ1

2
for some Ξ1

1
and Ξ1

2
. By IH on (15), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1
1
¨Σq $

Ž

𝑖 P 1..𝑛´1
C0

𝑖 ď K (17)

By IH on (16), we have:

▷Ξ𝛼 ¨▷Ξ
1
1𝛼 ¨𝜌

1pΞ𝛼 ¨Ξ
1
1𝛼 ¨Ξ

1
2
¨Σq $ C0

𝑛 ď K (18)

where split𝛼pΞ
1
1
, Hq “ pΞ1

1𝛼 , Ξ
1
1𝛼 q and 𝜌 1 “ r𝛼 ÞÑ 𝛼 ^ ubΞ¨Ξ1

1

p𝛼q _ lbΞ¨Ξ1
1

p𝛼qs.

By Lemma B.118 on (15), we have:

Ξ1
1
guard. (19)

By Lemma B.25, we have:

𝜌Ξ1
1
(𝜌Ξ1

1𝛼 (20)

By Corollary B.40, we have:

Ξ𝛼 $ 𝜋 ” r𝛼 ÞÑ 𝛼 ^ ubΞ𝛼
p𝛼q _ lbΞ𝛼

p𝛼qs𝜋 for all 𝜋

i.e., Ξ𝛼 $ 𝜋 ” 𝜌𝜋 for all 𝜋 (21)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 129

Then by S-Trans on (20) and (21), we have:

Ξ𝛼 ¨𝜌Ξ
1
1
(Ξ1

1𝛼 (22)

By Lemma B.28 on (22), we have:

▷Ξ𝛼 ¨▷𝜌Ξ
1
1
(▷Ξ1

1𝛼 (23)

By Lemma B.26 on (23) and Lemma B.25, we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
(▷Ξ1

1𝛼 (24)

By Corollary B.41, we have:

▷Ξ𝛼 $ ubΞ1
1

p𝛼q ” r𝛼 ÞÑ 𝛼 ^ ubΞ𝛼
p𝛼q _ lbΞ𝛼

p𝛼qsubΞ1
1

p𝛼q

i.e., ▷Ξ𝛼 $ ubΞ1
1

p𝛼q ” 𝜌ubΞ1
1

p𝛼q (25)

By S-AndOr2 on S-Hyp, we have:

𝜌Ξ1
1
$ 𝜌𝛼 ď 𝜌ubΞ1

1

p𝛼q

i.e., 𝜌Ξ1
1
$ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ď 𝜌ubΞ1

𝑎
p𝛼q (26)

Then by S-Trans on S-AndOr12¨, (26) and (25), we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ lbΞp𝛼q ď ubΞ1

1

p𝛼q (27)

By S-AndOr2 on S-Refl and (27), we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ lbΞp𝛼q ď lbΞp𝛼q ^ ubΞ1

1

p𝛼q (28)

Then by S-AndOr11 and (28), we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ lbΞp𝛼q ” lbΞp𝛼q ^ ubΞ1

1

p𝛼q (29)

Then by (29) and S-Distr, we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ 𝛼 ^ ubΞ¨Ξ1

1

p𝛼q _ lbΞ¨Ξ1
1

p𝛼q

“ 𝛼 ^ ubΞp𝛼q ^ ubΞ1
1

p𝛼q _ lbΞp𝛼q _ lbΞ1
1

p𝛼q

” 𝛼 ^ ubΞp𝛼q ^ ubΞ1
1

p𝛼q _ lbΞp𝛼q ^ ubΞ1
1

p𝛼q _ lbΞ1
1

p𝛼q

” p𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq ^ ubΞ1
1

p𝛼q _ lbΞ1
1

p𝛼q

(30)

By S-AndOr2 on S-Refl and S-Hyp, followed by S-Trans with S-AndOr11¨, we have:

𝜌Ξ1
1
$ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ď p𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq ^ 𝜌ubΞ1

1

p𝛼q _ 𝜌lbΞ1
1

p𝛼q (31)

Similarly, by S-AndOr2¨ on S-Refl and S-Hyp, followed by S-Trans with S-AndOr11 , we

have:

𝜌Ξ1
1
$ p𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq ^ 𝜌ubΞ1

1

p𝛼q _ 𝜌lbΞ1
1

p𝛼q ď 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q (32)

By Corollary B.41, we have:

▷Ξ𝛼 $ ubΞ1
1

p𝛼q ” 𝜌ubΞ1
1

p𝛼q (33)

▷Ξ𝛼 $ lbΞ1
1

p𝛼q ” 𝜌lbΞ1
1

p𝛼q (34)

Then by S-Trans on (31)/(32), (33), and (34), we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ” p𝛼 ^ ubΞp𝛼q _ lbΞp𝛼qq ^ ubΞ1

1

p𝛼q _ lbΞ1
1

p𝛼q (35)

Then by S-Trans on (35) and (30), we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ 𝛼 ^ ubΞp𝛼q _ lbΞp𝛼q ” 𝛼 ^ ubΞ¨Ξ1

1

p𝛼q _ lbΞ¨Ξ1
1

p𝛼q (36)

130 Lionel Parreaux and Chun Yin Chau

By Lemma B.38 on (36), we have:

▷Ξ𝛼 ¨𝜌Ξ
1
1
$ 𝜌𝜋 ” 𝜌 1𝜋 for all 𝜋 (37)

Then by S-Trans on Lemma B.25 and (37), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1
1
¨Ξ1

2
¨Σq (𝜌 1pΞ𝛼 ¨Ξ

1
1𝛼 ¨Ξ

1
2
¨Σq (38)

Then by Lemma B.30 with (24) and (38), (18) implies:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1
1
¨Ξ1

2
¨Σq (C0

𝑛 ď K (39)

Then by S-AndOr2¨ on (17) and (39), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1
1
¨Ξ1

2
¨Σq $

Ž

𝑖 P 1..𝑛 C
0

𝑖 ď K

i.e., ▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ D0 ď K (40)

Case C-Bot. Immediate by S-ToB .

Case C-Cls1. Then D0 “ Ir#𝐶1s ^ ␣pU_ #𝐶2q for some 𝐶1, 𝐶2, Ir#𝐶1s, and U. By S-ClsSub on

the premise 𝐶2 P Sp#𝐶1q, we have:

#𝐶1 ď #𝐶2 (41)

By S-Trans on S-AndOr11 , (41), and S-AndOr12¨, we have:

Ir#𝐶1s ď U_ #𝐶2 (42)

Then by Theorem B.20, (42) implies:

Ir#𝐶1s ^ ␣pU_ #𝐶2q ď K (43)

Cases C-Cls2, C-Cls3. Then D0 “ INrNs ^ ␣pU _ #𝐶q for some N , 𝐶 , INrNs, and U. The
premise of the rule is:

Ξ, Σ $ INrNs ^ ␣Uñ Ξ1 (44)

By IH on (44), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ INrNs ^ ␣U ď K (45)

By S-AndOr11¨ followed by S-NegInv, we have:

␣pU_ #𝐶q ď ␣U (46)

Then by S-Trans on (46) and (45), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ INrNs ^ ␣pU_ #𝐶q ď K (47)

Case C-Fun1. Then D0 “ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q for some D𝑗

𝑗 P 1..4
and IrD1 Ñ D2s. The

premises of the rule are:

Ξ,◁Σ $ D3 ă D1 ñ Ξ1
1

(48)

Ξ¨Ξ1
1
,◁Σ $ D2 ă D4 ñ Ξ1

2
(49)

for some Ξ1
1
and Ξ1

2
, where Ξ1 “ Ξ1

1
¨Ξ1

2
. By Lemma B.113 on (48) and (49), we have:

Ξ¨◁Σ¨Ξ1
1
$ D3 ď D1 (50)

Ξ¨Ξ1
1
¨◁Σ¨Ξ1

2
$ D2 ď D4 (51)

By Lemma B.30 with Lemma B.25, (50) and (51) imply:

Ξ¨Ξ1¨◁Σ $ D3 ď D1 (52)

Ξ¨Ξ1¨◁Σ $ D2 ď D4 (53)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 131

By Corollary B.40, we have:

Ξ𝛼 $ 𝜋 ” r𝛼 ÞÑ 𝛼 ^ ubΞ𝛼
p𝛼q _ lbΞ𝛼

p𝛼qs𝜋 for all 𝜋

i.e., Ξ𝛼 $ 𝜋 ” 𝜌𝜋 for all 𝜋 (54)

By S-Trans on Lemma B.25 and (54), we have:

Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨◁Σq (Ξ𝛼 ¨Ξ

1¨◁Σ (55)

Then by Lemma B.30 with (55), (52) and (53) imply:

Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨◁Σq $ D3 ď D1 (56)

Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨◁Σq $ D2 ď D4 (57)

Then by S-FunDepth on (56) and (57), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ D1 Ñ D2 ď D3 Ñ D4 (58)

By S-Trans on S-AndOr11 , S-AndOr12 , and (58), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ IrD1 Ñ D2s ď D3 Ñ D4 (59)

By Theorem B.20, (59) implies:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1¨Σq $ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q ď K (60)

Case C-Rcd1. Similar to case C-Fun1.

