N/A, 181 pages, 2024. © N/A 2024 1
doi:N/A

Boolean-Algebraic Subtyping:
Intersections, Unions, Negations,
and Principal Type Inference

CHUN YIN CHAU

The Hong Kong University of Science and Technology (HKUST)
Hong Kong, China
(e-mail: cychauab @ connect.ust.hk)

LIONEL PARREAUX

The Hong Kong University of Science and Technology (HKUST)
Hong Kong, China
(e-mail: parreaux@ust.hk)

Abstract

Intersection and union types are becoming more popular by the day, entering the mainstream in
programming languages like TypeScript and Scala 3. But these types are difficult to combine with
practical polymorphic type inference and their metatheory has proven difficult to establish, espe-
cially in the presence of equirecursive types and distributivity between unions and intersections. We
propose Boolean-algebraic subtyping, a new subtyping framework for reasoning about type systems
with conjunction (a.k.a. intersection), disjunction (a.k.a. union), and negation (a.k.a. complement)
connectives. Our framework is algebraic in that it does not appeal to some underlying model of types
and remains generic/extensible with respect to the specific base type constructors of the underlying
language. We also present MLstruct, a programming language based on Boolean-algebraic subtyping
and the first language to support principal polymorphic type inference in the presence of union and
intersection types. MLstruct is structurally typed but also contains a healthy sprinkle of nominality,
enabling the expression of a powerful form of extensible variants that does not require row variables
and makes pivotal use of negation types. The algebraic nature of our framework is crucial in defining
MLstruct: it allows the addition of nonstandard subtyping rules that would not hold in a classical
set-theoretic interpretation of subtyping. With this work, we hope to foster the development of better
type inference for present and future programming languages with expressive subtyping systems.

1 Introduction

Programming languages with ML-style type inference have traditionally avoided subtyping
because of the complexities it brings over a simple unification-based treatment of type
constraints. But Dolan and Mycroft (2017) recently showed with MLsub that an algebraic
account of subtyping resolved many of these difficulties and enabled the inference of precise
types that more accurately reflect the flow of expressions in programs. Unfortunately, among
other limitations, MLsub does not support unrestricted union and intersection types, which

2

are emerging as important building blocks in the design of structurally-typed programming
languages like TypeScript, Flow, Scala 3, and others.

In this paper, we propose a new algebraic subtyping framework that subsumes MLsub
and adds support for first-class union, intersection, and negation types. By first-class, we
mean that these types can be used without any restrictions, and in particular they can be
written down by users in arbitrary type annotations, which is impossible in MLsub.

We present the MLstruct programming language and thereby show that ML-style type
inference with subtyping can be generalized to include well-behaved forms of union and
intersection types as well as pattern matching on single-inheritance class hierarchies. As a
first example, consider the following definitions:

class Some[A]: { value: A } def flatMap f opt = case opt of
class None: {} Some — f opt.value,
None — None{}

The type inferred by our system for flatMap is:
flatMap : Ve, B. (@ — B8) — (Some[e]| v None) — (8 v None)

Interestingly, this is more general than the traditional type given to flatMap for option
types. Indeed, our flatMap does not require the function passed in argument to return either
a None or a Some value, but allows it to return anything it wants (any £3), which gets merged
with the None value returned by the other branch (yielding type 8 v None). For example,

let res = flatMap (fun x — x) (Some{value = 423})
is given type 42 v None! because the function may return either 42 or None. A value of

this type can later be inspected with an instance match expression of the form:
case res of Int — res, None — 0

which is inferred to be of type 42 v 0, a subtype of Nat. This is not the most general
version of flatMap either. We can also make the function open-ended, accepting either a
Some value or anything else, instead of just Some or None, by using a default case (denoted
by the underscore ‘_’):

def flatMap2 f opt = case opt of Some — f opt.value, _ — opt
This flatMap2 version has the following type inferred, where v and A have the usual
precedence:

flatMap2 : Ve, B. (@ — B) — (Some[a]| v A = #Some) —

This type demonstrates a central aspect of our approach: the use of negation types (also
called complement types), written —7, which allows us to find principal type solutions in
tricky typing situations. Here, type #Some is the nominal tag of class Some. A nominal tag
represents the identity of a class, disregarding the values of its fields and type parameters: if
a value v has type #Some, this means v is an instance of Some, while if v has type —#Some,
this means it is not. To showcase different usages of this definition, consider the following
calls along with their inferred types:?

ex1l = flatMap2 (fun x — x + 1) 42 : Int
ex2 = flatMap2 (fun x — Some{value = x}) (Some{value = 12}) : Some[lZ]
ex3 = flatMap2 (fun x — Some{value = x}) 42 : Some[l] v 42

MLstruct supports singleton types for constant literals. For example, 42 is both a value and a type, with
42 :42 < Nat < Int.

Notice that only ex3 features a union of two distinct type constructors ‘Some|[.L] v 42’ because in ex1 and ex2
only one concrete type constructor statically flows into the result of the expression (42 and Some, respectively).

It is easy to see that instantiating 8 to Int and Some[12] respectively allows ex1 and ex2 to
type check. In ex3, both types Some[y] and 42 flow into the result, for some type inference
variable vy, but y is never constrained and only occurs positively so it can be simplified,
yielding Some[L] v 42. We can convert ex3 to 42 through a case expression using the
impossible helper function:?

def impossible x = case x of {} o 1l—-1

case ex3 of Int — ex3, Some — impossible ex3.value : 42

One may naively think that the following type could fit flatMap2 as well:
flatMap2_wrong : Va, 8,y. (@ = B) — (Some[a] v y) — (B Vv y)

but this type does not work. To see why, consider what happens if we instantiate the type
variables to @ = Int, 8 = Int, and y = Some[Bool]. This yields the type:

flatMap2_wrong’ : (Int — Int) — (Some[Int] v Some[Bool]) — (Int v Some[Bool])

which would allow the call flatMap2 (fun x — x + 1) (Some{value = false}) because
Some[Bool] < Some[Int] v Some[Bool]. This expression, however, would crash with a
runtime type mismatch! Indeed, the shape of the Some argument matches the first branch of
flatMap2’s case expression, and therefore false is passed to our argument function, which
tries to add 1 to it as though it was an integer... So we do need the negation that appears in
the correct type of flatMap2, as it prevents passing in arguments that are also of the Some
shape, but with the wrong type arguments.

Finally, let us push the generality of our function further yet, to demonstrate the flexibility
of the system. Consider this last twist on flatMap for optional values, which we will call
mapSome:

def mapSome f opt = case opt of Some — f opt, — opt

The difference with the previous function is that this one does not unwrap the Some value
received in argument, but simply passes it unchanged to its function argument. Its inferred

type is:
mapSome : Ve, B. (@ — B) — (@ A #Some v B A — #Some) — B

This type shows that it does not matter what specific subtype of Some we have in the
first branch: as long as the argument has type @ when it is a Some instance, then « is the
type the argument function should take, without loss of generality. This demonstrates that
our type system can tease apart different flows of values based on the nominal identities of
individual matched classes.

As an example of the additional flexibility afforded by this new function, consider the
following:

class SomeAnd[A, P]: Some[A] A { payload: P }

let arg = if (arbitrary conditiony then SomeAnd{value = 42, payload = 23}
else None{}

in mapSome (fun x — x.value + x.payload) arg

of inferred type Int v None. Here, we define a new subclass of some containing an additional
payload field, and we use this class instead of Some, allowing the payload field to be used

3 One may expect Some[L] = L, but this does not hold in MLstruct, as it would prevent effective principal
type inference by requiring some amount of backtracking in the constraint solver and by extension in the type
checker as well (Castagna et al., 2016).

4

from within the function argument we pass to mapSome. This is not expressible in OCaml
polymorphic variants (Garrigue, 2001) and related systems (Ohori, 1995). More powerful
systems with row variables (Rémy, 1994; Pottier, 2003) would still fail here because of their
use of unification: mapSome merges its opt parameter with the result, so these systems would
yield a unification error at the mapSome call site, because the argument function returns an
integer instead of a value of the same type as the input:# subtyping makes MLstruct more
flexible than existing systems based on row variable.

MLscript is a new programming language developed at the Hong Kong University of
Science and Technology? featuring first-class unions, intersections, negations, and ML-style
type inference, among other features. For simplicity, this paper focuses on a core subset
of MLscript referred to as MLstruct, containing only the features relevant to principal
type inference in a Boolean algebra of structural types, used in all examples above. An
MLstruct implementation is provided as an artifact (Parreaux et al., 2022) and available at
github.com/hkust-taco/mlstruct, with a web demonstration at hkust-taco.github.io/mlstruct.
The specific contributions we make are the following:

* We present MLstruct (Section 2), which subsumes both the original ML type system
and the newer MLsub (Dolan, 2017), extending the latter with simple class hierar-
chies and class-instance matching based on union, intersection, and negation type
connectives.

* We formalize the Boolean-Algebraic Subtyping framework as a generic theory of sub-
typing S(7, R) that makes few assumptions on the concrete base type constructors
7 of the underlying language and their base subtyping rules R (Section 3).

» We prove the soundness of Boolean-Algebraic subtyping by showing that S(7, R)
does not relate unrelated type constructors (Section 4), a crucial property that
underlies the soundness of languages built on top of it, like MLstruct.

* We describe our approach to type inference based on the Boolean-algebraic properties
of MLstruct’s subtyping system (Section 5). To the best of our knowledge, MLstruct
is the first language to support complete polymorphic type inference with union and
intersection types. Moreover, it does not rely on backtracking and yields principal
types that are amenable to simplification.

* We formalize the declarative semantics of MLstruct in the A~ calculus (Section 6).
We state the standard soundness properties of progress and preservation, whose
complete proofs are given in Appendix C.

* We formally describe our type inference algorithm (Section 7). We state its soundness
and completeness theorems. Again, the proofs can be found in Appendix C.

4 Wrapping the result in some would not work either (as some Int doesn’t unify with Some {value: Int, payload: Int}).
3 The GitHub repository of the full MLscript language is available at https://github.com/hkust-taco/
mlscript.

https://github.com/hkust-taco/mlstruct
https://hkust-taco.github.io/mlstruct
https://github.com/hkust-taco/mlscript
https://github.com/hkust-taco/mlscript

2 Presentation of MLstruct

MLstruct is a research language designed to explore type inference with subtyping in the
presence of first-class union and intersection types. This minimal language is carved out
from the MLscript programming language which is currently being developed as a real-
world general-purpose programming language. MLstruct subsumes Dolan’s MLsub, the
previous state of the art in type inference with subtyping, which itself subsumes traditional
ML typing: all ML terms are typeable in MLsub and all MLsub terms are typeable in
MLstruct. On top of this fertile ML substrate pollinated with MLsub’s rich subtyping
theory of records and equirecursive types, MLstruct grows structurally-typed abstractions
in the form of unions, intersections, negations, structural class types, and class-instance
matching. We now present these features along with some examples.

2.1 Overview of MLstruct Features

An MLstruct program is made of top-level statements followed by an expression, the
program’s body. A statements can be either a type declaration (class or type alias) or a
top-level function definition, written def f = t or rec def f = t when f is recursive.
MLstruct infers polymorphic types for def bindings, allowing them to be used at different
type instantiations in the program.

2.1.1 Polymorphism

Polymorphic types include a set of type variables with bounds, such as V(a <
Int). List[a] — List[a]. The bounds of polymorphic types are allowed to be cyclic, which
can be interpreted as indirectly describing recursive types. For example, V(e < T — a). @
is the principal type scheme of rec def f = fun a — f which accepts any argument and
returns itself. To simplify the presentation of inferred polymorphic types with recursive
bounds, such as V(o < @ —), 8. @ — B, we may use an equivalent ‘as’ shorthand, as
follows: V. ((@ — B) as a) — B.

MLstruct applies aggressive simplification on inferred types, removing redundant type
variables and inlining simple type variable bounds (see Section 5.5), so that they are usually
fairly concise.

2.1.2 Classes and Inheritance

Because object orientation is not the topic of this paper, which focuses on functional-style
use cases, the basic OO constructs of MLstruct presented here are intentionally bare-bone.
Classes are declared with the following syntax:

class C[A, B, ...J: D[S, T, ...1 A { x: X, y: Y, ... 3}
where A, B, etc. are type parameters, S, T, X, Y, etc. are arbitrary types and D is the parent

class of ¢, which can be left out if the class has no parents. Along with a fype constructor
C[A, B, ...], such a declaration also introduces a data constructor C of type:

C:VB1, B2 s (@ <11 (@ <13)s o A Xy, X3, ...} > ClBLB2. I A {x1:a, x2 a0, ...

where x; are all the fields declared by C[Bj, B2,...] or by any of its ancestors in the
inheritance hierarchy, and 7; are the corresponding types — if a field is declared in several

}

6

classes of the hierarchy, we take the intersection of all the declared types for that field. To
retain as precise typing as possible, we let the types of the fields taken in parameters to be
arbitrary subtypes a; of the declared 7;, so we can refine the result type C[B1, B2 . . .] A {x1:
@i, X2: @y, ...} toretain these precise types. For instance, assuming class C: { x: Int },
term € { x = 1 } is given the precise type C A {x:1}.

Classes are restricted to single-inheritance hierarchies. Like in the work of Muehlboeck
and Tate (2018), this has the nice property that it allows union types to be refined by
reducing types like (Co v 7) A C1to Cy A Cy v T A Cy by distributivity and to just 7 A Cy
when Cy and C; are unrelated (Cy A C; = 1). But MLstruct can easily be extended to
support traits, which are not subject to this restriction, by slightly adapting the definition
of type normal forms (our artifact (Parreaux et al., 2022) implements this). Thanks to their
use of negation types (described in Section 6.3), the typing rules for pattern matching do
not even have to change, and traits can also be pattern-matched. In fact, the full MLscript
language supports mixin trait composition (Schérli et al., 2003) similar to Scala (Odersky
et al., 2004), whereby traits can be inherited alongside classes, and method overriding is
resolved in so-called “linearization order.”

2.1.3 Shadowing

Non-recursive defs use shadowing semantics,® so they can simulate the more traditional
field initialization and overriding semantics of traditional class constructors. For instance:

class Person: {name: Str, age: Nat, isMajor: Bool}

def Person n a = Person{name = capitalize n, age = a, isMajor = a >= 18}
in which the def, of inferred type Person; : V(a < Nat). Str — @ — Person A {age: a },
shadows the bare constructor of the Person class (of type Persong: V(e < Str), (8 <
Nat), (y < Bool). {name: @, age: B, isMajor:y } — Person A { name: «, age:
B, isMajor:y }), forcing users of the class to go through it as the official pPerson
constructor. Function capitalize returns a Str, so no ‘name’ refinement is needed
(Person A { age: @, name: Str } = Person A { age: a }).

2.1.4 Nominality

Classes are not equivalent to their bodies. Indeed, they include a notion of “nominal
identity”, which means that while a class type is a subtype of its body, it is not a supertype
of it. So unlike TypeScript, it is not possible to use a record {x = 1} as an instance of a
class declared as class C: {x: Int}. To obtain a C, one must use its constructor, as in C{x
= 1}. This nominality property is a central part of our type system and is much demanded
by users in practice.” It comes at no loss of generality, as type synonyms can be used if
nominality is not wanted.

6 Type names, on the other hand, live in a different namespace and are not subject to shadowing.

7 The lack of nominal typing for classes has been a major pain point in TypeScript. The issue requesting it,
created in 2014 and still not resolved, has accumulated more than 500 “thumbs up”. See: https://github.
com/Microsoft/Typescript/issues/202

https://github.com/Microsoft/Typescript/issues/202
https://github.com/Microsoft/Typescript/issues/202

2.1.5 Type Aliases

Arbitrary types can be given names using the syntax type X[A, B, ...] = T. Type aliases
and classes can refer to each other freely and can be mutually recursive.

2.1.6 Guardedness Check

Classes and type aliases are checked to ensure they do not inherit or refer to themselves
immediately without going through a “concrete” type constructor first (i.e., a function or
record type). For instance, the recursive occurrence of A in type ALX] = Id[A[X1] v Int
where type Id[Y] = Y is unguarded and thus illegal, but type A[X] = { x: A[X] } v Int is
fine.

2.1.7 Class-Instance Matching

As presented in the introduction, one can match values against class patterns in a form of
primitive pattern matching. Consider the following definitions:
class Cons[A]: Some[A] A { tail: List[A] } type List[A] = Cons[A] v
None
rec def mapList f 1s
Cons — Cons{value
None — None{}

case ls of
f ls.value, tail = maplList f ls.tail},

. -
of inferred typefnapList :Va, B. (@ > B) — (Cons[e] A {tail:y } v None) as y —

(Cons[B] A {tail: 6 } v None) as §

We define a List type using None as the “nil” list and whose Cons constructor extends Some
(from the introduction). A list in this encoding can be passed to any function that expects
an option in input — if the list is a Cons instance, it is also a Some instance, and the value
field representing the head of the list will be used as the value wrapped by the option. This
example demonstrates that structural typing lets us mix and match as well as refine different
constructors in a flexible way.

As a slightly bigger motivating example, the List type thus defined can then be used as

follows, defining the classical unzip combinator:

def Cons head tail = Cons { value = head, tail = tail }
def None = None{}

rec def unzip xs = case xs of
None — { fst = None, snd = None },

Some — let tmp = unzip xs.tail in { fst
snd

Cons xs.value.fst tmp.fst
Cons xs.value.snd tmp.snd }

Below are two possible types that may be annotated explicitly by the user for these def-
initions, and which will be automatically checked by MLstruct for conformance (a.k.a.,
subsumption, see Section 5.4) against their inferred types.®

def Cons: a — (B A List[al) — (Cons[al A { value: «, tail: B 3})
def unzip: List[{ fst: @, snd: B }] — { fst: List[a], snd: List[B] }

The where keyword is used to visually separate the specification of type variable bounds, making them more
readable.

Annotating the types of public functions, while not required by MLstruct, is seen as good practice in some
communities. Moreover, the subsumption mechanism can be used to provide and check module signatures in
an ML-style module system.

2.1.8 Records

Record values are built using the syntax {x1 = t1, x2 = t2, ...} and are assigned the
corresponding types { x1 : 71, X2 : T2, ... }. Record types are related via the usual width and
depth subtyping relationships. Width subtyping means that, for instance, { x: 71, y: 1 } <
{ x : 71 }, and depth subtyping means that, for instance, { x: 7y, y: 1 } <{x:7, y:73 }if
) < T3.

2.2 Constructing the Lattice of Types

The algebraic subtyping philosophy of type system design is to begin with the subtyping of
data types (records, functions, etc.) and to define the order connectives to fit this subtyping
order, rather than to follow set-theoretic intuitions. We follow this philosophy and aim to
design our subtyping order to tackle the following design constraints:

(A) The order connectives A, v, and — should induce a Boolean algebra, so that we
can manipulate types using well-known and intuitive Boolean-algebraic reasoning
techniques.

(B) Nominal tags and their negations specifically should admit an intuitive set-theoretic
understanding, in the sense that for any class C, type #C should denote all instances
of C while type —#C should correspondingly denote all instances that are not derived
from class C.1°

(C) The resulting system should admit principal types as well as an effective polymor-
phic type inference strategy, where “effective” means that it should not rely on
backtracking.

2.2.1 Lattice Types

Top, written T, is the type of all values, a supertype of every other type. Its dual bottom,
written L, is the type of no values, a subtype of every other type. For every 7, we have
1 <7< T. Intersection A and union v types are the respective meet and join operators
in the subtyping lattice. It is worth discussing possible treatments one can give these
connectives:

1. We can axiomatize them as denoting the intersection N and union U of the sets of
values that their operands denote, which is the approach taken by semantic subtyping.

2. We can axiomatize them as greatest lower bound (GLB) and least upper bound
(LUB) operators, usually written m and L1, whose meaning is given by following the
structure of a preexisting lattice of simple types (types without order connectives). In
this interpretation, we can calculate the results of these operators when their operands
are concretely known.

3. Finally, we can view A and v as type constructors in their own right, with dedicated
subtyping derivation rules. Then unions and intersections are not “computed away”’

10° By contrast, we have no specific requirements on the meaning of negated function and record types, which are
uninhabited.

9

but instead represent proper constructed types, which may or may not be equivalent
to existing simple types.

2.2.2 Subtyping

We base our approach primarily on (3) but we do include a number of subtyping rules
whose goal is to make the order connectives behave like (2) in some specific cases:

¢ We posit #C; A #Cr < | whenever classes C; and C, are unrelated.! This makes
sense because there are no values that can be instances of both classes at the same
time, due to single inheritance. We obviously also have #C| A #C, > 1, meaning the
two sides are equivalent (they subtype each other), which we write #C; A #Cr = 1.
On the other hand, #C < #D for all C, D where C inherits from D; so when #C
and #C, are related then either #Cy; A #Cr, =#C or #C; A #Cr = #C5. Overall, we
can always “reduce” intersections of nominal class tags to a single non-intersection
type, making A behave like a GLB operator in the class inheritance sublattice, made
of nominal tags, T, 1, and v, evocative of (2).

* We also posit the nonstandard rule (1) — 72) A (13 > 14) < (11 v 13) = (T2 A T4).
The other direction holds by function parameter contravariance and result covariance,
so again the two sides are made equivalent. A behaves like a GLB operator on function
types in a lattice which does not contain subtyping-based overloaded functions types,
such as those of Pottier (1998b); Dolan (2017). This rule is illogical from the set-
theoretic point of view: a function that can be viewed as returning a 75 when given
a 11 and returning a 74 when given a 13 cannot be viewed as always returning a
T» A T4. For instance, consider Ax. x, typeable both as Int — Int and as Bool — Bool.
According to both classical intersection type systems and the semantic subtyping
interpretation, this term could be assigned type (Int — Int) A (Bool — Bool). But
we posited that this type is equivalent to (Int v Bool) — (Int A Bool). Thankfully,
in A7 Ax. x cannot be assigned such an intersection type; instead, its most general
type is Ya. @ — @, which does subsume both Int — Int and Bool — Bool, but not
(Int — Int) A (Bool — Bool). This explains why intersection types cannot be used
to encode overloading in A7.12

* For record intersections, we have the standard rule that {x:7} A {x:7} <{x:
T A 7 }, making the two sides equivalent since the other direction holds by depth
subtyping. Intersections of distinct record fields, on the other hand, do not reduce
and stay as they are — in fact, multi-field record types are encoded, in MLstruct, as
intersections of individual single-field record types, following Reynolds (1997). For
instance, assuming x # y, then { x : 7y, y: 7 } is not a core form but merely syntax
sugarfor {x:m } A{y:m }.

* We apply similar treatments to various forms of unions: First, (1] — 12) v (13 —
74) = (11 A T3) = (T2 v 14), the dual of the function intersection treatment men-
tioned above. Second, we recognize that {x: 7} v {y 1w }and {x:7} v (1] — m2),
where x # y, cannot be meaningfully used in a program, as the language has no feature

T This class intersection annihilation rule is not novel; for example, Ceylon has a similar one (Muehlboeck and
Tate, 2018).
12 Other forms of overloading, such as type classes and constructor overloading (see Section 8), are still possible.

10

allowing to tease these two components apart, so we identify these types with T, the
top type. Thisisdoneby adding T < {x:7} v {y:n}tand T <{x:7} v (1 > m)
as subtyping derivation rules.

The full specification of our subtyping theory is presented later, in Section 6 (Figure 16).

2.2.3 Soundness

The soundness of subtyping disciplines was traditionally studied by finding semantic models
corresponding to types and subtyping, where types are typically understood as predicates on
the denotations of A terms (obtained from some A model) and where subtyping is understood
as inclusion between the corresponding sets of denotations. In this paper, we take a much
more straightforward approach: all we require from the subtyping relation is that it be
consistent, in the sense that it correctly relate types constructed from the same constructors
and that it not relate unrelated type constructors. For instance, 71 — 7 < 11 — 1, should
hold if and only if my <11 and 7, < mp, and { x : Int } <#C should not be derivable. This
turns out to be a sufficient condition for the usual soundness properties of progress and
preservation to hold in our language. Consistency is more subtle than it may first appear. We
cannot identify, e.g., #C v { x : 7 } with T even though the components of this type cannot
be teased apart through instance matching, as doing so is incompatible with distributivity.
Notice the conjunctive normal form of 7 =#C A {x:7} v#D A {y: 7'} is = (#C v
#D)AHC Vv {y: T’ D A({{x:t}v#D)A({x:t}v{y:7'}). Wecanmake {x:7} v
{y:7'} equivalent to T when x # y because that still leaves 7= (#C v #D) A (#C v
{y:7"}) A({x:7} v #D), which is equivalent to the original 7 by distributivity and
simplification. But making #C v { y: 7’ } and {x: 7} v #D equivalent to T would make
m=#C v #D, losing all information related to the fields, and breaking pattern matching!

2.2.4 Negation Types

Finally, we can add Boolean-algebraic negation to our subtyping lattice. In some languages,
the values of a negation type —7 are intuitively understood as all values that are not of
the negated type 7. However, nothing dictates that this intuition should always hold in a
Boolean-algebraic subtyping system, where negation is interpreted algebraically and is not
given any a-priori meaning in terms of the concrete values that can be typed with it, if any.
MLstruct has negation types out of the box as part of its Boolean-Algebraic subtyping
lattice. However, the interpretation of these types is at the same time considerably con-
strained by the conjunction of the rules already presented in Section 2.2.2 and the existing
Boolean-algebraic relationships. In practice, this means that the intuition that the values of
—7 are those that are not of type 7 only holds when 7 is a nominal tag in MLstruct. For other
constructs, such as functions and records, negations assume a purely algebraic role. For
instance, we have relationships like ={x: 7} <m; — my due to {x:7} v m; — 7, being
identified with T (see also Section 3.3.5). Because no values inhabit types like ={x: 7}
and —(m; — m,), these types should be essentially thought of as special bottom types that,
for algebraic reasons, technically have to contain more static information than | and have
to possess fewer subtyping relationships.
Negations can express interesting patterns, such as safe division, as seen below, where
e : T is used to ascribe a type T to an expression e:

3

11

def divinm=n/ (m: Int A —0) def f x = div x 2
div: Int — (Int A —0) — Int f: Int — Int
def g (x: Int) = div 100 x < error: found Int, expected Int A —0
def div_opt n m = case m of @ — None{}, _ — Some{value = div n m}
div_opt: Int — Int — (None v Some[Int])

Here, ‘case m of ...’ is actually a shorthand for the core form ‘case m = m of ... which

shadows the outer m with a local variable m that is assigned a more refined type in each case
branch.

As we saw in the introduction, — also allows for the sound typing of class-instance
matching with default cases. Moreover, together with T, 1, A, and v, our type structure
forms a Boolean lattice, whose algebraic properties are essential to enabling principal type
inference (see Section 5.3.1).

2.2.5 Structural Decomposition

We reduce complex object types to simpler elementary parts, which can be handled in a
uniform way. Similarly to type aliases, which can always be replaced by their bodies, we can
replace class types by their fields intersected with the corresponding nominal tags. For exam-
ple, Cons[r] as defined in Section 2.1.7 reduces to #Cons A { value: 7, tail : List[7] }.
Recall that class tags like #Cons represent the nominal identities of classes. They are related
with other class tags by a subtyping relationship that follows the inheritance hierarchy.
For instance, given class C[a]: D[@ v 2] A {x:0 v a }andclass D[S]: {x: B, y:Int },
then we have #C < #D. Moreover, the refined class type C[1] A { y : Nat } reduces to the
equivalent #C A {x:0v 1 } A {x:1v 2, y:Int} A {y:Nat }, which reduces further to
#C A {x:1, y:Nat }.

Decomposing class types into more elementary types makes MLstruct’s approach fun-
damentally structural, while retaining the right amount of nominality to precisely reflect
the semantics of runtime class-instance matching (i.e., pattern matching based on the run-
time class of objet values). It also means that there is no primitive notion of nominal type
constructor variance in MLstruct: the covariance and contravariance of type parameters
simply arise from the way class and alias types desugar into basic structural components.

2.3 Limitations

While MLstruct features very flexible and powerful type inference, this naturally comes
with some limitations, necessary to ensure the decidability and tractability of the type
system. We already mentioned in Section 2.2.2 that intersections cannot be used to type
overloading. Here we explain several other significant limitations.

2.3.1 Regular Structural Types

We restrict the shapes of MLstruct data types to be regular trees to make the problem of
deciding whether one subsumes another decidable: concretely, occurrences of a class or
alias type transitively reachable through the body of that type must have the same shape as
the type’s head declaration. For instance, the following are disallowed:

class C[A]: {x: C[Intl} class C[A]: C[{x: List[Al}]
class C[A]: {x: CLC[AI]1}

12

We conjecture that allowing such definitions would give our types the expressive power
of context-free grammars, for which language inclusion is undecidable, making subtyping
undecidable.’® To replace illegal non-regular class fields, one can use either top-level
functions or methods. The latter solve this problem by having their types known in advance
and not participating in structural subtype checking. Methods are implemented in MLstruct
but not presented in this paper.

2.3.2 Simplified Treatment of Unions

MLstruct keeps the expressiveness of unions in check by identifying {x: 71} v {y: 1}
(x#y)and {x:7 } v (12 — 13) with T, as described in Section 2.2.2. To make unions of
different fields useful, one needs to “tag” the different cases with class types, as in C; A
{x:11} v CyA{y:1}, allowing us to separately handle these cases through instance
matching ‘case v of C; — ... v.x ..., C; — ... v.y ..”, whereas this is not necessary in, e.g.,

TypeScript.

A direct consequence of this restriction is that in MLstruct, there is no difference between
{x:Int, y:Int } v {x:Str, y:Str} and {x:Int v Str, y:Int v Str} (still assuming
x #y). Indeed, remember that { x: 1), y: 7, } is syntax sugar for {x:71 } A {y:72 } and
by distributivity of unions over intersections, we can take { x : Int, y:Int } v {x:Str, y:
Str } to

{x:Int}v {x:Str}) A({x:Int}v{y:Str}) A ({y:Int}v{x:Str}) A ({y:Int} v {y:Str})

andsince { x: 71 } v { y: 72 }isidentified with T, as explained in Section 2.2.2, this reduces
to

({x:Int} v {x:Str}) A ({y:Int} v {y:Str})
which reduces by field merging to {x:Int v Str} A {y:Int v Str}, ie., {x:Intv
Str, y:Int v Str}.

Another consequence is that, e.g., List[Int] v List[Str] is identified with List[Int v
Str]. Again, to distinguish between these two, one should prefer the use of class-tagged
unions or, equivalently, proper sum types such as Either[List[Int], List[Str]], defined in
terms of Left and Right classes.

2.3.3 Fewer Relationships

Unlike in semantic subtyping approaches, but like in most practical programming languages,
we do not have {x: L} < L. This would in fact lead to unsoundness in MLstruct: con-
sider 7= ({x:Some[Int], y: 11} v {x:None, y: 1 }) A {x:None}; we would have
a={x:1,y:11}v{x:None, y: 1} ={x:None, y:1,} by distributivity and also
n={x:1 v None, y:11 v 12} by using (2.3.2) before distributing, but 71 £ 7| v 72 in
general.

2.3.4 No intersection overloading

Unlike languages like TypeScript, we do not permit the use of intersection types to encode
inclusive function overloading (Pierce, 1991). Thankfully, simpler forms of overloading
compatible with MLstruct exist; we briefly discuss one in Section 8.

13 TypeScript does allow such definitions, meaning its type checker would necessarily be either unsound or
incomplete.

13

Core syntax

Type =Tt 70 | a| T | V7 | =7
Mode 0,0 =]
Polymorphic type o u=VE 1
Contexts
Subtyping context SAi=€¢|Z-(r<1) | Z-p(r<T)
Bounds context Eu=¢€¢|E-(ea<7) | E-(1<0)

Fig. 1. Syntax of types, terms, and contexts of S(7, R).

(=)t | {x}rt | #C

(also written as) =TT | {X3T} | #C

Type constructors Tttt 70

Fig. 2. Instantiated syntax specific to 1.

3 Formalization of Boolean-Algebraic Subtyping

In this section, we present S(7, R)* a generic Boolean-algebraic subtyping system, and
prove some of its important formal properties.

Along with presenting the generic theory of Boolean-Algebraic subtyping as realized
in &(7,R), we also instantiate that theory to the constructors of MLstruct as a running
example to aid intuition. We do this by taking the type constructors 7 ={ (=)t 77 } u
Uil {xi} 77 Yo U {#C; } of functions (of syntax (—) 7,7 7, also written 79 — 71),
records (of syntax {x} 7T, also written {x : 7 }), and class fags (of syntax #C, where C is a
class name), and R = { S-CLSSUB, S-CLsBoT, S-RcpTop }, the subtyping rules associated
to single-class inheritance and record widening (presented later in Figure 4). This yields
system &_, (xj#c, the subtyping system of 4™, which is the core language of MLstruct??,
presented in Section 6.

3.1 Syntax

The syntax of &(7,R) is presented in Figure 1. We use the notation E; to denote a
repetition of i = 0 to n occurrences of a syntax form E, and we use the shorthand E when
i is not needed for disambiguation.

The mode < or o of a syntactic form is used to deduplicate sentences that refer to unions
and intersections as well as top and bottom, which are respective duals and can therefore
often be treated symmetrically. For instance, T° is to be understood as either T° when
o=-1ie, T,oras T° wheno=>, ie., L. A similar idea was developed independently

14 As difficult to read as it is, ‘&’ is supposed to be a stylized *S’, which stands for “subtyping”.
15" Although A~ was already presented in our previous work (Parreaux and Chau, 2022), its subtyping system
S_, {x}#c was not given a name at the time.

14

by d. S. Oliveira et al. (2020) to cut down on boilerplate and repetition in formalizing
subtyping systems.

S(7, R) is parametrized by a set of type constructors 7~ and a set of subtyping rules R in
addition to the Boolean algebraic rules, as well as depth subtyping and merge rules for the
type constructors. The parameter lists 7+, 7, and 70 of T are the covariant, contravariant,
and invariant parameters of T respectively. Naturally, we will impose some restrictions on
the rules in R (in Section 3.7), so that they are well-behaved with respect to the subtyping
system as a whole.

Figure 2 shows the instantiation of type constructors 7 ={(—=)7t 77 }u
Ui{ {xi} 77 } U, { #C; } needed to obtain the syntax of 17"

3.2 Subtyping and Bounds Contexts

Subtyping contexts X record assumptions about subtyping relationships, with some of these
assumptions potentially hidden behind a > (explained in Section 3.3.1). On the other hand,
bounds contexts E contain bounds on type variables that can be generalized as part of a
polymorphic type.

3.3 Subtyping Rules

The subtyping rules of (7, R) are presented in Figure 3. and the rules of A7 that we use
in its instantiation via R = { S-CLsSuB, S-CLsBoT, S-RcpTop } are presented in Figure 4.
Note that the fully specialized subtyping rules of A7 are later presented on their own, for
clarity, in Figure 16.

Remember that the mode syntax ¢ is used to factor in dual formulations. For instance,
7 < T° isto be understood as either t < T wheno=-,ie,7<T,orast <D T when
©=2,1.e., T = 1, also written | < 7. The purpose of rule S-WEAKEN is solely to make
rules which need no context slightly more concise to state. In this paper, we usually treat
applications of S-WEAKEN implicitly.

3.3.1 Subtyping Recursive Types

A consequence of our syntactic account of subtyping is that we do not define types as
some fixed point over a generative relation, as done in, e.g., (Pierce, 2002; Dolan, 2017).
Instead, we have to account for the fact that we manipulate finite syntactic type trees, in
which recursive types have to be manually unfolded to derive things about them. This is
the purpose of the S-Exp rules, which substitute a possibly-recursive type with its body to
expose one layer of its underlying definition. As remarked by Amadio and Cardelli (1993,
§3.2), to subtype recursive types, it is not enough to simply allow unfolding them a certain
number of times. Moreover, in our system, recursive types may arise from cyclic type
variable constraints (which is important for type inference), and thus not be attached to
any explicit recursive binders. Thus, we cannot simply follow Castagna (2012, §1.3.4) in
admitting a u rule, which would still be insufficient.

15

[Zhr<r] |r<7] “E=E <= H)=<S-H < oH)=<%-H
S-REFL S-ToB¢ S-CompL¢ S-ANDORI 1o S-ANDOR12¢
T<T T TV T2 T 1 Vo1 20 1 Ve =n

S-ANDOR2¢
St TETny S-DISTRIBO
STV T A (V) L (A1) VO (T A% 1)
S-TRANS S-WEAKEN S-AssuM S-Hyp
bt sT ZRETIST H SeHE-H Hex
1< X+-H X+—H X+H
S-TMRrG
T o oa) 0 T i O Tt A O
T (" ven) (‘rj /\ﬂ'j) T STt ot 1 VT, 7 1
S-TDEPTH))
i J k
<12|—T.+<7'r7L X+, <71, <1Z|—TOE7TO
i i J J k R
—+i T/ _Ok —+i T] —Ok
ZI—TTL. ‘rj Ty <Tﬂl. 7rj T
S-Cons S-Cons>
P S-Empry SEY S <n SEY SF1<n
=
Tie LY (1 <n) LY (1 <)
Fig. 3. Subtyping rules of S(7, R).
S-CLsSuUB S-CLsBot S-RcpTop
CreS(#C1) C1ES(HCy) Cr¢ S(#Cy) re{{y"™:n} non}
#C) < #C) #C) A#Cy < L T<{x:m}vrt

Fig. 4. Subtyping rules specific to 4.

3.3.2 Subtyping Hypotheses

We make use of the ¥ environment to store subtyping hypotheses via S-AssuM, to be
leveraged later using the S-Hyp rule. We should be careful not to allow the use of a
hypothesis right after assuming it, which would obviously make the system unsound (as
it could derive any subtyping). In the specification of their constraint solving algorithm,
Hosoya et al. (2005) use two distinct judgments — and ' to distinguish from places where
the hypotheses can or cannot be used. We take a different, but related approach. Our S-
AssuM subtyping rule resembles the Lob rule described by Appel et al. (2007), which
uses the “later” modality > in order to delay the applicability of hypotheses — by placing
this symbol in front of the hypothesis being assumed, we prevent its immediate usage by

16

S-Hyp. We eliminate > when passing through a function or record constructor: the dual <
symbol is used to remove all > from the set of hypotheses, making them available for use by
S-Hyp. These precautions reflect the “guardedness” restrictions used by Dolan (2017) on
recursive types, which prevents usages of « that are not guarded by — or { ... } in arecursive
type pua. t. Such productivity restriction is also implemented by our guardedness check,
preventing the definition of types such as type A = A and type A = —A (Section 2.1.6).1

3.3.3 Example

As an example, let us try to derive A} < A, where Aj =7 —>717— Ay and Ay =7 — Ay,
which states that the type of a function taking two curried T arguments an arbitrary number
of times is a special case of the type of a function taking a single T argument an arbitrary
number of times. To facilitate the development, we use the shorthand H = A; < A,. We
start by deriving that the respective unfoldings of the recursive types are subtypes; that is,
that (1) r—>7— A} < 7 — A,. Note that for conciseness, we omit the applications of
S-WEAKEN in the derivations below:

(A< Ap)eH

REFL Hyp
H-71<t HFA <A
Fun Exp
H-1->A < 171> A H-1—-5 Ay <A
REFL TrRANS
Hr-t<t H-1t—> A < A

Fun

PHT—>T—> A < T4 (1)

Then, we simply have to fold back the unfolded recursive types, using Exp and TRANS:

Exp
I>H|—A1 <T—>T—>A1 (1)
TrANS Exp
SHHA] < 1> A PH-T— Ay < Ap
TrRANS
I>H|—A1 <A2
AssuMm

Al < Ay

3.3.4 A Boolean Algebra

The subtyping preorder in S(7, R) gives rise to a Boolean lattice or algebra when taking
the equivalence relation ‘t) =1’ to be the relation induced by ‘1) <1 and 7 < 11’. To
see why, let us inspect the standard way of defining Boolean algebras, which is as the set
of complemented distributive lattices. We can define a lattice equivalently as either:

* Analgebra (L, A, v)suchthat A and v are idempotent, commutative, associative,
and satisfy the absorption law, i.e., 7T A (tva)=71 v (t Am)=7. Then 11 < 15 is
taken to mean 7| = 7] A T2 or (equivalently) 1) v » = 1.

* A partially-ordered set (L, <) (i.e., < is reflexive, transitive, and antisymmetric)
where every two elements 7; and 1, have a least upper bound 7| v 7, (supremum)
and a greatest lower bound 7| A 7, (infimum). Thatis, V7 < 7, 7. 1 <7 A T2 and
Vaz1,m. =1V .

16 Perhaps counter-intuitively, it is no a problem to infer types like ‘V(a < @). 7" and V(@ < —a). 7’ because
such “funny” cyclic bounds, unlike unproductive recursive types, do not actually allow concluding incorrect
subtyping relationships.

17

The latter is most straightforward to show: we have reflexivity by S-REFL, transitivity by
S-TRANS, antisymmetry by definition of =, and the supremum and infimum properties are
given directly by S-ANDOR2- and S-ANDOR20 respectively.

Moreover, to be a Boolean algebra, our lattice needs to be:

* a complemented lattice, which is

— bounded: T and L are respective least and greatest elements (S-ToBo);
— such that every 7 has a complement —7 where v —t=T and 7 A 7= 1
(S-CompLo);17

* a distributive lattice, meaning that 7 A° (71 vV 12) = (7 A% 11) V° (T A° 1p) for o€
{°. -}
The first direction < of distributivity is given directly by S-DisTriB. The
other direction >° is admissible: since 71 V° 1 =°1 (S-ANDORI11¢) and
71 V° 12 2° 1» (S-ANDORI120¢), we can easily derive 7 A° (11 VP 1) =° 7 A° Ty
and 7 A° (11 VP 1) =T AT, and by (S-ANDOR20) we conclude that
T A (11 V1) =0 (7 A% 1) VO (T A°).

A useful property of Boolean algebras is that the usual De Morgan’s laws hold, which
will allow us to massage constrains into normal forms during type inference.

3.3.5 Purely Algebraic Rules

We call S-FUNMRG and S-RcpTop purely algebraic subtyping rules because they do not
follow from a set-theoretic interpretation of order connectives (A, v, —). S-FUNMRG and
S-RCDMRG respectively make function and record types lattice homomorphisms,® which
is required to make type inference complete — this allows the existence of well-behaved
normal forms. Though one can still think of types as sets of values, as in the semantic
subtyping approach, in A7 the sets of values of 71 A 7 is not the intersection of the sets
of values of 71 and 7> (unless 71 and 1, are nominal tags or records), and similarly for
unions and complements. These purely algebraic rules are sound in A because of the
careful use we make of unions and intersections, e.g., not using intersections to encode
overloading. Notably, S-RcpTop implies surprising relationships like —(1; —) < {x: 7 }
and —{x:7} <{y:m} (x #Y), exemplifying that negation in 1™ is essentially algebraic.

3.4 Some Useful Subtyping Relationships

Next, we demonstrate a few useful subtyping rules that can be derived in our system as well
as in any Boolean algebra of types (i.e., a Boolean algebra where ordering is interpreted as
subtyping). These are all proven in Appendix A.3.

Figure 5 lists some of these rules that can be expressed as simple inference rules.

Lemma 3.1. ForallX, wehave 21 v <° 13 «— Z+11<°13 A 21 <°13.

17" We can also show that our lattice is uniquely complemented, i.e., —7| = —7, implies 7| = 7 (Theorem 3.2).

18 A lattice homomorphism f is such that f (v v n)=f(7)v f(x) and f (7t A 7)=f(7) A f (7).
Function types are lattice homomorphisms in their parameters in the sense that f (7) = (—7) > x is a
lattice homomorphism.

18

S-IDENTITY S-COVARIANCE

SETA TS S-DuaLITY SEn<n Iy
= T~ TAs] ——[A6] [A.7]
Sl To=—1° SFV L Vvy
S-Swap
SV S-NEG1 S-NEG2
[A.9] —[A.ll] —[A.lO]
S 2 A ——7<7T T T
S-Assoco S-CommuTo
[A.12] [A.13]
(Tl \/QTz) VQT3ET1 \/Q(Tz \/OT3) T1 VOT25T2 \/OTl
S-AssocCoMMUT
[A.8]
S V)Vl (V) Vo
S-DisTrR S-ABSORP
[A.14] [A.15]
1V (A T)= (1 VI n) A (T V) 0V (A n) =T
S-NEGINV
S <n S-DEMORGAN
[A.16] [A.17]
S-m <1 =(11 vV’ 1) =—11 A° =

Fig. 5. Some useful subtyping relationships that hold in S(7,R) as well as in any other Boolean
algebra of types.

Theorem 3.2 (Unique Complementation). For all T and 15, —7) = —1 implies 7| =T,
ie, “~Ti<—nand - <1 imply "t < and p <117

3.5 Type Variables & Polymorphism

In line with ML-style type inference, which is based on prenex polymorphism, we seek to
assign type schemes to the term definitions of a program, where a type scheme is a normal
type that references type variables that are quantified at its outermost level.

We could write such type schemes Va{Z}. 7, as we do in our work on first-class poly-
morphism (Parreaux et al., 2024), where @ are the type variables being quantified and
E is their bounds. However, since in this work we focus on polymorphism only for top-
level definitions (we do not support nested let polymorphism, although the system could
be extended to support it), we instead use the more compact notation VE. 7, whereby all
variables mentioned in E are implicitly quantified.

Polymorphism type schemes are implicitly and eagerly instantiated whenever the corre-
sponding definition is used, so that type inference and constraint solving only ever have to
deal with monomorphic types: the polymorphism is only at the top level and not part of the
core subtyping system.

19

3.6 Consistency of Bounds Contexts

A crucial aspect of polymorphic type inference with bounds is that we must ensure that
these bounds are consistent, in the sense that they are “meaningful” and do not lead to
contradictions in the type system.

For example, we must prevent typing definitions with such bounds as V(Bool < @ <
Int). T — which is a shorthand for ¥(Bool < @)-(a < Int). 7. Indeed, in the body of the
corresponding definition, this would allow one to implicitly upcast any value of type Int
into a value of type Bool, due to the assumptions on the bounds of @ and the transitivity of
subtyping implying that Bool < Int.

So we need to make sure that E contexts are consistent, which we write 2 cons.. But there
are several possible ways we could define such consistency criterion so that it preserves the
soundness of the type system.

3.6.1 Classical Consistency
Using the most obvious approach, consistency could be defined in the classical way:

Fp(E)
= cons.

That is, a bounds context is considered consistent if there exists a substitution p that makes
all the constraints hold in the empty context, written € = p(Z) or just = p(&).

While this definition is quite simple and intuitive, it describes a rather strong consistency
criterion. To see that, consider the bounds context @ < T — @, whichis cyclic and essentially
describes a recursive type. Such type schemes are important to support since they are
required for complete & principal type inference, so we cannot simply reject them. But to
show that this bounds context is classically consistent requires the existence of some form
of first-class recursive or infinite types as primitives of the underlying type system. Here,
the substitution p would have to map « to a type that is a function type from T to itself. We
usually write these types using a u binder, as in uX. T — X.

While the requirement that u types (or equivalent) should be available as one of the
core type constructors of the system is not a fundamental problem, it has two major
disadvantages:

e It can complicate the formal developments, requiring the handling of all possible
uses of u types in the metatheory.

e It is unsatisfying from a practical and theoretical point of view, in that the real type
system of the programming language under study may already have its own notion
of recursive types (in MLstruct, these are user-defined type aliases and class types)
and u types would play double duty with them, flaunting the principle of economy
of concepts. We would really rather like for a generic theory of Boolean-algebraic
subtyping like S(77, R) to not make strong assumptions on the constructors of the
underlying language beyond the existence of the base Boolean-algebraic connectives.

While this strong consistency definition is sufficient to achieve soundness (making
impossible to, say, upcast integers to Booleans), it is in fact not necessary.

20

3.6.2 Weak Consistency

As it turns out, it is possible to design an alternative, weaker definition of consistency that
does not assume the existence of recursive structures in the base type forms and instead
relies purely on type variables and the > modality:
>E = p(B)
E cons.
This version of consistency is correct and sufficient for all intents and purposes, but we will
instead use the slightly stronger one below just because we can:

(a7 ep

>a=T) EpE

= cons.

This definition says that = is consistent if there is a substitution p that makes all the
constraints hold in a guarded context where each substituted type variable is equated with
its substitution.

Note that for simplicity of the definition, this assumes substitutions may substitute a
type variable @ with a type that still contains occurrences of @. So these are not “proper”
substitutions in the usual sense, where a proper substitution is supposed to be idempotent.
We could call our pseudo-substitutions partial substitutions, but by abuse of terminology
we will usually just call them substitutions.

Using this definition, we can show that our running example E= (¢ < T — @) is
consistent by the partial substitution [@ — (T — «)], as demonstrated in the derivation
below:

REFL Hyp
(=T —-a)-T<T (a=T-a)lFa<T -«

Fun

=T o) T-oae<T->T-a

(e < T —a) cons.

This is sufficient to derive the soundness of the declarative type system of MLstruct, but
not quite enough to show the correctness of its type inference algorithm. For that, we need
to enrich the consistency definition in two steps, first to parameterized weak consistency
and then to algorithmic consistency.

3.6.3 Parameterized Weak Consistency
To allow reasoning about consistency in the context of principal type inference, we need to

first generalize the definition to allow for subtyping context assumptions:

(a—T1)€Ep

>la=T1) pE E pE

2+ ZE cons.

This is the definition of weak consistency we will retain, as it is more general.
A central property of weak consistency is that it implies the ability to inline type variable
bounds, when they are consistent, into an existing subtyping derivation.

21

Lemma 3.3 (Inlining of consistent bounds). If £+ E cons. and -E+ v <7/, then
(a—m)ep ,
- ot < pt’ for some p.

pZ>(a=m)
Lemma 3.4 (Inlining of consistent bounds on guarded derivations). If X — E cons. and
SEFTLTand TTV(7) O TTV(7') = &, then pX->(a = n)(aHﬂ)Ep
p.

7 < 7' for some

3.6.4 Algorithmic Consistency

When proving facts about the type inference algorithm, we will need to rely on a very
specific way of achieving consistency of the bounds contexts involved. Indeed, we will need
for this consistency criterion to precisely mirror the way the constraint solving part of the
algorithm ensures consistency.

This idea gives rise to the following definition, which now precisely specifies the way type
variables should be substituted one by one to ensure consistency. We chose the substitution
[@— @ A ubz(a@) v Ibz(e)] because the substituted bounds context would be derivable if
and only if the lower bounds are subtypes of the upper bounds. Upon closer inspection, the
definition of algorithmic consistency shares a lot of similarities with that of parametrized
weak consistency: the substituted bounds context should be entailed by the substituted
subtyping context assumptions together with delayed assumption that the type variables
are equivalent to their respective images. The only difference is that in the definition of
algorithmic consistency, the even stronger delayed assumption of the bounds themselves
(which implies that the type variables are equivalent to their images under the specified
substitution) is used, and the type variables are substituted one by one.

The attractiveness of this definition is that we will be able to perform inversion on it,
allowing us to modify the substitution of a specific type variable without worrying about
invalidating the evidence for the other type variables, in the inductive proofs of constraint
solving soundness and completeness.

Assuming X holds, then bounds >E-E are consistent, as witnessed by p.
‘ X >E-E; pcons. ‘

E cons.=dp. e E; p cons.

split o, (2, dom(p")) = Ba» Za) p=la—anubz(a) v ibz(a)]
BPEL DRy pEgpZEpBy PL b BEs-BEG-pE ; o cons.

X+>E; [] cons. T >Ey-E; p’ op cons.

splitq (8, {71}) =

(r<m)eE|ac{r.) (r<m)eE|ag{r.n} ————(a<B)eE|Be(T)}

((r<m) ,(r<7) (@ <®B)

)

Where [b and ub are defined in Definition 3.5 below.

22

Definition 3.5 (Upper and lower bounds). We use the following definitions of lower and
upper bounds bz () and ubz(«) of a type variable « inside a constraining context E:

bz(a) |7 ubz(a) |7

Ibz.(r<a)(@) =7 v Ibz(a) ubs, (T<ﬁ)(a) ubs(a)

Ibz.(r<p) (@) = Ibz(a) (a#p) = (a<r) (@) =7 A ubz(a)

b () (@) = Iz (a) Gaien @ =wsle) - (@2)
lbe(a)=1 ube (@) =

Algorithmic consistency shows a way of achieving consistency by picking each type
variable one by one and substituting it with a type that is equivalent to the original variable
but with its bounds inlined. One can understand this definition as getting rid of all the
unguarded type variable bounds, ending with an equivalent subtyping context where these
bounds are integrated into the type variable occurrences themselves. In a sense, this is
reminiscent of the bisubstitution process of Dolan (2017), except that we do not care about
polarity and always integrate both upper and lower bounds with each occurrence.

Naturally, we can show that algorithmic consistency implies weak consistency:

Lemma 3.6 (Algorithmic consistency implies weak consistency). If X - E; p cons., then
2 E cons..

3.7 Requirements on Base Subtyping Rules

As explained before, we place some requirements on the base subtyping rules R of the
underlying type system so that these rules do not threaten the proof structure of the general
subtyping system G(7, R).

For each rule in R with conclusion X 7 < 7, we require each of its premises X' — 7/ < '/
to adhere to the following restrictions:

* <X cons. implies <%’ cons.

» max(depth(t'), depth(n")) < max(depth(t), depth(r))

o If max(depth(t’), depth(n’)) = max(depth(t), depth(r)), then X cons. implies
Y cons.

The first restriction ensures that the base subtyping rules do not introduce inconsistencies
in their premises. The two other restrictions ensure that our proofs by inductions can go
through without running into well-foundedness issues.

We are confident that the reader can convince themselves that these rules are eminently
reasonable and should be easily satisfied by any practical underlying type system.

3.8 Subtyping Derivation Shapes

We now give a few definitions characterizing the shapes of subtyping derivations, and prove
properties about them.

23

Definition 3.7 (Right-leaning derivations). A subtyping derivation is said to be right-
leaning if all its applications of rule S-TRANS have a first premise which is not itself an
application of rule S-TRANS.

It is easy to see that any subtyping derivation can be rewritten into an equivalent right-
leaning derivation of the same size by reorganizing its uses of S-TRANS.

Definition 3.8 (Bottom-level rules). A rule is used at the bottom level in a derivation if it
is one of the following:

the last rule used in the derivation;

either premise of a bottom-level application of rule S-TRANS;
the premise of a bottom-level application of rule S-Expo;

the first premise of a bottom-level application of rule T-SuUBs.

N W~

Definition 3.9 (Unassuming derivation). An unassuming derivation is a subtyping
derivation that does not make use of S-Assum at the bottom level.

Lemma 3.10 (Unassuming derivation). Any subtyping derivation can be rewritten to an
equivalent unassuming derivation.

Definition 3.11 (Subsumption-normalized derivation). A subsumption-normalized deriva-
tion is a typing derivation that makes at most one use of T-SuBs at the bottom
level.

Lemma 3.12 (Subsumption-normalized derivation). Any typing derivation can be rewritten
to an equivalent subsumption-normalized derivation.

4 Soundness of Boolean-Algebraic Subtyping

The reason we can soundly incorporate rules such as S-FUNMRG, S-RCDMRG, and S-
RepTor is that they do not threaten any of the properties we actually need for the type
soundness proofs. As a first step towards showing that, and in order to support the next
important lemmas, we want to prove that subtyping is sound in G_, (x sc.

In this section, we demonstrate the soundness of Boolean-Algebraic subtyping S(7-, R)
by proving that, assuming a few rather conservative assumptions on the language’s param-
eterized type constructors and their subtyping relationships (which are, naturally, upheld
by the ©_, {}#c instance), then Boolean-Algebraic subtyping will not relate unrelated con-
structors. By extension, this demonstrates that subtyping in A~ is sound, which is a key
ingredient in showing that MLstruct can be used as a type-safe programming language
whose well-typed programs “do not go wrong”.

24

4.1 High-Level Goal

Essentially, we want to prove the following property, which we have here instantiated to
S_, (x#c type constructors for the sake of intuition:

Theorem 4.1 (Soundness of 4™ subtyping S_, (\yuc). If E cons. and E+— 1 < &, where:

Te{l, T, #C, 11 > 1, {xi:‘rii}}
ne{l, T,#C', ni > m, {x' :m }}

then exactly one of the following is true:

(a) tT=Lorn=T;

(b) T=#C and © = #C' and C' € S(#C);

(c) T=11—>nandn=n;—>mand E+n) <11 and E+ 17 < mp;
(d) T={mi}andﬂ={xk:ﬂ1 } and E+ 1 < 7y for some k.

This property can be read as follows: if the right-hand side of a subtyping relation is a
function type and the left-hand side is a specific constructed type, then that constructed type
must be either bottom or a function type with compatible argument and return types, and
similarly for the other base type constructors. This describes how the basic type constructors
of the language should or should not relate by subtyping, and in particular prevents wrong
relations, such as function types subtyping record types.

The structure of the soundness proof is quite complex and requires additional syntax
forms and inductive relations. This is because the Boolean-algebraic rules are so general
and flexible that we must find a way of somehow giving them more “structure” by restricting
the way they may be used to a form amenable for inductive reasoning.

Indeed, proving the theorem stated above cannot proceed by the standard technique of
induction on subtyping derivations. Due to the restricted shape of the type forms involved
on both sides of <, the inductive hypothesis cannot be applied to the premises of S-TRANS,
as the middle type introduced may not adhere to that restricted shape.

4.2 Splitting up Boolean-Algebraic Subtyping

A quick inspection reveals that the problem lies within S-ANDOR2. While some usages of
S-ANDOR?2 can be removed by rewritting the derivation, not all usages can be removed.

The solution we adopt is to split the full < subtyping relation into two, with covering
the pure Boolean-algebraic relation and < covering the remaining relation between the
atoms and coatoms of the system, referred to as elementary type forms. In a sense, <
defines what base type constructors are considered related or unrelated at the level of the
underlying language (for instance, functions and records are unrelated, but derived classes
are related to their base classes), whereas < is only concerned with deciding what is related
in terms of pure Boolean-algebraic structure. Crucially, < can be defined in a way that does
not require a rule for transitivity, greatly simplifying the corresponding proofs.

This allows us to refine the statement of the inductive lemma by stating required properties
on these two aspects of subtyping separately (see Lemma 4.22).

25

4.2.1 Pure Boolean-Algebraic Subtyping

First, we define € as the standard Boolean lattice order.

Definition 4.2 (Pure Boolean-Algebraic Subtyping). We define 7| S 1, to mean that 1) < T
can be derived by using only “Boolean Lattice” subtyping rules, which are those that that
are not specific to T types and simply encode their Boolean-Algebraic structure. More
specifically, these rules are: S-REFL, S-ToB, S-ComPL, S-ANDORI1 1, S-ANDORI2, S-ANDOR2,
S-DISTRIB, and S-TRANS.

Theorem 4.3 (Standard Boolean Lattice Order). < holds in every Boolean lattice, i.e., it

does not introduce any extra relations between its atoms, which are the base types T of
S(7T,R).

Since C is itself a Boolean Algebra (see Section 3.3.4), this means our rules for < are a
proper axiomatization of Boolean Algebras.

Proof We show that the < rules follow from the pure Boolean algebra axioms. In this
proof, = denotes the pure Boolean algebra equivalence, defined by the following axioms
(Huntington, 1904):

B-IDEN® : TAT =71
B-CoOMMUT® : TIvin=1veT
B-DISTRIB® : TA (i vem)=(t A1) ve (T A°12)
B-CoMmPLo : Tvl—aTr=T°

The following laws follow from the axioms (Huntington, 1904):

B-IDEMO : Tvert=1
B-BouNDo : TVveT=T¢
B-ABSORP¢ : T A (v =1
B-DEMORGANG : —(11 v° 1) = (-1 A° = 12)
B-Assoco : (v vim=1 vl (nven)

In the context of Boolean algebras thus axiomatized, 71 S 7» is understood to mean
71 =11 A T2 (Section 3.3.4). So all we have to show is that all the conclusions of the form
71 € 1 given by our subtyping rules are so that 71 = 11 A 7, holds by the axioms above.

S-REFL.
T=TAT by B-IDEM 2
S-ToB-.

T=TAT by B-IDEN-

26

S-ToBo.

S-CompL-.

S-CompPLO.

TA-T=1

S-ANDORI11..

S-ANDOR110.

TTAD=(TIAT)AD

S-ANDOR12..

S-ANDOR120.

TIAT=TA (D AT)

S-ANDOR2-.

TIVD=(TIAT)VD
=(n AT
=(t AT

=(rt AT

=(nVvn)AT

S-ANDOR20.

T=TAT
=(TAT)AD

=7 A(T1 AT2)

=(rtv-1)AT

=T A(rv—1)

=(rtA-1)A Ll

=7 A (11 vV T2)

=71 A (11 AT2)

=(11 AT) AT

n=nA(nnv1)

=T A (T] \% T2)

=(TIAT) AT

TA (11 v 1)

by B-BounD ?
by B-ComMUT 2

by B-CompL-
by B-IDEN-
by B-CommuT 2

by B-CompL 2
by B-BounD 9

by B-ABSORP:

by B-IDEm 2
by B-Assoc 2
by B-CommuUT 2

by B-ABSORP-
by B-ComMmuT-

by B-IDEM 2
by B-Assoc 9

by assumption T ST < T =T A T
by assumption n S TS TH =T AT
by B-CommuT 2
by B-CommuUT 2
by B-DISTRIB-

by B-CommuT 2

by assumption TS 1 S T=T A T
by assumption TS 11 ©T=7T A Ty
by B-Assoc 2

27

S-DISTRIB-.

TAa(mivn)=T@a(tivn))Afra(tvn)) by B-IDEM 2

=(rta(nvn)A((tAaT)v(tAm)) byB-DISTRIB
S-DISTRIBO.

rtvr)rn(rvn)=((rvr)a(rvn)a((tvn)A(rvr)) byB-IDEM?

=(rvr)a(tvn))a(tv(nAn)) by B-DISTRIB 2
S-TRANS.
TO=T0 A T1 by assumption 70 S 7] ©) =T9 A T}
=10 A (T1 A T2) by assumption 7] S Ty < T =T] A T
=(t0ATI) AT by B-Assoc 2
=70 AT by assumption 10 S 7] © T =T9 A T}
[

Contrary to full <-subtyping, < only relates concrete type constructors (function, record,
and nominal class tag types) in an obvious and syntactic way, making it easy to reason about.
For example, notice that {x:7; } S {y: 1 } holds iff x =y and 71 =12 (i.e., iff they are
syntactically the same).

Definition 4.4 (Boolean algebra equivalence). We define (=) as Boolean Algebra
equivalence:

I © 11Snand 1

Remark in passing: It is easy to show that 7| = 7] v 7, implies 7, < 71. Indeed, it implies
T]/ Vv Ty € 71, which implies 7» € 7. Similarly, Tf A Ty = 11 implies 71 S 15.

4.2.2 Elementary type forms

The second step in our quest to split the Boolean-Algebraic subtyping relation in two is
to define the elementary type forms making up the “meat” of a type system. This is the
part where one gives formal meaning to whether any two type constructors are considered
“related” or “unrelated”.

We first define the elementary type forms for the 6_,{ xJC instantiation of S(7", R), and
then explain how to derive similar rules for any other particular instantiation of the type
system. Up until now, we have assumed that the subtyping rules in R can take arbitrary
shapes. In the following discussion about elementary type forms, we limit rules in R to have
at most two type constructors on the top level, as in S-FUNMRG, S-RCDMRG, and S-RcpTop.
We foresee that generalizing to more complex subtyping rules is possible, albeit non-trivial.

Definition 4.5 (Constructors and negated constructors). The syntax of constructors and
negated constructors is presented in Figure 6.

28

The constructors and negated constructors for the elementary type forms, denoted by
C, are straightforward. Each type constructor in 7, together with top and bottom, has one
corresponding base (non-negated) constructor B. A constructor can be negated as in £
Negating a negated constructor cancels out the negations.

Bu=—|x|#C | L|T
C,D :=B| B
. B ifC=B
Notation: E’—{ B ifC—B

Fig. 6. Syntax of constructor and negated constructor.

The elementary type forms are also straightforward, given our simplifying assumption.
There are two kinds of elementary type forms: elementary union types U and elementary
intersection types X© . Each type constructor in 7~ corresponds to a kind of elementary union
type and a kind of elementary intersection type, which are unions and intersections of an
arbitrary number of instances of the type constructor. The top constructor is exclusive to the
elementary union types, and likewise the bottom constructor is exclusive to the elementary
intersection types. This notably means that empty unions and empty intersections cannot
be represented as elementary union types and elementary intersection types respectively.
Each subtyping rule in R adds an extra form to either UT or X*. The choice is arbitrary:
using Theorem A.9, we can either move both type constructors in a rule to the LHS and
add a form to X, or move them to the RHS and add a form to U ". We chose below such
that the type constructors do not appear under a negation. For elementary type forms of
negated constructors, we can conveniently represent elementary union types of a negated
constructor as negations of an elementary intersection types of the non-negated constructor
and vice versa thanks to the de Morgan rule.

In order to generalize elementary type forms to subtyping rules of arbitrary shapes, they
would need to be parametrized by sets of constructors instead of single constructors.

Definition 4.6 (Elementary type forms). The “elementary” type forms are defined in
Figure 7. These are conceptually the type forms we need to care about for the system to be
sound.

Lemma 4.7 (Inversion of negated elementary types).

(A) For all C and U, we have —UC€ ~ ngor some X¥<.
(B) For all C and X€, we have —X€ ~ Ugfor some U% .

Proof By case analysis on C.

29

Elementary union types

U™ c=(nm-om)v-v(th—m)
U i={x:t}v---vi{xit}
U*C .= #C

Ul =T | {xi:m}v{x:n} (wherex; #x;)

| {x1:m1}v(r—on)

Uf = -xB
Elementary intersection types
X7 u=(m>m)A A(th—my)
X o={xm}tr-nA{x:t}
X*C n=#C
Xt o=1 | #C, A #C, (where C; and C; are unrelated)
X% .= -UB

Fig. 7. Elementary type form definition.

(A) If C = B for some B, then pick X% = x# = ~UB = —~UC. If C = B for some B,
then U€ = U® = —xB by the definition of UE, s0 —UC = =—XB ~ xB = X%

(B) If C = B for some B, then pick Uf =U® = -XB =—-XC.If C = B for some B,
then X€ = X& = —yB by the definition of XE, s0 =XC = ——UB ~UB = U¥.

Definition 4.8 (Helper pseudo-subtyping relation). The rules of the pseudo-subtyping are
defined in Figure 8. It is easy to show that < implies <.

The helper pseudo-subtyping relation relates elementary type forms with each other. The
relation for elementary union types has an intersection of the same kind on the LHS, and
a single one, possibly with a different constructor, on the RHS. Similarly, the relation for
elementary intersection types has a union of the same kind on the RHS, and a single one,
possibly with a different constructor, on the LHS.

The relation is made up of a few components:

e Two rules relating the top and bottom elementary types forms to any other
constructors, serving the purpose of S-ToB.

* Two rules applying negations and inverting the two sides, serving the purpose of
S-NEGINV.

* Five rules for each type constructor (except the nullary ones): one for depth subtyping,
two for applying the merge rule to the LHS of each kind of elementary type, and two
for applying to the RHS.

30

¢ One rule for each nullary constructor, serving as reflexivity.

¢ One rule for each subtyping rule in R, which can be obtained by moving one type
constructor to each side, then applying S-ANDOR?2 to generalize it to fit the syntax of
the relation (i.e., an intersection of unions on the LHS and a union on the RHS, or a
union of intersections on the RHS and an intersection on the LHS).

In order to generalize the pseudo-subtyping relation to subtyping rules of arbitrary shapes,
we would need to lift the restriction of the elementary type form components of unions or
intersections having the same constructor, together with parametrizing elementary types
forms by sets of constructors as above.

AU <VP

SEXC<V, P TENUS<VT X<V, Y
SHYP <V, xE TEAVP=US EET<T <Elr<a
SEAUE <v# IS AV 7 Shroa<t —a

SHUC< (A)= (Vi) (Vi) = (Aim) <Y€

ZFUcﬁviTiﬁﬂ'i Z}—/\iTi—>7TiiYc
2= (Vi A7) = (N miy) <UC X< (A Vi) = (Vi A i)

=NV Tij—mip <U€ TEXC <V N Tij— i

aCHr<t SHUC<{x:V,%} T A\ <Y€
T{x:t)<{x:7} TRUC <V {xin) A AT <Y©

T{ac e VT b <UC TEXC<{x: VA T} Cre S(#C))

SNV {xm y<U” SEXC<ViNA {xm)) TN\, #C) <#C,

Cre S(#Cy) X#Yy
T H#C) </, #Cy TN US <V AU =V

Ci¢SHC) Cr¢SHO)
A U7 <VF S XHC < \/, vEes

Fig. 8. Helper pseudo-subtyping relation rules.

We can now express the soundness of subtyping at the level of elementary types, which
is much easier to verify as their elementary subtyping relation is quite straightforward and
notably does not include transitivity:

Lemma 4.9 (Soundness of elementary subtyping).

31

(A) If \; Ul.C < VP, then either one of the following is true:

eDe{C, T, X}

L] CZ#C] ana’Dz#Cz andCzeS(#C])

o C = #€7 and D = #€3 and C| € S(#C»)
eC=xandD =y #x

eC=xand D = —

eC=—>and D =x

o C=#C) and D = #&5 and C, ¢ S(#C3) and C, ¢ S(#C))

(B) If X€ < Vi YiD, then either one of the following is true:

eCe{D, 1,1}

o D =#Cy and C = #C, and Cy € S(#C3)

o D = #€71 and C = #€3 and C, € S(#C))
eD=xandC=y+#x

e D=—>andC=x

e D=xandC= >

o D =#€7 and C =#C, and Cy ¢ S(#C,) and C, ¢ S(#C))

The soundness of elementary subtyping for (7, R) can be read off the conclusions of
its helper pseudo-subtyping relations rules.

Notice that Lemma 4.9 defines a binary relation between the constructor on the two sides
of <. Given a set of constructors S, we write < for the set of possible constructors that can
appear on the other side:

£2(8) = Uces{ D |30 VP, A, US <VP)

—
£2(8) =Upes{ C13XC,¥P . xC </, ¥P }
Lemma 4.10. Forte{t >, {x:1 },#C },

(A) IfUC S 1, then U = \/, 7.
(B) If 1 < X, then X€ = A\, .

Corollary 4.11. Forte{t — 1, {x:7 },#C },

(A) IfUC € —1, then U€ = \/, —.
(B) If =1 € X, then X€ =)\, —7.

Proof
G oAl oAl
(A) Wehave U€ = \/i U; " forsome U;" ,where U, arenotunions. Then by S-NEGINvV,
Theorem A.10, Theorem A.11, and Theorem A.17, we have 7 /\l- Ui%, which

1

implies A; UiQ‘(= /\; Tby Lemma4.10,i.e., UiQ‘(=17 . Then we have U =\/; —.

32
— —i
(B) We have X€ = FAVD:¢ ici for some XI-C i where Xl.ci are not intersections. Then by
S-NEGINV, Theorem A.10, Theorem A.11, and Theorem A.17, we have \/i le/’ cr,

which implies \/; Xlg =\/,; T by Lemma 4.10, i.e., Xlg =7 . Then we have X€ =

N\ T

4.3 A First Attempt at an Inductive Lemma

Now that the subtyping relation is properly split between its Boolean-algebraic fragment
and its elementary types fragment, we can start sketching what the inductive lemma of
subtyping soundness should look like. However, we will see later that the full statement of
that lemma is quite complex and requires more scaffolding still. So it helps to first look at
the statement of our first attempt, which does not hold in general:

— ; —J
, . Jo = D;
I IfoX-r<mandt =)\, (Tl/ v Uic‘) , then there exists some 7’ and Djj and V;”

: -J —
such that m = A\ ; (71'; v V]P") and >X = A\ c g, US < VJP" for some .
—

D . —i —i K
2. fpXF717<mandm >~ \/j (7‘[; A Yj ’), then there exists some 7; and Cil and Xic'

such that 7 = \/, (Ti/ A Xici) and >X Xl.ci <Vjes, Yij for some S_ll

The first direction of this already quite complex statement should be understood intuitively
as follows: Assuming T < m, if it is possible to rewrite T through the rules of pure Boolean

algebra into a big intersection /\; (Ti/ v U[.C") of arbitrary types T unioned with some

elementary types Uic" of constructors C;, then should not be completely “arbitrary” and
should somehow “include” the elementary types Ul.c" after some potential consolidation

.) . ; S D;
(taking the intersection of all Ul.c' together) and some widening into elementary types Vj ’,

e, \;e s; Uic"' < VJ.Dj . The other direction reads similarly. Intuitively, no matter how we
manage to reorganize the intersected components of the left-hand side 7 through Boolean-
algebraic massaging (notably distributivity), we should only be able to reach, through
subtyping, a right-hand side type that is itself no more specific. Finally, notice that we here
assume a guarded subtyping context > without loss of generality thanks to the properties
of unassuming derivations (Section 3.8).

Unfortunately, this lemma does not work as is. Its proof still cannot proceed by standard
induction due to the interaction between S-ANDOR2 and S-DISTRIB. As an example, con-

sider the following derivation forsomer e { L, T, #C', 11 —> 1, {X;: 7 } } and unrelated

33

classes C and D:

S-DISTRIB- i
C/\(#D\/—v#C)<#C/\#D\/#C/\—'#C #C A#D vH#C A —#C < L

(1) #C A (#D v —#C) < L

S-TRANS

T<#C T<#D v —#C
T<H#C A (#D v —#C) 1)

<1

S-ANDOR22

S-TRANS

According to the goal of our Theorem 4.1, 7 can only be | . However, from the subderivations
fort <#Cand 7 <#D v —#C, nothing locally restricts 7 to be L. This is because S-DISTRIB
can split a complement into two separate subderivations to be later merged back together by
S-ANDOR?2. To overcome this difficulty, we normalize the shape of subtyping derivations by
introducing the CDN- and DCN-normalized type forms and derivations, which respectively
stand for conjunctions-disjunctions-negations and disjunctions-conjunctions-negations.

CDN- and DCN-normalized derivations require S-DISTRIB< to be followed immediately
by S-ANDOR2¢. We show that all types and subtyping derivations can be translated into an
equivalent CDN-normalized one and an equivalent DCN-normalized one. This will allow
us to carry out the proof of the full inductive lemma (4.22) by induction on CDN- and
DCN-normalized subtyping derivations.

As we mentioned before, the above simplified version of inductive soundness does not
hold in general. The problematic cases arise when 7= L for direction 1 and 7 =T for
direction 2. Since the relation holds by S-TRANS with S-ToB for any type on the other side,
we should not be able to conclude anything about it. Fortunately, we do not need to care
about such cases for proving Theorem 4.1. Therefore, we can exclude them by adding side
conditions on the elementary type forms, and making sure that they are preserved in the
conclusion of the lemma, allowing us to apply it successively within a transitivity chain. For
direction 1, in order to reject cases where 7 =~ |, we require /\ U l.ci to be complement-free,

thenwehave = A; (Ti’ v Ul.c") oA Ul.C" & |, whichimplies T & | by the antisymmetry

and boundedness of Boolean algebras. For direction 2, we symmetrically require \/ j YJ.Dj

to be complement-free. To reject cases where 7= 1 but 7 % L for direction 1, we add
restrictions on the set of elementary type constructors {al }. For example, since we can
derive 7| — Ty < 73 — 74 for some T;' € '**, which implies 71 — 72 A ﬁ('r3 —14) <L by
Theorem A.9, we reject cases where both — € {al } and =€ {al }. We can derive
similar restrictions from other subtyping rules, and symmetric restrictions for direction 2.

4.4 CDN- and DCN-normalized type forms and derivations

Since the intersection, union, and negation connectives can freely nest within and intertwine
with each other, they introduce significant difficulty for the proof of subtyping consistency.
We introduce the CDN- and DCN-normalized forms to order them one after the other, using
only the Boolean-algebraic relation, i.e., not normalizing deeply under constructors. This is

34

by contrast to the RDNF form we will introduce later as part of type inference (Section 7.2),
where deep normalization is important to ensure termination.