Case C-Var1. Then D0 “ C ^ 𝛽 and Ξ1 “ Ξ1
1
¨p𝛽 ď ␣Cq for some 𝛽 , C, and Ξ1

1
. By S-Hyp, we

have:

𝜌p𝛽 ď ␣Cq (𝜌𝛽 ď 𝜌␣C

i.e., 𝜌p𝛽 ď ␣Cq (𝜌𝛽 ď ␣𝜌C (61)

By Theorem B.20, (61) implies:

𝜌p𝛽 ď ␣Cq (𝜌C^ 𝜌𝛽 ď K

i.e., 𝜌p𝛽 ď ␣Cq (𝜌pC^ 𝛽q ď K (62)

By Corollary B.41, we have:

▷Ξ𝛼 $ C^ 𝛽 ” r𝛼 ÞÑ 𝛼 ^ ubΞ𝛼
p𝛼q _ lbΞ𝛼

p𝛼qspC^ 𝛽q

i.e., ▷Ξ𝛼 $ C^ 𝛽 ” 𝜌pC^ 𝛽q (63)

Then by S-Trans on (63) and (62), we have:

▷Ξ𝛼 ¨𝜌pΞ𝛼 ¨Ξ
1
1
¨p𝛽 ď ␣Cq¨Σq $ C^ 𝛽 ď K (64)

Case C-Var2. Similar to case C-Var1.

□

Lemma B.118 (Guardedness of constraining).

(1) If Ξ, Σ $ 𝜏1 ! 𝜏2 ñ Ξ1 and err R Ξ1, then Ξ1 guard..

(2) If Ξ, Σ $
Ž

𝑖 C
0

𝑖 ñ Ξ1 and TTV 1pC0

𝑖
q are distinct

𝑖

and err R Ξ1, then Ξ1 guard..

Proof. By straightforward induction on constraining derivations. □

132 Lionel Parreaux and Chun Yin Chau

B.15 Type Inference Termination Proof
The basic intuition is that by Theorem A.9, we know that in well-formed declarations contexts,

there is only a finite number of types that can be reached by expanding all the user-defined type

constructors in a given type. Therefore, the number of types that may be reached while applying

constraining rules is finite, and since each traversed type is saved as part of the current subtyping

hypotheses, all executions of constraining will eventually halt.

Proof 5.7 (Termination of Constraining). Let𝑇𝑖 be the set of type pairs that are constrained

at any recursive depth 𝑖 of the type constraining algorithm.

We can see from the constraining rules of Figure 8 that if we start from the constraintΞ $ 𝜏0 ď 𝜋0,

then 𝑇0 “ t𝜏0 ď 𝜋0 u and 𝑇𝑖 Ď 𝑇 1
𝑖

𝑖
where:

𝑇 1
0
“ t𝜏0 ď 𝜋0 u Y Ξ

𝑇 1𝑖`1
“ tD3 ď D1 | IrD1 Ñ D2s ^ ␣𝑆

␣rD3 Ñ D4s P 𝑆𝑖 u

Y tD2 ď D4 | IrD1 Ñ D2s ^ ␣𝑆
␣rD3 Ñ D4s P 𝑆𝑖 u

Y tD𝑦 ď D | Irt𝑥 : D𝑥

𝑥
us ^ ␣𝑆␣rt𝑦 : D us P 𝑆𝑖 , 𝑦 P t𝑥 u u

Y t
Ž

𝜏 P𝑆 𝜏 ď ␣C | C^ 𝛼 P 𝑆𝑖 , 𝑆 P Ppt𝜋 | 𝜋 ď 𝛼 P
Ť

𝑗ď𝑖 𝑇
1
𝑗 uq u

Y t𝛼 ď ␣C | C^ 𝛼 P 𝑆𝑖 u

Y tC ď
Ź

𝜏 P𝑆 𝜏 | C^␣𝛼 P 𝑆𝑖 , 𝑆 P Ppt𝜋 | 𝛼 ď 𝜋 P
Ť

𝑗ď𝑖 𝑇
1
𝑗 uq u

Y tC ď 𝛼 | C^␣𝛼 P 𝑆𝑖 u

𝑆𝑖 “ tC | p𝜏 ď 𝜋q P 𝑇 1𝑖 , dnf
0p𝜏 ^␣𝜋q “

Ž

𝑖 C𝑖 , C P tC𝑖

𝑖
u u

𝑆𝑖 puts each constraint in 𝑇 1𝑖 into RDNF, as is done by C-Assum. The first two components in

the inductive definition of 𝑇 1𝑖 correspond to the premises of C-Fun1, and the third component to

the premise of C-Rcd1. In addition to the pairs of types constrained (i.e., the hypotheses assumed),

𝑇 1𝑖 also contains the bounds assumed in the premises of C-Var1 and C-Var2, as seen in the fifth

and seventh components. Therefore we can simply look up the bounds from the union of 𝑇 1𝑗 for

𝑗 ď 𝑖 in the fourth and sixth components, which correspond to the premise of C-Var1 and C-Var2

respectively. To exclude hypotheses assumed by C-Assum, which may not end up being assumed

as a bound by C-Var1 and C-Var2, we overapproximate by considering all subsets of such pairs of

types.

Next, we show that the size of

Ť

𝑖 𝑇
1
𝑖 is bounded.

The functions collect𝑐

𝑐
traverse a type and collect the type variables, class and alias types, nominal

tags, and record labels, which we abbreviate as 𝑐 , reachable from the type.

𝑐 ::“ TV (type variables)

| CA (class and alias types)

| NT (nominal tags)

| RL (record labels)

𝑁 r𝜏s˚ ::“ 𝜖 | 𝑁 r𝜏s˚¨𝑁 r𝜏s

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 133

collect
𝑁 r𝜏s˚

𝑐 p𝜏1 Ñ 𝜏2q “ collect
𝑁 r𝜏s˚

𝑐 p𝜏1q Y collect
𝑁 r𝜏s˚

𝑐 p𝜏2q

collect
𝑁 r𝜏s˚

𝑐 pt𝑥 : 𝜏 uq “

#

collect
𝑁 r𝜏s˚

𝑐 p𝜏q Y t𝑥 u if 𝑐 “ RL

collect
𝑁 r𝜏s˚

𝑐 p𝜏q otherwise

collect
𝑁 r𝜏s˚

𝑐 p𝑁 r𝜏sq “

$

’

&

’