We also present alternative sets of subtyping rules where only the respective normalized
forms appear in the top level, and show that any subtyping derivations can be translated into
anormalized one. Thus we can prove any property by induction on normalized derivations.

4.4.1 CDN-normalized type forms

Definition 4.12 (CDN-normalized form). The syntax of CDN-normalized (conjunction-
disjunction-negation) form is presented in Figure 9.

0 u= Tt 710 |a | T
™= 1| —-7°

T I A

Tcdn = Tdn ‘ Tdn /\Tcdn

Fig. 9. Syntax of CDN-normalized form.

In the proofs below, we sometimes abuse the notations 7™ v 75" and 704" A 759"

to mean their properly associated versions, i.e., dis(r™, 73™) and con(‘rfd“, 759) in

Figure 10 respectively.

Definition 4.13 (CDN-normalized form translation). The translation from arbitrary types
into CDN-normalized types cdu(-) is defined in Figure 10.

Lemma 4.14. For any 7, cdn(7) >~ 1.
Proof By straightforward induction.]

Definition 4.15 (Complement-free CDN-normalized form). We say that a CDN-
normalized ~ form t°™ is complement-free if T =N,/ , T where

Vjiel..n[i.Vi neg(‘r, JE{ T l#}

It is easy to see that if 7°9"= A, \/ jel.n Tij is complement-free, then

Vjie 111, . /\l U $J_
Definition 4.16 (CDN-normalized subtyping context). X is CDN-normalized if for all
H € Z, either one of the following is true:

V;), where Va. { a, ﬁa}m{‘r“ V=0

SViT
<V, "), where the following are true:

35

cdn(7) |: 7edn
0

cdn(r”)

cdn(l)

cdn(—7) (Cdn()
)=
)

cdn(t) v 1) =dis (cdn(‘r]) cdn(p))
cdn(1) A 13) = con(cdn(1y), cdn(n))

neg(Tcdn) :Tcdn
neg () =
neg(— TO) =
neg(‘r1 v Tzn) (neg(T1), neg(‘rﬁin))
(£ 55) 1),)

diS(TCdn Tcdn) . ~cdn

-~

dls(‘r11 A Tlcgn’ ‘r2°dn) = con(dis(Tll , TZCdn) diS(Tlcgn, Tzcdn))
dis(ty} v 712 . T n) = dis(7y}, dls(‘r12 s TZCd“))
dis(ty", Téiln A TZCSH) = (dls(‘rl , TZl). dis(zy, Tzcgn))
dis(t}', 7) =1V 7'2
Dis; ¢ m. n‘r =dis(r5; ™, Disjemt1..n fd“)
Disien..n 5 cdn _ rodn

cdn’ Tcdn) :Tcdn

con(t

con(r{ A T{3, 759) = con({", con(rfs™, 75))

con(T{in, den) Td“ A 1'2d
cdn cdn
Conjem..n T‘ = Con(Tm Conjemt1..n T)

Conjen..n TCdn e

Fig. 10. CDN-normalized form translation

o {q, —'a}m{‘rn b=
'VﬁE{T“} —Be (T)
o VBe{T] } N, 7 <B)eX. {ﬂ“J}—{neg()
OVﬁﬁe{T.“ LAB<V e es {7 b= (T T oy

=(/\; 7), where the following are true:

| 7

, s

e {a, ﬂw}m{‘r“ =0

evVpe (T)T }

36

VBe (T LIB<V, m) ez (x] }.:{mi“}‘#ﬁ
e V—Be{T JIN, a <P e (a7 j= (77 TP

sal;
s)
Definition 4.17 (CDN-normalized subtyping context translation). The translation from

arbitrary subtyping contexts into CDN-normalized subtyping contexts cdu(+) is defined in
Figure 11.

cdn(X) [X

(r<m)eX —pHEeX

cdn(X) = cdn(T < cdn(—7 v 7)) >H

cdn(T <7y |3
—_—————1i
cdn(T < A; \/j,- T;}i) =cdn(T < \/]-i Tl.rlj[)
€ if 3a.{a, —'a}g{?l}

Jze{'rT“l

al-ae{T"}

R CEvA—— |
if Qo {a, ~a} {77} # @) and (Yae {1 }. —a ¢ {7 })

(T<V;") if Va.{a, ﬁa}r\{?i}=®

cdn(T <V,) ={ Nijepzanes(i) <e)

L

Fig. 11. CDN-normalized subtyping context translation

Lemma 4.18. For any X, we have X = cdn(X) and cdn(X) = X.

Proof Straightforward, notably making use of Theorem A.9 and Lemma 4.14. |

4.4.2 CDN-normalized derivations

For each rule in R with conclusion X - 7 < &, we assume without loss of generality that
cdn(zr v =71) = 79" for some 7", since we can otherwise split the rule into multiple
simpler rules while keeping the original rule admissible.

Definition 4.19 (CDN-normalized derivations). The CDN-normalized subtyping relation
<%0 s defined in Figure 12. The following are the difference compared to the full subtyping
relation < in Figure 16:

e On the top level, the relation is restricted to ¥ - 7 < redn,

® On the top level, all occurrences of 1 are replaced with —T.

® The rule S-DISTRIB< is replaced by S-DISTRIBCDNo, which requires an application of
S-DISTRIBS to be followed immediately by an application of S-ANDOR2- in a transitivity
chain by merging the two rules into one.

37

o Foreachrule in R with conclusionZ — v < wand premises X' — v’ < ', we transform
them into the equivalent CDN-normalized derivation rule in R°™ by performing the
following:

— Transform the conclusion into ¥ - cdn(t) <°4® cdn(r)

— Ifmax(depth(t’), depth(n')) < max(depth(t), depth(r)), keep the premises as
is

— If max(depth(t’), depth(n’)) = max(depth(t), depth(r)), then transform the
premises into ¥’ - cdn(7') < edn(n’)

Notice that S-TDEPTH is treated the same way as rules in R, so its premises still refer to the
full < relation, even though its conclusion is about the <°™ relation.
The CDN-normalized boolean subtyping relation < is defined similarly.

Notice that Lemma A.7 and Lemma 3.1 extend to CDN-normalized derivations. In
the proofs below, we also make use of extended versions of commutativity (7] v°
75 (vo13) < 15 v 1 (vO13)) and idempotence (71 v 71 (V1) <O 1 (Vo).

Lemma 4.20. 3 709 <750 jf ¥ 1 rpdn <odn odn Similarly, 7040 < 75 jf rpdn codn

cdn
T2 .

Proof It is easy to see that every rule of <" is admissible in <. [|

Lemma 4.21. If X 7 <7, then cdn(Z) - cdn(7) <" cdn(n). Similarly, if T S n, then
cdn(7) < edn(n).

4.4.3 DCN-normalized type forms and derivations

The DCN-normalized (disjunction-conjunction-negation) type forms and derivations are
symmetric to its CDN counterpart, except that the order of unions and intersections are
swapped. Its detailed description can be found in the appendix.

4.5 Soundness of Subtyping

We can now finally state the general inductive lemma supporting the subtyping soundness
theorem (4.1). The main intuition over out first attempt in Section 4.3 is to add preconditions
to exclude sets of constructors that can reduce to bottom or top in directions for the
elementary union and intersection types respectively, and ensure that the possible set of
constructors in the conclusion preserves this property.

We can obtain these restrictions on the sets of constructors by examining the subtyping
rules. S-CompL forbids any constructor to appear together its negated counterpart. By mov-
ing all the type constructors in the rules in R to one side, we can read out the restrictions they
impose. We then ensure that for all sets of constructors { C } that satisfies this restriction,
F2({ C}) also satisfies it. This does not hold in general. Adding more rules to R results in
f< mapping to a larger set of constructors, while simultaneously adding to the restrictions
here. So the rules in R must be designed carefully in order to ensure the soundness of
subtyping.

38

o Tcdn <cdn Tcdn
~

’Tcdn gcdn 7_cdn

4E=E <(Z-H)=<%-H <(Z-pH)=<X%-H

S-REFL S-ToB- S-ToB? S-CompL-
Tcdn scdn Tcdn Tcdn gcdn T -7 Scdn Tcdn T <cdn 2y _|TO
S.C 3 S-ANDORI- S-ANDORID
~-OMPL Sc{i} Sc{i}
TO A —'TO <cdn -T \/i’ cs Tllll gcdn \/i Tin /\i Tlgin <cdn /\i’ s Tlgn
S-ANDOR2-) S-ANDOR20 i S-DISTRIBCDN- i
e — i i
. Tin <Cdl‘l rcdn . rcdn <cdn Tlfin . Tin A rcdn <cdn sredn
Py \/i Tlp <cdn Tcdn . Tcdn <cdn /\i T;in Py (\/l Tln) A Tcdn <cdn ﬂcdn
S-DISTRIBCDN? S-TRANS
T gcdn ncdn - /\i _[_idn gcdn ncdn P ngn <cdn Tlcdn P Tlcdn <cdn 7_zcdn
d d d d d d
EF/\I(TH\/TZH)gC nﬂ.cn ZI—T8n<C nTérn
S-WEAKEN S-AssuMm S-Hyp
H E>HE-H HeX
X+-H 2+-H X+-H
S-TMRrGo
i j —k —i —j —k —i —j —k
+ ot T 0" cocdnp _+ _—7 0 o + =7 0
T (7 ven) (Tj e) T < T 7 7 VvTa" n;
S-TDEPTH]]
1 — —J
St <t ISE IS S 10=70
4 i J k k Rcdn
e L e
Z-Tr; T < T, T

Fig. 12. CDN-normalized subtyping rules for (7", R).

Lemma 4.22 (Soundness of subtyping (inductive)).

(A) f >t <mandt =)\; (Tl/ v Uic">, where the following are true:

o N\ U lS a complement -free CDN-normalized form

o« —¢{C/ }0r7*¢{C }

one{Cl }.x¢{C, I

o V#Ce{C; }.#€¢{C)

o V#C € {C; } #C) € {E-’ }. C1 e S(#C,) or Cy € S(H#C))
o [{x|xe{C }}<

o [{x|xe{C/ }}|—00r7f¢{C)

39

- J
—#C¢{C; }

thenthereexistssome;/ij andDj € {al Ju{T,L}u {)?X‘f{al} Ju{#€

J
D; ~ ’ D; D; . _
and Vi such that n = /\j (ﬂj vV) and /\j Vil is a complement-free

o —
CDN-normalized form and >2 - N\, s; Ul.c" < V}P" for some Sjj.

(B) If PX71<mandm=\/, <ﬂ/./\Y.Dj

i ;), where the following are true:

o\/ j Yij is a complement-free DCN-normalized form

e ~¢(D} Jor—¢{D})

evxe (D, }.x¢ (D, }

ev#€ e{D,; }.#C¢{D, }

o VHET € {C; },#65 € (G }.Cle S(HCy) or Cre S(HC))
o [{x|xe{D; }}I<1 |

o |[{x|xe{D, }}|=00r—¢{D; }

}

— . i R
thenthereexistssomeT[’l andCie {D;’ YU { L, ¥} u (P U (BC

—i
and Xl.ci such that T=\/, (Ti/ /\Xic") and \/; Xl.ci is a complement-free

DCN-normalized form and >Z | Xl.Cf < \/j cs; Y;)j for some S_,l

As usual, the proof is given in appendix. It relies on all the definitions and lemmas we
have carefully developed throughout this section as well as some additional less interesting
technical lemmas stated only in the appendix.

Notice that the property to prove has a conclusion that can itself be used as a hypothesis
for another application of the property. When proving (A), we consider the leftmost rule
application in a transitivity chain, show the property for it, and this allows us to apply the
induction hypothesis on the rest of the chain; this works even if the chain is of length 1
(with no uses of S-TrRaNS). When proving (B), we proceed in the same way but from the
right. So we do not have to consider uses of S-TRANS explicitly, and only consider uses of
the other rules here.

4.6 Soundness of S(7, R) Subtyping

We have only stated the soundness of A7 subtyping (i.e., ©_, (,}4c) and reserved the
statement of the soundness of S(7,R) for the end of this section as it depends on its
elementary type forms and helper pseudo-subtyping relation. Specifically, by considering
a directed graph with the constructors as nodes and binary relation in Lemma 4.9 as edges,
we can read out what we can state in the soundness statement by considering an induced
subgraph. For types restricted to the constructors corresponding to the nodes of the induced
subgraph, only the subtyping relations corresponding to the edges hold. We can also read
obtain additional information about these types from the premises of the helper pseudo-
subtyping relation rules. For instance, if we consider the non-negated constructors for 1™,
the induced subgraph would only contain self-loops, edges from bottom to every other

s€ ¢ (D}

4

}

40

node, and edges from every other node to top. Then we obtain the following soundness
statement:

Theorem 4.23 (Soundness of A~ subtyping (weak)). IfE cons. and E v < &, where:

Te{l, T,#C, 11 > n, {x:7}}
re{l, T,#C', ni > m, {x':m}}

then exactly one of the following is true:

(a) T=Lorn=T;

(b) T =H#C and n =#C' and C' € S(#C);

(c) tT=11—>nandn=n—>mand E+n) <11 and E+ 17 <)5

(d) r={x:t}andn={x":n}and x =x" and E\ 1 < 7| for some k.

We can then modify the record type on the LHS while ensuring that it still satisfies the
restriction in Lemma 4.22 to obtain the full Theorem 4.1.

4.7 Contexts and Type Variables

So far, we have ignored the subtyping context by requiring it to be guarded. Our handling
of type variables and the subtyping context relies on two key insights: for Theorem 4.1,
we do not care about type variables on the top level; and we do not care about all pos-
sible subtyping contexts, only the ones produced by type inference. We have previously
defined the consistency of constraining contexts, and by ensuring that we only manipulate
consistent contexts (as type inference will do), this allows us to guard the context in any
subtyping derivations under consistent contexts and with no type variables on the top level
by Lemma 3.4, which are all we care about for the remaining soundness and completeness
proofs.

5 Inferring Principal Types for MLstruct

We now informally describe our general approach to principal type inference in MLstruct.

5.1 Algebraic Subtyping

MLstruct follows Dolan’s algebraic subtyping (2017) discipline, which distinguishes itself
from so-called semantic subtyping approaches in that it focuses on the algebraic properties
of types, instead of focusing on set-theoretic semantics. In algebraic subtyping, some
subtyping relationships are not necessary and cannot be justified if one were to look at
types purely as denotations for sets of values. These algebraic relationships are nevertheless
sound to have in the type system, and in turn enable principal type inference and type
simplification.

As an example, consider (71 — 1) A (13 > 14) < (11 v 73) = (72 A 74), Which holds
in Dolan’s MLsub. While the other direction holds by simple contravariance of function

41

parameters and covariance of function results, this direction is a lot more contentious. It
does not make sense from the set-theoretic point of view: a function that can be viewed
as returning 7, when given a 7 and returning 74 when given a 73 cannot be viewed as
always returning a T A 74. For instance, consider Ax. x, typable both as Int — Int and as
Bool — Bool, and which could therefore be assigned type (Int — Int) A (Bool — Bool).
Surely, this function never returns an Int A Bool value (an uninhabited type) when called
with an Int v Bool argument. But in MLsub, Ax. x by design cannot be assigned such an
intersection type; instead, its most general type is Va. @ — a, which does subsume both
Int — Int and Bool — Bool though not (Int — Int) A (Bool — Bool). This explains the
restriction that intersections cannot be used to encode overloading in MLsub and MLstruct.

In MLstruct, we define further additional algebraic subtyping relationships, such as T <
{x:71} v (12 > 13), as hinted in Section 2.3.2. We similarly ensure that this relationship
does not threaten soundness by making sure the language cannot meaningfully distinguish
between values of these two types (i.e., one cannot pattern match on record or function

types).

5.2 Basic Type Inference Idea

We base the core of our type inference algorithm on a simple formulation of MLsub type
inference we formulated in previous work (Parreaux, 2020). The constraint solver attaches
a set of lower and upper bounds to each type variable, and maintain the transitive closure
of these constraints, i.e., it makes sure that at all times the union of all lower bounds
of a variable remains a subtype of the intersection of all its upper bounds. This means
that when registering a new constraint of the form @ < 7, we not only have to add 7 to
the upper bounds of «, but also to constrain lowerBounds(a) <7 in turn. One has to
be particularly careful to maintain a “cache” of subtyping relationships currently being
constrained, as the graphs formed by type variable bounds may contain cycles. Because
types are regular, there is always a point, in a cyclic constraint, where we end up checking
a constraint we are already in the process of checking (it is in the cache), in which case we
can assume that the constraint holds and terminate. Constraints of the general form 71 <
are handled by losslessly decomposing them into smaller constraints, until we arrive at
constraints on type variables, which is made possible by the algebraic subtyping rules. The
losslessness of this approach is needed to ensure that we only infer principal types. In
other words, when decomposing a constraint, we must produce a set of smaller constraints
that is equivalent to the original constraint. For example, we can decompose the constraint
71 v (12 = 13) < 74 — 75 into the equivalent set of constraints:) <14 — 75; 74 < 72 ; and
73 < 75. If we arrive at a constraint between two incompatible type constructors, such as
71 — 72 < { x: 73 }, an error is reported.

42

5.3 Solving Constraints with Unions and Intersections

By contrast with MLsub, MLstruct supports union and intersections types in a first-class
capacity, meaning that one can use these types in both positive and negative positions. 1
This is particularly important to type check instance matching, which requires unions in
negative positions, and class types, which require intersections in positive positions (both
illegal in MLsub).

The main problem that arises in this setting is: How to resolve constraints with the shapes
71 <1 v 13 and 1) A T < 73 ? Such constraints cannot be easily decomposed into simpler
constraints without losing information — which would prevent us from achieving complete
type inference — and without having to perform backtracking — which would quickly
become intractable, even in non-pathological cases, and would yield a set of possible types
instead of a single principal type. When faced with such constraints, we distinguish two
cases: (1) there is a type variable among 7y, 1>, and 73; and (2) conversely, none of these
types are type variables.

5.3.1 Negation Types

We use negation types to reformulate constraints involving type variables into forms that
allow us to make progress, relying on the Boolean-algebraic properties of negation. A
constraint such as 71 < 7 v @ can be rewritten to 7] A —T» < a by turning the “positive”
T2 on the right into a “negative” on the left, as these are equivalent in a Boolean algebra.??
Therefore, it is sufficient and necessary to constrain @ to be a supertype of 71 A =72 to
solve the constraint at hand. Similarly, we can solve @ A 71 < 7 by constraining @ to be a
subtype of 75 v —71.2! When both transformations are possible, one may pick one or the
other equivalently. The correctness of these transformations is formally demonstrated in
Theorem A.9.. This approach provides a solution to case (1), but in a way it only pushes
the problem around, delaying the inevitable apparition of case (2).

5.3.2 Normalization of Constraints

To solve problem (2), we normalize constraints until they are in the shape “7con < 74is”,
where (using a horizontal overline to denote 0 to n repetitions):

* T,on represents T, L1, or the intersection of any non-empty subset of
{#C, 1>, {x 7} }.
* Tq4js represents types of the form T, L, (1 »> 1) v#C,{x:7} v#C,or#C v #C'.

19 positive positions correspond to the types that a term outputs, while negative positions correspond to the types
that a term takes in as input. For instance, in (79 — 71) — 72, type 72 is in positive position since it is the
output of the main function, and the function type (7o — 7) is in negative position, as it is taken as an input
to the main function. On the other hand, 7, which is returned by the function taken as input is in negative
position (since it is provided by callers via the argument function), and 7y is in positive position (since it is
provided by the main function when calling the argument function).

Aiken and Wimmers (1993) used a similar trick, albeit in a more specific set-theoretic interpretation of
unions/intersections.

If it were not for pattern matching, we could avoid negation types by adopting a more complicated representation
of type variable bounds that internalizes the same information. That is, instead of @ < 7 and @ > 7 for a given
type variable @, we would have bounds of the form @ A 7 < 7 and @ v @ > 7, representing « < 7 v =7
and @ = T A — 7 respectively. But reducing several upper/lower bounds into a single bound, which previously
worked by simply intersecting/taking the union of them, would now be impossible without generalizing bounds
further. Type simplification would also become difficult.

20

21

43

Let us consider a few examples. First, given a constraint like (11 v 12) A 73 < 14, We
can distribute the intersection over the union thanks to the rules of Boolean algebras (see
Section 3.3.4), which resultsin (1] A 73) v (12 A T3) < 14, allowing us to solve 1) A 73 < 74
and 7, A 73 < 74 independently. Second, given a constraint like 1) < {x: 72 } v 13 — 14, we
simply use the fact that {x: 72} v 73 > 74 =T (as explained in Section 2.2.2) to reduce
the constraint to 71 < T, a tautology. Third, with constraints containing intersected nominal
class tags on the left, we can compute their greatest lower bound based on our knowledge
of the single-inheritance class hierarchy. We eventually end up with constraints of the
shape “Tcon < 7q4is” and there always exists a 7; € Teo, and Tj/- € Tq4is such that we can reduce
the constraint to an equivalent constraint 7; < T;-. Notice that if two related nominal tags
appears on each side, it is always safe to pick that comparison, as doing so does not entail
any additional constraints. If there are no such related nominal tags, the only other choice
is to find a type in the right-hand side to match a corresponding type in the left-hand side,
and the syntax of these normal forms prevents there being more than one possible choice.
All in all, our Boolean algebra of types equipped with various algebraic simplification laws
ensures that we have a lossless way of resolving the complex constraints that arise from
union and intersection types, enabling principal type inference.

The constraint solving algorithm described in Section 7.3 and implemented in the artifact
uses the ideas explored above but puts the entire constraint into a normal form, instead
of normalizing constraints on the fly. This helps to efficiently guarantee termination by
maintaining a cache of currently-processed subtyping relationships in normal forms, which
is straightforward to query.

5.4 Subsumption Checking

Subsumption checking, denoted by <", is important to check that definitions conform to
given signatures. Contrary to MLsub, which syntactically separates positive from negative
types (the polarity restriction), and therefore requires different algorithms for constraint
solving and subsumption checking, in MLstruct we can immediately reuse the constraint
solving algorithm for subsumption checking, without requiring much changes to the type
system. To implement VE;. 7 <" VE,. 1», we instantiate all the type variables in E;, with
their bounds, to fresh type variables, and we turn all the variables in =, into rigid variables
(so-called ““skolems”). The latter can be done by turning these type variables into fresh
flexible nominal tags and by inlining their bounds, expressing them in terms of unions,
intersections, and recursive types. Since there is no polarity restrictions in our system, the
resulting types can be compared directly using the normal constraint solving algorithm.

Flexible nominal tags #F are just like nominal class tags #C, except that they can coexist
with unrelated tags without reducing to L. For example, while #C; A #C, is equivalent to
L in MLstruct when C| and C, are unrelated, #F A #Cj is not.?? Flexible nominal tags are
also the feature used to encode the nominal tags of traits, necessary to implement mixin
traits as described in Section 2.1.2.

For lack of space, we do not formally describe subsumption checking in this paper.

22 This requires extending the syntax of normal forms in a straightforward way to Tlon 1= Tcon A #F and

! e— .
Ty = Tdis V #F.

44

5.5 Simplification and Presentation of Inferred Types

Type simplification and pretty-printing are important components of any practical imple-
mentation of MLsub and MLstruct. They indeed perform a lot of the heavy-lifting of type
inference, massaging inferred types, which are often big and unwieldy, into neat and con-
cise equivalent type expressions. In this section, we briefly explain how simplification is
performed in MLstruct.

5.5.1 Basic Simplifications

For basic simplifications, we essentially follow Parreaux (2020) — we remove polar occur-
rences of type variables, remove type variables “sandwiched” between identical bounds,
and we perform some hash consing to simplify inferred recursive types. The simplification
of unions, intersections, and negations is not fully addressed by Parreaux, since MLsub
does not fully supports these features. In MLstruct, we apply standard Boolean algebra sim-
plification techniques to simplify these types, such as putting them into disjunctive normal
forms, simplifying complements, and factorizing common conjuncts. We also reduce types
as they arise, based on Section 2.2.2.

5.5.2 Bound Inlining

Many types can be represented equivalently using either bounded quantification or inlined
intersection and union types, so we often have to choose between them. For instance, V(@ <
Int)-(B8 = Int). @ — @ — B is much better expressed as the equivalent Int — Int — Int. But
whether (@ A Int) — (@ A Int) — « is better than the equivalent V(@ < Int). « > a — «
may depend on personal preferences. As a general rule of thumb, we only inline bounds
when doing so would not duplicate them and when they are not cyclic (i.e., we do not inline
recursive bounds).

5.6 Implementation

MLstruct is implemented in ~5000 lines of Scala code, including advanced type simpli-
fication algorithms and error reporting infrastructure.?> We have an extensive tests suite
consisting of more than 4000 lines of well-typed and ill-typed MLstruct expressions, for
which we automatically check the output of the type simplifier and error reporting for
regressions. Running this test suite in parallel takes ~2s on a 2020 iMac with a 3.8 GHz
8-Core Intel Core i7 and 32 GB 2667 MHz DDR4.

6 Formal Semantics of MLstruct

In this section, we introduce A~, a formal calculus which reflects the core features of
MLstruct.

23 This does not include about 1200 additional lines of code to generate JavaScript (the tests are run through
NodelS).

45

Core syntax
Type t,mu=t—>7|{x:t}|NT||#C|a| T | V7| -1

Mode ©,0 = |2
Type name N:u=A|C
Polymorphic type ou=VET

Term st = x,y,z | t:7 | Ax.t|tt|tx | C{x=t}| casex=tof M
Case branches M =€ | _—t | C—t, M
Value v,w = Ax.t | C{x=v}
Program P =1t |defx=t P
Top-level declaration d == class C[a]:7 | type Ala] =71
Contexts
Declarations context Diu=¢€c|D-d
Typing context Fi=e|T-(x:7) | T-(x:0)
Subtyping context E,A i=E | X -(t<7) | Z->(r<7)
Constraining context Eu=€|E-(a<7) | E-(t<0)

Fig. 13. Syntax of types, terms, and contexts.

6.1 Syntax

The syntax of A7 is presented in Figure 13.

6.1.1 Core Syntax

The core syntax of A~ follows the MLstruct source language presented previously quite
closely, though it introduces a syntactic novelty: the mode ¢ or o of a syntactic form is used
to deduplicate sentences that refer to unions and intersections as well as top and bottom,
which are respective duals and can therefore often be treated symmetrically. For instance,
T° is to be understood as either T° when ¢ = -, i.e., T, or as T° when o = D, ie., L. A
similar idea was developed independently by d. S. Oliveira et al. (2020) to cut down on
boilerplate and repetition in formalizing subtyping systems.

Parametric polymorphism in A~ is attached solely to top-level ‘def’ bindings, whose
semantics, as in languages like Scala, is to re-evaluate their right-hand side every time they
are referred to in the program. In contrast, local let bindings are desugared to immediately-
applied lambdas, and are treated monomorphically. Let polymorphism is orthogonal to
the features presented in this paper, and can be handled by using a level-based algorithm
(Parreaux, 2020) on top of the core algorithm we describe here, as well as a value restriction
if the language is meant to incorporate mutation.

In A7, def bindings are never recursive. This simplification is made without loss of
generality, as recursion can be recovered using a Z fixed point combinator, typeable in
MLsub (Dolan, 2017) and thus also in A™. This combinator is defined as t; = Af. t/, 1/,
where 1/, = Ax. f (Av. x x v). One can easily verify that 7z can be typed as ((a —) —

((@=B) ry)) =y

46

To keep the formalism on point, we only present class object types, and ignore unin-
teresting primitive and built-in types like Int and Bool, which can be encoded as classes.
Note that singleton types like 1, 2, and true, as we use them in the introduction, are easily
encoded as subclasses 1¢, 2¢, and truec of the corresponding built-in types.

Finally, the syntax of pattern matching ‘case x =¢ of ...’ includes a variable binding
because the rules for typing it will refine the type of that variable in the different branches.
We do not use ‘case x of ... as the core form in order to allow for simple substitution of
variables with terms.

6.1.2 Contexts

We use four kinds of contexts. Declarations contexts © hold the type declarations of
the program. Throughout this paper, we assume an ambient declarations context (i.e.,
our formal developments are implicitly parameterized by D). Typing contexts I" bind
both monomorphic and polymorphic types, the latter corresponding to ‘def’ bindings.
Subtyping contexts X record assumptions about subtyping relationships, with some of
these assumptions potentially hidden behind a > (explained in Section 3.3.1). Finally,
bounds contexts E contain bounds on type variables. The typing rules will ensure that
in a polymorphic type VE. 7, context E is consistent, which implies err ¢ E. Note that X
contexts are rooted in E contexts because subtyping judgments require the former but are
invoked from typing judgments, which use the latter for polymorphism. While this rooting
is not strictly required here (indeed, bounds contexts would be a strict subset of subtyping
contexts even if the latter was not rooted in the former), it will become convenient once we
extend bounds context to also possibly contain an error marker in Secsec:constr-ctxs.

6.1.3 Shorthands

Throughout this paper, we make use of the following notations and shorthands:

R = {x=v} H:=171<7 N = Nle] C—t=C—te
{x:‘rxxes,y:‘ry}z{x:‘rxxes}/\{y:‘ry} (y¢Ss) letx=r1inty) = (Ax. 1) 1y
caseyof M = casex=yof [y—x|M (x¢FV(M))

6.2 Evaluation Rules

The small-step reduction semantics of A7 is shown in Figure 14. The relation P v~ P’
reads “program P evaluates to program P’ in one step.” Note that P here may refer to a
simple term ¢.

We write { x = v } € v; to say that v is a value of the form ‘C {Z=w, x =v; }" or of
the form ‘C {z=w, y =V, }’ where y # x and { x = v; } € C { 7=w }. Class instances are
constructed via the C R introduction form, where R is a record of the fields of the instance.
Instance matching works by inspecting the runtime instance of a scrutinee value, in order to
determine which corresponding branch to evaluate. This is done through the superclasses
function S(7). Note that a term of the shape ‘case x = v of €’ is stuck.

47

E[o] i=0t | vo | ox | C{x=V,y=0,z7=1} | casex=noof M

E-CTx E[t] ~ E[t'] if twot

E-DEF defx =1; P [x—1]P

E-Arp (Ax. 1) v oo [x > V]t

E-Asc 1Tt

E-Pros V].X v vy if {x=vy}ev
E-CaseCLs1 casex=C| Rof Cy —>t, M~ [x— C| Rt if CeSH#C))
E-CaseCLS2 case x=C| Rof C, > t, M~ casex =v of M if C¢SH#Cy)
E-CASEWLD casex =v of _— v [x > V]t

Fig. 14. Small-step evaluation rules.

Definition 6.1 (Superclasses). We define the superclasses S(t) of a type T as the set of
classes transitively inherited by type T, assuming T is a class type or the expansion of a
class type. The full definition is given in appendix (Definition B.1).

6.3 Declarative Typing Rules

—

Program-typing judgments E,I"—* P: 71 are used to type programs while ferm-typing
judgments E, I" 7 : T are used to type def right-hand sides and program bodies. The latter
judgement is read “under type variable bounds E and in context I, term ¢ has type 7.” We
present only the rules for the latter judgment in Figure 15, as they are the more interesting
ones, and relegate the auxiliary program-typing (E,T" —* P : 1), consistency (X cons.) and
subtyping entailment (X o <"o and X = X) rules to the appendix (Appendix B.1). The
consistency judgment is used to make sure we type defs and program bodies under valid
(i.e., consistent) bounds only.?*

Rule T-OBy features a few technicalities deserving of careful explanations. First, notice
that its result type is an intersection of the nominal class tag #C with a record type of all the
fields passed in the instantiation. Importantly, these fields may have any types, including
ones not compatible with the field declarations in C or its parents. This simplifies the
meta theory (especially type inference) and is done without loss of generality: indeed, we
candesugar ‘C {x = t, ...} instantiationsin MLstruct into a type-ascribed instantiation
‘C{x=t, ...}:C[a] in 17, where all @ are fresh, which will ensure that the provided
fields satisfy their declared types in C.

T-OBJ also requires C to be “final” using the C firal judgment (formally defined in
Figure 26). This means that C is not extended by any other classes in D. It ensures that, at
runtime, for every class pattern D, pattern-matching scrutinees are always instances of a
class D’ that is either a subclass of D (meaning #D’ < #D) or an unrelated class (meaning

24 Indeed, under inconsistent bounds, ill-typed terms become typeable. For example, we have (Int < Int —
Int) 1 1:Int.

25 The alternative desugaring ‘let tmp = C{x =1, ...} in let = tmp: C[@] in tmp’ is nicer because it allows
the user to retain refined field types (as described in Section 2.1.2) as well as any new fields that were not
declared in C or its parents.

48

T-Bopy T-DEF
BEcons. ETHr:7 Z cons. E.Tr+t:v ET(x:VE.7)F*P:7p
BT+*t:7 ET+*defx=t; P:1p
T-Suss T-Oss
BTkt EF11<1 ET+t:t C final
T
ETl+t:m ET-C{x=r}:#Cnr{x:7}
T-Pros T-Varl T-Var2 T-ABs
ETHt:{x:7} I'x)=r Fx)=0c Ero<"Ver ET(x:m)kt:1m
El-tx:t El-x:7 Elx:1 El-Ax.t:11 -1
T-Arp T-Asc
El+t:m1—>n ETHt:1 ETFt:1
ETlnt:m E,FI—(I:T)ZT
T-CasEl T-CASg2
ETHf:L ETkHn:ma#C ET(x:t)kF:T
E,I'casex=rtjofe: L ETl'casex=rfof _—n:71
T-CASe3

ET+n:#C At v #C A1 ET(x:1)Fth:7 ET(x:1m)Hcasex=xof M:7
El'tcasex=t1of C—t), M:1

Fig. 15. Program and term typing rules.

#D' < —#D). Without this property, type preservation would technically not hold. Indeed,
consider the program:

class C; class Cy: C; class C3

case x = Ci{} of C, — C3{}, _ —x
This program can be given type —C; since C; < Cy v —=C, =T (in T-CaSe3, we pick
7, = —(C3), but it reduces to C;{}, which does nor have type —C, because C; and C, are
not unrelated classes.

This finality requirement is merely a technicality of A~ and it does not exist in MLstruct,
where non-final classes can be instantiated. This can be understood as each MLstruct class
C implicitly defining a final version C*" of itself, which is used upon instantiation. So the
MLstruct program above would actually denote the following desugared A~ program:

class C; class C]"‘: C; class Cy: Cy class C3 class C\f: C3
case x = CI'{} : Cj of Cu — Ci{} : C3, _ —x

The refined program above now evaluates to C f {}, of type CF', which is a subtype of —C.

In T-SuBs, we use the current constraining context E as a subtyping context X when
invoking the subtyping judgement = - 71 < 72 (presented in the next subsection), which is
possible since the syntax of constraining contexts is a special case of the syntax of subtyping
contexts.

Rule T-VAR2 uses the entailment judgment Z |- o <"Ve. defined in appendix to
instantiate the polymorphic type found in the context.

49

The typing of instance matching is split over three rules. Rule T-CASE1 specifies that no
scrutinee can be matched by a case expression with no branches, which is expressed by
assigning type L (the type inhabited by no value) to the scrutinee.

Rule T-CAsg2 handles case expressions with a single, default case, which is equivalent
to a let binding, where the body 7, of the default case is typed within a typing context
extended with the case-bound variable x and the type of the scrutinee. This rule requires the
scrutinee to have a class type #C; this is to prevent functions from being matched, because
that would technically break preservation in a similar way as described above (since we do
not have m; — 1y, < —#D?29),

T-Casg3 is the more interesting instance matching rule. We first assume that the scrutinee
t1 has some type 7; in order to type the first case branch, and then assume #; has type
T, to type the rest of the instance matching (by reconstructing a smaller case expression
binding a new variable x which shadows the old variable occurring in M). Then, we make
sure that the scrutinee #; can be typed at #C A 71 v —#C A T, which ensures that if #; is
an instance of C, then it is also of type 71, and if not, then it is of type 7». In this rule,
71 can be picked to be anything, so assuming I'-(x: 7}) to type 7, is sufficient, and there
is no need to assume I'-(x : 71 A #C). If the t, branch needs 7] to be a subtype of #C, we
can always pick 71 = 7| A #C. Notice that the required type for # still has the same shape
HC ATV ~HC ATy = #HCAHBC A T)) v —#C ATy = #C AT v —H#C ATy,

6.4 Declarative Subtyping Rules

The declarative subtyping rules were already mostly presented as the runnign example of
Section 3. They are solidified and recalled in Figure 16.

Remember that the mode syntax ¢ is used to factor in dual formulations. For instance,
7 < T° isto be understood as either t < T wheno=-,ie.,7<T,orast <D T° when
o=2,1.e., 7> 1, also written 1 <.

The presented rules extend those of G(7, R) shown in Figure 3, except that the depth
subtyping and merge rules are specialized to the type constructors of 4 and that we have
a new rule S-Exp¢ which is used to expand named types (type synonyms and class types).

6.4.1 Desugaring Named Types

The reason we did not present the N|[7| type form and the S-Expo rule as being a core part
of ©_,{xj#c in Section 3 is that these can easily be desugared into core G_, (xyuc.

To do this, observe that the regularity requirement on A~ (and MLstruct) type definitions
means that there is always only a finite number of type argument lists 7 passed in named
type applications N|[T], so we can represent each such application through a unique type
variable @ 7] associated to it.

We then simply type all definitions and the body of the program under consideration
by including a bounds context E;,;; that equates each such named type application type
variable @y [7] to the corresponding expanded body of the type, here [— 7] if we assume,

for example, that N was defined as type N[B] = 7.

26 We cannot support this without breaking subtyping consistency, because it would mean that #C A (11—
T 2) <...

50

This context E;,;; essentially makes all named type applications type variables equivalent
to the expansions of the corresponding type applications in the type system, which is the
intent of the original conceived named types and their S-Expo rule.

6.5 Soundness of the Declarative Type System
We now state the main soundness theorems for 47 ’s type system, proven in Section C.1 and

C.2. In the following, -* is used as the syntax for program-typing judgments (see Figure 25
in appendix).