%

collect
𝑁 r𝜏s˚¨𝑁 r𝜏s
𝑐 p𝜏 1q Y t𝑁 r𝜏s u if 𝑁 r𝜏s R 𝑁 r𝜏s˚ and 𝑐 “ CA

collect
𝑁 r𝜏s˚¨𝑁 r𝜏s
𝑐 p𝜏 1q if 𝑁 r𝜏s R 𝑁 r𝜏s˚ and 𝑐 ‰ CA

H if 𝑁 r𝜏s P 𝑁 r𝜏s˚

where 𝑁 r𝜏s exp. 𝜏 1

collect
𝑁 r𝜏s˚

𝑐 p#𝐶q “

"

t #𝐶 u if 𝑐 “ NT

H otherwise

collect
𝑁 r𝜏s˚

𝑐 p𝛼q “

"

t𝛼 u if 𝑐 “ TV

H otherwise

collect
𝑁 r𝜏s˚

𝑐 pJ˛q “ H

collect
𝑁 r𝜏s˚

𝑐 p𝜏1 _
˛ 𝜏2q “ collect

𝑁 r𝜏s˚

𝑐 p𝜏1q Y collect
𝑁 r𝜏s˚

𝑐 p𝜏2q

collect
𝑁 r𝜏s˚

𝑐 p␣𝜏q “ collect
𝑁 r𝜏s˚

𝑐 p𝜏q

Similarly, the function depth traverses a type and measures the nesting depth of type constructors

up to the first recursive occurrence of a class or alias type.

depth
𝑁 r𝜏sp𝜏1 Ñ 𝜏2q “ maxpdepth𝑁 r𝜏sp𝜏1q, depth

𝑁 r𝜏sp𝜏2qq ` 1

depth
𝑁 r𝜏spt𝑥 : 𝜏 uq “ depth

𝑁 r𝜏sp𝜏q ` 1

depth
𝑁 r𝜏sp𝑁 r𝜏sq “

"

depth
𝑁 r𝜏s˚¨𝑁 r𝜏sp𝜏 1q if 𝑁 r𝜏s R 𝑁 r𝜏s˚,where 𝑁 r𝜏s exp. 𝜏 1

0 if 𝑁 r𝜏s P 𝑁 r𝜏s˚

depth
𝑁 r𝜏sp#𝐶q “ depth

𝑁 r𝜏sp𝛼q “ depth
𝑁 r𝜏spJ˛q “ 0

depth
𝑁 r𝜏sp𝜏1 _

˛ 𝜏2q “ maxpdepth𝑁 r𝜏sp𝜏1q, depth
𝑁 r𝜏sp𝜏2qq

depth
𝑁 r𝜏sp␣𝜏q “ depth

𝑁 r𝜏sp𝜏q

By the Theorem A.9, if D wf, then for all 𝜏 , the sets collect𝑐p𝜏q
𝑐
are finite, and depthp𝜏q is finite.

Given a set of types 𝑆 , we can collect the 𝑐 reachable from it as collect𝑐p𝑆q “
Ť

𝜏 P𝑆 collect𝑐p𝜏q
𝑐

and the type constructor nesting depth as depthp𝑆q “ max𝜏 P𝑆 depthp𝜏q. Then we can inductively

construct the universes𝑈𝑖 of C’s up to depth 𝑖 that only contain collect𝑐p𝑆q
𝑐
without duplicates, as

do the results of dnf0
. Notice that all of𝑈𝑖 are finite.

For any 𝑆 1 where collect𝑐p𝑆
1q Ď collect𝑐p𝑆q

𝑐
, depthp𝑆 1q is the type constructor nesting depth after

expanding class and alias types up to the first recursive occurrences, while dnf0
expands class and

alias types on the top level, which by the guardedness check does not include their first recursive

occurrences. Since the RDNF subexpression unnesting in the first three components of the inductive

definition of 𝑇 1𝑖 , the Boolean algebraic connectives in the remaining four components, and dnf0
in

134 Lionel Parreaux and Chun Yin Chau

𝑆𝑖 all preserve the depth and do not introduce new 𝑐 , we have:

𝑆𝑖 Ď 𝑈
depthp𝑇 1

0
q

𝑇 1𝑖 Ď 𝑇 1
0
Y pt

Ž

𝜏 P𝑆 𝜏 | 𝑆 P Pp𝑈
depthp𝑇 1

0
qq u Y collectTVp𝑇

1
0
qq

ˆ pt
Ž

𝜏 P𝑆 𝜏 | 𝑆 P Pp𝑈
depthp𝑇 1

0
qq u Y t

Ź

𝜏 P𝑆 𝜏 | 𝑆 P Pp𝑈
depthp𝑇 1

0
qq u

Yt𝜏 | 𝜏 P 𝑈
depthp𝑇 1

0
q u Y collectTVp𝑇

1
0
qq

Therefore the set 𝑇 “
Ť

𝑖 𝑇𝑖 of all pairs of types ever constrained by the algorithm is bounded by:

𝑇 Ď
Ť

𝑖 𝑇
1
𝑖 Ď 𝑇 1

0
Y pt

Ž

𝜏 P𝑆 𝜏 | 𝑆 P Pp𝑈
depthp𝑇 1

0
qq u Y collectTVp𝑇

1
0
qq

ˆ pt
Ž

𝜏 P𝑆 𝜏 | 𝑆 P Pp𝑈
depthp𝑇 1

0
qq u Y t

Ź

𝜏 P𝑆 𝜏 | 𝑆 P Pp𝑈
depthp𝑇 1

0
qq u

Yt𝜏 | 𝜏 P 𝑈
depthp𝑇 1

0
q u Y collectTVp𝑇

1
0
qq

and is thus finite.

Since C-Hyp ensures that the subtyping context Σ reachable by the subtyping algorithm cannot

contain duplicates, we have Σ Ď 𝑇 Y t err u. Since 𝑇 is finite, Σ is also finite. Since recursive calls

to the constraining algorithm always increases the size of Σ, this implies that constraining always

terminates. □

B.16 Type Inference Completeness Proofs
Lemma B.119 (Completeness of type inference — general). If Ξ, Γ $‹ 𝑃 : 𝜏 , then Γ ,‹ 𝑃 :

𝜏 1 ñ Ξ1 for some Ξ1 and 𝜏 1 so that @Ξ1. 𝜏 1 ď@ @Ξ. 𝜏 .

Proof. By induction on program typing derivations.

Case T-Body. Then 𝑃 “ 𝑡 for some 𝑡 . The premises of the rule are:

Ξ cons. (1)

Ξ, Γ $ 𝑡 : 𝜏 (2)

By Lemma B.123 on (2) and (1), we have:

Γ , 𝑡 : 𝜏 1 ñ Ξ1 (3)

Ξ $ 𝜌𝜏 1 ď 𝜏 (4)

Ξ (𝜌Ξ1 (5)

for some 𝜏 1 and Ξ1 and 𝜌 , where domp𝜌q “ freshpp3qq. By I-Body on (3), we have:

Γ ,‹ 𝑡 : 𝜏 1 ñ Ξ1 (6)

By S-All on (4) and (5), we have:

@Ξ1. 𝜏 1 ď@ @Ξ. 𝜏 (7)

Case T-Def. Then 𝑃 “ def 𝑥 “ 𝑡 ; 𝑃 1 for some 𝑥 and 𝑡 and 𝑃 1. The premises of the rule are:

Ξ1 cons. (8)

Ξ1, Γ $ 𝑡 : 𝜏1 (9)

Ξ, Γ¨p𝑥 : @Ξ1 . 𝜏1q $
‹ 𝑃 1 : 𝜏 (10)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 135

By Lemma B.123 on (9) and (8), we have:

Γ , 𝑡 : 𝜏 1
1
ñ Ξ1

1
(11)

Ξ1 $ 𝜌1𝜏
1
1
ď 𝜏1 (12)

Ξ1 (𝜌1Ξ
1
1

(13)

for some 𝜏 1
1
and Ξ1

1
and 𝜌1, where domp𝜌1q “ freshpp11qq. By S-All on (12) and (13), we have:

@Ξ1
1
. 𝜏 1

1
ď@ @Ξ1. 𝜏1 (14)

By Lemma B.120 on (10) and (14), we have:

Ξ, Γ¨p𝑥 : @Ξ1
1
. 𝜏 1

1
q $‹ 𝑃 1 : 𝜏 (15)

By IH on (15), we have:

Γ¨p𝑥 : @Ξ1
1
. 𝜏 1

1
q ,‹ 𝑃 1 : 𝜏 1 ñ Ξ1 (16)

@Ξ1. 𝜏 1 ď@ @Ξ. 𝜏 (17)

for some 𝜏 1 and Ξ1. By I-Body on (11) and (16), we have:

Γ ,‹ def 𝑥 “ 𝑡 ; 𝑃 1 : 𝜏 1 ñ Ξ1 (18)

□

Lemma B.120 (Strengthening). If Ξ, Γ¨p𝑥 : 𝜎1q $ 𝑡 : 𝜏 and 𝜖 $ 𝜎2 ď
@ 𝜎1, then Ξ, Γ¨p𝑥 : 𝜎2q $

𝑡 : 𝜏 .