Theorem 6.2 (Progress). If —* P: 1 and P is not a value, then P~ P’ for some P’.

Theorem 6.3 (Preservation). If —* P: 7 and — P~ P’, then * P : 1.

[Zhr<r| [r<7] “E=E <X H)=<%-H <X oH)=<%-H
S-REFL S-ToBo S-CompLo S-ANDOR11¢ S-ANDOR12¢
<1 T TV T 71V >0 1V =1
S-ANDOR2¢
I S-DiISTRIB¢
STV A (V) (A1) V(T A% 1)
S-TRANS S-WEAKEN S-AssuM S-Hyp S-CLsSuB
1<t ZFETI<D H S>HE-H HeX CzES(#Cl)
1™ X+-H X+-H X-H #C <#Cy
S-CLsBot S-FUNDEPTH
Ci¢SHCy) Cr¢SHC)) L1 <T <XEFn <3
#C1 AH#HCy < L ZET DS
S-Expo S-RcDDEPTH
S-FUNMRGo T exp. 7 T <D
MV B) > A) oA oy =7 {nt<{xin}
S-RCOM S-RcpTop
-RCDMRG< TE{{y;éxITz},T2—>73}
Vo< {xin vV {xin} T<{x:im1}vr
S-ALSExp S-CLsExp

(type A[@;'€5]=1)eD (class C[a;' €5]:1)e D
—ieS]T C[—_iES —iES]T

A[T €5] exp. [T 7' €°] exp. #C A [a7—> 1

Fig. 16. Declarative subtyping rules. These are essentially the same as the rules of Figure 3 but
specialized to the type constructors of 4.

51

I-Bopy I-DEF

- F1:1=E Ft:t=E TI-(x:VE. 1) P:r=E
N\ P:r=E&

' t:7r=28

F*defx=t; P:n=>E
I-Proy
o, T'IFt:71=2, « fresh
Elkt:r=E

EpEiFr<g{x:a}=85
Ep, [Ftx:a=E|-Ey

[-OBy
2, Tt 11 =&
EgEL, T =5

2B By b, I-th it =8, C final
By, N-C {x1 =11; xXp =1;

L Xp =1y }iH#C A {x] T X T

C 3 XniTn J =B By
1-Var1 I-VAr2
'x)=r

F(x) :VEI.TI TV(VE].T]):S
ElNkx:T=¢€

————a€S
Ya freshcx ©

1= [m—»)/(,"ES]E

Ep,TFx: [@a=7a? 5] 1
I-Arp

I-ABs . [t i1 =&

a fresh

S0 ELT I :m=5
a fresh

Bo, [(x:a) Fr:7=5 EyEIrEy T« > a= B3

2y, l'IFAx. t:a—>17=5

ILEy It th:a=E1-Ey-E3
I-Asc I-Caskel
o, LIFt:11 =&

EyEI T« =5 o, It 11 =&

BT« Ll=5)
Eo, I' IF (l‘ITz)ZTzﬁEI-Ez

By, ['IFcasex=rjofe: | = 5.5y

[-Casg2
B, LIt i1 =& BT <#C =5 Eo~El~EQ,F~(xZT1)II—IQZT:>E3
g, I'lFcasex=t1of _—1H:71=E|-Ey-E3

I-CAsE3

o, Tty :11=E; « fresh
EgEL"(x:@)lFtrp:mp=8y B fresh EyE|-Ep,[-(x:B)I-casex=xo0f M:13=E3
Ey B EyEsT «#C Aav —#C A =5y

By, I'IFcasex =11 of C —>1t), M:1p v 13 = E|-BEy-E3-Ey

Fig. 17. Algorithmic type inference rules.

7 Principal Type Inference for 1~

We now formally describe the type inference algorithm which was presented in Section 5.
In this section, we assume that bounds contexts E are refined to also potentially contain

error markers err as shown below. We call this refined class of contexts constraining
contexts.

Constraining context B: @) | E-err

52

7.1 Type Inference Rules

Our type inference rules are presented in Figure 17. The judgments I'|-* P: 7= E and
E,I'|-t: 7= E are similar to their declarative typing counterparts, except that they are
algorithmic and produce constraining contexts 2 containing inferred type variables bounds.

We give the following formal meaning to premises of the form ‘@ fresh’, and in the rest
of this paper, we implicitly only consider well-formed derivations:

Definition 7.1 (Well-formed derivations). A type inference or constraining derivation is
said to be well-formed if, for every a, the ‘a fresh’ premise appears at most once in the
entire derivation and, if it does, a does not occur in any user-specified type (i.e., on the
right of ascription trees ‘t : T’).

The program-typing inference rules I-Bopy and I-DEF mirror their declarative counter-
parts. In I-DEF, notice how the output context corresponding to the definition’s body is the
one used to quantify the corresponding type in the typing context. Notice that in these rules,
the consistency condition (which can be seen in the declarative typing rules in Figure 25)
has disappeared, because type inference only produces consistent contexts by design.

The main difference between type inference rules and declarative typing rules is that
in the former, we immediately produce a type for each subexpression irrelevant of its
context, using type variables for local unknowns, and we then use a constraining judgement
2 17« = E (explained in the next subsection) to make sure that the inferred type 7
conforms to the expected type 7 in this context. So whenever we need to guess a type (such
as the type of a lambda’s parameter in I-ABs), we simply introduce a fresh type variable. As
an example, in I-ProJ, we infer an unconstrained type 7 for the field projection’s prefix ¢, and
then make sure that this is a subtype of arecord type by constraining 5y 7 < {x: @ } = &
— where E is the output context containing the type variable bounds necessary to make this
relationship hold. Rules I-App, I-Asc, I-CAsel, I-CASe2, and I-CAsg3 all work according
to the same principles, threading the set of constraining contexts currently inferred through
the next type inference steps, which is necessary to make sure that all inferred type variable
bounds are consistent with each other. Rule I-VAR2 refreshes all the variables of a type
VE. T obtained from the typing context, which includes both variables that occur in the
constraining context E as well as those that occur in the underlying type 7, even when some
of the latter may not be mentioned in E; indeed, in A7 all type variables are implicitly
quantified.

7.2 Reduced Disjunctive Normal Forms

To facilitate constraint solving, it is useful to massage types into a normal form which we
call RDNF, for reduced disjunctive normal form. This normal form is similar to a classical
disjunctive normal form (DNF) except that we reduce all “incompatible” intersections
and unions to L and T respectively. Here, incompatible means that the type holds no
useful information, either because it is inhabited by no value or because it cannot be used
meaningfully, as explained in Section 2.2.2.

53

The syntax of RDNF is given below. It is indexed by a level # and there are two possible
levels: level-0 RDNF, written D° does not contain any occurrence of class or alias types
at the top level (they will have been expanded); whereas level-1 RDNF, written D!, allows
them. Notation: we will often write D as a shorthand for D' (and similarly for the other
indexed syntax forms).

D':= L |C" | D"vC" C"u=T"A=U" | C"ra | C" A —a
I' o= 10 | I AN[D!] 10 := 7NN | T7[F] | TUR)
Ul = U° | U' v N[D!] U0 := 1 | D' D[{x:D'} | U0 v#C

where the 7 contexts stand for combinations of nominal tags N, functions ¥, and records
R:

IN[e] = oA F AR N = T | #C I[e] == IN[a] | 17[0] | T8o]
I7[0) = NAoaAR F =T |D!'-D! T3 = TATAT
78] == NAF Ao R =T | {x:Dl}

As an example, ‘D =#C A T A {x: T} A C[Int, Bool] A A[Str] A =L A —a’ is a
valid level-1 RDNF, but not a valid level-0 one because C[Int, Bool] and A[Str] occur
at the top level and are not expanded, while ‘D =T A T A {x: C[Int, Bool] } A —L"is
well-defined for both n e {0, 1}.

7.2.1 Algorithm

Figures 18 and 19 give an algorithm to convert types 7 to level-n RDNFs, written dnf” (7).
The task is essentially straightforward, if relatively tedious. Essentially, dnf” pushes nega-
tions in using DeMorgan laws, distributes intersections over unions, and at the same time
ensures that all constructed conjunctions are de-duplicated and as reduced as possible,
so that for instance intersections of unrelated classes are reduced to L and function and
record types are merged with themselves. We write (—)7 as a shorthand for either 7 or
—7 (used uniformly in a rule) and make use of auxiliary functions union” (D", D") and
inter” (D", D™), which rely on the following context definitions S*|[-] and S~[-], used to
“dig into” the various shapes of C" syntaxes:

s*e] 5= I[a] | St na | S*[e] A —a | $T[a] A —U | S*[a] A N[D']
S7[o] u= ST [o]ra | ST[o]A—a | IA—S[0]
S7[a] x= 0| ST[e]) vN[D!] | ST[e]v#C | Uva

For example, we can decompose C"* =1" A —((D} — D}) v #C) A a as C" = S~ [D} —
D}] where S™[o] =1" A —(o v #C) A a.

The algorithm is well-defined on well-formed types 7 wf, assuming a well-formed
declarations context D wf. These notions of well-formedness are defined formally in
Appendix B.2.

Lemma 7.2 (Well-Defined dunf). If D wf, T wf, and n€ {0, 1}, then duf"(r) =D" for
some D".

Lemma 7.3 (Correctness of dnf). For all T, n€{0, 1}, and D" =dnf" (1), we have
T=D"

54

dnf"(7) [: D"
dnf*(T) =dnf*(—=L)=T3 A =1 (7.1)
dnf" (L) = nf”(T)=1 (7.2)
dnf" (@) = A-LlAa (7.3)
dnf"(#C)=#C AT AT AL (7.4)
dnf" (1) > 1) =T adnf! (7)) > dnf! () A T A =L (1.5)
dof*({x:7}) ={x:dnf' (1) } AT AT A =L (7.6)
dnf®(N[7]) = dnf’(7") when N[T] exp. 7' 1.7
dnf' (N[7]) = T3 A N[dnf'(7)] A =L (7.8)
dnf" (71 A 1) = inter(dnf” (71), dnf" (7)) (7.9)
dnf"(7; v 72) = union(dnf"(7}), dnf" (7)) (7.10)
dnf*(—a)=T* A =L A —a (7.11)
dnf"*(—#C) = T3 A =(L v #C) (7.12)
dof*(={x:7})=T3 A ={x:dnf' (1) } (7.13)
dnf(=(1] = 1)) = T> A =(dnf! (71) — dnf! (1)) (7.14)
dnf’(=N[7]) = dnf®(—7") when N[T] exp. 7’ (7.15)
dnf!'(=N[7]) = T3> A =(L v N[dnf'(7)]) (7.16)
dnf" (=(71 A 72)) = union(dnf”(—7;), dnf" (—13)) (7.17)
dnf"(—(7; v 12)) = inter(dnf" (—71), dnf"(—12)) (7.18)

union(D", D) [: D"

union(D", L) =D" (7.19)
. n ~my_) D" when C' e D"

union(D", C)7{ D" v C" otherwise (7.20)
union(DY, D} v C") = union(union(DY, C"), D7) (7.21)

inter(D", D") |: D"
inter(L, D") = inter(D", L)= 1 (7.22)
inter(D} v C", DY) = union(inter(D}, D7), inter(C", DY)) (7.23)
inter(CY, D" v C}) = union(inter(C}, D"), inter(C}, C%)) (7.24)

Fig. 18. Normal form construction algorithm.

7.3 Type Constraining Rules

The type constraining rules are defined in Figure 20. They are defined for any pairs of
types and input subtyping contexts, returning an output context containing err in case the
constraining fails. We need err cases to distinguish an infinite loop in the algorithm from a
subtype constraining error, i.e., we want to justify that we have a proper algorithm and not
just a semi-algorithm.

In top-level constraining judgments, of the form X | 7 « 7 = E, we check whether
a subtyping relationship is currently in the assumptions; if not, we extend the set of
assumptions with the current constraint (guarded by a) and call the nested constraining

55

(7.25)
inter(C" | L, C" [T" | =U™) \: c L
inter(L,)=1 (7.26)
inter(Cf, C}) when (—)aeCY
inter(Cy, CJ A (—)a)=4 L when a, —aeCl A (—)a
inter(C} A (—)a, C¥) otherwise
(7.27)
inter(C", I"" A =U") = inter(inter(C", 1), —U") (7.28)
inter(C!, I' A N[D!]) = inter(inter(C', 1'), N[D']) (7.29)
inter(C", N A F A R) = inter(inter(inter(C", N), F), R) (7.30)
inter(C!, —(U' v N[D'])) = inter(inter(C', =U'), =N[D']) (7.31)
inter(C", —1)=C" (7.32)
C—_s{x:l)
inter(ST[UT], —UY)=T> when (U}, UDed ({x:_}, _—_):
{x: o {7}
(7.33)
inter(S~[D} — Dj], —(Dj — D})) = S~ [inter(D}, D}) — union(D}, D})] (7.34)
inter(ST[{x:D! }], ={x:D}}) =S~ [{x:union(D}, D})}] (7.35)
. i n | inter(ST[UT], —UT) when #C e U7
inter(S™[Uy], =(Uz v #C)) _{ inter(S— [U%’ v #C]z, —UL) otherwise : (7.36)
inter(S~[L], —U™) =S~[U"] (1.37)
inter(D' | C!, (—=)N[D']) ‘:Dl
inter(L, (~)N[D!]) =L (7.38)
inter(D} v C', (~)N[D!]) = inter(D}, (—~)N[D!]) v inter(C', (—)N[D']) (7.39)
inter(C! A @, (—=)N[D!]) = inter(C', (—)N[DI]) A (7.40)
inter(C! A —a, (—)N [71]) = inter(C!, (—)N[H]) A —a (7.41)
P Dl 1
mter(1! A ~U', N[DI])={ 1~ 7V when N[D!]el (7.42)
I' AN[D!'] A =U! otherwise
— 1 1 DI 1
inter(l' A —U', ~N[DI])={ L~V __ when N[D']eU (7.43)
I' A =(U'v N[D']) otherwise
inter(C", N'| | R) \:c" | L
inter(C", T) = C" (7.44)
inter(ST[IN[T]], #C) = sT[ITN[#C]] (7.45)
1 when C| ¢ S(#C) and C, ¢ S(#C)
inter(ST[Z[#C1]], #Co) =<{ ST[I[#C2]] when C) e SH#C)
ST[I[#C(]] when Cye S(#C))
(7.46)
inter(ST[Z[T]], D} - D))=s*[7~[D! - DI]] (7.47)
inter(ST[Z[D} — DJ]], D} — D}) = S*[I [union(D!, D}) — inter(D}, D})]] (7.48)
inter(C", {x:DL, y: D} }) = inter(inter(C", {x: DL, {y: DL} (7.49)
inter(ST[TU[T]], {x:D'}) =sH[78[{x:D'}]] (7.50)

inter(S+[I[{mxes 1. {y:D! })_{ STI[{x:)lcxeS\{y} , y:inter(D;, DY}Y]] when yeS

xX€S
ST[I[{x:DL , y:D'}] otherwise
(7.51)

Fig. 19. Normal form construction algorithm (continued).

56

C-Hyp C-Assum
(r1<m)ex (r1<m)¢E Ze(n<n)k dnfo(‘rl A—Tp)=E
ST KTy =€ T« =E
C-Or
5 D02 Er-O=z C-Bot C-NotBot
t-D'vC=EE I-1l=¢€ SHEIPA-L=err
C-Crsl C-CLs2
CzES(#Cl) C2¢S(#C1) ZI—[[#CI]/\ﬂUzE:
S T[#C] A ~(Uv#C)) =€ SHI[#C] A —(Uv#GC)=E
C-Crs3 C-Fun1
SHIN[TIA-U=E CFD3 « Dj=E E<XD; « Dy=E
SHIN[T]A—=(Uv#C)=E 2 I[Dy —Da] A =(D3 —Dy) = EE
C-Repl
C-Fun2 yeS <L+Dy « D=E
S+I7[T] A —(Dy—>Dy)=err ZI—I[{x:DxxeS}] A—-{y:D}=E
C-Rcp2
yés C-Rcp3
ZI—I[{x:DxxeS}] A={y:D}=err SHIU[TI A ~{x:D}=err
C-VArl C-VAR2
Y(e<—C)Fiby(a) « ~C=E 2(C<a)-Cxubs(a)=E
>CAra=E(a<—0) SFCA—a=E(C<a)

Fig. 20. Normal form constraining rules.

rules with the two sides 7; and 7, merged into a single dnf’(7; A —73) normal form.?’
Nested constraining judgments have syntax £ - D° = Z; they implicitly solve the constraint
DY < L. We can do this because for all 7; and 75, the subtyping relationship X 71 <1
is formally equivalent to £ - 71 A =1, < L. This technique was inspired by Pearce (2013),
who also puts constraints into this form to solve subtyping problems involving unions,
intersections, and negations. Our constraining rules are deterministic except for C-VAR]
and C-VAR2. By convention, we always pick C-VARr1 in case both can be applied.

The Ib and ub functions are defined in Definition 3.5.

Notice how the C-VARr1/2 rules solve tricky constraints involving type variables by
moving the rest of a type expression to the other side of the inequality, relying on negation
types and on the properties of Boolean algebras (see Theorem A.9). Moreover, C-VAR1/2
look up the existing bounds of the type variable being constrained and perform a recursive
call to ensure that the new bound is consistent with these existing ones. This is required to
ensure we only produce consistent output contexts, and it explains why we have to thread

27 The real implementation is a little smarter and does not always put the entire constraint into DNF to avoid
needless work in common cases. It also uses a mutable cache to reuse previous computations and avoid
exponential blowups (Pierce, 2002).

57

constraining contexts throughout all type inference derivations. As part of this recursive call,
we extend the subtyping assumptions context with the bound being recorded. For example,
C-VAR?2 recurses with context X-(C < «) instead of just 2. This is crucial for two reasons:
First, it is possible that new upper bounds 7; be recorded for a as part of the recursive call.
By adding C to the current lower bounds of @ within the recursive call, we make sure that
any such new upper bounds 7; will be checked against C as part of the resulting /by (@) < 7;
constraining call performed when adding bound 7;. Second, it is quite common for type
inference to result in direct type variable bound cycles, such as @ < 8, 8 < a, which can for
instance arise from constraining 8 — 8 < @ — «a. These cycles do not lead to divergence
of type inference thanks to the use of 2-(C < «) instead of X in the recursive call, ensuring
that any constraint resulting from a type variable bound cycle will end up being caught by
C-Hyr.

The other constraining rules are fairly straightforward. The “beauty” of the RDNF is that
it essentially makes constraint solving with A7 types obvious. In each case, there is always
an obvious choice to make: either (1) the constraint is unsatisfiable (for example with T < L
in C-NotBorT, which yields an err); or (2) the constraint needs to unwrap an irrelevant part
of the type to continue (for example with D; — Dy < U v #C in C-CLs3, which can be
solvediff D; — D, < Ulitself can be solved, because function types are unrelated to nominal
class tags); or (3) we can solve the constraint in an obvious, unambiguous way (for example
with {x: Dy~ }<{y:D} where ye S in C-Rcpl).

Normalizing types deeply (i.e., not solely on the outermost level) makes the termination
of constraining (Theorem B.9) straightforward. If we did not normalize nested types and for
example merged {x: 71 } A {x: 7 } syntactically as {x: 1] A 72 }, constraining recursive
types in a way that repetitively merges the same type constructors together could lead
to unbounded numbers of equivalent types being constrained, such as {x: 7] A 7] A 71 A
... }, failing to terminate by C-HyP.

Example Consider the constraint 7= {x:Nat, y:Nat} <7 ={x:Int, y: T} After
adding the pair to the set of hypotheses, C-AssuM computes the RDNF dnf®(r A —7) =
{x:Nat, y:Nat } A ={x:Int } v {x:Nat, y:Nat } A ={y: T }. Then this constrained
type is decomposed into two smaller constrained types { x : Nat, y :Nat } A —{x:Int }
and {x:Nat, y:Nat } A ={y: T } by C-Or, and each one is solved individually by C-
Rcpl, which requires constraining respectively Nat « Int and Nat « T. The former yields
RDNF #Nat A —#Int, which is solved by C-CLsCLs1, and the latter yields RDNF L, which
is solved by C-Bor.

7.4 Correctness of Type Inference

We conclude this section by presenting the main correctness lemmas and theorems of type
inference.

Theorem 7.4 (Soundness of type inference). If the type inference algorithm successfully
yields a type for program P, then P has this type. Formally: if V* P:7=E and err ¢ E,
then E-* P : 1.

58

Lemma 7.5 (Sufficiency of Constraining). Successful type constraining ensures subtyping:
if £ cons.and L+ 1< n=Eanderr¢Z, then E-X cons. and E-Z+ 1< 7.

Theorem 7.6 (Constraining Termination). For all T, 7, D, X2 wf, X+ 7 < 1 = E for some

—
=
—.

Theorem 7.7 (Completeness of type inference). If a program P can be typed at type o, then
the type inference algorithm derives a type o' such that o' <" o. Formally: if E+* P: 1,

then |-* P:1' = &' for some Z' and v’ where Z' cons. and YZ'. 7' <" VE. 1.

In the following lemma, which is crucial for proving the above theorem, p refers to
type variable substitutions and Z = Z’ denotes that E entails 2’ (both defined formally in
Appendix C).

Lemma 7.8 (Completeness of Constraining). If there is a substitution p that makes p(t;)
a subtype of p(12) in some consistent B, then constraining 1) < Ty succeeds and only
introduces type variable bounds that are entailed by 2 (modulo p).

Formally and slightly more generally: if E cons. and E p(11) < p(12) and E = p(By),
then Eg 11 K 7y = By for some B so that err ¢ By and E = p(&)).

8 Related Work

We now relate the different aspects of MLstruct and A~ with previous work.

Intersection type systems. Intersection types for lambda calculus were pioneered by Coppo
and Dezani-Ciancaglini (1980); Barendregt et al. (1983), after whom the “BCD” type system
is named. BCD has the very powerful “T-A-1” rule, stating: if ' ¢ : 7) and ' 7 : 1, then
I' ¢ : 71 A 2. Such systems have the interesting property that typeability coincides with
strong normalization (Ghilezan, 1996), making type inference undecidable. Thankfully,
we do not need something as powerful as T-A-I — instead, we introduce intersections in
less general ways (i.e., through T-OBJ), and we retain decidability of type inference. Most
intersection type systems, including MLstruct and A, do admit the following standard
BCD subtyping rules given by Barendregt et al.: (1) 71 A 72 < 713 (2) 1 A T2 < T3 and (3)
if 71 <1 and 11 < 13, then 71 < T A T3. Some systems use intersection types to encode
a form of overloading (Pierce, 1991). However, Smith (1991) showed that ML-style type
inference with such a general form of overloading and subtyping is undecidable (more
specifically, finding whether inferred sets of constraints are satisfiable is) and proposed
constructor overloading, a restricted form of overloading with more tractable properties,
sufficient to encode many common functions, such as addition on different primitive types
as well as vectors of those types. Constructor overloading is eminently compatible with
MLstruct and MLscript. Another design decision for intersection systems is whether and
how this connective should distribute over function types. BCD subtyping states28 (1 —

28 This rule together with T- A -I was shown unsound in the presence of imperative features by Davies and Pfenning
(2000).

59

m1) A (Tt —>mp) <17 — (7 A7) and Barbanera et al. (1995) also propose (1] —) A
(1 =) < (11 v 12) — n. Together, these correspond to the minimal relevant logic B+
(Dezani-Ciancaglini et al., 1998). Approaches like that of Pottier (1998b) use a greatest
lower bound connective r that resembles type intersection A but admits a more liberal
rule that generalizes the previous two: (71 = 1) A (1 > m) < (11 v 1) — (71 A 12),
which we will refer to as (full) function distributivity. However, notice that in a system
with primitives, full function distributivity is incompatible with T-A-I and thus precludes
intersection-based overloading.?®

Union and intersection types in programming. Union types are almost as old as inter-
section types, first introduced by MacQueen et al. (1986),3° and both have a vast (and
largely overlapping) research literature, with popular applications such as refinement types
(Freeman and Pfenning, 1991). These types have seen a recent resurgence, gaining a lot of
traction both in academia (Muehlboeck and Tate, 2018; Huang and Oliveira, 2021; Castagna
et al., 2022; Rehman et al., 2022; Dunfield, 2012; Binder et al., 2022; Alpuim et al., 2017)
and in industry,3 with several industry-grade programming languages like TypeScript,
Flow, and Scala 3 supporting them, in addition to a myriad of lesser-known research lan-
guages. It is worth noting that many modern type systems with intersection types do not
support T-A-I in its full generality. For example, in TypeScript, a term can only assume an
overloaded intersection type if that term is a function with a list of pre-declared type sig-
natures, and in Scala intersections can only be introduced through inheritance. Unions and
intersections have also found uses in program analysis. Palsberg and Pavlopoulou (1998)
showed that polyvariant analysis can be related formally to a subtyping system with union,
intersection, and recursive types. Unions model sets of abstract values and intersections
model each usage of an abstract value. Their system conspicuously does not feature poly-
morphism, but it is well-known that there is a correspondence between intersection types
and polymorphism — a polymorphic type can be viewed as an infinite intersection of all
its possible instantiations (Aiken and Wimmers, 1993). Smith and Wang (2000) propose
inferring polymorphic types, rather than intersections, for function definitions, which is
more flexible and composable as it can process unrelated definitions separately, whereas
the approach based solely on intersections is a global process. We believe that having both
intersections and polymorphism, as in MLscript, represents the best of both worlds.

Type inference for unions and intersections. None of the previous approaches we know
have proposed a satisfactory ML-style type inference algorithm for full union and intersec-
tion types. By satisfactory, we mean that the algorithm should infer principal polymorphic
types without backtracking. Earlier approaches used heavily-restricted forms of unions and

29 For instance, term id = Ax. x has both types Int — Int and Bool — Bool so by T--I it would also have
type (Int — Int) A (Bool — Bool). But by function distributivity and subsumption, this would allow typing
id as (Int v Bool) — (Int A Bool) and thus typing id 0 (which reduces to 0) as Int A Bool, breaking type
preservation.

Funnily, MacQueen et al. reported at the time that “type-checking difficulties seem to make intersection and
union awkward in practice; moreover it is not clear if there are any potential benefits from their use,” clearly
not anticipating their enduring popularity.

The first author of this paper has received emails from various people reimplementing Simple-sub (Parreaux,
2020) and wanting to know how to add support for first-class union and intersection types, showing the enduring
interest in these.

30

3

60

intersections. For instance, Aiken and Wimmers (1993); Aiken et al. (1994) impose very
strict restrictions on negative unions (they must be disjoint) and on positive intersections
(they must not have free variables and must be “upward closed”). Trifonov and Smith (1996)
go further and restrict intersections to negative or input positions (those appearing on the
right of < constraints) and unions types to positive or output positions (those appearing on
the left). Pottier (19985b); Dolan (2017); Parreaux (2020); Binder et al. (2022) all follow
the same idea. In these systems, unions and intersections are not first-class citizens: they
cannot be used freely in type annotations. Frisch et al. (2008) infer set-theoretic types (see
semantic subtyping below) for a higher-order language with overloading but do not infer
polymorphic types. Castagna et al. (2016) propose a complete polymorphic set-theoretic
type inference system, but their types are not principal so their algorithm returns several
solutions, which leads to the need for backtracking. It seems this should have severe scal-
ability issues, as the number of possible types for an expression would commonly grow
exponentially.3? Petrucciani (2019) describes ways to reduce backtracking, but recognizes
it as fundamentally “unavoidable.”

Negation or complement types. Negation types have not been nearly as ubiquitous as
unions and intersection in mainstream programming language practice and theory, except
in the field of semantic subtyping (see below). Nevertheless, our use of negation types to
make progress while solving constraints is not new — Aiken and Wimmers (1993) were the
first to propose using complement types in such a way. However, their complement types
are less precise than our negation types,3 and in their systema A 7y < and e <1 v —7)
are not always equivalent.

Recursive types. Recursive types in the style of MLstruct, where a recursive type is equiva-
lent to its unfolding (a.k.a. equirecursive types, not to be confused with iso-recursive types),
have a long history in programming languages research (MacQueen et al., 1986; Amadio
and Cardelli, 1993; Abadi and Fiore, 1996; Pierce, 2002; Hosoya et al., 2005; Appel et al.,
2007), dating as far back as Morris’ thesis, where he conjectured their use under the name
of cyclic types (Morris, 1969, pp.122—-124). Recursive types with subtyping were devel-
oped in the foundational work of Amadio and Cardelli (1993) and Brandt and Henglein
(1998) gave a coinductive axiomatization of such recursive types. Jim and Palsberg (1999)
described a co-inductive formalization of recursive types as arbitrary infinite trees which is
more general than approaches like ours, which only allows reasoning about regular types.
Nevertheless, the algorithms they gave were unsurprisingly restricted to regular types.
Gapeyev et al. (2002); Pierce (2002) reconciled the representation as infinite regular trees
with the representation as u types, and described the standard algorithms to decide the
corresponding subtyping relationship. An important aspect of practical recursive type algo-
rithms is that one needs to maintain the cache of discovered subtyping relationships across
recursive calls to avoid exponential blowup (Gapeyev et al., 2002). Our implementation of
MLstruct follows the same principle, as a naive implementation of 4 would lead to exactly

32 Hindley-Milner type inference and derived systems like MLsub and MLstruct can also infer types that grow
exponentially in some situations, but these mostly occur in pathological cases, and not in common human-
written programs.

33 For example, in their system — (7 — 7) is the type of all values that are not functions, regardless of T and 7.

61

the same blowup. Also refer to Section 3.3.2 for more parallels between the handling of
recursive types in A and previous work.

Early approaches to subtype inference. The problem of type inference in the presence of
subtyping was kick-started in the 1980s (Mitchell, 1984; Stansifer, 1988; Fuh and Mishra,
1989) and studied extensively in the 1990s (Fuh and Mishra, 1990; Curtis, 1990; Smith,
1991; Aiken and Wimmers, 1993; Kozen et al., 1994; Palsberg et al., 1997; Pottier, 1998a,b;
Jim and Palsberg, 1999), mostly through the lens of constraint solving on top of Hindley-
Milner-style type inference (Hindley, 1969; Milner, 1978; Damas and Milner, 1982). These
approaches often involved combinations of record, intersection, union, and recursive types,
but as far as we know none proposed an effective (i.e., without backtracking) principal type
inference technique for a system with all of these combined. Odersky et al. (1999) gave
them a unified account by proposing a general framework called HM(X), where the ‘X’
stands for a constraint solver to plug into their generic system. While these approaches often
claimed a form of principal type inference (also called minimality3*), the constrained types
they inferred were often large and unwieldy. Beyond inferring constraint sets and ensuring
their satisfiability, the related problem of simplification to produce more readable and
efficiently-processable types was also studied, often by leveraging the connection between
regular type trees and finite-state automata (Eifrig et al., 1995; Aiken, 1996; Pottier, 1996,
1998b, 2001; Simonet, 2003). A major stumbling block with all of these approaches was
the problem of non-structural subtyping entailment3> (NSSE), which is to decide whether
a given type scheme, which consists in a polymorphic type along with its constraints on
type variables, subsumes another. Solving this issue is of central importance because it is
needed to check implementations against user-provided interfaces and type signatures, and
because it provides a foundation from which to derive sound type simplification techniques.
However, to this day NSSE remains an open problem, and it is not known whether it is even
decidable (Dolan, 2017). Due to these difficulties, interest in this very powerful form of
subtyping all but faded in the subsequent decade, in what we interpret as a minor “subtype
inference winter.” Indeed, many subsequent approaches were developed in reaction to this
complexity with the aim of being simpler to reason about (e.g., polymorphic variants —
see below).

Algebraic subtyping. Approaches like that of Pottier (1998b) used a lattice-theoretic con-
struction of types inspired by the connection between types and term automata. Meet m and
join L operators resembling intersection and union types are used to compactly represent-
ing conjunctions of constraints, but these are not first-class types, in that they are restricted
to appearing respectively in negative and positive positions only. Full function distributivity
(defined above, in intersection type systems) holds in these approaches due to the lattice
structure. Pottier’s system still suffered from a lack of complete entailment algorithm due

34 Some authors like Aiken et al. (1994) make a distinction between a concept of principality which is purely
syntactic (relating types by a substitution instance relationship) and minimality which involve a semantic
interpretation of types.

35 “Non-structural” here is by opposition to so-called structural subtyping, which is a more tractable but heavily
restricted form of subtyping that only relates type constructors of identical arities (Palsberg et al., 1997)
(precluding, e.g., {x: 7} < T).

62

to NSSE. Dolan (2017); Dolan and Mycroft (2017) later built upon that foundation and pro-
posed an algebraic construction of types which allowed breaking free of NSSE and finally
enjoying a sound and complete entailment algorithm. Two magical ingredients allowed this
to be possible: 1. the definition of “extensible” type semantics based on constructing types
as a distributive lattice of coproducts; and 2. a different treatment of type variables than
in previous work, representing them as part of the lattice of types and not as unknowns
ranging over a set of ground types. In this paper, we in turn build on these foundations,
although we only retain the latter innovation, somehow forgoing the “extensible” construc-
tion of types.3¢ Together with our generalization of the subtyping lattice to a Boolean one
by adding negations and with the additional structure we impose on types (such as reducing
unions of unrelated records to T), this turns out to be sufficient for allowing principal type
inference and decidable entailment (though we only sketched the latter in this paper for
lack of space). Ingredient 1 allowed Dolan to show the soundness of his system in a very
straightforward way, relying on the property (called Proposition 12 by Dolan (2017)) that
any constraint of the form /\ i T < \/ ; ; holds iff there is a k such that 7, < ;. when all
7; have distinct constructors and all 7r; similarly. By contrast, we allow some intersections
of unrelated type constructors to reduce to L and some unions of them to T, and we are
thus not “extensible” in Dolan’s terminology. This is actually desirable in the context of
pattern matching, where we want to eliminate impossible cases by making the intersections
of unrelated class types empty. It is also needed in order to remove the ambiguity from
constraints like (1 —) A {x:7} < (1] = 75) v {x: 2" } which in our system reduces
to (11 = 12) A {x:7m } < T.The present paper also takes heavy inspiration from our earlier
operationally-focused take on Dolan’s type inference algorithm (Parreaux, 2020). While
Dolan shirks from explicitly representing constraints, which he prefers to inline inside types
on the fly as m and L types, we use an approach closer to the original constrained-types
formulation followed by Pottier. Besides being much easier to implement, our approach has
other concrete advantages, such as the ability to deal with invariance seamlessly (class
CLAI: {f: A — A}, which is invariant in A, is valid in MLstruct) and a simpler treatment of
cyclic type variable constraints.

Semantic subtyping and set-theoretic types. The semantic subtyping approaches (Frisch
et al., 2002, 2008; Castagna et al., 2016; Petrucciani, 2019; Castagna et al., 2022) view
types as sets of values which inhabit them and define the subtyping relationship as set
inclusion, giving set-based meaning to union, intersection, and negation (or complement)
connectives. This is by contrast to algebraic subtyping, which may admit subtyping rules
that violate the set-theoretic interpretation, such as function distributivity, to ensure that
the subtyping lattice has desirable algebraic properties. For more detailed discussions
contrasting semantic subtyping with other approaches, we refer the reader to Parreaux
(2020) and Muehlboeck and Tate (2018).

Occurrence and flow typing. Occurrence typing was originally introduced by Tobin-
Hochstadt and Felleisen (2008) for Typed Scheme, and was later incorporated into
TypeScript and Flow, where it is known as flow typing. It allows the types of variables

36 As discussed in prior work (Parreaux, 2020), we believe the argument for Dolan’s notion of extensibility to be
rather weak.

63

to be locally refined based on path conditions encountered in the program. Negation types
are pervasive in this context, though they are often only used at the meta-theoretic level.
Instance-matching in MLstruct can be understood as a primitive form of occurrence typ-
ing in that it refines the types of scrutinee variables in case expressions, similarly to the
approach of Rehman et al. (2022). Occurrence typing was also recently extended to the
semantic subtyping context (Castagna et al., 2021, 2022), where negation types are first-
class types. The latter work proposes a powerful type inference approach that can infer
overloaded function signatures as intersections types; however, this approach does not sup-
port polymorphism and likely does not admit principal types. The idea of simplifying the
definition of core object-oriented type languages by using class tags (or brands) in addition
to structural typing is not new and was notably developed by Jones et al. (2015); Lee et al.
(2015).

Polymorphic records/variants and row polymorphism.Polymorphic records are
structurally-typed products whose types admit the usual width and depth subtyping rela-
tionships. Their dual, polymorphic variants, are another useful language feature (Garrigue,
1998, 2001), used to encode structural sum types. In their simplest expression, polymor-
phic records (resp. variants) do not support ad-hoc field extension (resp. default match
cases). Previous approaches have thus extended polymorphic records and variants with
row polymorphism, which uses a new kind of variables, named “row” variables, to record
the presence and absence of fields (resp. cases) in a given type. Some approaches, like
OCaml’s polymorphic variants and object types, use row polymorphism exclusively to sim-
ulate subtype polymorphism, in order to avoid subtyping in the wider languages. However,
row polymorphism and subtyping actually complement each other well, and neither is as
flexible without the other (Pottier, 19985, Chapter 14.7). There are also techniques for sup-
porting variant and record extensibility through union, intersection, and negation types, as
shown by Castagna et al. (2016), who also explain that their system resolves long-standing
limitations with OCaml-style row polymorphism. In our system, we solve many (though not
all) of these limitations, but we also support principal type inference. It is worth pointing out
that OCaml’s polymorphic variants (Garrigue, 2001) and related systems based on kinds
(Ohori, 1995) lack support for polymorphic extension (White, 2015; Gaster and Jones,
1996), whereas MLstruct does (see mapSome in the introduction). As a simpler example,
def foo x dflt els = case x of { Apple — dflt | _ — els x } would be assigned a
too restrictive type in OCaml and as a consequence foo (Banana{}) @ (fun z — case z
of { Banana — 1 }) would not type check (OCaml would complains that the function
argument does not handle Apple). A more expressive row-polymorphic system exposing
row variables to users would support this use case (Rémy, 1994; Gaster and Jones, 1996),
but as explained in the introduction, even these have limitations compared to our subtyped
unions.

9 Conclusion and Future Work

In this paper, we developed a general theory of Boolean-algebraic subtyping called S(77, R)
and showed how to prove its soundness, a particularly challenging endeavour given the great

64

flexibility of the corresponding subtyping rules. We instantiated this theory to &_, (x4c,
the subtyping theory of A7, the core language a new research language called MLstruct.
We saw that with MLstruct, polymorphic type inference for first-class union, intersection,
and negation types is possible, enabling features such as class-instance matching patterns
yielding very precise types, comparable in expressiveness to row-polymorphic variants.
We also saw that this type inference approach relies on two crucial aspects of MLstruct’s
type system, only made possible by our novel Boolean-algebraic approach to subtyping: 1.
using the full power of Boolean algebras to normalize types and massage constraints into
shapes amenable to constraint solving without backtracking; and 2. approximating some
unions and intersections, most notably unions of records and intersections of functions, in
a way that does not naturally follow from a typical set-theoretic interpretation of subtyping,
in order to remove potential ambiguities during constraint solving without threatening the
soundness of the system.

Future Work. In the future, we intend to explore more advanced forms of polymorphism
present in MLscript, such as first-class and ad-hoc polymorphism, as well as how to
remove some of the limitations of regular types, which currently prevent fully supporting
object-oriented programming idioms.

Acknowledgements. We would like to sincerely thank the anonymous reviewers as well as
Francois Pottier, Didier Rémy, Alan Mycroft, Bruno C. d. S. Oliveira, Andong Fan, and
Anto Chen for their constructive and helpful comments on earlier versions of this paper.
We are particularly grateful to Stephen Dolan, who gave us some invaluable feedback and
mathematical intuitions on the development of this new algebraic subtyping system.

Conflicts of Interest

None.

References

Martin Abadi and Marcelo P. Fiore. 1996. Syntactic considerations on recursive types. In Proceedings
11th Annual IEEE Symposium on Logic in Computer Science. IEEE, 242-252.

Alexander Aiken. 1996. Making set-constraint program analyses scale. In In CP96 Workshop on Set
Constraints.

Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints and Type Inference. In
Proceedings of the Conference on Functional Programming Languages and Computer Architecture
(Copenhagen, Denmark) (FPCA "93). Association for Computing Machinery, New York, NY, USA,
31-41. https://doi.org/10.1145/165180.165188

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft Typing with Conditional
Types. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Portland, Oregon, USA) (POPL °94). Association for Computing
Machinery, New York, NY, USA, 163—-173. https://doi.org/10.1145/174675.177847

Jodo Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In
Programming Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1-28.

https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/174675.177847

65

Roberto M. Amadio and Luca Cardelli. 1993. Subtyping Recursive Types. ACM Trans. Program.
Lang. Syst. 15, 4 (Sept. 1993), 575-631. https://doi.org/10.1145/155183.155231

Andrew W. Appel, Paul-André Mellies, Christopher D. Richards, and Jérdme Vouillon. 2007. A
Very Modal Model of a Modern, Major, General Type System. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France)
(POPL ’07). Association for Computing Machinery, New York, NY, USA, 109-122. https:
//doi.org/10.1145/1190216.1190235

F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. 1995. Intersection and Union Types: Syntax
and Semantics. Information and Computation 119, 2 (1995), 202-230. https://doi.org/10.
1006/inco.1995.1086

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic 48, 4 (1983), 931-940.
https://doi.org/10.2307/2273659

David Binder, Ingo Skupin, David Lawen, and Klaus Ostermann. 2022. Structural Refinement Types.
In Proceedings of the 7th ACM SIGPLAN International Workshop on Type-Driven Development
(TyDe *22). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3546196.3550163

Michael Brandt and Fritz Henglein. 1998. Coinductive axiomatization of recursive type equality and
subtyping. Fundamenta Informaticae 33, 4 (1998), 309-338.

Giuseppe Castagna. 2012. Object-Oriented Programming A Unified Foundation. Springer Science
& Business Media.

Giuseppe Castagna, Victor Lanvin, Mickaél Laurent, and Kim Nguyen. 2021. Revisiting Occurrence
Typing. arXiv:1907.05590 [cs.PL]

Giuseppe Castagna, Mickaél Laurent, Kim Nguyundefinedn, and Matthew Lutze. 2022. On Type-
Cases, Union Elimination, and Occurrence Typing. Proc. ACM Program. Lang. 6, POPL, Article
13 (jan 2022), 31 pages. https://doi.org/10.1145/3498674

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-theoretic types for poly-
morphic variants. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming (ICFP 2016). Association for Computing Machinery, Nara, Japan,
378-391. https://doi.org/10.1145/2951913.2951928

M. Coppo and M. Dezani-Ciancaglini. 1980. An extension of the basic functionality theory for the
A-calculus. Notre Dame Journal of Formal Logic 21, 4 (1980), 685 — 693. https://doi.org/
10.1305/ndjf1/1093883253

Pavel Curtis. 1990. Constrained Qualification in Polymorphic Type Analysis. Ph.D. Dissertation.
USA. UMI Order No. GAX90-26980.

Bruno C. d. S. Oliveira, Cui Shaobo, and Baber Rehman. 2020. The Duality of Subtyping. In 34th
European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 29:1-29:29. https://doi.org/
10.4230/LIPIcs.ECOOP.2020.29

Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
’82). Association for Computing Machinery, Albuquerque, New Mexico, 207-212. https:
//doi.org/10.1145/582153.582176

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00). Association for Computing Machinery, New York, NY, USA, 198-208. https:
//doi.org/10.1145/351240.351259

Van Bakel Dezani-Ciancaglini, S. Van Bakel, M. Dezani-ciancaglini, and Y. Motohama. 1998. The
Minimal Relevant Logic and the Call-by-Value Lambda Calculus. Technical Report.

Stephen Dolan. 2017. Algebraic subtyping. Ph.D. Dissertation.

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type inference in MLsub. ACM
SIGPLAN Notices 52, 1 (Jan. 2017), 60-72. https://doi.org/10.1145/3093333.3009882

https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.2307/2273659
https://doi.org/10.1145/3546196.3550163
https://doi.org/10.1145/3546196.3550163
https://doi.org/10.1145/3498674
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/3093333.3009882

66

Jana Dunfield. 2012. Elaborating Intersection and Union Types. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming (Copenhagen, Denmark) (ICFP
’12). Association for Computing Machinery, New York, NY, USA, 17-28. https://doi.org/
10.1145/2364527.2364534

Jonathan Eifrig, Scott Smith, and Valery Trifonov. 1995. Sound Polymorphic Type Inference for
Objects. In Proceedings of the Tenth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (Austin, Texas, USA) (OOPSLA ’95). Association for Computing
Machinery, New York, NY, USA, 169-184. https://doi.org/10.1145/217838.217858

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation (PLDI ’91).
ACM, New York, NY, USA, 268-277. https://doi.org/10.1145/113445.113468 event-place:
Toronto, Ontario, Canada.

A. Frisch, G. Castagna, and V. Benzaken. 2002. Semantic subtyping. In Proceedings 17th Annual
IEEE Symposium on Logic in Computer Science. 137-146. https://doi.org/10.1109/LICS.
2002.1029823

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing
Set-Theoretically with Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article
19 (Sept. 2008), 64 pages. https://doi.org/10.1145/1391289.1391293

You-Chin Fuh and Prateek Mishra. 1989. Polymorphic subtype inference: Closing the theory-practice
gap. In TAPSOFT ’89, J. Diaz and F. Orejas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
167-183.

You-Chin Fuh and Prateek Mishra. 1990. Type inference with subtypes. Theoretical Computer
Science 73, 2 (1990), 155-175. https://doi.org/10.1016/0304-3975(90)90144-7

Vladimir Gapeyev, Michael Y Levin, and Benjamin C Pierce. 2002. Recursive subtyping revealed.
Journal of Functional Programming 12, 6 (2002), 511-548.

Jacques Garrigue. 1998. Programming with polymorphic variants. In ML Workshop, Vol. 13.
Baltimore, 7.

Jacques Garrigue. 2001. Simple Type Inference for Structural Polymorphism.. In APLAS. 329-343.

Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records
and Variants.

Silvia Ghilezan. 1996. Strong Normalization and Typability with Intersection Types. Notre Dame
Journal of Formal Logic 37,1 (1996), 44 —52. https://doi.org/10.1305/ndjf1/1040067315

Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer.
Math. Soc. 146 (1969), 29-60. https://doi.org/10.2307/1995158 Publisher: American
Mathematical Society.

Haruo Hosoya, Jérdme Vouillon, and Benjamin C. Pierce. 2005. Regular Expression Types for
XML. ACM Trans. Program. Lang. Syst. 27, 1 (Jan. 2005), 46-90. https://doi.org/10.1145/
1053468.1053470

Xuejing Huang and Bruno C. d. S. Oliveira. 2021. Distributing Intersection and Union Types with
Splits and Duality (Functional Pearl). Proc. ACM Program. Lang. 5, ICFP, Article 89 (aug 2021),
24 pages. https://doi.org/10.1145/3473594

Edward V. Huntington. 1904. Sets of independent postulates for the algebra of logic. Trans. Amer.
Math. Soc. 5, 3 (1904), 288-309. https://doi.org/10.1090/s0002-9947-1904-1500675-4

Trevor Jim and Jens Palsberg. 1999. Type Inference in Systems of Recursive Types With Subtyping.

Timothy Jones, Michael Homer, and James Noble. 2015. Brand Objects for Nominal Typing. In 29tk
European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 37), John Tang Boyland (Ed.). Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 198-221. https://doi.org/10.4230/
LIPIcs.ECOOP.2015.198

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. 1994. Efficient inference of partial types.
J. Comput. System Sci. 49, 2 (1994), 306-324. https://doi.org/10.1016/50022-0000(05)
80051-0

https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/217838.217858
https://doi.org/10.1145/113445.113468
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1016/0304-3975(90)90144-7
https://doi.org/10.1305/ndjfl/1040067315
https://doi.org/10.2307/1995158
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/3473594
https://doi.org/10.1090/s0002-9947-1904-1500675-4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.1016/S0022-0000(05)80051-0
https://doi.org/10.1016/S0022-0000(05)80051-0

67

Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin. 2015. A Theory of Tagged
Objects. In 29th European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang Boyland (Ed.). Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 174-197. https://doi.org/
10.4230/LIPIcs.ECOOP.2015.174

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1986. An ideal model for recursive poly-
morphic types. Information and Control 71, 1 (1986), 95-130. https://doi.org/10.1016/
S0019-9958(86)80019-5

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3
(Dec. 1978), 348-375. https://doi.org/10.1016/0022-0000(78)90014-4

John C. Mitchell. 1984. Coercion and Type Inference. In Proceedings of the 11th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Salt Lake City, Utah, USA)
(POPL ’84). Association for Computing Machinery, New York, NY, USA, 175-185. https:
//doi.org/10.1145/800017.800529

James Hiram Morris. 1969. Lambda-calculus models of programming languages. Ph.D. Dissertation.
Massachusetts Institute of Technology.

Fabian Muehlboeck and Ross Tate. 2018. Empowering Union and Intersection Types with Integrated
Subtyping. Proc. ACM Program. Lang. 2, OOPSLA, Article 112 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276482

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An
overview of the Scala programming language. (2004).

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type inference with constrained types.
Theory and Practice of Object Systems 5, 1 (1999), 35-55.

Atsushi Ohori. 1995. A Polymorphic Record Calculus and Its Compilation. ACM Trans. Program.
Lang. Syst. 17, 6 (nov 1995), 844-895. https://doi.org/10.1145/218570.218572

Jens Palsberg and Christina Pavlopoulou. 1998. From Polyvariant Flow Information to Intersection
and Union Types. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Diego, California, USA) (POPL ’98). Association for Computing
Machinery, New York, NY, USA, 197-208. https://doi.org/10.1145/268946.268963

Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. 1997. Type inference with non-structural sub-
typing. Formal Aspects of Computing 9, 1 (Jan. 1997), 49-67. https://doi.org/10.1007/
BF@O1212524

Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type Inference with
Subtyping Made Easy (Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 124 (Aug.
2020), 28 pages. https://doi.org/10.1145/3409006

Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau. 2024. When
Subtyping Constraints Liberate: A Novel Type Inference Approach for First-Class Polymorphism.
Proc. ACM Program. Lang. 8, POPL, Article 48 (jan 2024), 33 pages. https://doi.org/10.
1145/3632890

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type Inference in a Boolean Algebra
of Structural Types (Extended Version). Technical Report. The Hong Kong University of Science
and Technology. https://lptk.github.io/mlscript-paper

Lionel Parreaux, Luyu Cheng, Tony Chau, Ishan Bhanuka, Andong Fan, Malcolm Law, Ali Mahzoun,
and Elise Rouillé. 2022. MLstruct: Principal Type Inference in a Boolean Algebra of Structural
Types (Artifact). https://doi.org/10.5281/zenodo.7121838

David J. Pearce. 2013. Sound and Complete Flow Typing with Unions, Intersections and Negations.
In Verification, Model Checking, and Abstract Interpretation (Lecture Notes in Computer Science),
Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.). Springer, Berlin, Heidelberg,
335-354. https://doi.org/10.1007/978-3-642-35873-9_21

Tommaso Petrucciani. 2019. Polymorphic set-theoretic types for functional languages. Ph.D.
Dissertation. Universita di Genova; Université Sorbonne Paris Cité — Université Paris Diderot.

https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/800017.800529
https://doi.org/10.1145/800017.800529
https://doi.org/10.1145/3276482
https://doi.org/10.1145/3276482
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/268946.268963
https://doi.org/10.1007/BF01212524
https://doi.org/10.1007/BF01212524
https://doi.org/10.1145/3409006
https://doi.org/10.1145/3632890
https://doi.org/10.1145/3632890
https://lptk.github.io/mlscript-paper
https://doi.org/10.5281/zenodo.7121838
https://doi.org/10.1007/978-3-642-35873-9_21

68

Benjamin C Pierce. 1991. Programming with intersection types and bounded polymorphism. Ph.D.
Dissertation. Citeseer.

Benjamin C. Pierce. 2002. Types and programming languages. MIT press.

Francois Pottier. 1996. Simplifying Subtyping Constraints. In Proceedings of the First ACM SIGPLAN
International Conference on Functional Programming (Philadelphia, Pennsylvania, USA) (ICFP
’96). Association for Computing Machinery, New York, NY, USA, 122-133. https://doi.org/
10.1145/232627.232642

Frangois Pottier. 1998a. A Framework for Type Inference with Subtyping. In Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming (Baltimore, Maryland,
USA) (ICFP ’98). Association for Computing Machinery, New York, NY, USA, 228-238. https:
//doi.org/10.1145/289423.289448

Francois Pottier. 1998b. Type Inference in the Presence of Subtyping: from Theory to Practice.
Research Report RR-3483. INRIA. https://hal.inria.fr/inria-00073205

Frangois Pottier. 2001. Simplifying Subtyping Constraints: A Theory. Information and Computation
170, 2 (2001), 153-183. https://doi.org/10.1006/inco.2001.2963

Francois Pottier. 2003. A Constraint-Based Presentation and Generalization of Rows. In /EEE
Symposium on Logic In Computer Science (LICS). Ottawa, Canada, 331-340. http://cambium.
inria.fr/~fpottier/publis/fpottier-1lics@3.pdf

Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. 2022. Union Types
with Disjoint Switches. In 36th European Conference on Object-Oriented Programming (ECOOP
2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan
Vitek (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 25:1-25:31.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25

Didier Rémy. 1994. Type Inference for Records in Natural Extension of ML. MIT Press, Cambridge,
MA, USA, 67-95.

John C. Reynolds. 1997. Design of the Programming Language Forsythe. Birkhduser Boston, Boston,
MA, 173-233. https://doi.org/10.1007/978-1-4612-4118-8_9

Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits:
Composable units of behaviour. In European Conference on Object-Oriented Programming.
Springer, 248-274.

Vincent Simonet. 2003. Type Inference with Structural Subtyping: A Faithful Formalization of an
Efficient Constraint Solver. In Programming Languages and Systems, Atsushi Ohori (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 283-302.

Geoffrey Seward Smith. 1991. Polymorphic type inference for languages with overloading and
subtyping. Ph.D. Dissertation. Cornell University.

Scott F. Smith and Tiejun Wang. 2000. Polyvariant Flow Analysis with Constrained Types. In
Programming Languages and Systems, Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 382-396.

R. Stansifer. 1988. Type Inference with Subtypes. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 88-97. https:
//doi.org/10.1145/73560.73568

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed
Scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (San Francisco, California, USA) (POPL ’08). Association for
Computing Machinery, New York, NY, USA, 395-406. https://doi.org/10.1145/1328438.
1328486

Valery Trifonov and Scott Smith. 1996. Subtyping constrained types. In Static Analysis, Radhia
Cousot and David A. Schmidt (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 349-365.

Leo White. 2015. Row polymorphism. https://www.cl.cam.ac.uk/teaching/1415/L28/rows.
pdf

https://doi.org/10.1145/232627.232642
https://doi.org/10.1145/232627.232642
https://doi.org/10.1145/289423.289448
https://doi.org/10.1145/289423.289448
https://hal.inria.fr/inria-00073205
https://doi.org/10.1006/inco.2001.2963
http://cambium.inria.fr/~fpottier/publis/fpottier-lics03.pdf
http://cambium.inria.fr/~fpottier/publis/fpottier-lics03.pdf
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/73560.73568
https://doi.org/10.1145/73560.73568
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://www.cl.cam.ac.uk/teaching/1415/L28/rows.pdf
https://www.cl.cam.ac.uk/teaching/1415/L28/rows.pdf

69

Appendix

A Proofs and Auxiliary Definitions on Subtyping
A.1 Subtyping Derivation Shapes

Proof [Lemma 3.10] Consider a derivation D whose last applied rule is S-AssuM. This
rule application introduces a hypothesis >H into the context of its premise derivation D’.
In D', >H is kept unusable (because of the) until applications of rules S-FUNDEPTH or
S-RcpDEPTH, within the premise derivations of which H may be used, through applications
D lH of the S-Hyp rule Therefore, H is never used at the bottom level of D’. Moreover, each
DIH will have a premise of the form X.-H-%;. So we can substitute all DiH in D with a
weakened form (Lemma A.23) of the derivation D itself. After this substitution, the main
application of S-Assum becomes useless (the H it introduces is no longer used in any
subderivation), and it can therefore be removed, leaving the updated derivation D’.

It is easy to show that we can perform this S-Assum-elimination on bottom-level
subderivations of any given derivation until that derivation becomes unassuming. |

Proof [Lemma 3.12] By induction on the number of bottom-level applications of T-Suss.
The result is immediate for derivations with zero or one bottom-level applications of T-
SuBs.

For derivations with n > 2 bottom-level applications of T-SuBs, we first observe that the last
two typing rules applied must be T-SuBs (indeed, if the last rule applied was not T-SUBS,
then by definition the derivation would have no bottom-level applications of T-SuBs; and the
same reasoning goes for the second last application). The premises of the last application
of T-Suss are ¢: 7’ and 7’/ < 7 for some 7/, where the subderivation for 7: 7’ has n — 1
bottom-level applications of T-SuBs. The premises of the second last application of T-SuBs
are t: 7" and 7" < 1’ for some 7, where the subderivation for 7 : 7”7 has n — 2 bottom-
level applications of T-SuBs. The subderivations of 7" < 7’ and 7/ < 7 can be merged by
S-TRANS into a derivations for 7 < 7. We can then apply T-SUBS to the subderivation for
¢ : 7" and the new derivation for 7/ < 7 to obtain a new derivation for ¢ : T withn — 1 bottom-
level applications of T-SuBs. By IH, such a derivation can be rewritten to an equivalent
subsumption-normalized derivation. []

A.2 Bounds Context Cleanup

Bounds context cleanup removes occurrences of a type variable from the top level of its
bounds, resulting in an equivalent guarded constraining context.

70

Definition A.1 (Bounds context cleanup). The constraining context cleanup function is
defined as follows:

cleanup(€) = €
cleanup(Z-(@ < 1)) = cleanup(Z)-cleanup’ (@ < cdn(r
cleanup(Z-(1 < @)) = cleanup(E)-cleanup’ (den (1) < @)

i J
cleanup’ (@ < \\; ‘rlfin) =(a< N, ﬂ?“) where cleanup” (@ < Tlfin) =(a< n;.i“)

cleanup’(\/; 77" <) = (V/ Tt < @) where cleanup” (7" < a) = (ﬂj'n < Q)J
hen @ € { ' }
I i <\/.-2)=] € w i
cleanup” (@ < \/; 1}") { (@ <V | thioa 7') otherwise
i
when a € { El }

I MNP <a)=4 €
cleanup”(\; 7' < @) { (A |thima T S @) otherwise
L

—— Hes=
Lemma A.2 (Equivalence of constraining context cleanup). H H cleanup(H)) for all

—
—
—.

Lemma A.3 (Guardedness of constraining context cleanup). cleanup(ZE) guard. for all E.

Lemma A .4 (Equivalence of bounds under constraining context cleanup). a A ubz(@) v
Ibz(a) = a A ubcjeanup(z) (@) V bejeanup(z) (@) for all E and a.

A.3 Some Useful Subtyping Relationships

Lemma A.5 (Identity Element).

IDENTITY
SETOA TS
Sl
Proof
S-ToBo S-REFL
S ANDORDS T T <r
-ANDOR2G
T AT T AL

S-TRANS
<

Theorem A.6 (Duality of Extrema). T®=—1°

Proof

Case -. We have =1 < T by S-ToB-. For T < —1: We have T < L v —1 by S-CompL-,
which implies T < —1 by Lemma A.59.

71

Case 0. We have | < —T by S-ToB>. For =T < 1: Wehave T A =T < L by S-CompLD,
which implies =T < L by Lemma A.5-.

Lemma A.7 (Covariance of unions and intersections).

S-COVARIANCE
<o Sy

PIEE SRVA oS SRVl

Proof

S-ANDORI 16 —— S-ANDOR12¢
1< < V'Y 73 <1y <V Ty
S-TRANS S-TRANS
<V <V
S-ANDOR2¢
Vo< nVvny
| |

Lemma A.8 (Associativity and Commutativity).

SO V)Vl (Vi n) Vo

Proof
S-REFL S-Commuro —/—M8Mm™——
T1<<>T1 TQVQT3<T3VOTZ
LEMMA A.7¢
(1) T1 \/<> (T2 \/<> T3) <T1 VO (T3 \/<> Tz)
S-Assoco
1 V' (V)< (Vv) Vi
S-Assoco S-TRANS
(T] V<> Tz) \/<> T3 <<> T1 VO (T2 V<> T3) T1 \/<> (Tz V<> T3) <<> (T] \/<> T3) \/0 T
S-TRANS
OV Vi<l (Vo) Vo
|

Proof [Proof of Lemma 3.1]

Case ., =. Given(1)- Z+ 1 v <m3,derive 2)- Z+71<73and 3)- Z+ 1 < 13:

S-ANDORI]: ——
TI<STIVT) 11vn<n
S-TRANS
2)y7n<n
Similar derivation for concluding (3)-.
Case -, <. Given (2)- and (3)-, derive (1)-:
S-REFL S-REFL
@< @)rn<n 73 < T3 3 < T3
LEMMA A.7- S-ANDOR2-
TIVTHST3V T3 T3VT3ST3

S-TRANS
)1 vn<n

72

Cased,=. Given (1) X+ <1 AT, derive QP Z+n3 <1 and)2 2+ 13 < 1:

S-ANDORI119
MO <TIAT TI AT < T

P n<n

S-TRANS

Similar derivation for concluding (3)2.
Case 20, <. Given (2)? and (3)>, derive (1)2:

S-REFL S-REFL
<3 <13 Qo< QBPn<n
S-ANDOR2D LEMMA A.7-
T3<T3AT3 TVTHISTI VD
S-TRANS
AR <1V
|
Theorem A.9 (Swapping).
S-Swap
2T \/QTQ 20T3
ST 201 A°
Proof
Case?>. Given(1) X+ 1 Ao <T3,derive Q) X+ 11 <13 Vv —10:
S-CompL: —— S-CoMMUT:
<V T TV TS T VD
S-ToB- S-TRANS
T<T T<—7nvn
S-TrRANS
Mn<—nvn
S-ANDORI12: —M8M—
IS T VT (1)
S-ANDOR2? S-DISTRIB?
n<(—nvn)A(-nvmn) (vt A(-nvn)< 1 Vv (T AD)
S-TrRANS
)< 1nv(nAn)
S-REFL
M TIATST
LEMMA A.7- S-Commut
V(AT STV VT3SV D
S-TRANS
(2) V(AR <V T
S-TRANS
TI<T3V T
Case .. Symmetric.
|

Theorem A.10 (Double Negation Introduction).
S-NEG2

T T

73

Proof
S-CompL) —— S-ToBo — S-REFL
TA—-T< L 1l<——7 ——T <~
THEOREM A9 ——MMMMM S-ANDOR2-
T<1lv -1 lv—-—r<——71
S-TRANS
TS T

| |

Theorem A.11 (Double Negation Elimination).

S-NEG1
T ST
Proof
S-ToB- I S-REFL ——— S-CompL- T<
T T T <TV T
S-ANDOR22 < THEOREM A.9- T—<
T [AT AT T
S-TRANS
T T

| |

Theorem A.12 (Associativity).

S-Assoco
V) V=1V (1 V'13)
Proof
S-ANDOR11¢
) (1 V) Ve 2 VI
S-ANDOR12¢
@ V2
S-TRANS S > S S-ANDOR12¢ S > S
S ANDOR2S (V) VvP3 =1 V) Vi3 =13
@) (V) V1321 VO3
S-ANDORI1 1o
-) 71 V01 201
-TRANS
(1 v'm) Vo3 =y (2)
S-ANDOR2¢
(M V) V3 2 1V (1 VO 13)
The other direction follows from S-CommuTo (Theorem A.13 below). []

Theorem A.13 (Commutativity).

S-ComMmure

T1 VOTZETz VOTl

74

Proof
S-ANDORI12¢ > S S-ANDOR11¢
1V =n Vi =1

] Ve kv >° [y} Ve T

S-ANDOR2¢

Theorem A.14 (Distributivity).
S-DISTR

1V (A) = (1 Vo) A (1 VO T3)

Proof
Case ¢, >° direction. By S-DISTRIBo.
Case -, < direction.
S-REFL S-ANDORI1 1+ S-REFL S-ANDOR12-
T ST T ATZIST T ST T AT3ST3
LEMMA A.7- LEMMA A7
IvimAn)<TIvVD TIvimAn)<TIVvH
S-ANDOR2D
nivinan)<(nvn)A(nvn)

Case D, > direction. Symmetric.

Theorem A.15 (Absorption).
S-ABSORP

TV (T A1) =1

Proof

Case ¢, =° direction. By S-ANDORI11¢.

Case -, < direction.
S-REFL S-ToB-
T <7 n<T
S-ANDOR2- S-REFL —Mm™
TI<TI AT TIATQSTI AT
MruvmAan)<(mAT)v (T AD)

LEmMA A.7

(0))
S-ANDOR]1D —mM8Mm8™¥———
A(Tvn)<n

S-DISTR?
TAT)vimAan) <t A(Tvn)
(mAT)v(nAan) <

S-TRANS
Tv(nAn) <

S-TRANS

Case 9, > direction. Symmetric.

75

Theorem A.16 (Negation contravariance).

S-NEGINV
ZETI<™

X1 <1

Proof
S-ANDORI12-
1< n<lvn
S-TRANS
n1<lvn
S-ComMUT THEOREM A.9-
HATISTIA T TIA <L
S-TRANS
AT <L
THEOREM A.99
1) —n<lv-n
S-ToBO ———— S-REFL
1<—n -7 < 7T
S-ANDOR2-
Lv—-1<n
S-TRANS
—T) < T
| |
Proof [Proof of Theorem 3.2]
—Tp < T
S-NEeGINV - S-NEG1 —
— T — T — T, T
S-NEG2 ————— S-TRans n= - n=
T < — T, —— Ty < T
S-TrRANS - - - “

Tm < Tn

Taking (n,m) = (1,2) and (n, m) = (2, 1) yields the desired results.]

Theorem A.17 (De Morgan’s Laws).

S-DEMORGAN

=(11 vV’ 1) =—1 A° —1»

76

Proof
S-CompL- ——— S-REFL
T<tv-t <
LeEMMA A.7- LEMMA A 8-
Tva<(tv-t)vnr (tv-t)va<(tva)v -t
S-TRANS
MTva<(trva)v -t
S-REFL S-CompL-
TST T<nv-—-m
LEMMA A.7- S-Assoc-
TvT<tv(nrv-—n) Tv(nv-n)<(tvna)v-n
S-TRANS
@QrvT<(rvm)v-m
S-ANDORI - ——— S-ANDOR12: ———
T<Tvnm 1) T<nvT 2)
S-TRANS S-TRANS
T<(rva)v-t T<(rvm)v-nm
LEMMA A.79
BTATL(rva)v—1)A((tvnr)v—n)
S-REFL S-REFL
< T<T
S-ANDOR2Y
TSTAT 3)
S-TRANS
@DT<((rva)v—-1)Ar((rvn)v —n)
S-DISTRIBO
“) (rva)v=1)a((rvra)v-n)<(rvna)v (=T A—n)
S-TRANS
G)T<(rvna)v (—1A—n)
S-ComMMUT-
5) (rvra)v(—tA—-n)<(—~1tA—-r1)Vv(TVvn)
S-TRANS
T<(—~tA—-m) v (tvn)
THEOREM A.9
Ta=(tva)<—TA-7
LeEMMA A.5
—(tva)<—TA-T
—7 A =t < —(7 v 7) can be derived by similar reasoning. [

A.4 Lemmas on Subtyping Entailment
Lemma A.18 (Reflexivity and weakening). X-%' = (>)Z for all and ¥'.

Proof By repeated applications of S-CoNs or S-CoNs> on S-Hyp. [
Lemma A.19 (Transitivity). I[f X =Y and ¥ =", then 2= X",

Proof By straightforward induction on subtyping entailment derivations, making use of
Lemma A.23 for cases S-CoNs and S-CONS>.]

Lemma A.20 (Merging). If X = X} and X, = X, then X1-Xp = X -2,

71

Proof By straightforward induction on subtyping entailment derivations for X, = X/, mak-
ing use of Lemma A.18 and Lemma A.19 for case S-EmPTY, and Lemma A.23 for cases
S-Cons and S-ConNsp. []

Lemma A.21 (Guarding). IfZE Y/, then bX = >Y/.

Proof By straightforward induction on subtyping entailment judgements. []
Lemma A.22 (Unguarding). If £ = ¥/, then <X = <.

Proof By straightforward induction on subtyping entailment judgements. []

Lemma A.23 (Weakening of subtyping contexts in subtyping judgements). I[f X7 <n
and ¥ =3, thenY =1 < m.

Proof By induction on unassuming subtyping derivations. The only non-trivial cases are
S-Hyp, S-FUNDEPTH, and S-RCDDEPTH.

Case S-HyP. Then the premise of the rule is (7 < «r) € . By straightforward induction on
subtyping entailment judgements, ¥’ =X and (r < 7) € X implies ' 7 < 7.

Case S-FuNDEPTH. Then we have T = 71 — 1, for some 7 and 1, and 7 = 71 — m, for
some 71 and m,. The premises of the rule are <X - m; < 17 and <Z - 7 < 1. By
Lemma A.22, Y = ¥ implies <%’ = <Z. Then by IH on the premises, we have <%’
m1 < 11 and <%’ + 7 < 5. Then we have X/ 11 — 15 < m; — 1 by S-FUNDEPTH.

Case S-RcpDEPTH. Then we have 7 ={x:7; } for some 7; and x, and 7 = {x:m }
for some x1. The premise of the rule is <X+ 7; < 7. By Lemma A.22, ¥ =3
implies <X’ = <. Then by IH on the premise, we have <%’ I 71 < 7. Then we have
¥ {x:7 }<{x:m } by S-RCDDEPTH.

Corollary A.24 (Weakening of guarded subtyping contexts in subtyping judgements). If
PX-r<nmand X EY then>Y =1 <

Proof By Lemma A.21 and Lemma A.23. []

Lemma A.25 (Weakening of guarded constraining contexts in consistency judgements). If
S+EL-E; pcons. and >E. E>E,, then L+ >EL-E; p cons..

Proof By induction on consistency derivations.

Base case. For the base case, we have E = €. Then by the base case of the definition of
consistency, we have:

Y+ >EL ; p cons. (1)

78
Inductive case. For the inductive case, we have p = p; o p; for some p; and p,, where
dom(p1) = { a } for some a. The premises of the rule are:
DBy DEGPIEg P12 p1Ea)
P1Z - DELDEL- 1By ; 02 CORS. 3)
where split,, (E, dom(p;)) = (Eq, E). From the assumption, we have:
>E, = >E, “
By Lemma A.23 with (4), (2) implies:
PEL >Ry P1Ea p1ZFE p1Eg 5)
By IH on (3), we have:
P1Z BB B>EGp 1By ; p2 cORS. 6)
Then by the inductive case of the definition of consistency, (5) and (6) imply:

T+ >EL-E; p cons. @)
n

Lemma A.26 (Weakening of subtyping contexts in consistency judgements). If X
>EL-E; pcons. and E,-E-Y =3, then ¥ +>EL-E; p cons..

Proof By induction on consistency derivations.

Base case. For the base case, we have E = €. Then by the base case of the definition of
consistency, we have:

¥ B, ; p cons. ()

Inductive case. For the inductive case, we have p = p, o p; for some p; and p,, where
dom(p;1) = { a } for some «@. The premises of the rule are:

PEL-PEL01Er P12 E p1Eq)
P12 DELDEL 1By ; p2 coOns. 3)
where split,, (2, dom(p;)) = (Eq, E). From the assumption, we have:
PELEY EX 4)
By Lemma A.38, (4) implies:
BE, DR P Ea 01T E P12 5)
By Lemma A.23 with (5), (2) implies:
DBy DB 01Ea P12 E p1Ba (6)
By IH on (3) and (5), we have:

o122 F>EL bRy 012y s o2 cons. @)

79

Then by the inductive case of the definition of consistency, (6) and (7) imply:

¥ >E.-E; p cons. ®)

Lemma A.27 (Weakening of constraining contexts in typing judgements). If 5, I'1:7
andZ' =5, then 2, -t : .

Proof By straightforward induction on typing derivations. The only non-trivial vases are
T-Suss and T-VAR2.

Case T-Suss. By IH on the first premise, Lemma A.23 on the second premise, followed
by T-Suss.

Case T-VAR2. TI'(x)=VE".7/
We first notice that the subtyping entailment judgement is transitive by straightforward
induction on subtyping entailment judgements, applying Lemma A.23 to the second
premise of S-Cons. The first premise of S-ALL is E = p(E”), which implies ' =
p(E”) by transitivity with the assumption ' = E. The result then follows from

Lemma A.23 on the second premise S-ALL, followed by S-ALL and T-VAR2.

A.5 Lemmas on Substitutions

Lemma A.28 (Preservation of typing under substitution). If E,I'\—t:7 and D wf, then
p(E), p(T) = p(1) - p(7).

Proof By induction on typing derivations of E,I"}-1¢:7.

Case T-Suss. By IH on the first premise, we have p(E), p(T') - p(¢) : p(71). By preser-
vation of subtyping under substitution (Lemma A.29) on the second premise,
p(B) p(11) < p(12). The result then follows from T-SuBs.

Case T-OBJ. By the definition of type substitution, p(#C A {x:7 }) =#C A {x: p(7) }.
By the definition of term substitution, p(C {x=7})=C {x=p(r) }. By IH on
the premises, we have p(E), p(I') - p(¢) : p(7). Then p(E), p(I) = C {x=p(¢t) } :
#C A {x:p(7) } by T-OBy, ie., p(B), p(D)Fp(C{x=1t}):#C A p({x:7}).

Case T-ProJ. By the definition of term substitution, p(¢.x) = p(#).x By IH on the premise,
we have p(B),p(D)+t:p({x:7}), ie, p(E),p(T) - p(t):{x:p(7)} by the
definition of type substitution. Then p(8), o(T') - p(¢).x: p(r) by T-Proy, i.e.,
p(E), p(T) k- p(t.x) : p(7).

Case T-VAR1. Then ¢ = x. By the definition of term substitution, p(x) =x. From the
premise and the definition of typing context substitution, we have p(I')(x) = p(7).

p(7).

Then p(E), p(I') = x: p(7) by T-VARrL, ice., p(E), p(T') - p(x):

80

Case T-VAR2. Then ¢ =x. By the definition of term substitution, p(x) =x. From the

Case T-ABs. By the definition of type substitution, p(1; —) = p(11)

premise, we have E-T'(x) <"Ve.r, where I'(x) = VE'. 7’. Note that the judge-
ment <" can only be derived by S-ALL, then from the premises of S-ALL, we
have E= p'(E') and E p’'(7') < 7. By preservation of subtyping under substitu-
tion (Lemma A.29), we have p(E) = p(p'(E')) and p(E) - p(p’(7')) < p(7). Then
p(E) - VE'. 7/ <"Ve. p(r) by S-ALL. Note that by the definition of typing context
substitution, I'(x) = VE'. 7/ implies p(I')(x) =VE'. 7/, then p(&), o(T') - x: p(7)
by T-VAR, i.e., p(B), p(I') - p(x) : p(7).

— p(m).ByIHon
the premise, we have p(Z), p(T-(x:71)) - 1: p(72), ie., p(E), o(D)-(x:p(11)) -
t: p(12) by the definition of typing context substitution. Then p(Z), o(I) - Ax. t :
po(11) = p(12) by T-ABs, i.e., p(E), p(I) - Ax. t: p(11 — 12).

Case T-App. By IH on the premise, we have p(E), p(T') 11 :p(11) and p(Z), p(T) —

to:p(t1 > 1), ie., p(E),p(l)ty:p(t1) — p(r2) by the definition of type
substitution. Then p(E), p(T') -1 t; : p(12) by T-APpp.

Case T-Asc. By the definition of term substitution, p(t:7) = p(¢) : p(7). By IH on the

premise, we have p(S), (") - p(r) : p(r). Then p(E), p(T) - (p(1): (7)) : p(7),
ie., p(E), p(I) Fp(t:7):p(7).