Proof. By straightforward induction on typing derivations. □

Definition B.121. We write freshp𝐴q to denote all the type variables that are taken as fresh in the

given derivation 𝐴.

Definition B.122. We say 𝜌 extends 𝜌 1 if r𝛼 ÞÑ 𝜏p𝛼 ÞÑ𝜏q P 𝜌,𝛼 P domp𝜌1q
s “ 𝜌 1.

Lemma B.123 (Completeness of polymorphic type inference). If Ξ, Γ $ 𝑡 : 𝜏 and Ξ cons. and
Ξ (𝜌0Ξ0, then (𝐴) Ξ0, Γ , 𝑡 : 𝜏 1 ñ Ξ1 and Ξ $ 𝜌𝜏 1 ď 𝜏 and Ξ (𝜌pΞ0¨Ξ

1q for some 𝜏 1 and Ξ1 and
𝜌 , where err R Ξ1 and 𝜌 extends 𝜌0 and domp𝜌qzdomp𝜌0q “ freshp𝐴q.

Proof. By induction on term typing derivations.

Case T-Subs. Then the premises of the rule are:

Ξ, Γ $ 𝑡 : 𝜏1 (1)

Ξ $ 𝜏1 ď 𝜏 (2)

for some 𝜏1. By IH on (1), we have:

Ξ0, Γ , 𝑡 : 𝜏 1 ñ Ξ1 (3)

Ξ $ 𝜌𝜏 1 ď 𝜏1 (4)

Ξ (𝜌pΞ0¨Ξ
1q (5)

for some 𝜏 1 and Ξ1 and 𝜌 , where err R Ξ1 and 𝜌 extends 𝜌0 and domp𝜌qzdomp𝜌0q “ freshpp3qq.

By S-Trans on (4) and (2), we have:

Ξ $ 𝜌𝜏 1 ď 𝜏 (6)

136 Lionel Parreaux and Chun Yin Chau

Case T-Obj. Then 𝑡 “ 𝐶 t𝑥𝑖 “ 𝑡𝑖
𝑖
u and 𝜏 “ #𝐶 ^ t𝑥𝑖 : 𝜏𝑖

𝑖
u for some 𝐶 and 𝑥𝑖

𝑖
and 𝑡𝑖

𝑖
and 𝜏𝑖

𝑖
.

The premises of the rule are:

Ξ, Γ $ 𝑡𝑖 : 𝜏𝑖
𝑖

(7)

𝐶 final (8)

Then for each 𝑖 , repeat the following:

Assume the following:

Ξ (𝜌𝑖´1pΞ𝑗

𝑗 P 0..𝑖´1

q (9)

Ξ $ 𝜌𝑖´1𝜏
1
𝑗
ď 𝜏 𝑗

𝑗 P 1..𝑖´1

(10)

By IH on (7), we have:

Ξ𝑗

𝑗 P 0..𝑖´1

, Γ , 𝑡𝑖 : 𝜏 1𝑖 ñ Ξ𝑖 (11)

Ξ $ 𝜌𝑖𝜏
1
𝑖 ď 𝜏𝑖 (12)

Ξ (𝜌𝑖pΞ𝑗

𝑗 P 0..𝑖´1

¨Ξ𝑖q (13)

for some 𝜏 1𝑖 and Ξ𝑖 and 𝜌𝑖 , where err R Ξ𝑖 and 𝜌𝑖 extends 𝜌𝑖´1 and domp𝜌𝑖qzdomp𝜌𝑖´1q “

freshpp11qq. Since 𝜌𝑖 extends 𝜌𝑖´1 and domp𝜌𝑖qzdomp𝜌𝑖´1q are picked to be fresh in (11),

which means they could not have appeared in 𝜏 1
𝑗

𝑗 P 1..𝑖´1

, we have:

𝜌𝑖𝜏
1
𝑗
“ 𝜌𝑖´1𝜏

1
𝑗

𝑗 P 1..𝑖´1

(14)

Then (10) implies:

Ξ $ 𝜌𝑖𝜏
1
𝑗
ď 𝜏 𝑗

𝑗 P 1..𝑖´1

(15)

Then in the end we have:

Ξ𝑗

𝑗 P 0..𝑖´1

, Γ , 𝑡𝑖 : 𝜏 1
𝑖
ñ Ξ𝑖

𝑖

(16)

Ξ (𝜌pΞ0¨Ξ𝑖

𝑖
q (17)

Ξ $ 𝜌𝜏 1
𝑖
ď 𝜏𝑖

𝑖
(18)

for some 𝜏 1
𝑖

𝑖
and Ξ𝑖

𝑖
and 𝜌 , where err R Ξ𝑖

𝑖
and 𝜌 extends 𝜌0 and domp𝜌qzdomp𝜌0q “

Ť

𝑖 pdomp𝜌𝑖qzdomp𝜌𝑖´1qq “
Ť

𝑖 freshpp16q𝑖q. By I-Obj on (16) and (8), we have:

Ξ0, Γ , 𝐶 t𝑥𝑖 “ 𝑡𝑖
𝑖
u : #𝐶 ^ t𝑥𝑖 : 𝜏 1

𝑖

𝑖
u ñ Ξ𝑖

𝑖
(19)

By S-RcdDepth on (18), we have:

Ξ $ t𝑥𝑖 : 𝜌𝜏 1
𝑖
u ď t𝑥𝑖 : 𝜏𝑖 u

𝑖
(20)

By Lemma B.22 on S-Refl and (20), we have:

Ξ $ #𝐶 ^ t𝑥𝑖 : 𝜌𝜏 1
𝑖

𝑖
u ď #𝐶 ^ t𝑥𝑖 : 𝜏𝑖 u

i.e., Ξ $ 𝜌p#𝐶 ^ t𝑥𝑖 : 𝜏 1
𝑖

𝑖
uq ď #𝐶 ^ t𝑥𝑖 : 𝜏𝑖 u (21)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 137

Case T-Proj. Then 𝑡 “ 𝑡 1 .𝑥 for some 𝑡 1 and 𝑥 . The premise of the rule is:

Ξ, Γ $ 𝑡 1 : t𝑥 : 𝜏 u (22)

By IH on (22), we have:

Ξ0, Γ , 𝑡 1 : 𝜏 1 ñ Ξ1 (23)

Ξ $ 𝜌1𝜏
1 ď t𝑥 : 𝜏 u (24)

Ξ (𝜌1pΞ0¨Ξ1q (25)

for some 𝜏 1 and Ξ1 and 𝜌1, where err R Ξ1 and 𝜌1 extends 𝜌0 and domp𝜌1qzdomp𝜌0q “

freshpp23qq. Introduce a fresh 𝛼 and let 𝜌 “ r𝛼 ÞÑ 𝜏, 𝛽 ÞÑ 𝜋
p𝛽 ÞÑ𝜋q P 𝜌1

s. Then we have:

𝜌𝜏 1 “ 𝜌1𝜏
1

(26)

𝜌pt𝑥 : 𝛼 uq “ t𝑥 : 𝜏 u (27)

𝜌pΞ0¨Ξ1q “ 𝜌1pΞ0¨Ξ1q (28)

Then (24) and (25) imply:

Ξ $ 𝜌𝜏 1 ď 𝜌pt𝑥 : 𝛼 uq (29)

Ξ (𝜌pΞ0¨Ξ1q (30)

By Lemma 5.9 on (29) and (30), we have:

Ξ0¨Ξ1, 𝜖 $ 𝜏 1 ! t𝑥 : 𝛼 u ñ Ξ2 (31)

for some Ξ2, where err R Ξ2 and Ξ (𝜌Ξ2. Then by I-Proj on (23) and (31), we have:

Ξ0, Γ , 𝑡 1.𝑥 : 𝛼 ñ Ξ1¨Ξ2 (32)

Since 𝜌𝛼 “ 𝜏 , by S-Refl, we have:

Ξ $ 𝜌𝛼 ď 𝜏 (33)

(30) and Ξ (𝜌Ξ2 implies:

Ξ (𝜌pΞ0¨Ξ1¨Ξ2q (34)

Case T-Var1. Immediate by I-Var1.

Case T-Var2. Then 𝑡 “ 𝑥 and Γp𝑥q “ @Ξ1. 𝜏1 for some 𝑥 and Ξ1 and 𝜏1. By the definition of ď@,

we have:

Ξ (𝜌1Ξ1 (35)

Ξ $ 𝜌1𝜏1 ď 𝜏 (36)

for some 𝜌1, where domp𝜌1q “ TV pΞ1q Y TV p𝜏1q “: 𝑆 . Introduce a fresh 𝛾𝛼 for each 𝛼 P 𝑆 .

Then by I-Var2, we have:

Ξ0, Γ , 𝑥 : r𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

s𝜏1 ñ r𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

sΞ1 (37)

Let 𝜌 “ r𝛾𝛼 ÞÑ 𝜌1𝛼
𝛼 P𝑆

s. Then we have:

𝜌 ˝ r𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

s

“ 𝜌1 ˝ r𝛾𝛼 ÞÑ 𝛼𝛼 P𝑆
s ˝ r𝛼 ÞÑ 𝛾𝛼

𝛼 P𝑆
s

“ 𝜌1 ˝ r𝛾𝛼 ÞÑ 𝛼𝛼 P𝑆
s

(38)

138 Lionel Parreaux and Chun Yin Chau

Since 𝛾𝛼
𝛼 P𝑆

are picked to be fresh, which means they could not have appeared in Ξ1 and 𝜏1,

we have:

r𝛾𝛼 ÞÑ 𝛼𝛼 P𝑆
sΞ1 “ Ξ1 (39)

r𝛾𝛼 ÞÑ 𝛼𝛼 P𝑆
s𝜏1 “ 𝜏1 (40)

Then we have:

𝜌1Ξ1 “ 𝜌1pr𝛾𝛼 ÞÑ 𝛼𝛼 P𝑆
sΞ1q

“ 𝜌pr𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

sΞ1q
(41)

𝜌1𝜏1 “ 𝜌1pr𝛾𝛼 ÞÑ 𝛼𝛼 P𝑆
s𝜏1q

“ 𝜌pr𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

s𝜏1q
(42)

Then (35) and (36) imply:

Ξ (𝜌pr𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

sΞ1q (43)

Ξ $ 𝜌pr𝛼 ÞÑ 𝛾𝛼
𝛼 P𝑆

s𝜏1q ď 𝜏 (44)

Case T-Abs. Then 𝑡 “ 𝜆𝑥. 𝑡 1 and 𝜏 “ 𝜏1 Ñ 𝜏2 for some 𝑥 and 𝑡 1 and 𝜏1 and 𝜏2. The premise of the

rule is:

Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡 1 : 𝜏2 (45)

Introduce a fresh 𝛼 . By Lemma B.124 on (45), we have:

Ξ¨p𝛼 ď 𝜏1q, Γ¨p𝑥 : 𝛼q $ 𝑡 1 : 𝜏 1 (46)

Ξ $ r𝛼 ÞÑ 𝜏1s𝜏
1 ď 𝜏2 (47)

By IH on (46), we have:

Ξ0, Γ¨p𝑥 : 𝛼q , 𝑡 1 : 𝜏2 ñ Ξ1 (48)

Ξ¨p𝛼 ď 𝜏1q $ 𝜌1𝜏
2 ď 𝜏 1 (49)

Ξ¨p𝛼 ď 𝜏1q (𝜌1pΞ0¨Ξ
1q (50)

for some 𝜏2 and Ξ1 and 𝜌1, where err R Ξ1 and 𝜌1 extends 𝜌0 and domp𝜌1qzdomp𝜌0q “

freshpp48qq. By I-Abs on (48), we have:

Ξ0, Γ , 𝜆𝑥 . 𝑡 1 : 𝛼 Ñ 𝜏2 ñ Ξ1 (51)

By Lemma B.36, (49) and (50) imply:

r𝛼 ÞÑ 𝜏1spΞ¨p𝛼 ď 𝜏1qq $ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1𝜏
2 ď r𝛼 ÞÑ 𝜏1s𝜏

1

i.e., r𝛼 ÞÑ 𝜏1sΞ¨p𝜏1 ď 𝜏1q $ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1𝜏
2 ď r𝛼 ÞÑ 𝜏1s𝜏

1
(52)

r𝛼 ÞÑ 𝜏1spΞ¨p𝛼 ď 𝜏1qq (r𝛼 ÞÑ 𝜏1s ˝ 𝜌1pΞ0¨Ξ
1q

i.e., r𝛼 ÞÑ 𝜏1sΞ¨p𝜏1 ď 𝜏1q (r𝛼 ÞÑ 𝜏1s ˝ 𝜌1pΞ0¨Ξ
1q (53)

By S-Cons on Lemma B.25 and S-Refl, we have:

r𝛼 ÞÑ 𝜏1sΞ (r𝛼 ÞÑ 𝜏1sΞ¨p𝜏1 ď 𝜏1q (54)

By Lemma B.30 with (53), (51) and (52) imply:

r𝛼 ÞÑ 𝜏1sΞ $ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1𝜏
2 ď r𝛼 ÞÑ 𝜏1s𝜏

1
(55)

r𝛼 ÞÑ 𝜏1sΞ (r𝛼 ÞÑ 𝜏1s ˝ 𝜌1pΞ0¨Ξ
1q (56)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 139

Since 𝛼 is picked to be fresh, which means it could not have appeared in Ξ, we have r𝛼 ÞÑ
𝜏1sΞ “ Ξ. Then (54) and (55) imply:

Ξ $ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1𝜏
2 ď r𝛼 ÞÑ 𝜏1s𝜏

1
(57)

Ξ (r𝛼 ÞÑ 𝜏1s ˝ 𝜌1pΞ0¨Ξ
1q (58)

By S-Trans on (57) and (47), we have:

Ξ $ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1𝜏
2 ď 𝜏2 (59)

By S-FunDepth on S-Refl and (60), we have:

Ξ $ 𝜏1 Ñ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1𝜏
2 ď 𝜏1 Ñ 𝜏2

i.e., Ξ $ r𝛼 ÞÑ 𝜏1s ˝ 𝜌1p𝛼 Ñ 𝜏2q ď 𝜏1 Ñ 𝜏2 (60)

Cases T-App, T-Asc, T-Case1, T-Case2, T-Case3. Similar to case T-Proj.

□

Lemma B.124. If Ξ, Γ¨p𝑥 : 𝜏1q $ 𝑡 : 𝜏 , then Ξ¨p𝛼 ď 𝜏1q, Γ¨p𝑥 : 𝛼q $ 𝑡 : 𝜏 1 and Ξ $ r𝛼 ÞÑ 𝜏1s𝜏
1 ď 𝜏

for any 𝛼 fresh and some 𝜏 1.

Proof. By straightforward induction on typing derivations. □

Proof 5.9 (Completeness of Constraining). By Theorem 5.7, we have:

Ξ0, 𝜖 $ 𝜏1 ! 𝜏2 ñ Ξ1 (1)

for some Ξ1. The result then follows from Lemma B.125. □

Lemma B.125 (Necessity of Constraining).