Case T-CasEl. By the definition of type substitution, p(L) = L. By the definition of term

Case T-CAsg2. By the definition of term substitution, p(case x =1t of _—1

substitution, p(case x =] of €) = (case x = p(t;) of €). By IH on the premise, we

have p(E), p(I') = p(11) : p(L), ie., p(E), p(I) - p(n1): L. Then p(E), p(I') -
casex=p(t;)ofe: L, ie., p(E),p(T)p(casex =1 of €): p(L).

(case x =p(t;) of _— p(r2)). By IH on the premises, we have p(E), p(T
p(t1):p(m1) and p(E), p(I(x:11)) - p(12) : p(7), ie, p(E), p(I)-(x: p(71)
p(t2) : p(t) by the definition of typing context substitution. Then p(E), p(T’
case x = p(t;) of _— p(t2) : p(7), i.e., p(E),p(I') - p(case x =1; of _—1):
p(7).

)=
)=
)=
)=

Case T-Casg3. By the definition of term substitution, p(case x =¢; of C —>1,, M) =

(case x=p(t;) of C—p(tr), p(M)). By IH on the first premise,
we have p(B), p(D)p(t1): p(#HC AT v —#C A 1), ie., p(E),o(D)+p(n):
#C A p(11) v ~#C A p(12) by the definition of type substitution. By IH
on the second premise, we have p(B),p([(x:7))F p(t2):p(7), ie.,
p(B), p(T)-(x:p(11)) - p(t2) : p(r). By IH on the third premise, we have
p(E), p(I(x:12)) - p(case x=x of M):p(7), ie., p(E), p(I)(x:p(n))
case x = x of p(M) : p(7) by the definition of term substitution. Then p(Z), p(T") -
case x=p(t;) of C—p(ts), p(M):p(r) by T-Case3, ie., p(8),p(l)H+
p(casex =1t of C > 1, M): p(7).

Lemma A.29 (Preservation of subtyping under substitution). If £+ 1) <1 and D wf,
then p(Z) = p(11) < p(12).

Proof By induction on subtyping derivations of X - 11 < 1.

81

Case S-REFL. The result p(7) < p(7) follows immediately from S-REFL.

Case S-ToBo. By the definition of type substitution, p(T°)= T°. By S-ToBo,
p(r) < T e, p(r) < p(T°).

Case S-ComPLo. By the definition of type substitution, p(7 Vv° —7) = p(7) V° p(—71) =
p(t) v —p(r) and p(T°)= T°. By S-ComprLo, p(1)V°® —p(7)=° T°, ie.,
p(r v —1) = p(T°).

Case S-ANDOR11¢. By the definition of type substitution, p(7; V° 12) = p(11) V° p(12).
By IH on the premise, we have p(Z)F p(71)>p(r). Then p(Z)+
p(11) V¢ p(12) =° p(7) by S-ANDORI1 10, i.e., p(Z) - p(11 v 1) =° p(7).

Case S-ANDOR12¢. Symmetric to the case above.

Case S-ANDOR2¢. By the definition of type substitution, p(7; v° 72) = p(71) Vv° p(72). By
IH on the premises, we have p(X) - p(1) =° p(11) and p(Z) - p(1) =° p(12). Then
p(X) = p(7) = p(11) v° p(12) by S-ANDOR20, ie., p(Z) - p(T) = p(11 V° 12).

Case S-DiSTRIBo. By the definition of type substitution,
p(T A (11 VP 1)) = p(7) A° p(T1 V* 12) = p(7) A% (p(T1) V p(T)
and o((t A1)V (T A° 1)) = p(‘r A1) VO p(t A1) = (p(T)

A pl1)) V(o) A p(52). By S-DistRIno. () 2 (p(r1) v* p(r2)) < (p(7) A pl(x)
V (p(x) ° p(e2)). i plr A° (71 v° 1)) € pl(x A1) VP (1 A0 T2)).

Case S-TrANs. By IH on the premises, we have p(Z) - p(19) < p(11) and p(Z) - p(11) <
p(12). Then p(2) - p(10) < p(12) by S-TRANS.

Case S-WEAKEN. By IH on the premise, we have p(1) < p(12). Then p(Z) + p(11) <
p(72) by S-WEAKEN.

Case S-AssuM. By the definition of subtyping context substitution, p(E - >(1) < 1)) =
p(E) ->(p(r1) < p(r2)). By IH on the premise, we have D-p(E->(11 <)) -
p(11) < p(n2), i, Dp(E)->(p(11) <p(12)) - p(t1) < p(r2). Then D-p(E) H
p(11) < p(12) by S-Assum.

Case S-Hyp. By the definition of subtyping context substitution and the H € ¥ judge-
ment, it is straightforward to show that if (r <7’) € %, then (p(7) < p(7)) € p(2)
by induction on the size of X. Applying to the premise (1) < 12)€ X, we have
(p(11) < p(72)) € p(X). Then p(E) - p(71) < p(2) by S-HyP.

Case S-FUNDEPTH. By the definition of type substitution, p(t — 7') = p(17) — p(7’'). By
IH on the premises, we have <p(Z) - p(19) < p(71) and <p(2) - p(12) < p(13).
Then <p(X) + p(11) — p(m2) < p(10) — p(13) by S-FUNDEPTH, i.e., <p(Z)+
p(r1 — 1) < p(10— 13).

Case S-FUNMRGo. By the definition of type substitution, p((t; V° 13) — (12 A°14)) =
p(ti Ve 13) = p(r2 A° 1) = (p(11) V° p(13)) = (p(72) A° p(74)). and p(11 —
AT =) =p(t1 > 1) Ap(ts > 1) =p(t1) = p(2) Ap(t3) = p(ra). By
S-FuNMRGe, — (p(11) V° p(13)) = (p(12) A% p(74)) Z° p(T1) = p(72) A p(73) =
p(ta),1e., p((11 Vo 13) = (12 A°12)) =° p(11 > T2 AT3 — T4).

Case S-RcpDEPTH. By the definition of type substitution, p({x:7}) ={x:p(7) }. By
IH on the premise, we have <p(Z) - p(71) < p(12). Then <p(Z) {x:p(11) } <
{x:p(1) } by S-RCDDEPTH, ie., <p(Z) - p({x:11 }) <p({x:712 }).

Case S-RCDMRGo. By the definition of type substitution, p({x:7 v* 1 })={x:
plr Vi) = {xip(m) v p(m)} and p({xim} v {xin) —p({x:
1) Veol{x:n})={x:p(n1)} v {x:p(r2)}. By S-RcpMrGo, {x:

82

p(r) Vv p(m) } < {x:p(m) } v {x:p(r) }, ie. p({x:miv'm}) < p({x:
T} ve{x:n}).

Case S-RcpTop. By the definition of type substitution, p(T) =T and p({x:7 } v
T)=p{x:11})vplr)={x:p(1r1)} v p(r). From the premise, we have p(7) €
[Py 12}, p(r2—3) b e () € {{y™ 1 p(r2) } plr2) > p(r3)} by the
definition of type substitution. Then 7 <{x:p(71)} v p(r) by S-RcpTop, i.e.,
p(r)<p({x:mi}v1)

Case S-CLsSuB. Note that the declaration context rooted in by the subtyping context
contains all the information required to determine the superclass relation, i.e., Sp.y =
Sgp.z/. Then the premise C; € S(C[a]) implies C, € S(Cy [@]). By the definition of
type substitution, p(#C) =#C. Then p(X) - #C| < #C, by S-CLsSUB, i.e., p(X) -
p(#C1) < p(#C2).

Case S-CLsBOT. As noted in the case above, S¢y.y = Sgy.5/. By the definition of type sub-
stitution, p(#C| A #Cy) = p(#C1) A p(#C2) =#C) A#Cy and p(L) = L. Then the
premise C| ¢ S(Cz[a]) and C; ¢ S(C1[B]) imply C; ¢ S(Ca[@]) and C, ¢ S(C1[B])-
Then p(Z) - #C; A #C> < L by S-CLSBOT, i.e., p(Z) - p(#C1 A #C2) < p(L).

Case S-Expo. We show thatif X7 exp. 7/, where D wf, then p(X) - p(7) exp. p(7’).
We consider rules that can derive the judgement X 7 exp. 7’

Case S-ALsSExp. Note that the declaration context contains all declarations, i.e.,
deX implies de D-T'. Then the premise implies (type A[a; “5]= T) €

p(Z). By the definition of type substitution, p(A[7;'€5]) = A[p(‘r,)]

By the well-formedness of D, TV(r)<{@;' 5}, which implies that

all type variables in [a;— i€]Jr are introduced by the substi-

. . — €S
tution {@;—>7 5}, and p([a; =71 °]7) = [a;i — p(7;) §]Jr. Then
——i€S ———— €S i

p(X)-Alp(ri)] exp. [ei—p(r;) Jr by S-ALsExe, ie., p(Z)+
p(A[T %)) exp. p([@=T <°]7). .

Case S-CLsExp. Similar to the case above, noting that p(#C A [a; = 1, < |7) =
p(#C) r p([ar=T7 “*]7) =#C A p([@=77 “°]1).

Then the premise X} 7 exp. 7’ implies p(X) p(1) exp. p(7'), and p(Z)

p(1) =° p(7') follows from S-Expo.

Corollary A.30 (Preservation of subtyping entailment under substitution). If £ =X’ and
D wf, then p(Z) = p(X).

Proof By induction on the derivation of subtyping entailment judgement X = X',

Case S-EMPTY. Immediate.

Case S-CoNs. By the definition of subtyping context substitution, p(X'-(1; <)) =
p(Z)-(p(r1) < p(12)). By IH on the premise X=3', we have p(Z)E p(X).
By preservation of subtyping under substitution (Lemma A.29) on the premise
11 <72, we have p(Z) - p(r1) < p(12). Then p(X) = p(X')-(p(11) < p(72))
follows from S-ConNs, i.e., p(2) E p(T'-(11 < 1)).

83

[
Lemma A.31 (Congruence of substitution on types). I[f L+ =7, then £+ [a@ — 7|7 =
[@— 7’7 forall T.
Proof By straightforward induction on the syntax of 7. The only non-trivial cases are:
Case 7 = 1| — 1. From the assumption, we have:
Str=n 9]
By Lemma A.23 with Lemma A.18, (1) implies:
Ernrn=n ()
By IH on (2), we have:
<t [a - nln =[e— '] 3)
Bt [rln=[a—n'|n 4)
Then by S-FUNDEPTH on (3) and (4), we have:
S la—n)(n - n) =l a](n - 1))
Case 7 = { x : 7y }. From the assumption, we have:
M EL (6)
By Lemma A.23 with Lemma A.18, (6) implies:
Er+nr=n @)
By IH on (7), we have:
Tt [a—n]n =[a— '] (®)
Then by S-RcDDEPTH on (8) and (4), we have:
Sla—nal{x:int=la—a{x:7})
Case 7 = @. From the assumption, we have:
Shr=na
ie, Xt |a—rn]a=[a—n]a (10)
[]

Lemma A.32 (Congruence of substitution on guarded types). If Z+—n=n" and a ¢
TTV (1), then >X+ [a — wt]T = [@ — 7']7.

Proof By straightforward induction on the syntax of 7. The only non-trivial cases are:

84

Case 7 = 11 — 1». From the assumption, we have:
Shn=n
By Lemma A.23 with Lemma A.18, (1) implies:
Trkr=n
By Lemma A.31 on (2), we have:

I [a—r]n =[a—n']n

Ik [a—rln=[a—n']n
Then by S-FUNDEPTH on (3) and (4), we have:
B [a r](n = 1) =[a— 7|1 - 1)
Case 7 = {x : 7y }. From the assumption, we have:
Shr=na
By Lemma A.23 with Lemma A.18, (6) implies:
Ehr=n
By Lemma A.31 on (7), we have:
<+ (e r)n =[a—a'|n
Then by S-RCDDEPTH on (8) and (4), we have:
X [a—rl{x:t }=[la—na{x:7}

Case 7 = . Impossible since @ ¢ TTV (7).

Corollary A.33. 7= [a— @ A ubs(a) v Ibs(@)]T forall 7.

Proof By Lemma A.31 on X a=a A ubs(a) v lbs(a).

Corollary A.34. Ifa ¢ TTV (1), then >+ 7 = [@ — a A ubs(a) v Ibg(a)]r.

Proof By Lemma A.32on X a=a A ubs(a) v lbs(a).

ey

@

3
“

&)

(6)

(N

®)

€))

Lemma A.35 (Inlining of bound). IfZ-(a <° 7r) 7 < 7/, then pZ->(a <° 7r) I pt < p7/,

where p = [@ — a A° 7].

Proof By straightforward induction on unassuming subtyping derivations. The only non-

trivial case is S-HYP when (7 < 7') = (@ <° 7).

85

Case S-Hyp when (7 < 7') = (@ <°). Let cleanup((a <°n)) = (@ <° ') By
Lemma A.2, Lemma A.3, and Lemma A.4, we have:

(a<’m)H (e <®n') (1)
(@ <°n') guard. 2
an®’rn=an®n 3)

By S-Trans on (@ <° ') - a = a A° 7’ and (3), we have:
(@<’ Fa=an’n “4)
By Lemma A.32 on (2) and (4), we have:
(e <) ' =pn’ 4)
By Lemma A.7 on (4) and (5), we have:
>a<®n)an®n =(aA°x) A° pr’
ie, >@<’a)an®n =plann) (6)
By S-TrANS on (3) and S-ANDOR123, we have:
ann<n 7
By Lemma A.29, (7) implies:
pla n®m) < pr (®)
Then by S-TRANS on (3), (6), and (8), we have:
pla<’n)an®n<pr €))
Then by Lemma A.23 with (1), (9) implies:
Ma<’m)an’n<’pn

ie., >(a<’n)rpa<®pn (10)

A.6 Lemmas on Consistency
Proof [Lemma 3.3] From the assumptions, we have:

S & cons. (D
SEFT<T (2

From the definition of weak consistecy, (1) implies:

(a—>7)€p

pE>(a=T) = pE 3)
for some p. By Lemma A.29, on (2) implies:

pE-pEF pt < pt’ 4)

86

Then by Lemma A.23 with (3), (4) implies:

(a1)ep

pZ>(a=1) Fpt < pt’ 5)
Proof [Lemma 3.4] From the assumptions, we have:

S+ 2 cons. (1
TEFTST (©))

By Lemma 3.3 on (1) and (2), we have:

pz-@(“H”) i pr<pt 3)
for some p. By S-Hyp, we have:
G g @)
By Lemma A.32 on (4), we have
sla=m """ Lr=pr 5)
sla=m " L =pr ©)
Then by S-TRANS on (5), (4), and (6), we have:
p2~m(wH”) <t (7
]
Proof [Lemma 3.6] By induction on consistency derivationsfor the following statement:
it bE, B; pcons., then pE, (@ =1) X .p E pE.

If E is not guarded, we can replace it with cleanup(E) before applying the lemma, and
restore it back to 2 in the conclusion. Therefore we can assume E guard..

Base case. The base case is trivial since E = €.
Inductive case. For the inductive case, we have p = p; 0 p; for some p; =[a+— a A
ubz (@) v lbz(a)], p2, and @. The premises of the rule are:

PEL->EL 1B 012 E 1B (D
P12 DEL>Ey p1E 4 5 p2 cons. 2)
where split (2, dom(p2)) = (B4, E). By IH on (2), we have:

- ———B—oT)EM -
>E,->(B=1) 2012 = P201B o
, . ———(B1)Em a
ie, DE.>(B=T) L= pEy 3)

87

By Lemma A.23 with Lemma A.18, (3) implies:

————(B—>T)em

>E.>(B=T) >oy(@=a Aubz(a) v Ibz(a)) pE E pE o
ie, SES(B=1) | pLFpEa 4
By S-ANDOR22 on (1), we have:
DB DBy 1By P12 = pra < prubs, (@)
ie, DE.PELPIEap1ZEa Aubz(a)vibs(a)<pjubs(a) (5)
By S-TrANS on S-ANDOR12- and (5), we have:
PELPEL 1B 012 E lbs(a) < prubs(a) (6)
By Corollary A.34, we have:

bEsHT=[a—a Aubz, () v ilbs,(a)]T

ie., DEyk1=[a—aAubz(a)vibs(a)]r

ie, PDE FHT=pIT @)

for all T where @ ¢ TTV (7). Since E guard., we have @ ¢ TTV (ubz(«)). Then by
S-TRrRANS on (6) and (7), we have:

PEL DBy 1By 012 bz(a) <ubs(a) 8
By S-TrRANS on S-ANDOR11-/S-ANDORI12- and S-Hyp, we have:
(a=a A ubg(a) v Ibs(a))-(Ibz(a@) <ubz(a)) FT< @)

for each (r < @) € E,. By S-TRANs on S-Hyp and Lemma A.7- on S-ANDOR122 and
S-REFL, we have:

(a=a Aubs(a) v Ibz(a))-(Ibz(a) <ubz(a)) e <ubs(a) v Ibz(a) (10)
By S-TraANSs on (10) and S-ANDOR2- on S-REFL and S-Hyp, we have:
(a=a A ubz(a) v Ibs(a))-(Ibz(@) <ubs(a)) - a < ubz(a) (11)
By S-TraNs on (11) and S-ANDOR112/S-ANDOR12D, we have:
(a=a Anubg(a) v bz(a)) (Ibe(a) <ubg(a))Fa<T (12)
for each (@ < 1) € E,. Then (9) and (12) imply:
(@ =a A ubz(a) v ibz(e))-(Ibs(@) < ubz(a)) = Eq (13)
Then by Lemma A.23 with Lemma A.21 on (13), (8) implies:

>E.>(a=a A ubz(a) v ibz(a)) lbs(a) <ubz(a) p1Ex-012 = be(a) < ubz(@)
14

By S-AssuMm on (14), we have:
PE.->(a=a Aubg(a) v ibs(a)) p1Eqa-01Z E bs(a@) <ubs(a) (15)

88

By Lemma A.23 with (15), (13) implies:
>EL-(a=a A ubz(a) v Ibz(a)) p1Bap1ZEEy (16)
By Lemma A.23 with Lemma A.21 on (16), (1) implies:
>E.>(a=a Aubz(a) v Ibz(@)) p1Es-p1Z E p1Ey an
By Lemma A.29, (17) implies:

>02En o2 (@ =a A ubs(a) v Ibz(a)) p201E 0 02012 F p201Eq
ie, ppE.>pr(a=a Aubz(a) v ibs(a)) pEypZ E pEy (18)

By Lemma A.23 with (4), (18) implies:

- - ———(B—1)Ep -
>0y Ey >EL > (B=T) PpEE PRy (19)
By Lemma A.31 on S-HyP, we have:
—D(ﬁET)(BHT)Epz - 7= por (20)

for all . By S-TrANS on S-Hyp and (20), we have:

. ————(B—1)ep —
E.>(B=1) ? E 0 Es 20

By Lemma A.23 with Lemma A.21 on (21), (19) implies:

- o (B—T)Ep —_
>E.->(B=T) P E pE, (22)
Then by Lemma A.20, (22) and (4) imply:

. ——(B—1)ep -
>EL->(B=T) PLE PEgpE

ie, sEnB=1) " pxrpE 23)

Lemma A.36 (Congruence of substitution on consistency). If[a — 7|Z+ BB, [@ — T]E;
o cons. and >E, —1=1', where T and 7' are not type variables, then [a— 7'|Z
>E.-[a— T'|E; p’ cons. for some p’, where dom(p') = dom(p).

Proof By induction on consistency derivations for the statement: if p"[@— 7|Z+

(y—1y)ep”

pE.-p"la—T|Z; p cons. and >E. 7=7" and B y=T, , where T

and 7’ are not type variables and y = y’(yHy V9" and dom(p) n dom(p”) = &, then

p'a—TNZFEyp"[a—T']|E; p’ cons. for some p’, where dom(p’) = dom(p).

Base case. For the base case, we have E = €. Then by the base case of the definition of
consistency, we have:

o'~ T+ E 0" [a— T|E; id cons. (1)

&9

Inductive case on «. For the inductive case on «, i.e., where p = p, o p; for some p; and
02, where dom(p;) = { @ }, the preimses of the rule are:

DB, DB, 012, p1p" e — 7] E p 1B,)
p1p" @ — 1|2 B >E), 018, ; p2 cons. 3)
where split , (0" [— T]E, dom(ps)) = (£}, E',) and pi=[a—an
ubpiio s 1z(@) V Ibpria s -12(@)]. Since 7 is not a type varialbe, we have:
B, =€ “)
2, =p"la—1]E 5)
p1=[a—q] (0)
Then (3) implies:
o'a—1]Z B p"[a— T]E; ps cons. (7

Then by IH on (7), we have:
p'a— 1 ZF>Eup"[a— 7|2 ; pa cons.
ie, p'la—7ZFbEsp"[a—1']E; p2opi cons. (8)
for some p!,, where dom(p,) = dom(p).

Inductive case not on @. For the inductive case not on a, i.e., where p = p; o p; for some
p1 and py and B # @, where dom(p,) = { B }, the premises of the rule are:

>E, >Ep012g010"[a— 1|2 p1Bp)
p1p"[a— 7|2 >E.>Ep-p1 B 5 p2 cons. (10)

/

where splitg(p"[a — 7]E, dom(p2)) = (B, E) and p1=[B—B A
ubpria s r12(B) V bpria o r12(B)]. Let splitg(E, dom(pz)) = (Eg, Ep). Since

T is not a type variable and vy =7’(YH7 Jer , we have Ej = p"[a — 7|25 and

Ely = p"[a— 7|2 Then (9) and (10) imply:
>Ey>p"[@ = T|Eg-p1p"[@ = T|Eg-p1p"[a = T]EE p1p"[a—T]Es (11)
p1p"[a = T|Ek pE.>p"[a = T|Egp1p" [T]E4 5 prcons. (12)
Expanding the composition, we have:

P1 Op” = [7 '_)plTy(YHTy)eplla ﬁ ’_)ﬂ A ubp”[(n—»T]E(ﬂ) Vv lbp”[a*—wr]E(ﬁ)]
(13)

From the assumption, we have:

(y—1y)€p (14)

By Corollary A.33, we have:

p'la—1|Egr=[B— B Aubpria)zs(B) V bpria o rz5(B)]m forall
ie, p'la—t]Egn=[B—B Aubyiaz(B) V lbyias2(B)n forall m
ie, p'la—71|Eg-n=pin foralln (15)

90

By S-TraNs on (14) and (15), we have:

7"

(
= = (y—1y)ep
>Ey-p"|a— 1|8 -y =piTy,

Taking m = B, (15) implies:
p'la—71]Eg=B=B Aubyias2(B) V bprias2(B)
Then (16) and (17) imply:

(1
p p— (y+—1y)EpPIOp
B a5y =1y

Then by IH on (12) and (18), we have:
p1p"[a— T |Z b " [a = 7]Eg-p10"[@ — T|Eg 5 p) cons.

for some p, where dom(p?,) = dom(p.).
From the assumptions, we have:

PE.FT=T
By Lemma A.31, (20) implies:
bE. F[a—Tln=[a—1r foralln
By S-TrRANS on Lemma A.18 and (21), we have:
BBy [a— 7| E [a— T]Eg

By Lemma A.29, (22) implies:

= " =

0" B [0 715 b 0 > T
By Lemma A.31, (14) implies:
Evbn=p"n foraln

By S-TrANS on Lemma A.23 and (24), we have

)

Es Ep B
Then by Lemma A.23 with (25), (23) implies:
BB 0" — '|Eg = p’ e — T]|Ep
Then by Lemma A.23 with (26), (19) implies:
p1p"[a— T E - pEe >p"[a > T']Egp1p"[a = T2 p) cons.
Similarly, we have:
"

>Ey-p” [a— T/]Eﬂ'p”[a’ — 72k p"[a— 850" [@—T]Z
By Lemma A.29, (28) implies:

>p1Es-p1p" [= TEg-p1p"[a— |2 E p1p"[a = 1]25-p10"[a — 7|2

By S-TrRANS on Lemma A.18 and (15), we have:

Espa—1]Eg F p1Es

(16)

a7

(18)

19)

(20)

2y

(22)

(23)

(24)

(25)

(26)

27

(28)

(29)

(30)

91

Then by Lemma A.23 with (30), (29) implies:
>E>p"[a = 7|Eg-p1p" [0 — T|Egp10"[a = T|EE p1p"[@ = T]Ez-p1p"[a — T]Z
(3D
Then by Lemma A.23 with (31), (11) implies:
>Es-bp"[a— 1|Eg-p10"[@ = T'|Egp1p"[a = T'|Z = p1p"[a—T]Es (32)
Similarly, we have:
BB, >p" [— 1]85-p10" @ — T]Es = p1p"[a— T'|Eg (33)
Then by Lemma A.19 on (32) and (33), we have:
>E, >p" [7|8g-p1p" [0 T|Eg p10"[a = T|ZE p1p"[a = 7|2 (34)
Then by Lemma A.23 with (26), (34) implies:
>Es-bp"[a— T'|Eg-p1p"[a— T|Egz-p1p"[a — T2 p1p"[a— 7B (35)

Let p} = [B— B A ubyriq s r12(B) V bpria — +7=(B)]. Since 7 and 7/ are not type
(y—y)ep”

variables and y =y’ , we have:
pr=[B— B~ p"la—tlubz(B) v p"[a— 7]ib=(B)] (36)
pr=B—Brp"la—1ubz(B) v p"la— 7']Ib=(B)] (37)
By Lemma A.29, (21) implies:
>p"Es b p"[a = tlubz(B) = p"[a — 'ubz(B) (38)
>p" By 1= p"[a > 7]lbz(B) = p"[a — 7']ib=(B) (39)
By Lemma A.23 with (25), (38) and (39) imply:
BBy - p” e tlubz(B) = p"[a — ']ubz(B) (40)
>Ey b p"[a - 7]b=(B) = p" [— T']Ib=(B) (41)

Then by Lemma A.7 on S-REFL, (40), and (41), we have:

> By B A p"[a— tlubz(B) v p"[a —]lb=(B)
=B A p"[a—7]ubz(B) v p"[a— T']lb=(B) (42)
Then by IH on (27) and (42), we have:

/N4

p1p" @ = TE = >Eu >p" e — T'|55p)p" (@ — 7|25 s) cons. (43)
for some p3, where dom(p}) = dom(p5).
By Lemma A.31, (42) implies:
bE, - pim=pin foralln (44)
By S-TrANS on Lemma A.18 and (44), we have:

I n

>Es-p1p"[@ = T|Egplp" [a— T|EE pip”a— T|Egpip"[a - T]E (45)

o n

BB, -p10"[a— |8 E pip"la— T'|Eg (46)

92

Then by Lemma A.23 with (45), (35) implies:

AN/

>Zomp o = IEpplp [T 1B 0o [o VIS prp [TSy (@4T)
Then by Lemma A.19 on (47) and (46), we have:
B >p"[a — t'|8g-p| p" @ — T']Eﬂ-pllp” @ — 7|2 Eplp"la—1|Es (48)

. . . ——(y—v")ep”
Since 7’ is not a type variable and y =7y’ Or=yer

, we have splitg(p”[a —
T'|8, dom(py)) = (p"[a— 7']Ep, p"[a > 7']Ey). Then by the inductive case of
the definition of consistency, (43) and (48) imply:

p'la— T B p"[a— 1|85 pj o p] cons. (49)

Lemma A.37 (Inversion of consistency). If X >E.-E; p cons., then for all &, we have
PEL PRy PeBa Pal E PaBg and poX - PELDE G 00 o ; p' cons. for some p', where
split , (B, dom(p')) = (BEq» Ex), pa=[a—a Aubz(a) v ibz(a)], and dom(p’) =
dom(p)\{ o}

Proof By induction on consistency derivations. If E is not guarded, we can replace it with
cleanup(E) before applying the lemma, and restore it back to E in the conclusion. Therefore
we can assume Z guard..

Base case. For the base case, we have E = €. Then we have 2, =€, 2, =€, and p, = id.
By S-EmpPTY, we have:
>EL-YEE€E
ie., PELPEPeEa Lol pPala 1)
By the base case of the definition of consistency, we have:
Y+ >Es; id cons.
i€, pPaXbPELDEGpoEy; id cons. 2)
Inductive case on @. For the inductive case on @, i.e., where p = p; o p| for some p; and
02, where dom(p1) = { @ }, we have the result immediately from the premises.
Inductive case not on . For the inductive case not on @, i.e., where p = p, o p; for some
p1 and p;, where dom(p1) = { B} for some B # «, the premises of the rule are:
>E,->Eg-p1Bg-p1 X p18g 3)
plzl—DED‘DEﬁ-plaﬁ; P2 COns. “4)
where splitg (8, dom(p2)) = (Ep, Eg) and p1 = [— B A ubz(B) v Ib=(B)]. By IH
on (4), we have:

—/ ! =/

DBy DB DB OB PP 1 Z E L E, 5)
php1E - >E>~>Eﬁ->E’a-p;E'ﬂ ; 03 COnS. ©6)

93

for some p3, where split,(p1Eg, dom(p3)) = (E,, E,) and pf, =[a—a A
ubplgﬂ,(a) v lbpz, ()] and dom(p3) = dom(p2)\{ @ }. It is easy to see that =/, =
p1Eq and B = p1Ey ., where split o (E g, dom(p3)) = (Ea, Eg). Then (5) and
(6) imply:
>Ep >Eg>P1Ee PoPIEG a PoPIE F PoP1Ea @)
PaP1Z = >Ee bEg 1B 0oP1Eg o 3 P3 CONS. 3)
Since (@ <° p17) € p1Ey only if (@ <° 1) € E, we have ubp,z, (B) = p1ub=(B) and
lbp 2, (B) = p1lb=(B). Then we have:
Pl = la—a A pubs(a) v pilbz(a)] ©)
Expanding the composition, we have:
plyopi = [a—a A prubs(a) v pilbs(@), BB A plyubs(B) v plb(@)]
(10)

By Corollary A.33, we have:
Ep = B=[B— ubz,(B) v b=, (B)]B
ie, EgkpB=[B—ubz(B) v ib=(B)|B
ie, EgkpB=piB (11
Then by Lemma A.31, (11) implies:

Eg = [B— Bl(a Aubs(a) v Ibs(a)) = [B— p1B](a A ubz(a) v Ibz(a))
ie., EBghkaAubz(a)vibz(a)=a A piubz(a) v pi1lbz(a)

ie, Egkanubz(a)vibz(a)=an ubplgﬂ(a) v lbplgﬂ(a) (12)
Then by Lemma A.32, (12) implies:

>Ep - patbz(B) = plyubz(B) (13)

>Ep - palbz(B) = pylb=(B) (14)

By Lemma A.7 on S-REFL, (13) and (14), we have:

>Ep b= B A paltbz(B) v palbz(B) =B A poubs(B) v polbz(B) (15)
Let p} = [B— B A uby,s,,(B) v lby,s . (B)]. By the same reasoning, we have:

pll CPa= [a = an pllubE(a) Vv Plllbs(a), BB A PaMbE(ﬁ) Vv pnle(a’)]
(16)

DEq - a A prubs(a) v pilbs(a) =a A piubs(e) v pllbs(a) 17

Then by Lemma A.31 on (15) and (17), we have:
B DEg - pLp1m=pipen forallm (18)

By S-TrANS on Lemma A.18 and (18), we have:
DB DEg P palE phpt A forall A (19)

94

By Corollary A.33, we have

Egb-n=[B~ B Aubs,(B) v Ibz,(B)|rx forallm
ie, EBgkn=[B—BAubz(B) v Iibz(B)|n foralln
ie, Egkrn=pin foraln (20)

By S-TraNs on Lemma A.18 and (20), we have:

Zo-Bp F p1Eq @1
By Lemma A.21, (21) implies:
>E,->EgFEP>P1Ey (22)
By the same reasoning, we have:
>p1Eq BBy g = bplL B >ph B (23)
PEo>peEg F >Eg (24)

By Lemma A.29, (3) implies:
> LB >P B PoP1Eg PuP1Z E pop1Ep
e, DPLE>PLEsPLP1Ee PP IBg 4 PePIZ E PopP1Bp (25)
By Lemma A.23 with (7), (25) implies:
> Es >0 Ep BB BB > P1Ea PoP1Eg 4 PoPIZE PopiZs (20)
Let splitg(E o, dom(p3)) = (Eg, Eqp). It is easy to see that B, g =Ey,. Then
(26) and (8) imply:
PP Es >0 Ep BB 2B > p1Ea PoPIEw g PoPIZ E PopiEp (27)
PoP1E - DEs DEg>P1Egpop1E gy s p3 CONS. (28)
By Lemma A.23 with (23), (27) implies:

DBy >Eg>P1Ee PoP1E 4 g PaPIZ F Pop1Ep (29)

By Lemma A.23 and Lemma A.25 with (22), (29) and (28) imply:
DB DB PER 00P1E g g PuPIE F PoP1Ep (30)
plap12|—DEVDEQ-DE[;';)/QF)]E””; P3 COons. 31)

By Lemma A.23 and Lemma A.19 with (19), (30) implies:
BBy bEa BEg 0] 0aBug Pl Pal F 0] 0aEs (32)
By Lemma A.36 with (15) and (17), (31) implies:

P1PaZ = PEy By >EgplpaB g s p; CONS. (33)

95

for some p}, where dom(p) = dom(p3). By Lemma A.23 and Lemma A.25 with
(24), (32) and (33) imply:

PEs >Eo>0aBp P1PaEw g P1PaX F P1PaBp (34)
pllpa/z = DED'DE(X'DpaEﬁ'p/lp(XEﬂﬂ 5 Pg cons. (35)

It is easy to see that splitg(paBa, dom(p})) = (PaBp, PaEap). Then by the
inductive case of the definition of consistency, (34) and (35) imply:

PaZ b PELDEgpeBy; 30 P cons. (36)
By Lemma A.23 with (22), (7) implies:
I>E[>~I>Ed~l>Eﬁ«p;plEﬂﬂ'p'ap12lzp'aplEa 37
By Lemma A.23 and Lemma A.19 with (19), (37) implies:
>Ep DB PEg P PalgaP1PaZ = PiPaZa (38)
By Lemma A.23 with (24), (38) implies:
>Ee >Ea>PaBp L LaB g a P1PaZ E PlPaBa (39)
By Lemma A.23 with Lemma A.18, (39) implies:
PEsPEaLaZpP1Lalg a PP F P1PaBa (40)
By Corollary A.33, we have

paBptn=[B— B Aubp,zs(B) v lbp,z4(B)]m forall x
ie, paBpFn=[B— B Auby,z=,(B)viby=,(B)r foraln
ie, paBgtrn=pin foraln 41)

B
B

By S-TrANS on Lemma A.18 and (41), we have:
PaEpAE p/lA forall A 42)
Then by Lemma A.23 and Lemma A.19 with (42), (40) implies:
>E -DEa-paEﬁ-paEﬁ/ﬂ,-paZ EpaZa
ie., I>E|>-I>E(,~p(,55-paEﬂ/g~paZ EpPoBa

ie, DE.PEyPaBaPoEpPala 43)

Lemma A.38 (Inlining of consistent bounds). If X+ E; p cons. and E-2 + 7 < 7/, then
>E-pZ - pt < p7.

Proof By induction on consistency derivations for the statement: if X - >E.-E; p cons.
and >E.-E-X 7 < 7/, then bEL ->E-pX - p7 < p7'.

Base case. The base case is trivial since we have E = € and p = id.

96

Inductive case. For the inductive case, we have p =p; 0 p; for some p; =[a— a A
ubz (@) v Ibz(a)] and p; and «. The premises of the rule are:

PELDELPIEx P12 Ep1Ey @))]
P1Z - DELDEL- 1By ; 02 CORS. 2)
where split,, (E, dom(p;)) = (Eq, E). From the assumption, we have:
PELEXT<T 3)
By Lemma A.29, (3) implies:
>p1Es 1201 Z - p1T < p1 7T
ie, P>pPIEs-p1BepiBa-piZp1T<p17)
By Lemma A.23 with (1), (4) implies:
Bp1Ep BB BEG P1Eg 01 Z - p1T < p1 7 &)
By Corollary A.33, we have:
EobFn=[a—aAubg, (@) vibs, (a)|r foralln
ie, EBoFn=[a—aAubz(a)vibz(a)]lr foralln

ie., EBobm=pin foraln 6)
By S-TraNns on Lemma A.18 and (6), we have:
H-Bo E PIE> (7)
BEoBEaEpiEa (®)
Then by Lemma A.23 with (7), (5) implies:
>Ey By p1Za 012 p17 < 17 ©))
Then by IH on (2) and (9), we have:
DB DB D1y p2p1Z F p2p1T < p2p1 T
ie, DELDELDPIELpZ pr < pr (10)
Then by Lemma A.23 with (8), (10) implies:
BEL DB, BE 4 pT - pT < p7’
ie, DE.DE I pr<ptr (11)

Lemma A.39 (Equivalence of inlining of consistent bounds). If X & p cons., then

ESra=r "

Proof By induction on consistency derivations for the statement: if £ - >E, -2 ; p cons.,
(a—T1)EpP

then>E,-EX—a=T1

Base case. The base case holds vacuously since we have p = id.

97

Inductive case. For the inductive case, we have p = p; o p; for some p| =[a— a A
ubz (@) v Ibz(a)] and p; and @. The premises of the rule are:

|>E>-|>Ea-p15ﬂ-p12hp15(, (D)

PIZ - DELDEL- 1By ; p2 cORS. 2)

where split,, (2, dom(p2)) = (Eq, Ex). Let ps = [a;—> 1, | for some @;' and T;'.
Expanding the composition, we have:

p=[ai=1', a— pala A ubz(a) v ibz(a))] 3)
By IH on (2), we have:

>y >Eo 1B PIZ - @ =T “)
By Corollary A.33, we have:
eFnm=la—aAubg, (@) vibs, (a)|r foralln
ie, EBobrn=[a—aAubz(a)vibz(a)|lr foralln
ie, EBobmn=pin foraln 5
By S-TrANS on Lemma A.18 and (5), we have:
EaBalEpPIEyp 12 (6)
Then by Lemma A.23 with (6), (4) implies:

PEL B BEpllai =1

e, PERESFa=1 7
By Lemma A.31 on (7), we have:
PELEX-nr=pon forallnm ®)
Then by S-TRANS on (5) and (8), we have:
PE,EXHa=pa(a Aubs(a) v ibs(a)))
Then (7) and (9) imply:

(a—1)ep

bE, B a=1 (10)
| |

Lemma A.40 (Congruence of inlining of consistent bounds on types). If £ E; p cons.,
then E-X - 1= pt forall T.