(1) If Ξ $ 𝜌𝜏1 ď 𝜌𝜏2 and Ξ cons. and Ξ (𝜌Ξ0 and Ξ0, Σ $ 𝜏1 ! 𝜏2 ñ Ξ1, then Ξ (𝜌Ξ1.
(2) If Ξ $ 𝜌D0 ď K and Ξ cons. and Ξ (𝜌Ξ0 and Ξ0, Σ $ D0 ñ Ξ1, then Ξ (𝜌Ξ1.

Proof. By induction on constraining derivations.

Cases C-Hyp, C-Bot, C-Cls1. Immediate by S-Empty since Ξ1 “ 𝜖 .

Case C-Assum. From the assumptions, we have:

Ξ $ 𝜌𝜏1 ď 𝜌𝜏2 (1)

The premise of the rule is:

Ξ0, Σ¨▷p𝜏1 ď 𝜏2q $ dnf0p𝜏1 ^␣𝜏2q ñ Ξ1 (2)

By Theorem B.20, (1) implies:

Ξ $ 𝜌𝜏1 ^␣𝜌𝜏2 ď K

i.e., Ξ $ 𝜌p𝜏1 ^␣𝜏2q ď K (3)

By Lemma 5.3, we have:

𝜏1 ^␣𝜏2 ” dnf0p𝜏1 ^␣𝜏2q (4)

By Lemma B.36, (4) implies:

𝜌p𝜏1 ^␣𝜏2q ” 𝜌dnf0p𝜏1 ^␣𝜏2q (5)

By S-Trans on (5) and (3), we have:

Ξ $ 𝜌dnf0p𝜏1 ^␣𝜏2q ď K (6)

The result then follows from IH on (2) and (6).

140 Lionel Parreaux and Chun Yin Chau

Case C-Or. Then D0 “ D0

1
_ C0

for some D0

1
and C0

. From the assumptions, we have:

Ξ´ 𝜌pD0

1
_ C0q ď K (7)

Ξ (𝜌Ξ0 (8)

The premises of the rule are:

Ξ0, Σ $ D0

1
ñ Ξ1

1
(9)

Ξ0¨Ξ
1
1
, Σ $ C0 ñ Ξ1

2
(10)

for some Ξ1
1
and Ξ1

2
, where Ξ1 “ Ξ1

1
¨Ξ1

2
. By S-AndOr11¨ and S-AndOr12¨ respectively, we

have:

𝜌D0

1
ď 𝜌D0

1
_ 𝜌C0

i.e., 𝜌D0

1
ď 𝜌pD0

1
_ C0q (11)

𝜌C0 ď 𝜌D0

1
_ 𝜌C0

i.e., 𝜌C0 ď 𝜌pD0

1
_ C0q (12)

By S-Trans with (7), (11) and (12) respectively imply:

Ξ $ 𝜌D0

1
ď K (13)

Ξ $ 𝜌C0 ď K (14)

By IH on (13) and (8) and (9), we have:

Ξ (𝜌Ξ1
1

(15)

(8) and (15) imply:

Ξ (𝜌Ξ0¨𝜌Ξ
1
1

i.e., Ξ (𝜌pΞ0¨Ξ
1
1
q (16)

By IH on (14) and (16) and (10), we have:

Ξ (𝜌Ξ1
2

(17)

(15) and (17) imply:

Ξ (𝜌Ξ1
1
¨𝜌Ξ1

2

i.e., Ξ (𝜌Ξ1 (18)

Case C-NotBot. Then D0 “ N ^F ^R^␣K for someN and F and R. From the assumptions,

we have:

Ξ $ 𝜌pN ^ F ^ R ^␣Kq ď K
i.e., Ξ $ N ^ 𝜌F ^ 𝜌R ^␣K ď K (19)

Ξ cons. (20)

By S-Trans on S-ToB¨ and Theorem B.11, we have:

N ^ 𝜌F ^ 𝜌R ď ␣K (21)

By S-AndOr2 on S-Refl and (21), we have:

N ^ 𝜌F ^ 𝜌R ď N ^ 𝜌F ^ 𝜌R ^␣K (22)

By S-Trans on (22) and (19), we have:

Ξ $ N ^ 𝜌F ^ 𝜌R ď K (23)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 141

Since TTV pN ^ 𝜌F ^ 𝜌Rq Y TTV pKq “ H, by Lemma B.49 on (20) and (23), we have:

▷Ξ $ N ^ 𝜌F ^ 𝜌R ď K (24)

Notice that N ^ 𝜌F ^ 𝜌R is in CDN-normalized form. Since none of tN , 𝜌F , 𝜌R u is a
negation, N ^ 𝜌F ^ 𝜌R is complement-free. Then by Lemma B.89 on (24), we have:

K –
Ź

𝑗 p𝜋
1
𝑗 _𝑉

𝐷 𝑗

𝑗
q (25)

for some 𝜋 1
𝑗

𝑗
and 𝐷 𝑗

𝑗
and𝑉

𝐷 𝑗

𝑗

𝑗

, where

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free. By S-AndOr12¨, we have:

𝑉
𝐷 𝑗

𝑗
Ď 𝜋 1

𝑗
_𝑉

𝐷 𝑗

𝑗

𝑗

(26)

By Lemma B.22 on (26), we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď

Ź

𝑗 p𝜋
1
𝑗 _𝑉

𝐷 𝑗

𝑗
q (27)

By S-Trans on (27) and (25), we have:

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
Ď K (28)

which is impossible since

Ź

𝑗 𝑉
𝐷 𝑗

𝑗
is complement-free. Therefore this case is impossible.

Case C-Cls2. Then D0 “ Ir#𝐶1s ^ ␣pU_ #𝐶2q for some 𝐶1 and 𝐶2 and Ir#𝐶1s and U. From the

assumptions, we have:

Ξ $ 𝜌pIr#𝐶1s ^ ␣pU_ #𝐶2qq ď K (29)

Ξ cons. (30)

The premises of the rule are:

𝐶2 R Sp#𝐶1q (31)

Ξ0, Σ $ Ir#𝐶1s ^ ␣Uñ Ξ1 (32)

By Theorem B.20 on (29), we have:

Ξ $ 𝜌Ir#𝐶1s ď 𝜌pU_ #𝐶2q

i.e., Ξ $ 𝜌Ir#𝐶1s ď 𝜌𝜏0 _
Ž

𝑗 #𝐶 1𝑗 _ #𝐶2 (33)

for some 𝜏0 P tK, D1 Ñ D2, t𝑦 : D1 u u and 𝐶 1
𝑗

𝑗
, where U “ 𝜌𝜏0 _

Ž

𝑗 #𝐶 1𝑗 . Since

TTV p𝜌Ir#𝐶1sq Y TTV p𝜌𝜏0 _
Ž

𝑗 #𝐶 1𝑗 _ #𝐶2q “ H, by Lemma B.49 on (30) and (33), we

have:

▷Ξ $ 𝜌Ir#𝐶1s ď 𝜌𝜏0 _
Ž

𝑗 #𝐶 1𝑗 _ #𝐶2 (34)

By Lemma B.89 on (34), we have:

𝜌Ir#𝐶1s –
Ž

𝑖 p𝜏
1
𝑖 ^ 𝑋

𝐶𝑖

𝑖
q (35)

▷Ξ $ 𝑋
𝐶𝑖

𝑖
ĺ 𝑌𝑖

𝑖

(36)

for some 𝜏 1
𝑖

𝑖
and 𝐶𝑖

𝑖
and 𝑋

𝐶𝑖

𝑖

𝑖

and 𝑌𝑖 P t 𝜌𝜏
0, #𝐶2, #𝐶 1

𝑗

𝑗
u

𝑖

, where

Ž

𝑖 𝑋
𝐶𝑖

𝑖
is complement-free.