Proof By induction on the syntax of 7.

Case 7 = 7y — 1. By IH, we have:

EXF1=p1 (1)
EXFn=pn 2)

98

By Lemma A.23 with Lemma A.18, (1) and (2) imply:

<E-<XE 1 =p7

EXEET=p0
Then by S-FUNDEPTH on (3) and (4), we have:
EXET > T =pT = pT
e, EXFT—omn=p(t1—mn)
Case 7 = {x: 7y }. By IH, we have:
EXT1=p1
By Lemma A.23 with Lemma A.18, (6) implies:
<E-<X 11 = o1y
Then by S-RCDDEPTH on (7), we have:
EXH{x:n}={x:p11}
ie., EXH{x:m}=p{x:7}

Cases T =#C, 7= T° 17 =a ¢ dom(p). Then T = pt. By S-REFL, we have:

T=pT
Case 7 = @ € dom(p). From the assumption, we have:
X+ E; pcons.
By Lemma A.39 on (10), we have:
EXa=pa
Case 7 = 11 v° 1p. By IH, we have:
EXET1=pT1
EXF-n=pn
Then by Lemma A.7¢ on (12) and (13), we have:
EXF1 vein=pn vepon
ie, EXFTVvim=p(nvein)
Case 7 = —1;. By IH, we have:
EXT1=p1
Then by S-NEGINV on (15), we have:
EXE -1 =—pT1

ie, EZF-T1=p—T

3
“

&)

(6)

)

®)

©))

(10)

an

12)
13)

(14)

as)

(16)

99

Lemma A.41 (Congruence of inlining of consistent bounds on guarded types). If X E;

pcons. and TTV(7) = , then >E->X 17 = pT.

Proof By induction on the syntax of 7.

Case 7 = 11 — 1. By Lemma A .40, we have:

EX-m=p7
EX-n=pn

By Lemma A.23 with Lemma A.18, (1) and (2) imply:

<BE-<XEFT1=p1

BEX-n=pn
Then by S-FUNDEPTH on (3) and (4), we have:

DEDY T = T =pT] — P72

ie, PEBPEFT o>n=p(r—n)
Case 7 = {x:7; }. By Lemma A.40, we have:
BEXT1=p1
By Lemma A.23 with Lemma A.18, (6) implies:
<BE-<XFT1=p1
Then by S-RCDDEPTH on (7), we have:

PEDEH{x:7}={x:p7}
ie., DEPEH{x:T}=p{x:7}

Cases 7 = #C, 7 = T°. Then 7 = p7. By S-REFL, we have:
T=pT

Case 7 = a. Impossible since TTV (1) = (.
Case 7 = 71 v° 15. By IH, we have:

>PED>Y T =pT)

PEDY T =p0
Then by Lemma A.7¢ on (10) and (11), we have:

PEBEFT Vi =p1 VoD

ie., PEPERT Vim=p(11 v°T)
Case 7 = —7|. By IH, we have:

>PE-DY T = o1

)]
2

3)
“4)

®)

(6)

(N

®)

®)

(10)
(1)

(12)

13)

100

Then by S-NEGINV on (13), we have:

PE-DY - T = P71
ie., DEDY - T = P (14)

Lemma A.42 (Inlining of consistent bounds on guarded derivations). If 2+ Z; p cons.
and BX 1<t and TTV () O TTV(7') = &, then bE->E-pL -1 < 7.

Proof From the assumptions, we have:

Y E; pcons. ()
EYXr<T)

By Lemma A.38 on (1) and (2), we have:

BEpT - pT < p7’ 3)

By Lemma A.41 on (1), we have:
PED>Y-T=pT)
bEBY T =p7 ®))

Then by S-TRANS on (4), (3), and (5), we have:
PESI P T<T (6)

Lemma A.43 (Inlining of bound in consistency). IfX-(@ <° 1) - >E.-E; p cons., where
a¢dom(p), then po X >Ey->(a <°7)-paB; p’ cons. for some p', where p, = [—
a A° 1| and dom(p’) = dom(p).

Proof By induction on consistency derivations. If Z is not guarded, we can replace it with
cleanup(E) before applying the lemma, and restore it back to E in the conclusion. Therefore
we can assume =2 guard..

Base case. For the base case, we have E = €. Then by the base case of the definition of
consistency, we have:

P >E.>(a<®T1); id cons. (1)

Inductive case. For the inductive case, we have p = py o p; for some p; =[f— B A
ubz(B) v Ib=(B)] and p, and B # «. The premises of the rule are:

>E>~>Eﬁ~p15ﬂ~p12~p1(a <° T)I:plE[g 2)
p1Z-pi(@ <° 1) - >Es>Egp1Eg ; p2 cons. (3)

101

where splitg(E, dom(p2)) = (Eg, Eg). By IH on (3), we have:

Pop1E - PEs>Eg->(a <° pi7)plp1Eg ; p) cons. (4)

for some p}, where pi, = [a — a A® p17] and dom(p}) = dom(p>). Expanding the
composition, we have:

Poopi=la—an®pit, BB A pLubs(B) v pylb=(B)])

By Corollary A.33, we have:

(€< 1) = B A ubz(B) v b=(B) = [a > a A° 7](B A ubs(B) v 1b=(B))
ie., (a<’t)EBAubz(B) v Iba(B)=B A paubz(B) v polbz(B)
ie, (@<’7t)EBAubz(B) v Ib=(B)=pB Aub,,=(B) v b, =(B) (6)
Then by Lemma A.32, (6) implies:
>(a <) = pr7 =i @
Then by Lemma A.7 on S-REFL and (7), we have:
pe<’T)Ear’piT=a A°p|T (3)

Let p| = [B— B A uby,=(B) v Ib,,=(B)]. By the same reasoning, we have:
propa=[a—>an®pir, BB Auby,z(B) Vv iby,z(B)]
=la—a A°piT, BB A paubz(B) Vv palbz(B)]
SEs b B A pattbz(B) v palbz(B) =B A plhubz(B) v phlbz(8) (10)
Then by Lemma A.31 on (8) and (10), we have:

®)

>(@ A°T)DEgE pLoim=pipen foralln (11)
By S-TrANS on Lemma A.18 and (11), we have:

>(a@ A°T)DEgp | palE phpi A forall A (12)
By Corollary A.33, we have

Bgbn=[B— B Aubg,(B) v bz, (B)]n forall n
ie, EBgkn=[B— B Aubz(B) v Ibs(B)|n foralln
ie, Egkrn=pin foralln (13)

By S-TrANS on Lemma A.18 and (13), we have:
(@<®71)Bg = (@< pi7) (14)
By Lemma A.21, (14) implies:

>(a <°1)>EgE>(a < pi7) 15)

102

By the same reasoning, we have:

> <° plT)~>E,>~>E/; =Dl Bg (16)
>Eg->(a < 7) E>(a < pi7) (17)
>(a <°7)>poEg = >Eg (18)

By Lemma A.35, (2) implies:

PP Es > PGB PaP1Eg PepiZ>(a <° pi7) E plLp1Ep (19)
By Lemma A.23 with (16), (19) implies:
>Ee DB -PpP1Eg o1 Z>(a <° pi7) I pLp1Ep (20)
By Lemma A.23 with (17), (20) and (4) implies:
>Es bEg > (@ <° 1) 0opEg PP ZF pLp1Es 21
PoP1Z = >Ee>Eg>(a <° p17)pup1Ey ; p) cons. (22)
By Lemma A.23 and Lemma A.19 with (12), (21) implies:
>Es >Eg > (@ <° 1) 01peEgp1paX F p1paBp (23)
By Lemma A.36 with (8) and (10), (22) implies:
P1PaZ = >Es Eg>(a <° p17)p1paEy ; p; cOMS. (24)
for some p7, where dom(p}) = dom(p’). By Lemma A.23 with (18), (23) and (24)
implies:
>E>(0 < 1) >paBp-p1PaBg P PaZ E P1Pap (25)
P1PaZ = PEu>(a <° p17)BpaBpp1paly s p; cONS. (26)

Itis easy to see that splitg(poE, dom(p})) = (paEp, paEsg). Then by the inductive
case of the definition of consistency, (25) and (26) imply:

PaZF BE.> (@ <° p17)-pal; p; 0 p) cons. 27

A.7 Pure Boolean-Algebraic Subtyping

LemmaA.44. If\/, 7, < /\ T, thent, < m; T iJ . Additionally, if \/; 7; = 7| where 1| is not

an intersection, or i .7 =y where w1 is not a union, then the derivation for 7; C 7 ; -y
JoJ J

has a size not larger than that of the assumption \/; 7 < /\ 7

Proof By induction on right-leaning < derivations.

Case S-REFL.

103

Case /\ . mj =m = \/; 1. By repeated applications of S-TRANs with S-ANDOR1 1-

followed by an application of S-TRANS with S-ANDOR12-, we have 7; © \/ Tl ,
=
ie, ;S o

If \/i 7; = 11 where 7] is not an intersection, then \/i 7, =1i. Thent; S 7 jl’j
is just 7 < 1, which is the assumption itself.
If /\j n; = my where my 1s not a union, then ; = \/i 7; 1S not a union, i.e.,
\/; 7 =71. Then 7; C x;" is just 71 S 7y, which is the assumption itself.
Case \/; 7, =7 = /\ 7 ;. Byrepeated applications of S-TRANS with S-ANDOR112,

followed by an application of S-TrRANs with S-ANDORI12D, we have

=
/\ nji< JTJ e, TS

If \/1 7; = 11 where 7 is not an intersection, then 1 = /\ ST is not an intersec-
tion, i.e., /\j nj = my. Then TiTnji’j is just 7y ry, which is the assumption
itself. -

If /\j nj = my where 7y is not a union, then /\j nj =my. Then T,»Tnj” is just
71 € 7y, which is the assumption itself.

Case S-ToB-. /\; 7; = T. The result follows from S-ToB- on each of 7

Case S-ToB>. \/; 7; = L. The result follows from S-ToB> on each of 7.

Case S-CompL-. \/;7;=T and /\; n; =n; =n' v —n’ for some n’. The result follows
immediately.

Case S-CompLo. /\;7; =1 and \/; 7; =71 =7’ A —7' for some 7'. The result follows
immediately.

Case S-ANDORI11. A\ ;7; =m =\/; 7; v ' for some n’. By repeated applications of S-
TrANs with S-ANDOR1 1+, followed by an application of S-TRANS with S-ANDOR12-,
we have 7, € \/; 7; v n’t, ie., TiTnji’j.

If \/i 7; = 171 where 7y is not an intersection, then TiTﬂji’j isjustt 7 v x/, which
is the assumption itself.
It is impossible to have /\j nj = m; where 7 is not a union since 7; = \/; 7; v 7.

Case S-ANDORI1ID. \/; 7, =71 = /\; 7 A7’ for some 7’. By repeated applications
of S-TrRANs with S-ANDORI1D, followed by an application of S-TRANS with
S-ANDOR122, we have /\j TiAT S nj], ie., TiTJTji’j.

It is impossible to have \/i 7; = 71 Where 71 is not an intersection since 1; = \/i TV
n.

If /\j nj =m where 7y is not a union, then 7; S 71
the assumption itself.

Cases S-ANDOR12¢. Similar to the cases S-ANDOR1 1¢.

Case S-ANDOR2-. Let the range of i be 1..m. We have \/; 7 = \/; < ,u_1 Ti V Tm- The

premises of the rule are \/, . ,, ;7 S /\; 7 and 7, © /\ ; ;. By IH on the first

—iel.m—1,j . —_—J
I, By IH on the second premise, we have 1,,, © & jj .

i,J

is just T € 7 v «/, which is

premise, we have 7; < 7
Then we have 7; C 7 .
Case S-ANDOR2>. Let the range of j be 1..n. We have A\ ; ;= /¢y ,_1 7j A 7;. The

premises of the rule are \/; 7 < A\ ;¢ ,_; 7; and \/; 7; m,. By IH on the first

104

ijel.n—1

. [. —i
premise, we have 7; S 7 . By IH on the second premise, we have 7; S 7, .

Then we have 7; = ﬂjl’j.

Case S-DisTRIB. \/; 7, =71 =7 A (1] v 7)) and A ;7j=m = (7' r7{) Vv (7' A T})
for some 7’ and 7| and ;. The result follows immediately.

Case S-DisTRIB>. A\ ;7j=m =7 v (1{ A7) and \;,1i=71=(7"v 1)) A (7' Vv 1))
for some 7" and 7| and ;. The result follows immediately.

Case S-TRrANs. The premises of the rule are \/; 7; = 7" and 7' € A ; n; for some 7’. By

IH on the former premise, we have 7; < 7/ " By IH on the latter premise, we have

Tcn jj. The result follows from S-TRANS on each of 7; € 7/ " with each of T '

Proof [Lemma 4.9] By straightforward induction on < rules.]

Proof [Lemma 4.10]

(A) By induction on right-leaning < derivations. We only consider rules that can
syntactically apply. Denote the size of the current derivation as n.

Case S-REFL. Immediate.

Case S-ANDOR2-. U€ = UlcI v U2C2 for some UlcI and UZCZ, where UZC2 is not a
union. The premises of the rule are Ulc1 C 7 and UZC > c 7. By IH, we have
Ulc’ =\, 7and U2C2 =/, 7. Since U2C2 is not a union, U2C2 = 1. Then U€ =
U]Cl VUQCZZ\/kTVT.

Case S-TRANs. Then the premises are UC < 7’/ and 7/ < 7 for some 7/, both of size
n — 1. By induction on the size of the subderivation for the former premise,
denoted by m. Denote the inner induction hypothesis as TH'.

Cases (S-REFL, #), (+, S-REFL). By IH on the other premise.

Cases (S-ToB-,). Then 7/ =T. The latter premise is T <7, which is
impossible by Lemma A.62. Therefore this case is impossible.

Cases (S-COMPL-,). Then U€ = T. The conclusion is T <7, which is
impossible by Lemma A.62. Therefore this case is impossible.

Cases (S-ANDOR11.,). Then 7’ = U€ v 7| for some 7. By Lemma A.44 on
the latter premise, we have U € < r with a derivation of size at most n — 1.
The result then follows from ITH.

Cases (S-ANDOR12., #). Then 7’ = 1] v U€ for some 7/. By Lemma A.44 on
the latter premise, we have U € < 1 with a derivation of size at most n — 1.
The result then follows from IH.

Cases (S-ANDOR2., #). Then U = Ulc‘ v U2C2 for some UlcI and UZCZ, where
UZC % is not a union. The premises of the former rule are Ulc1 c 7’ and
U2C2 € 7/, both of size m — 1. By S-TRANS with 7/ € 7, we have Ulc‘ cT
and U2C 2 C 1, both of size n with a former premise of size m — 1. Then by
IH’, we have U1C1 =~ 7 and Uzc2 =~ 7, which imply Ulc1 v Uzc2 ~7.

Cases (S-ANDOR20, *). Then 7’ = 7{ A 7, for some 7] and 7;. The premises
of the former rule are U <7 and US 15, both of size m — 1. By

105

Lemma A.57 on the latter premise, we have ‘rl’ C 1 of size at most n — 1
for some /€ { 1,2 }. By S-TRANs on US < 7/ and 7] = 7, we have UC = 7
of size n with a former premise of size m — 1. The result then follows from
IH'.
(B) By induction on right-leaning < derivations. We only consider rules that can
syntactically apply. Denote the size of the current derivation as n.

Case S-REFL. Immediate.

Case S-ANDOR2Y. X€ = XIC] N X2C2 for some XIC1 and XZCZ, where ch2 is not a
intersection. The premises of the rule are 7 € X lc "and7 S ch *. By IH, we have
ch‘ = As 7 and XZC2 = A\, 7. Since chz is not a intersection, X2C2 = 7. Then
XC=XTAXT =N\ AT

Case S-TRANS. Then the premises are 7 € 7/ and 7/ < X € for some 7/, both of size
n — 1. By induction on the size of the subderivation of the former premise,
denoted by m. Denote the inner induction hypothesis as TH’.

Cases (S-REFL, #), (+, S-REFL). By IH on the other premise.

Cases (S-ToB., #). Then 7/ = T. The latter premise is T < X<, which implies
Tc XZC2 for some XZC2 e{m > m,{x' :m },#C'} by Lemma A.44,
where X¢ = ch A XZC %, which is impossible by Lemma A.62. Therefore
this case is impossible.

Cases (S-ANDORI11., *). Then 7/ =7 v 7| for some 7{. By Lemma A.44 on
the latter premise, we have 7 X© with a derivation of size at most n — 1.
The result then follows from ITH.

Cases (S-ANDOR12., %). Then 7/ = 7] v 7 for some 7. By Lemma A.44 on
the latter premise, we have 7 X© with a derivation of size at most n — 1.
The result then follows from ITH.

Cases (S-ANDOR20, #). Then 7’ = 7| A 1) for some 7| and 7;. The premises of

1
the former rule are T < T{ and 7 < ‘ré, both of size m — 1. By Lemma A.44

—_—
on the latter premise, we have T{ A ‘ré c XLC i where X€ = AV Xl.ci and

1

Xl.ci are not intersections, each of size at mostn — 1. Then by Lemma A.57,

———c — .
we have 7/ < Xl.c‘ for some [; € { 1,2}, each of size at most n — 1. By

E——
S-TRANS on 7 € Tl’ and Tl’ c Xici , we have 7 € Xl.ci , each of size n with

_ —i
a former premise of size m — 1. Then Xl.c" =171 by IH' (note that Xic" are
not intersections), i.e., X¢ = A, 7.

Lemma A .45.

(A) If T <7, then U€ C 7 for some U€ and Ce { T, X }.
(B) If T < L, then T C X€ for some X€ and Ce { 1L, ¥ }.

Proof By straightforward induction on subtyping derivations. |

106

A.8 CDN- and DCN-normalized type forms and derivations

Proof [Lemma 4.21] By induction on unassuming subtyping derivations.

Case S-REFL. Then 7 = 7, which implies cdn(7) = cdn(x). Then we have cdn(r) <°I*
cdn(r) by S-cDN.

Case S-ToB-. Then 7 = T and cdn(x) = T. Then we have cdn(7) <°* T by S-ToB-.

Case S-ToB>. Thent = 1 and cdn(7) = —T.Then we have =T <" cdn(r) by S-ToBD.

Case S-CompL.. Then 7=T and sw=nxn'v-n' for some nx'. Let
cdn(m) = Nictm Ve tom T Then cdn(—n") = neg(cdn(n’)) =

/\mi’El"m Viet. mneg(nyy,). Then cdn(n’ v —n') =
dis(cdn(x), cdn(x’)) = A verm (Verm 72 v Ve L neg(a;).
For each i. ;l el..m’ \/j,fel..n,- ﬂ?].i, contains the disjunct 7, and

y neg (2. contains the disjunct neg(sx™). Then by commutativ-
Vier.muneg(m;,] g(my), y

H n n cdn n
ity, we have \/jlfe L.n; ”ijl{ VVietm neg(”l"j,.,) = \/jlfe L.n\{Jji } ”ij,f v

iel.m, ji/ € 1..nl-/

n n n : : : cdn n
Viret.miyneg(my;) vl v neg(n},), which implies T <" \/ iy, TV
n : cdn / /
Vieim neg(ﬂi,ji/). Finally by S-ANDOR22, we have T <" cdn(n’ v —x').
Case S-CompL>. Then T=7 A7 and =1 for some 7.
N n) —
Let / cdn(t) = Nicim \/j'_e Vi Thhe Then cdn(—7') =
j— . n
neg(cdn(7’)) = /\ji ST Viet.mneg(t)). We want to show
n . n
Niet.m \/j,- elom Tij; N /\7ji ST Viet.m neg(Tiji) <
=T, By S-DIsTRIBCDN:-, it suffices to show
-/
Ji€1l..my
n n . n —_
T A Nicrm Ve tn T A Ngermietm Vie 1m neg(;,) < =T ’
ie.,
]
J1 € l..ng
n n . n -
Tlff A /\ieZ..m \/j,- el.n %ij; N /\j,- A \/ie Lm\{i'e L.1| jy=j, } neg(Ti]’i> <
: n n " n 7
since T A (neg(le{) v ") < AT for any
7" Repeating the process, it suffices to show
Ji€l.ny, jiel.m
T A T A Niesm Vet T A /\m"ﬂ--m Vietmirer.2) jo=j,y nea(r;,) < =T
Repeating the process m times, it suffices to show
—icl.m
jlel.n;
n . n — t
/\i el.m Tij'{ A /\j,- el - L.m \/ie L.m\{i’el.m| ji/:ji’, } neg(Tij,-) <-T »
which is indeed true since one of the conjuncts is an empty union, i.e., =T, when

iel.m

J.i = ji .
Case S-ANDOR11-. Then m =7 v 7’ for some 7’. Then cdn(rx) = dis(cdn(7), cdn(n’)).
Let cdn(r)=A,; 7 and cdn(n’)= N, n;.in. Then dis(cdn(7), qin(n’)) =

L

i,j ,
N (7™ v ™). By S-ANDORI-, we have ¢ <ednz® vz, which

imply 7" <edn A\ (7 v nj.‘n)‘ by S-ANDOR2D, which imply A, 7" <I®
A (7 v 7f") by Lemma A.72, ie., cdn(7) < cdn(r).

Case S-ANDOR11D. Then 7=mA7 for some 7. Then cdn(r)=
con(cdn(r), cdn(r’)) = cdn(r) A edn(r’). Let cdn(t) =A™ and

107

cdn(n) = A; 79", By S-ANDORID, we have A\;x¢™ A A7 <o A agn,
i.e., cdn(r) < cdn(r).

Cases S-ANDOR120¢. Similar to the cases above.

Case S-ANDOR2-. Then 7=1; v 1, for some 71 and 7. By IH on the premises,
we have cdn(Z) - edn(7)) <" edn(nr) and cdn(Z) - edn(r) <" edn(nr). Then
by Corollary A.47, we have cdn(Z) - dis(cdn(r;), cdn(r)) <" cdn(n), ie.,
cdn(2) - cdn(ty v 1) <" cdn(n).

Case S-ANDOR2). Then 7 =m; A 7wy for some m; and 7. By IH on the premises,
we have cdn(Z)F cdn(r) <odn cdn(m) and cdn(X) - cdn(7) < edn(my).
Let cdn(m) = A7} and cdn(m)=A;n3?. By Lemma 3.1, we have

cdn(Z) - cdn(r) <cdn ndn” and cdn(Z) + cdn(r) <cdn nd“ . Then by S-ANDOR20,
we have cdn(Z) (- cdn(r) <™ A 7 A A 7r = Cdn(m A T2).

Case S-D1STRIB-. Then 7 =19 A (‘rl v) and = (‘1'0 ATV (To A Tz) for some 19 and
71 and 7. Let edn(to) = Ay Ok ,edn(y) = A, T]L , and cdn(1,) /\ Td“ Then
we have:

cdn(7) = con(cdn(7y), dis(cdn(ry), cdn(1z)))
= /\k A /\z J (dn gjn)

cdn(nr) = dis(con(cdn(1p), cdn(ty)), con(cdn(1p), cdn(1z)))
=dis(Ag 6 A AT Ao AN T

— ; dn dn
_dls</\i'e{@kl } Tir ’/\J re {0k° 27y Ty)

— dn dn
_/\i/e{@k,u 1, e {0k 25 }(T’ v ")
For each ie{@k Ei} J’ e{@ Zj} we have the following: If i’ =0k

for some k;, then we have T(()i]? gcdn (‘)i]? v ‘rd,“ by S-ANDORI-. If j’ =0k, for

some k,, then we have Od]? <cdn d“ o by S-ANDOR1-. Otherwise, we have

dn dn ~cdn ~dn dn
TV T ST v Ty bySREFL

Then ve have Aol A N (v o) <o

/\; e (OT T e (0F T }(‘r‘?“ v TJd“) by Lemma A.7>, commutativity, and

idempotence, i.e., cdn(7p A (11 v 1)) <“®edn((r9 A 71) v (10 A 2)).

Case S-DisTRIBD. Then 7= (To vV T) A (TO v 1) and m=19 Vv (11 A T2) for some T()
and 7; and 7. Let cdn(rp) = A\, 75, edn(ri) = A; 7(, and cdn(n) = A ; 75 5i
Then we have cdn((o v 71) A (t0 v 12)) = A (TOk v i) A (T v 7P and
cdn(ro v (11 A 12)) = Agi (768 v 758) A (750 v ng“) Then we have cdn((7o v
71) A (10 v 12)) <" edn(t v (11 A T2)) by S-REFL.

Case S-TrANS. By IH on the premises, followed by S-TRANS.

Case S-Hyp. Then the premise of the rule is (7 < 7r) eX.Letcdn(—rv)= A; V;, 7/, e

Then we have cdn(T <V, 7/;) < cdn(Z). For each i, we have:

108

CaseJa.{a, —a}C {TTji }. Then we have T <° @ v —a by S-CompL- and
av —a <“\/, 7 by S-ANDORI- for some @, which imply T <“™\/, 7,
by S-TRANS.

Case (3a. a e {1}, 7571 and (Va € { ™ T e | T 727 1). Then
(Nji | 2a neg(7;;) <a@)€cdn(¥) for some a and we have
cdn(X) = A\, |8 A neg(7;;.) <“g by S-Hyp, which implies
cdn(Z) T <Cdn \/ 7;;, by Theorem A.9.

Case (Jo. —are {1} 727 1) and (va e{t T —ag | 27" }). Then (@<

\/MT ta Tl])ecdn() for some @ and we have cdn(Z)} o <"

Vil 4-a Tiy, by S-Hyp, which implies cdn(Z) =T <\, 77 by
Theorem A.9.
CaseVa.{a, —a}n {7}, i }=&. Then (T <V, 1})€cdn(Z) and we have

cdn(E) - T <odn \/ T by S-Hyp.

l]l

Then cdn(E) =T <edn /7 imply cdn(Z) =T <AV,
by S- ANDORZD, ie., cdn(=) T <cdn CdIl(ﬁT vr). Let cdn(r)=
AoV a L and cdn(n) = A, V,, 77, - Then by def—

i

inition, Cdn(—'T v = /\q,, F(Vpneg(t',,) vV, 7))

cdn(X) - T <odn /\Ep’r(\/ neg(t',,) v Vs, 7)) 1mphes
e

cdn(Z) = T </ neg(th,) v V,, 7 ,iip " by Lemma 3.1, which

imply cdn(¥) - A, 5, <<\, w7, """ by Theorem A9, which

Tp”

imply cdn(Z) = A, 75, <A,V 70 by S-ANDOR2D, which
imply cdn(Z) - A,V a7 o @ < <edn AL \/ 7r’ " by repeated applications
of S-DisTRIBCDN- and commutativity i.e., cdn(X) - cdn(T) <edn cdn(n).

Case S-TMRGo. Immediate since it is already in the desired form.

Case S-TDEPTH. By Lemma 4.18, we have cdn(X') = %/, which implies <cdn(Y') E <%’
by Lemma A.22. Then for each premise <X’ - 7/ < 7/, we have <cdn(X') -7/ < 7/
by Lemma A.23. Then we have cdn(X) - 7 <°I® 7 by S-TDEPTH.

Cases R € R. For each premise X' - 7/ < n':

o If max(depth(t’), depth(n’)) < max(depth(t), depth(r)), then by Lemma4.18,
we have cdn(X') =X/, which implies cdn(X’) -7/ < #’ by Lemma A.23 on
Y1'<Ll

o If max(depth(t’), depth(n')) = max(depth(t), depth(r)), Then we have
cdn(X') - cdn(7') <" edn(n’) by IHon X' - 7/ < o'

Note that we are not allowed to apply R at this point, since the premises of R may have
contexts with <, and <t does not commute with c¢dn(+). < and cdn(-) do commute up
to the H equivalence relation, so by Lemma A.23 on cdn(X') - v/ < n’/, we have the
appropriate premises with the < relation. For the remaining premises with the <"
relation, note that we have the restriction that ¥ cons. implies ' cons., so X’ cannot
have additional < over X, and the non-commutativity between < and cdn(-) does not
prevent us from applying R. Then we have cdn(Z) - 7 <°I" 7 by R.

109

Lemma Ad46. If Z A1 <t and Tk A\ <o then T
/\i,j (Tldln v T2) <cdn dn

Proof For each i, we have

S-ANDORI11l: ——————
/Tzd;l <cdn Tdn Tdn <cdn 7_dn v T]dln
S-ANDORI2: ————————— S-TRANS —
d dn .d d
Tldin <cdn Tdn v Tld[n /\ . T p <cdn zdn 11n
S-DISTRIBCDN 7zdny <cdn dn 7dn
W A; v < 5
Then we have
—i -REFL ————
L e (i)l S Tdn <cdn Tdn /\[Tld[n <0d11 zdn
EMMA A. S-DisTRIBCDN?
/\i,j (Tldin v ng"ﬂ) gcdn /\i (Tdn v Td_n) /\i (Tdn v Tilin) <cdn 7dn
S-Trans /\ (Tdn dn) <cdn zcdn
i LTRAS

|

Corollary Ad47. If Tt A 7{ < 1" and T+ ;150 <O 1, then X
dn dn

/\ (lt v T2j)

<Cdn cdn 1n other words, if 2+ de“ odn pedn gpgd ¥ T2Cd“ gedn pedn - ppon 3

dlS(cdn cdn)

g
Scdn cdn'
d —an
Proof We have t°I® /\k o for some 7. By Lemma 3.1, we
have Zp A, i Lodn T(;i]? and XF A ‘r;jn edn 7'61,? , which imply

SN (Y ngn) gedn T(()ilf‘ by Lemma A46, which imply Zr

Py (7 ny Zen At _ et by 5 ANpORD. .

A.8.1 DCN-normalized type forms

The contents of section is symmetric to that of Section 4.4.1 and thus wholly unsurprising,
which is why we develop it in appendix.

Definition A.48 (DCN-normalized form). The syntax of DCN-normalized (disjunction-
conjunction-negation) form is presented in Figure 21. We say that a DCN-normalized form

. . 4 !
7den js complement-free if 74" = \/, Njet.n T where Vjieln, . TEN, 17

In the proofs below, we sometimes abuse the notations TIC“ A 75“ and Tdcn v T, den ¢4 mean
their properly associated versions, i.e., con(7{", 75") and dis(t dcn, dc“) in Figure 22

)
respectively.

Definition A.49 (DCN-normalized form translation). The translation from arbitrary types
into DCN-normalized types DCN(+) is defined in Figure 22.

110

=Tt TO|a'\J_
™o=10] =70

Tcn ::: TII | TII /\TCH

Tdcn = pon | Ny, Tdcn

Fig. 21. Syntax of DCN-normalized form.

Definition A.50 (DCN-normalized subtyping context). X is DCN-normalized if for all
H € X, either one of the following is true:

1. H=(A\; 7" < 1), whereVa.{, ﬁ&}ﬁ{ai}zg
2. H=(a<\/; 1), where the following are true:

o {a, ~a}n{T" } =0

°VB€{T_“1} —BE{T)

.Wae{fn}a(nn<ﬁ)ez{nn’} {neg(em) 7P

,al;

ev—pe (T LAB<V, e T) =17, T gy,
3. H=(\; 1" < a), where thefollowmg are true:

(o —a)n{T}=02
«vpe{T }. ﬁﬁ¢{f_“l}'
Ve (T }.AB<V, e (7))~ neg() L)
BT AN m <P e AT)= (7 T)

Lemma A.51. For any 7, den(t) > 7.

Proof By straightforward induction.]

Definition A.52 (DCN-normalized subtyping context translation). The translation from
arbitrary subtyping contexts into DCN-normalized subtyping contexts den(+) is defined in
Figure 23.

Lemma A.53. For any %, we have ¥ = den(X) and den(2) = X

Proof Straightforward, notably making use of Theorem A.9 and Lemma A.51. |

A.8.2 DCN-normalized derivations

For each rule in R with conclusion X - 7 < &, we assume without loss of generality that
dnc(t A =) = 7" for some 7", since we can otherwise split the rule into multiple simpler
rules while keeping the original rule admissible.

111

den(r) |: pden

den(7°

)

den(T)

den(—71) = (dcn()
)=
)=

on(den(7y), den(m))
dlS(cn(ry), den(n))

den(tp AT
den(ty v 1
neg(Tdcn) :Tdcn

neg(7°

n

20
neg(ty' A Ty dis (neg(‘rl), neg(t3"))

)=
neg(—1)
)=
)

neg(r{™ v T9") = con(neg(+{"). neg(rj"))
Con(Tdcn, Tdcn) :Tdcn
con(t{]' v Tfizcn, ‘rgcn) =dis (Con(‘rﬁ‘, TSC“), con(Tfizcn, ‘rgcn))
con (7} A 113, T2) = con(r}}, con(ryy, TSC“))
con('rl, 121 v Tzdzcn) dis (con('r1 s 721 ™), COH(TI, ngcn))
con(ry!, 73") =1 A 75"
Conjem..n ‘rdcn = con(‘rdcn Conjem+1..n Tdcn)
Conjen..n T,d Tr(licn

dlS(dcn dcn) :Tdcn

dis(ri] v T{lzcn, ‘rgc“) dis(7y7, dis(‘rldzcn, Tgcn))

dis({", Tgcn) =1 v ‘rgcn
Disiem..n -rd n_ dis(‘r,‘jfn, Dis; e m+1..n T;icn)

den den
Disien.nt;/ " =1,

Fig. 22. DCN-normalized form translation

Definition A.54 (DCN-normalized derivations). The DCN-normalized subtyping relation
<4 js defined in Figure 24. The following are the difference compared to the full subtyping
relation < in Figure 16:

e On the top level, the relation is restricted to ¥ - 74® < rden,

® On the top level, all occurrences of T are replaced with — 1.

® The rule S-DISTRIBS is replaced by S-DiISTRIBCDNO, which requires an application
of S-DISTRIBS to be followed immediately by an application of S-ANDOR2Y in a
transitivity chain by merging the two rules into one.

112

den(X) |1 X

T<n)eX —pHEeX
:) ->H

den(X) =den(den(r A —7) < 1)

den(rd" < 1) |: 2

den(V; A\j; 7, <L) = den(Aj, 77}, < 1)

€ if 3. {a, —'a}g{rji}

i

ae{ T a|—ae {;?Tl}

den(A; 7P < 1) = (0‘<\/i|7{‘¢a neg(7;"))) “(Ni |trt—a T <,a/) '
if (Ge {a, w}m{?}#mand(vae{r;“ boag {7 })
(N <) ifVa/.{a,ﬁa}m{Ei}=®

Fig. 23. DCN-normalized subtyping context translation

o Foreach rule in R with conclusionZ - v < w and premises Y — v/ < ', we transform
them into the equivalent DCN-normalized derivation rule in RI™ by performing the
following:

— Transform the conclusion into ¥~ den(7) <94 den(n)

— If max(depth(t'), depth(n’)) < max(depth(t), depth(r)), keep the premises as
is

— If max(depth(t’), depth(n’)) = max(depth(t), depth(r)), then transform the
premises into ¥ |- den(7') <9 den(n)

Notice that S-TDEPTH is treated the same way as rules in R, so its premises still refer to the
full < relation, even though its conclusion is about the <™ relation.
The DCN-normalized boolean subtyping relation 9" is defined similarly.

Notice that Lemma A.7 and Lemma 3.1 extend to DCN-normalized derivations. In
the proofs below, we also make use of extended versions of commutativity (7] v©
T(vor3) <9 1y v 1y (v O13)) and idempotence (17 v 71 (v o) < (Vo).

Lemma A.55. X T{lcn < Tgc” ifX+ T{ic“ Lden TSC“. Similarly, T?C“ c TSC“ if T{icn cden

dcn
.

Proof It is easy to see that every rule of <4 is admissible in <. [

Lemma A.56. If X 7 <, then den(X) - den(r) <9 den(n). Similarly, if T S n, then
den(r) c4en den(n).

Proof Symmetric to Lemma 4.21. [

A.8.3 Some useful lemmas

Lemma A.57.

113

P Tdcn gdcn Tdcn

‘Tdcn gdcn Tdcn

<E=E <(X-H)=<%-H <(X-pH)=<X-H

S-REFL S-ToB- S-ToB?

S-CompL-
Tdcn Sdcn Tdcn Tdcn gdcn -1 N <d6n Tdcn .y sdcn TO v ﬁTO
S.C 3 S-ANDORI- S-ANDORID
~-OMPL Sc{i} Sc{i}
TO A —'TO <dcn L v ren <den \/ 7en /\ h <den /\ I
= i’eS Yy it iYs i’eS
S-ANDOR2-) S-ANDOR2?)
P TiCd <den Tdan 3 | rden <den Tl_nl
. \/i TiCd <dcn Tdcn P Tdcn gdcn /\i Tin
S-DISTRIBDCN- S-DISTRIBDCN?)
Py ﬂdcn Sdcn ™M Y ﬂdcn Sdcn \/i Ticn P sqden gdcn Tin v tden
. ﬂdcn <dcn \/i (T“ A Ticn) . ﬂdcn <dcn (/\1 Tin) v Tdcn
S-TrRANS S-WEAKEN S-AssuMm S-Hyp
T gen gden gflen gy giden cden gden H TeH-H Hex
Zl—TgcnSdchgcn SHH SHH SHH
S-TMRGo
i j —k —i—j —k —i —j —k
R — A g 0" codenp _+° =7 07 o + 0
T (7" ver) (Tj A nj) T <CUTTT ot g VTR a1y
S-TDEPTH
i —j k
St <at Sk rT <1 <k 19=720
i i J J k k Rden
= =T % _den 7 =/ 0¥
ST T T < T T Ty

Fig. 24. DCN-normalized subtyping rules for S(7, R).

(A) Forte{T,T Tt 1= 70 }and \; nf“ in complement-free CDN-normalized form, if
A\ ﬂ?“ C 1 with a derivation of size n, then ngn C 1 for some k with a derivation of
size n.