By S-AndOr12 , we have:

𝜏 1
𝑖
^ 𝑋

𝐶𝑖

𝑖
Ď 𝑋

𝐶𝑖

𝑖

𝑖

(37)

142 Lionel Parreaux and Chun Yin Chau

By Lemma B.22¨ on (37), we have:

Ž

𝑖 p𝜏
1
𝑖 ^ 𝑋

𝐶𝑖

𝑖
q Ď

Ž

𝑖 𝑋
𝐶𝑖

𝑖
(38)

By S-Trans on (35) and (38), we have:

𝜌Ir#𝐶1s –
Ž

𝑖 𝑋
𝐶𝑖

𝑖
(39)

By Corollary B.86, (39) implies:

𝜌Ir#𝐶1s – 𝑋
𝐶𝑘

𝑘
(40)

for some 𝑘 .

Case 𝐶𝑘 P tK, J u. Then we have:

𝑋
𝐶𝑘

𝑘
” K (41)

By S-Trans on (40) and (41), we have:

𝜌Ir#𝐶1s ď K (42)

By S-AndOr11 , we have:

𝜌Ir#𝐶1s ^ 𝜌p␣Uq ď 𝜌Ir#𝐶1s

i.e., 𝜌pIr#𝐶1s ^ ␣Uq ď 𝜌Ir#𝐶1s (43)

By S-Trans on (43) and (42), we have:

𝜌pIr#𝐶1s ^ ␣Uq ď K (44)

The result then follows from IH on (32) and (44).

Case 𝐶𝑘 R tK, J u. Let 𝑋
𝐶𝑘

𝑘
“

Ź

𝑙 𝑋
𝐶𝑘

𝑘𝑙
for some 𝑋

𝐶𝑘

𝑘𝑙

𝑙

where 𝑋
𝐶𝑘

𝑘𝑙

𝑙

are not intersections. By

S-AndOr11 and S-AndOr12 , we have:

𝑋
𝐶𝑘

𝑘
Ď 𝑋

𝐶𝑘

𝑘𝑙

𝑙

(45)

By S-Trans on (40) and (45), we have:

𝜌Ir#𝐶1s Ď 𝑋
𝐶𝑘

𝑘𝑙

𝑙

(46)

Notice that 𝜌Ir#𝐶1s is in CDN-normalized form. Since none of the conjuncts of 𝜌Ir#𝐶1s is

a negation, 𝜌Ir#𝐶1s is complement-free. Then by Lemma B.82, (46) implies:

𝜌𝜏0

𝑙
Ď 𝑋

𝐶𝑘

𝑘𝑙

𝑙

(47)

for some 𝜏0

𝑙
P tN , F , R u

𝑙

, where Ir#𝐶1s “ N ^ F ^ R. By Lemma B.87, (47) implies:

𝜏0

𝑙
‰ J

𝑙

(48)

Then by Lemma B.60 on (47), we have:

𝑋
𝐶𝑘

𝑘𝑙
“ 𝜌𝜏0

𝑙

𝑙

(49)

By the syntax of 𝑋
𝐶𝑘

𝑘
and (49), we have:

𝜌𝜏0

𝑙
“ 𝜌𝜏0

1

𝑙

(50)

Then we have:

𝑋
𝐶𝑘

𝑘
“

Ź

𝑙 𝜌𝜏
0

1
(51)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 143

Then (36) implies:

▷Ξ $
Ź

𝑙 𝜌𝜏
0

1
ĺ 𝑌𝑘 (52)

Since ĺ implies ď, (52) implies:

▷Ξ $
Ź

𝑙 𝜌𝜏
0

1
ĺ 𝑌𝑘

i.e., ▷Ξ $ 𝜌𝜏0

1
ď 𝑌𝑘 (53)

By Theorem B.88 on (53), (31) implies 𝑌𝑘 ‰ #𝐶2. By S-AndOr11˛ and S-AndOr12˛, we

have:

𝜌Ir#𝐶1s “ 𝜌pN ^ F ^ Rq ď 𝜌𝜏0

1
(54)

𝑌𝑘 ď 𝜏0 _
Ž

𝑗 #𝐶 1𝑗 “ U (55)

By S-Trans on (54) and (53) and (55), we have:

▷Ξ $ 𝜌Ir#𝐶1s ď U (56)

By Theorem B.20, (56) implies:

▷Ξ $ 𝜌Ir#𝐶1s ^ ␣U ď K (57)

By Lemma B.30 with Lemma B.25, (57) implies:

Ξ $ 𝜌Ir#𝐶1s ^ ␣U ď K (58)

The result then follows from IH on (32) and (58).

Case C-Cls3. Similar to case C-Cls2.

Case C-Fun1. Then D0 “ IrD1 Ñ D2s ^ ␣pD3 Ñ D4q for some D𝑖

𝑖 P 1..4
. From the assumptions,

we have:

Ξ $ 𝜌pIrD1 Ñ D2s ^ ␣pD3 Ñ D4qq ď K (59)

Ξ cons. (60)

Ξ (𝜌Ξ0 (61)

The premises of the rule are:

Ξ0,◁Σ $ D3 ! D1 ñ Ξ1
1

(62)

Ξ0¨Ξ
1
1
,◁Σ $ D2 ! D4 ñ Ξ1

2
(63)

for some Ξ1
1
and Ξ1

2
, where Ξ1 “ Ξ1

1
¨Ξ1

2
. By Theorem B.20 on (59), we have:

Ξ $ 𝜌IrD1 Ñ D2s ď 𝜌pD3 Ñ D4q (64)

Since TTV p𝜌IrD1 Ñ D2sq Y TTV p𝜌pD3 Ñ D4qq “ H, by Lemma B.49 on (60) and (64), we

have:

▷Ξ $ 𝜌IrD1 Ñ D2s ď 𝜌pD3 Ñ D4q (65)

By Lemma B.89 on (65), we have:

𝜌IrD1 Ñ D2s –
Ž

𝑖 p𝜏
1
𝑖 ^ 𝑋

𝐶𝑖

𝑖
q (66)

▷Ξ $ 𝑋
𝐶𝑖

𝑖
ĺ 𝜌pD3 Ñ D4q

𝑖

(67)

for some 𝜏 1
𝑖

𝑖
and 𝐶𝑖

𝑖
and 𝑋

𝐶𝑖

𝑖

𝑖

, where

Ž

𝑖 𝑋
𝐶𝑖

𝑖
is complement-free. By S-AndOr12 , we have:

𝜏 1
𝑖
^ 𝑋

𝐶𝑖

𝑖
Ď 𝑋

𝐶𝑖

𝑖

𝑖

(68)

144 Lionel Parreaux and Chun Yin Chau

By Lemma B.22¨ on (68), we have:

Ž

𝑖 p𝜏
1
𝑖 ^ 𝑋

𝐶𝑖

𝑖
q Ď

Ž

𝑖 𝑋
𝐶𝑖

𝑖
(69)

By S-Trans on (66) and (69), we have:

𝜌IrD1 Ñ D2s Ď
Ž

𝑖 𝑋
𝐶𝑖

𝑖
(70)

By Lemma B.59, (67) implies that each of𝐶𝑖

𝑖
is either bottom, arrow, or a negated record field.

By Corollary B.86, (70) implies:

𝜌IrD1 Ñ D2s Ď 𝑋
𝐶𝑘

𝑘
(71)

for some 𝑘 .

Case 𝐶𝑘 P tK, J u. Then we have:

𝑋
𝐶𝑘

𝑘
” K (72)

By S-Trans on (71) and (72), we have:

𝜌IrD1 Ñ D2s ď K (73)

which is impossible by the same reasoning as case C-NotBot. Therefore this case is

impossible.

Case 𝐶𝑘 “Ñ. Let 𝑋
𝐶𝑘

𝑘
“

Ź

𝑙 𝑋
𝐶𝑘

𝑘𝑙
for some 𝑋

𝐶𝑘

𝑘𝑙

𝑙

where 𝑋
𝐶𝑘

𝑘𝑙

𝑙

are not intersections. By S-

AndOr11 and S-AndOr12 , we have:

𝑋
𝐶𝑘

𝑘
Ď 𝑋

𝐶𝑘

𝑘𝑙

𝑙

(74)

By S-Trans on (71) and (74), we have:

𝜌IrD1 Ñ D2s Ď 𝑋
𝐶𝑘

𝑘𝑙

𝑙

(75)

Notice that 𝜌IrD1 Ñ D2s is in CDN-normalized form. Since none of the conjuncts of

𝜌IrD1 Ñ D2s is a negation, 𝜌IrD1 Ñ D2s is complement-free. Then by Lemma B.82, (75)

implies:

𝜌𝜏0

𝑙
Ď 𝑋

𝐶𝑘

𝑘𝑙

𝑙

(76)

for some 𝜏0

𝑙
P tN , F , R u

𝑙

, where IrD1 Ñ D2s “ N ^ F ^ R. By Lemma B.87, (76)

implies:

𝜏0

𝑙
‰ J

𝑙

(77)

Then by Lemma B.60 on (76), we have:

𝑋
𝐶𝑘

𝑘𝑙
“ 𝜌𝜏0

𝑙

𝑙

(78)

By the syntax of 𝑋
𝐶𝑘

𝑘
and (78), we have:

𝜌𝜏0

𝑙
“ 𝜌𝜏0

1

𝑙

(79)

Then we have:

𝑋
𝐶𝑘

𝑘
“

Ź

𝑙 𝜌𝜏
0

1
(80)

Then (67) implies:

▷Ξ $
Ź

𝑙 𝜌𝜏
0

1
ĺ 𝜌pD3 Ñ D4q (81)

MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types (Extended) 145

Since ĺ implies ď, (81) implies:

▷Ξ $
Ź

𝑙 𝜌𝜏
0

1
ď 𝜌pD3 Ñ D4q

i.e., ▷Ξ $ 𝜌𝜏0

1
ď 𝜌pD3 Ñ D4q (82)

By Theorem B.88 on (82), we have:

𝜏0

1
“ D1 Ñ D2 (83)

Ξ $ 𝜌D3 ď 𝜌D1 (84)

Ξ $ 𝜌D2 ď 𝜌D4 (85)

By IH on (84) and (61) and (62), we have:

Ξ (𝜌Ξ1
1

(86)

(61) and (86) imply:

Ξ (𝜌Ξ0¨𝜌Ξ
1
1

i.e., Ξ (𝜌pΞ0¨Ξ
1
1
q (87)

By IH on (85) and (87) and (63), we have:

Ξ (𝜌Ξ1
2

(88)

(86) and (88) imply:

Ξ (𝜌Ξ1
1
¨𝜌Ξ1

2

i.e., Ξ (𝜌pΞ1
1
¨Ξ1

2
q (89)

Case 𝐶𝑘 “ 𝑥 . Then 𝑋
𝐶𝑘

𝑘
“ ␣

Ž

𝑗 t𝑥 : 𝜋 𝑗 u for some 𝜋 𝑗
𝑗
. Then (71) implies:

𝜌IrD1 Ñ D2s – ␣
Ž

𝑗 t𝑥 : 𝜋 𝑗 u (90)

By S-AndOr11¨, we have:

t𝑥 : 𝜋1 u Ď
Ž

𝑗 t𝑥 : 𝜋 𝑗 u (91)

By S-NegInv on (91), we have:

␣
Ž

𝑗 t𝑥 : 𝜋 𝑗 u Ď ␣t𝑥 : 𝜋1 u (92)

By S-Trans on (90) and (92), we have:

𝜌IrD1 Ñ D2s Ď ␣t𝑥 : 𝜋1 u (93)

By Theorem B.20 on (93), we have:

𝜌IrD1 Ñ D2s ^ t𝑥 : 𝜋1 u Ď K (94)

which is impossible by the same reasoning as case C-NotBot. Therefore this case is

impossible.

Case C-Rcd1. Similar to case C-Fun1.

Cases C-Fun2, C-Rcd2, C-Rcd3. Similar to case C-NotBot.

Case C-Var1. Then D0 “ C ^ 𝛼 and Ξ1 “ Ξ1
1
¨p𝛼 ď ␣Cq for some C and 𝛼 and Ξ1

1
. From the

assumptions, we have:

Ξ $ 𝜌pC^ 𝛼q ď K (95)

Ξ cons. (96)

Ξ (𝜌Ξ0 (97)

146 Lionel Parreaux and Chun Yin Chau

The premise of the rule is:

Ξ0¨p𝛼 ď ␣Cq, Σ $ lbΞ0
p𝛼q ! ␣Cñ Ξ1

1
(98)

By Theorem B.20, (95) implies:

Ξ $ 𝜌𝛼 ď ␣𝜌C

i.e., Ξ $ 𝜌𝛼 ď 𝜌p␣Cq (99)

By S-AndOr2 on S-Hyp, we have:

Ξ0 $ lbΞ0
p𝛼q ď 𝛼 (100)

By S-Hyp, we have:

p𝛼 ď ␣Cq $ 𝛼 ď ␣C (101)

By S-Trans on (100) and (101), we have:

Ξ0¨p𝛼 ď ␣Cq $ lbΞ0
p𝛼q ď ␣C (102)

By Lemma B.36, (102) implies:

𝜌pΞ0¨p𝛼 ď ␣Cqq $ 𝜌lbΞ0
p𝛼q ď 𝜌p␣Cq (103)

By S-Cons on (97) and (99), we have:

Ξ (𝜌Ξ0¨p𝜌𝛼 ď 𝜌p␣Cqq

i.e., Ξ (𝜌pΞ0¨p𝛼 ď Cqq (104)

By Lemma B.30 with (104), (103) implies:

Ξ $ 𝜌lbΞ0
p𝛼q ď 𝜌p␣Cq (105)

By IH on (105) and (104) and (98), we have:

Ξ (𝜌Ξ1
1

(106)

By S-Cons on (106) and (99), we have:

Ξ (𝜌Ξ1
1
¨p𝜌𝛼 ď 𝜌p␣Cqq

i.e., Ξ (𝜌Ξ1 (107)

Case C-Var2. Similar to case C-Var1.

□

	Abstract
	1 Introduction
	2 Presentation of MLstruct
	2.1 Overview of MLscript Features
	2.2 Constructing the Lattice of Types
	2.3 Limitations

	3 Inferring Principal Types for MLstruct
	3.1 Algebraic Subtyping
	3.2 Basic Type Inference Idea
	3.3 Solving Constraints with Unions and Intersections
	3.4 Subsumption Checking
	3.5 Simplification and Presentation of Inferred Types
	3.6 Implementation

	4 Formal Semantics of MLstruct
	4.1 Syntax
	4.2 Evaluation Rules
	4.3 Declarative Typing Rules
	4.4 Declarative Subtyping Rules
	4.5 Soundness of the Declarative Type System

	5 Principal Type Inference for
	5.1 Type Inference Rules
	5.2 Reduced Disjunctive Normal Forms
	5.3 Type Constraining Rules
	5.4 Correctness of Type Inference

	6 Related Work
	7 Conclusion and Future Work
	References
	A Formalization, Continued
	A.1 Declarative Typing Rules
	A.2 Well-Formedness
	A.3 Free type variables

	B Formal Correctness Proofs
	B.1 Subtyping Derivation Shapes
	B.2 Constraining Context Cleanup
	B.3 Some Useful Subtyping Relationships
	B.4 Some Useful Subtyping Entailment Relationships
	B.5 Some Useful Lemmas on Substitutions
	B.6 Some Useful Lemmas on Consistency
	B.7 Reasoning Behind Proof Structure
	B.8 Pure Boolean-Algebraic Subtyping
	B.9 Elementary type forms
	B.10 CDN- and DCN-normalized type forms and derivations
	B.11 Consistency of Subtyping
	B.12 Progress Proofs
	B.13 Preservation Proofs
	B.14 Type Inference Soundness Proofs
	B.15 Type Inference Termination Proof
	B.16 Type Inference Completeness Proofs