(B) Forre{ L, Ttt+ 7= 10} and V,; 7™ in complement-free DCN-normalized form,
if 1< \/,; nf™ with a derivation of size n, then either T < m " for some k with a
derivation of size n.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof By induction on right-leaning < derivations.

Case S-REFL. Immediate.

114

Case S-ToB-. Then 7 = T and we have ﬂ?" c Tl by S-ToB-, with a derivation of size 1.

Case S-ToB>. Then A, n?” = ﬂld“ = 1. The result is immediate.

Case S-CompL-. Impossible since 7 is not a union.

Case S-CompL>. Impossible since 7 # L.

Case S-ANDOR11.. Impossible since 7 is not a union.

Case S-ANDOR11). Then 7™ = 7 and we have 7" < 7 by S-REFL, with a derivation of
size 1.

Cases S-ANDORI12-. Impossible since 7 is not a union.

Cases S-ANDOR12D. Then A;_, 7" = 7" = 7 and we have 7™ < 7 by S-REFL, with a
derivation of size 1.

Case S-ANDOR2-. Then A\, 7" = 7" = 7% v 72 for some 7, and 7¢}'. The result is
immediate.

Case S-ANDOR20. Impossible since 7 is not an intersection.

Case S-TRANs. Then the premises are /\; 7" € 7/ and 7/ < 7 for some 7/, both with a
derivation of size n — 1. By induction on the size of the subderivation for the former
premise, denoted by m. Denote the inner induction hypothesis as TH'.

Cases (S-REFL, *), (+, S-REFL). By IH on the other premise.
—_—i
Cases (S-ToB.,). Then 7" = T. By S-ToB-, we have 7™ = T . By S-TRANs with

T 7, we have 7" 7 with a derivation of size n.

Cases (S-ToBD,). Then A\; 7' = 7" = L. The result is immediate.

Cases (S-COMPL-, *). Then /\; 7™ = 7™ = T. The result is immediate.

Cases (S-ComPL), *). Impossible since /\i Jrf.i“ is a complement-free CDN-
normalized form.

Cases (S-ANDORI11:,). Then 7/ = A, n?” v 7, for some 7{. By Lemma A.44 on
the latter premise, we have /\1- n?" C t with a derivation of size n — 1. The
result then follows from IH.

Cases (S-ANDOR112,). Then 7/ = 7T1dn. The result is immediate from the latter
premise.

Cases (S-ANDOR12,). Then 7/ = 1] v /\; Jrl?l“ for some 7{. By Lemma A.44 on
the latter premise, we have /\i nf“ C t with a derivation of size n — 1. The
result then follows from IH.

Cases (S-ANDOR12D,). Then 7/ = /\i>1 ﬂ?n. By IH on the latter rule, we have
ﬂ'gn C 7 for some k > 1.

Cases (S-ANDOR2, *). Then /\[ﬂ?“ = n'f“ =7 v ﬂ‘liz“ for some nj; and ﬂ?;. The
result is immediate.

Cases (S-ANDOR2), #). Then 7/ = 7] A 7 for some 7| and 7). Since 7 is not an
intersection, it is easy to see that the intersection must be consumed by an
application of S-ANDORI119, S-ANDORI122, or S-DISTRIB¢ in the transitivity
chain. Then it is possible to rewrite the derivation into a smaller one by dropping
the application of S-ANDOR22. The result then follows from IH.

dn _ _n dn / _ (-dn n dn dn
Cases (S-DISTRIB-,). Then 75" =73, v 75} and 7" = (7{™ A 73)) v (7™ A 753)

for some 73, and 73 By Lemma A.44 on the latter rule, we have 78" A 713, S 7

1 < 7, both with a derivation of size n — 1. By IH on 7" A 73, ©

7, we have 77(1“‘ Storm cT, both with a derivation of size n — 1. By IH

and 7™ A 7

dn dn

on ™ A 72 < 7, we have r{® dn

cTor 5

115

C 1, both with a derivation of size

n—1.1If ﬂ‘li“ C 1, then we have the result immediately. Otherwise, we have

n dn
T ET and 5 >
a derivation of size n.

dn

< 7, which imply 715" = 713, v 792 = 7 by S-ANDOR2:, with

Cases (S-D1STRIBY,). Then 7" = 78 v 7% and 73" = 7§} v 75y for some 7} and

dn

m» and 75y, and v/ =70 v (1] A 75). By Lemma A.44 on the latter rule, we
have 7} A 753 © T and #) = 7, both with a derivation of size n — 1. By IH,

d dn d

we have =

Y 71‘2151 < 7 with a derivation of size n by S-ANDOR2- with 7 < 7.

n — dn c . : : — on n — dn
L ETorm) e, which implies w3 T, VAL ST or my

1

Lemma A.58.
(A) Forte{T, Tttt 10} if i A mSt S 7, then either n S T or 5" S T or w} A
7TC11 [J_.
e
(B) Forte{ L, Tt =1}, ifrcnalv n'g“, then either T < i} or Tgng“ or TC
dn
at v

1 2

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof By induction on right-leaning C4°* derivations for the following statements, where
S-ANDOR?2- does not occur as the first premise of S-TRANS in any of the judgements (in both
the assumptions and conclusions). It is easy to see that we can rewrite any subderivations
with S-ANDOR2- as the first premise of S-TRANS into an equivalent one by applying S-
TRANS to the premises of S-ANDOR2- and the second premise of S-TRANS, followed by an

application of S-ANDOR2-.

l. Forte{—1,T T+ 110 }, if nl A 5"t © 7 with a derivation of size n, then either

n} © 7 or n5" < 7 with a derivation of size n, or 7' A 75" < L.

—_— 7, —
2. Forroe{T v+ 7= 79}, if \/, n{" < 1. with a derivation of size n, then 7{" C 7.,

all with a derivation of size n — 1.
In the remainder of this proof, we abbreviate cden 55 .

Case S-REFL. Impossible

Case S-ToB-.
1. Then 7 = — 1 and we have both n}' € 7 and 75" < 7 by S-ToB-.
2. Impossible.

Cases S-ToB>, S-CompL<,S-ANDORI-. Impossible.

Case S-ANDORID.

—i>1
1. Then 7 = 7} for some k, where 75" = /\,_; #}" for some 7} ~ . If k = 1, then

we have 7] © 7 by S-REFL. Otherwise, we have 75" < 7 by S-ANDORI?.
2. Impossible.

Case S-ANDOR2-.

116

1. Impossible. _
2. The premises of the rule are Tt e Tcl, all of size n — 1.

Cases S-ANDOR2D, S-DisTRIBDCNo. Impossible.
Case S-TRANS.
1. Then the premises of the rule are 77 A 75" < 79" and 79 < 7 for some 74,
both of size n — 1.
2. Then the premises of the rule are \/, 7™ < 9™ and 79" < 7. for some 79",
both of size n — 1.
By induction on the size of the former premise of S-TRANS, denoted by m. Denote
the inner induction hypothesis as TH’.
Cases (S-REFL,). By IH on the latter premise.
Cases (S-ToB-,).
1. Then 79" = — 1 . We have both nl & —Lland 75" < — 1 by S-ToB-. Then
we have both]! © 7 and 715" S 7 by S-TRANS with the latter premise, both
with a derivation of size n.
2. Impossible since — L € 7. cannot be derived (Lemma A.62).

Cases (S-ToBo, =), (S-ComPL., *). Impossible.
Cases (S-ComPLD, *).

1. Then 79" = | ml A gt < L is immediate from the former premise.
2. Impossible.

Cases (S-ANDORI1 ., *).

1. Then 79 = (2 A 75™) v 75" for some 75", If 7 =T, then we have
both 7r’1“ C rand ﬂ;n < 7 with a derivation of size 1 by S-ToB-. Otherwise,
the latter premise (7} A #5™) v 75" = 7 implies 717 A 75" ST with a
derivation of size n — 2 by IH (2). The result then follows from IH (1).

2. Then 79 =(\/;n") v J» for some 73/". The latter premise
(V; 7)) v 15n < 7, implies \/; 7™ < 7. with a derivation of size n — 2
by IH (2), which implies 7{* < 7, all with a derivation of size n — 3 by
IH (2).

Cases (S-ANDORI1D,).
1. Then 74" = A\, _ ¢ 7% for some S {i }, where 75" = A\,_; 7? for some

i

Case 1 € S. By IH (1) on the latter premise, we have either Tl ST or
N es\(1y T © 7 with a derivation of size n — 1, or A, ¢ 75 < L.
If 7} < 7, the result is immediate. If AV S\{1} nj; < 7, then we have
n5" © 7 with a derivation of size n by S-TRANS with S-ANDORI1?.
If /\i’eS JT?, c 1, then we have n‘ll A ngn c 1 by S-TraNs with S-

ANDORID.
Case 1 ¢ S. Then 75" < 7 follows by IH (1) on the latter premise, followed

by S-TRANS with S-ANDOR12, with a derivation of size n.
2. Impossible.
Cases (S-ANDOR2.,). Impossible by assumption.

117

Cases (S-ANDOR20,).

1. Then 7den = /\ ;7 for some ‘r . The premises of the former rule are

SR s T] , all of size m — 1. By repeated applications of IH (1), the

latter premise /\ i T]’.1 € 7 implies 7;! < 7 for some k with a derivation of

sizen — 1, or/\.-rr.‘CJ_

Case 7' = 7. Then by S-TrANS with one of the premises of the former

rule, we have 7{' A 75" © 7 with a derivation of size n and a former
premise of size m — 1. The result then follows from IH’ (1).

Case /\; 77 < L. Then we have 7} A 75" © L by S-TraNs with the

former premise

2. Then 74 /\ ;7 for some T . The premises of the former rule are

\/ Tt e T all of size m — 1. By IH (1), the latter premise /\ T C 7.

1mphes 7, € 7. for some k with a derivation of size n — 1, or /\ T cl.

Case 7;' © 7. Then by S-TrANS with one of the premises of the former
rule, we have \/; 7{" € 7. with a derivation of size n and a former
premise of size m — 1. The result then follows from IH' (2).

Case /\ TS L. Then it is easy to see that the transitivity chain in the

derivation forone of \/; 7{™ < TJ‘.‘J must pass through 1,i.e.,\/; 7{" <
L can be derived with size n — 2. Then we have \/; 7{" < 7. with a
derivation of size n — 1 by S-TRANS with S-ToB?. The result then
follows from IH (2).

Cases (S-DisTRIBDCN:, *).

1. Then 7dn =\/ (1, (g A T§) for some 73 and TC“ The premises of the
former rule are:

nl AT C 1'6’ (1)
mianste VT (2)
both of size m — 1. The latter premise is:
V(75 A ch.n) cT 3)
By IH (2), (3) implies:
AT CT @)

all with derivations of size n — 2. For each j, by IH (1), (4) implies 7' S 7

or ch.n < 7 with a derivation of size n — 2, or 7’ A ch.n c 1.

Case 7 < 7. Then by S-TRANS with (1), we have:

AT ET (@)

with a derivation of size n — 1. The result then follows from IH (1).

Case 7' & 7. Then for each j, we have T;n STorTy A ch.n c 1. Let
S={j |t A 7" <L} By S-ANDOR2-, we have

VjgsTi"ST (6)

118

with a derivation of size n — 1. From the definiton of S, we have:
jES

LA T]‘?“ cl @)
By Theorem A.9, (7) implies:
~on =l €5
e Ty ®)
where 7, = neg(z}'). By Lemma A.7- on (8) and S-REFL, we have:

V, T e Vigs TV Ty 9)
Then by S-TRANS on (2) and (9), we have:

AT SV g TV Ty (10)

By Theorem A.9, (10) implies:
Té’An‘llAngngvj¢ST;“ (11
By S-TrANS with S-ANDOR?2 on (1) and S-REFL, (11) implies:

ﬂ?AﬂS“Q\/NST;“ (12)
Since we have (2) with a derivation of size m — 1 and (12), it is easy
to see that (12) can be derived with size m — 1. Then by S-TRANS with
(6), we have:

rlAmStCeT (13)

with a derivation of size n and a former premise of size m — 1. The
result then follows from IH' (1).

2. Then 7dn =\/ (19 A7) for some 7 and Tjﬁj. The premises of the

former rule are:

Virt ey (14)
Vimt eV, " 15)
both with a derivation of size m — 1. The latter premise is:
Vg A ch.n) C 1. (16)
By IH (2), (16) implies:
ATICT, (17

all with a derivation of size n — 2. For each j, by IH (1), (17) implies
Ty S Tc Or TJ?“ C 1. with a derivation of size n — 2, or L TJC.“ c 1.
Case 7 < 7.. Then by S-TrANs with (14), we have:

0
\VE% sip=g (18)

with a derivation of size n — 1. The result then follows from IH.

119

Case Tél & 7.. Then for each j, we have T;“ C 1. or ‘ré‘ A T]?“ < L. Let
S={Jjl1y ~n7i" <L} ByS-ANDOR2:, we have:

\/j¢s‘rj9n§‘rc (19)

with a derivation of size n — 1. From the definiton of S, we have:
jeS

ATl (20)
By Theorem A.9, (20) implies:
e’ 1)

where 7, = neg(7)'). By Lemma A.7- on (21) and S-REFL, we have:

V1"V es 15 v g (22)
Then by S-TRANS on (15) and (22), we have:
AVE¥ sope \/j¢s T]C.u v Ty (23)
By Theorem A.9, (23) implies:
LA V,; it < \/j ¢s T]C.“ 24)
By S-TraNs with S-ANDOR?2 on (14) and S-REFL, (24) implies:
Vim" S Vjgs 7" 25)

Since we have (15) with a derivation of size m — 1 and (25), it is easy
to see that (25) can be derived with size m — 1. Then by S-TRANS with
(19), we have:

Virtcr, (26)

with a derivation of size n and a former premise of size m — 1. The
result then follows from IH’ (2).
Cases (S-DISTRIBDCND,).
—j —k .
1. Then 74 = (A 7TV V7t for some ‘r]r.‘J and 77" . The premises of
the former rule are:

J
S s TV Vit 27

all with a derivation of size m — 1. The latter premise is:

(/\jT;‘)v\/kT,fngr (28)

By IH (2), (28) implies:
AT (29)
Tt (30)

all with a derivation of size n — 2. By repeated applications of IH (1),

(29) implies 7} < 7 for some /€ { j } with a derivation of size n — 2, or

/\jT]I.‘QL

120

Case Tl“ € 7. Then by S-ANDOR2- with (30), we have:

v Vietter 3D

with a derivation of size n — 1. Then by S-TrRANS on (27) for j =k
and (31), we have:

AT ST (32)

with a derivation of size n and a former premise of size m — 1. The
result then follows from IH’ (1).
Case /\ TS L. Then it is easy to see that the transitivity chain in the

derlvatlon for one of (27) must pass through either \/, 77" or L, i.e.,

aP ARt S\ T or 7r1 A mS? € L can be derived w1th sizem — 1.

Case i} A 75" S \/ « e+ Then by S-TRANs with S-ANDOR2- on
(30), we have (32) with a derivation of size n and a former derivation
of size m — 1. The result then follows from IH’ (1).

Case]’ A 75" < L. then we have the result immediately.
2. Then 7dm = (N; 7)) v V1 for some Tj“j and ?k. The premises of
the former rule are:
J
Vimteti v Vet (33)
all with a derivation of size m — 1. The latter premise is:
(A7) v Vet e (34)
By IH (2), (34) implies:
A, e (35)
o Tck (36)

all with a derivation of size n — 2. By repeated applications of IH (1),
(35) implies 7' = 7 for some [€ { j } with a derivation of size n — 2, or
AVErA==

Case 7' 7. Then by S-ANDOR2- with (36), we have:

LTAAVIE i =h 37
with a derivation of size n — 1. Then by S-TRANS on (33) for j = and
(37), we have:

Vit cr, (38)

with a derivation of size n and a former premise of size m — 1. The
result then follows from IH' (1).

Case /\ TS L. Then it is easy to see that the transitivity chain in the
derivation for one of (33) must pass through either \/, 7, or L, i.e.,
Vimt <V it or \/,; if < L can be derived with size m — 1.

121

Case \/, ni" < \/ 7", Then by S-TRANS with S-ANDOR2- on (36),
we have:

AVEE sy (39)

with a derivation of size n and a former derivation of size m — 1.
The result then follows from IH' (2).
Case \/; 77" < L. Then by S-TraNs with S-ToB2, we have:

V, r . (40)

with a derivation of size m <n — 1. The result then follows from
IH (2).

Corollary A.59. Forte{T°,Ttt 7 10}, if \i m* =° 7, then either n}} =° T for some
kor \{ altc® L°.

Proof By repeated applications of Lemma A.58. []
Lemma A.60.
(A) If Nici.p 7™ S 1 with a derivation of size n, where)\, |, T is a complement-

free CDN-normalized form, then either 7™ < 7% or N\;c, ,
derivation of size n.

(B) If 1" = \/; ¢ 1., T with a derivation of size n, where \/; .| _,, T
free. DCN-normalized form, then either 7" S 7" or 7" < \/
derivation of size n.

Tl.dn c ™ with a
M is a complement-

cn
ieon T with a

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof By induction on right-leaning <" derivations, where S-DiSTRIBCDN does not
occur as the first premise of S-TRANS in any of the judgements (in both the assumptions and
conclusions). It is easy to see that we can rewrite any subderivations with S-DISTRIBCDNo
as the first premise of S-TRANS into an equivalent one by applying S-TRANS to the premises
of S-DisTRIBCDN¢ and the second premise of S-TRANS, followed by an application of
S-DiSTRIBCDN®.

In the remainder of this proof, we abbreviate codn 55 .

Case S-REFL. Then A, , 7" =7 =797 ie., we have 7{" < nd“

Case S-ToB-. Then 79" = T and we have both 7! = T and /\l c2 TS T by S-ToB-.

Case S-ToB>. Then A\, , 7 =7 = =T, i.e., we have 7" = ndn.

Case S-CompL-. Then ;. , 7" =7 =T, i.e., we have " < 7",

Case S-CompL>. Impossible since ;. , 7" is a complement free CDN-normalized
form.

Case S-ANDOR1-. Then /\;_, , 7™ is not an intersection, i.e., A; ¢, 7" = 7" and

we have 7" <z,

122

Case S-ANDORID. Then 79" = 7" for some k € {i}. If k = 1, then we have 7" < x"
by S-REFL. Otherwise, we have Nica n 78 < 790 by S-ANDORID.

Case S-ANDOR2-. Then A, , 7/ =7, i 1.e., we have 7" <z,

Case S-ANDOR2>. Impossible since 79" is not an intersection

Case S-DISTRIBCDN-. Then 7" =/, ;T for some T . The premises of the rule are

J .
T;l ANiern ‘rl.dn < 740" all with a derivation of size n — 1. By IH on the premises,

we have 7} C rdor /\ i a1 Nican 78 < 792, then we have the

i€2.n

result immediately. Otherwise, we have TJI.I c qdn’ , which imply \/ TS 7 with

a derivation of size n by S-ANDOR2, i.e., Tf“ c gdn,

ﬁl el..n Tz el..n
Case S-DiSTRIBCDNY. Then =T v T n for some 7" and T n . The

premises of the rule are 7" < 7d® and Nicin Td“ c ndn, By IH on the latter

premise, we have 7" € 79 or A\, ., , ‘rﬁn c rdn w1th a derivation of size n — 1. If

‘r]d/“ < 792 then by S-ANDOR2- with 7" < 792 we have Tld“ =1"v Tf'l/“ < 79" with
a derivation of size n. If /\1 co2n T‘l“ < 792 then by S-DISTRIBCDN? with 7" < adn,
we have A\, ., , 77" = /\iEZ..n(T v 74") < 7" with a derivation of size n.

Case S-TraNs. Then the premises of the rule are A\; ., , 73" < 7¢I and 7¢4" < 79" for

some 7¢I, By induction on the size of the former premise of S-TRaNSs, denoted by

m. Denote the inner induction hypothesis by TH'.

Cases (S-REFL,). By IH on the latter premise.

Cases (S-ToB-). Then 7 =T. By S-ToB:, we have both ‘rld“ c T and
Nie2.n T S T. Then we have 7" < 79 and A rdn < 790 by S-TRANS
with the latter premise T < ﬂd“

Cases (S-ToBD, *). Then A\, = Tld“ = —T,i.e., we have Td“ < gdn,

i€2.n

iel.nT
Cases (S-COMPL:, x). Then A\, , 7" =7 =T, i.e., we have Td“ < pdn,
Cases (S-CoMPLD,). Impossible since /\l claT™isa complement free CDN-

normalized form.
Cases (S-ANDORI1., *). Then A
7" and we have 0" < 790,
Cases (S ANDORID, >x<). Then 7¢0 = A\, g T4 for some S = {i }. If 1€ S, by IH
on the latter premise, we have 7™ < 79" or A, g1y 79" witha derivation
of size n — 1. If 70" < 70, the result is immediate. If /\;, (1, 7%, then
we have /\ 790 < 797 with a derivation of size n by S-TRANS with S-

ie2.n
ANDORID. If 1 ¢ S, then A, rdn < 797 with a derivation of size n follows

" is not an intersection, i.e., /\ Tin =

iel.n i iel.n

ie2.n T,
from IH on the latter premise, followed by S-TRANS with S-ANDORI?.
Cases (S-ANDOR2:, %). Then A\, , ' =7{", i.e., we have i o pdn,

Cases (S-ANDOR2D,). Then 7°9" = /\ ﬂd“ for some n'] . The premises of the

former rule are /\ Td“ c er“ . The latter premise is /\ ndn < 7", which

iel.n
implies 7 = 79" for some k € { J } with a derivation of size n — 1 by repeated
applications of IH, which implies A\, , 7" € 7" with a derivation of size
n and a former premise of size m — 1 by S- TrRANS with A i < 7t The
result then follows from TH'.
Cases (S-DISTRIBCDNo,). Impossible by assumption.

iel.n

123

Corollary A.61.

(A) If \; Tlfin < 79 where A Tid“ is a complement-free CDN-normalized form, then
dn dn K
7" S " for some k e {i }.
(B) If 1 < \/, 77", where yi 7" is a complement-free DCN-normalized form, then
et S Tt for some k € {i }.

Proof By repeated application of Lemma A.60. |
Lemma A.62. T° C° T is not derivable forte {T 7+ 7~ 70 }.
Proof By induction on <" and <9°* derivations respectively. []

A.9 Soundness of Subtyping

Theorem A.63 (Subtyping consistency). If E cons. and E - 7 <, where:

Te{l, T, #C, 11 > 1, {xi:Tii}}
ne{l, T,#C', my > m, {x' :m }}

then exactly one of the following is true:

(a) tT=Lorn=T;

(b) T =#C and n =#C’ and C' e S(#C);

(c) tT=11—>mnandrn=n; >myand E+ 11 <1 and E+ 1) < 1y,
(d) t={x7 }andn ={xy:m } and E - 7y <y for some k.

Proof By Lemma 3.4 on the assumption, we have:
PE-TST (D)
Then proceed by case analysis on 7.
Case 7 = 1. Then (a) is true and (b), (c), (d) are false.
Case 7 = T. Then (b), (c), (d) are false. Since r = | v T, by Lemma 4.22 on (1), we have:
=\ (n}ijDj))

-
bELT < VJ.D’ 3)

i . ~j)
for some n;.] and D jJ and V}DJ , where A\ j VjD’ is complement-free. By Lemma 4.9,
(3) implies:

De{T. L} @)

124

By Lemma A.72 on S-ANDORI2-, we have:
D; D;
AVATREAY, (”9 VVJJ)

By S-TraNs on (5) and (2), we have:

N, VJ.D'f cn
Since A j VJ.D" is complement-free, we have:
AV L
Then (6) and (7) imply:
rd L
By Lemma A.57, (6) implies:
V]f) kon

&)

(6)

)

®)

€))

for some k. By case analysis on the syntax of VkD k and the assumption on the form

of 7, (9) can only be derived when 7 = T. Then we have 7 = T, i.e., (a) is true.

Case 7 = #C. Then (c), (d) are false. Since 7 = | v #C, by Lemma 4.22 on (1), we have:

m= N\ (ﬂ;.vVJPj)

-
BB #C < fo

(10)
an

— — 3/ _
for some 71';.1 and D j] and VjD’ , Where /\ j VJ.D’ is complement-free. By Lemma 4.9,

(11) implies:

Dje{#cl,w,T,l}j

12)

where C; € S(#C) and C, ¢ SH#C) and C¢ S(#C,). By Lemma A.70 on S-

ANDORI12-, we have:
D; D;
AV SN (7 v v)
By S-TrANS on (13) and (10), we have:
AiV; en

. D;.
Since /\ i Vj ’ is complement-free, we have:

AV L
Then (14) and (15) imply:
rd L
By Lemma A.57, (14) implies:
V]?k Cr

for some k. By Lemma 4.10, (17) implies either 7 = T or VkD" =V,

13)

(14)

s)

(16)

A7)

125

Case m = T. Then (a) is true and (b) is false.
Case m # T. Then we have:

n;\/lﬂ:VkD" (18)

By the syntax of U and U%, we have:
Di¢{T L} (19)
Then (12) and (19) imply:
Dy e {#Cy, #€5 } (20)
By case analysis on the assumption on the form of 7, we have:
m=#C (21)

where C; € S(#C). Then (b) is true and (a) is false.

Case 7 = 1) — 1. Then (b), (d) are false. Since 7~ 1 v (1] — 12), by Lemma 4.22 on
(1), we have:

r2 A (mh v V) 22)
>E|—T1—>Tz$Vj’ (23)

— — 3/ .
for some 7r;.] and D j] and VjD’ , where /\ j VjD’ is complement-free. By Lemma 4.9,

(23) implies:
Die{—>T. X} (24)
By Lemma A.75 on S-ANDOR12., we have:
AV SN, (n; v Vf-") 25)
By S-TrRANS on (25) and (10), we have:
NV en (26)

. D;.
Since /\ j \% f ’ is complement-free, we have:

AV el 27)
Then (26) and (27) imply:
rg Ll (28)
By Lemma A.57, (26) implies:
vokcn (29)

for some k. By Lemma 4.10, (29) implies either 7 = T or VkD" =V,
Case 7 = T. Then (a) is true and (c) is false.
Case m # T. Then we have:

JT;\/IJT:VkD" (30)

126

By the syntax of U and U4, we have:
D¢ {T, £} €19}
Then (24) and (31) imply:
Dy =— (32)
By case analysis on the assumption on the form of , we have:
=1 - (33)
Then (23) implies:
PEFT o<\, 1 >m (34)

By case analysis on the < rules, (34) implies:

DEI—T1—>T2S(/\I7T1)—>(\/IJT2) 35)

Again by case analysis on the < rules, (35) implies:
EF/\lﬂ'lng (36)
EFrn<V,m 37

By S-TraNs with S-ANDOR2¢ on S-REFL, (36) and (37) imply:

EFm <1 (38)
EFn<m (39

Then (c) is true and (a) is false.

Case 7 = {X;:7;' }. Then (b), (c) are false. Since 7 = A, (L v {x; : 7; }), by Lemma 4.22

on (1), we have:

1=\, (n; v fo) (40)

—_ ij
D.:}—{xklekj}SVj’ 41)

. . —j . 4
for some 7T/].j and D jj and V]I.D’ and k jJ, where /\ ; ViD’ is complement-free. By
Lemma 4.9, (41) implies:

Dyefxi, T, X} (42)
By Lemma A.75 on S-ANDOR12-, we have:
AVe N, (= v v 43)
By S-TRANS on (43) and (10), we have:
A, VJ.Dj = (44)

. D;.
Since /\ i Vj ’ is complement-free, we have:

AV gL (45)

127

Then (44) and (45) imply:

rd L (46)
By Lemma A.57, (44) implies:
vPkcn (47)

for some k. By Lemma 4.10, (47) implies either 7 = T or Vlf)k =V,
Case 7 = T. Then (a) is true and (d) is false.
Case 7 # T. Then we have:

=\, n=V>k (48)

By the syntax of U and U4, we have:

Di¢{T, £} (49)
Then (42) and (49) imply:
Dy = xy, (50)
By case analysis on the assumption on the form of 7, we have:
m={xp, 7} (51)
Then (41) implies:
PEF {xk 1 Tie } <V { Xk i1} (52)
By case analysis on the < rules, (52) implies:
PEF {xg 1T } < {1 1V 1} (53)
Again by case analysis on the < rules, (53) implies:
B, <V, m (54)

By S-Trans with S-ANDOR2- on S-REFL, (54) implies:
1y, <1y (55)

Then (d) is true and (a) is false.

Only the proof for (A) of Lemma 4.22 is shown below. The proof for (B) is mostly
symmetric.

Proof [Lemma 4.22] By Lemma 4.14, there exists some 79" and 74" such that 7 ~ r¢d»
and 7 =~ 7°_ Then by Lemma 4.21, we only need to consider CDN-normalized derivations
for r¢dn <odn zedn "and the result would also apply to the original derivation for T < 7. By
induction on unassuming CDN-normalized subtyping derivations.

—i Y
Case S-REFL. Immediate since 7=~nm. Pick nl’.:Tl.’ and Vl.D i :Ul.c‘ . Then m=~

—_i
A (n: v Vl.Df) and US < VPP

128

Case S-ToB-. Then 7= T. Pick 7} = L and VIDl =V =T. Then n=n} v VID1 and

—_—
Ut <vPr

i
Case S-ToB>. Then 7=—T. So nxnvrnv /\; (Tl/ v Uici). By distributivity,

1

. e : :
we have 7= \; (IT v TV Uic’). Pick 7l =n v 1/ and ViD’ = Ul.C’ . Then n =~

_ i
A (n; v VI.D") and Ul.ci ﬁViD" .
Cases S-CompLe. Immediate since T = z1. Proceed with the same reasoning as case S-

REFL.
Case S-ANDOR1-. 7 =7v ' for some n’. Then nmxA\; (Tl/ v Uf") v~

A (Tl/ vy Ul.ci). Pickmi and V" = Ul.cii. Then = A\, (n: v lei>
and U < Vini.
Case S-ANDORI12. 7 =7 A 7/ for some 7’. Then from the assumption, we have:
t=nAt =N\ (TlvaiCi) ¢h)
By Lemma A.7- on S-REFL and (1), we have:
(rA—=T)v(@EAT)=(@A-T)Vv N\ <Tll v U[Ci>

ie, mx= N, ((n’ A=T) vl v Uf") 2)

i _—
Pick 7l =(nA—7')vt/ and Vl.Di = Uic" . Then m=x= (ﬂ; v ViD") and
_—
uci<vPi.
Case S-ANDOR?2-. By induction on the number of premises. Denote the inner induc-
. . —hel..
tion hypothesis as IH'. We have 7=\/, ., , 7, for some 7 ", Let Tgn =
ViernTp-thent =10 v Tgn. The premises of the rule are:

hel.n

T,’;‘ <rn 3)

By S-ANDOR2- on (3) for & € 2..n, we have:
< 4)

with the same size as the current derivation and one fewer premise. From the
assumption, we have:

A (T{VUfi)gTZTfVTgn 5)
By S-TraNs with Lemma A.79 on S-ANDOR12-, (5) implies:
AU ey o (6)
By Corollary A.61, (6) implies:
Uk oty g)

for some k.

129

Case Cy = B. If Cy = B for some B, then by Lemma A.44, (7) implies:
I

U/C 1 c Tln v Tdn (8)

/ —!
where UC"' =V, U'C "and U’C ! are not unions. By Lemma A.58, (8) implies

1

c’
eltherU’ ICTl or U’y ZCTd“ or TStV

Case U'C' ctlor U ‘rdn By S-ANDOR2-, we have:

1€t _ 1C' — —n
U T \/l | U/lcll(;T]n Ul - Tl (9)

2 C?

R 1C'1 c 7dn
U T \/l ‘ U/lC/lgT?n U l - TZ (10)

By S-ANDOR2- with S-REFL, (9) and (10) imply:

v U crp (11)
2
gy 2 crgn (12)

T vU (13)
2
7dn = 7dn \, 726 (14)
Then by IH on the (3) for 2 =1 and (13), we have:
1
=N, (n;, v P ") (15)
p
sx b U1 <1l (16)
By IH’ on (4) and (14), we have:
2
r2 A, (7 v v (17)
q
>3 U2 < v2la (18)
By distributivity, (15) and (17) imply:
~ 1,2, ytP! 2 D?
ﬂ:/\p’q(ﬂp\/ﬂqvvp”vvq"> (19)
For each pair (p, g), we pick 7}, and qup as follows:
1f D!, e (T, £}, pick x,, =} v 22 v V220 and vEre — 12
- P pq —Tp Vg

Then >X — Uck < VD”".

2
« If D%, e{T, L}, pl;kﬂ'lq=7'l'11)\/ﬂ'§\/vl andVD”q szl)".
Then X+ Uk <V, 9.
< If D', ¢{T, 1} andD2q¢{T,l} and D', # D?,, then we have
at least one of the following by Lemma 4.9 (note that since Cx = B

we have C! = B! and C? = B2 for some B! and B?):

130

- D', =C' and D?,=C? which implies C'=#C? Since
1 2
Ukck;Ulc vU?S, we have Ci=T and (C',C?)e

{(x,y*), (x,—),(—,x)} for some x and y. Then

1 2
107 2D a4~ 3 T 3 T
Vi, vV =My, V Vg for some 7erq and Vog- Then
_ 1 2 3 rq T
we can plck npq T, Vg vy, and V77 =V, . where we

have >X |- Ukc" < qu”".
- C'=#C, and D', =#C,, where C,eS(#Cy). Since Upt =

1 2
Ut v S, we have Cy =C!=C?=#C; Then we can pick
1
Ty = 7T11, v 7r v V2 7 and VD”" = Vlf,) P where we have >3
USk < VD""

- c1 #c1 and D', = #€7, where C; ¢ S(#C,) and C, ¢ S(#C)).
Proceed similarly as above.
- C?=#C, and D2, =#C,, where C,eS(#C)). Since Upt

C! c? .
U~ vU*, we have Ck =C!=C?=#C; Then we can pick
D D?
Ty —n}, vnq vV1 > and V0 ? qu ¢ where we have >X
UCk < VD‘""

- c2 #c1 and D?, = #65, where C) ¢ S(#C>) and C, ¢ S(#C)).
Proceed similarly as above.
- IfD', :DIqu; { T,zl}, then we have lcl =(? :Dzlp :Dzzq. Then
USk =0 v U2C and U'C <D and U < V2 imply
1 2
Uka < Vlg AV} sz 4, s0 we can pick ﬂ;,q = 7T1p v ﬂé and V[,Dq”" =
V]Dl,, v V2D2¢1
j2 q -

Then we have:

72 Ny (T v Vod) (20)
- P.q
Dy e (T U(T. LYo (FHE L GE Ty e
C D P.4q
BE UK <V,» (22)

The conditions on Dp,, in (21) ensures that we can rewrite
A P (n;,q v V,?[j’q) to an equivalent complement-free form, where the
< relation is still satisfyable.
Case T = 7' v 7y, By Lemma A.45, we have V? < r for some V? and D €
{T, X} Then we can pick n\ = mand VlD ! = VP which indeed satisfies
T vVlDl andUkC" ﬁVlD‘.
Case C;, = B. If C; = B for some B, then we proceed symmetrically to the case
above on the negation-inversion of Uka cTlv Tgn, T VR XQ‘/ for

some 7'} and 7'5" and X in , and finally apply negation-inversion again to obtain
the desired result.

131

—h
Case S-ANDOR22. Then 7= /\,, nﬁn for some 712“ . The premises are T<7T2n .

Dh
H dn ~ h h™”Pn
By IH on each premise, we have "=/, (”m vV, > and

Cyn Dh bPn — on Ph .
>XU,,"™ < Vi, for some mfh, " and V#," and k%, . Then we have
Ph

Dh
~ h h™~Pn
T= /\h /\Ph T v 4 Ph
Cases S-DISTRIBCDNo. Similar to case S-ANDOR2-.

Case S-RcpDEPTH. Then 7 ={x:7; } and 7 = {x: 7 } for some 7; and x;. From the
assumption, we have:

A (Fvuf)er=1xin) (23)
By S-TrANs with Lemma A.72 on S-ANDORI12-, (23) implies:
A US S{x:in} (24)
By Lemma A.57, (24) implies:
Ukc"' c{x:m} (25)
for some k. By Lemma 4.10, (25) implies:
Uk =\, {x:71 } (26)
The premise of the rule is:
>Y 1 <My 27)

By the definition of <, (27) implies:
Y {x:im }<{x:m}
ie., DXk Uka <{x:m} (28)
So we can pick 7| = L and VID1 ={x:m }, which indeed yields 7 = {x:m } =
v VIDI.
Case S-RCDMRG-. Thent={x:7y v }and r={x:7} v {x:1} for some 7; and
T5. From the assumption, we have:

/\i<Tl-/vUiC[)§T:{XZT1\/T2} (29)
By S-TrANS with Lemma A.72 on S-ANDOR12:, (29) implies:
AUS Si{xinivn)} (30)

By Lemma A.57, (30) implies:
Utkcf{xitivn} 31
for some k. By Lemma 4.10, (31) implies:
Ukck=\/l{x:‘rlv7'2} (32)

132

Pick 71 = 1 and VID1 ={x:11} v {x:7}, which indeed satisfies 7 ={x:7; } v
{x:in}=m vVlD‘ andUkaﬁVlDl.

Case S-RCDMRGD. Thent={x:7 } A{x:m }and 7 ={x:7 A 7 } for some 7| and

T,. From the assumption, we have:

/\l-(Tl./VUiCi)g‘!':{x:Tl}/\{XZTQ} (33)
By S-TrRANS with Lemma A.72 on S-ANDOR12-, (33) implies:
AUS Si{xin}a{xin} (34)

Let / range from 1 to 2. By Lemma A.44, (34) implies:

/\iUl.C'-Q{XZTl}‘ (35)
By Lemma A.57, (35) implies:
e |
C
Uklk’ c{x:7} (36)

for some k_ll. By Lemma 4.10, (36) implies:

ol)
ka’ =V, {x:7} (37)

Pick 7} = L and VIDl ={x:17] A T2}, which indeed satisfies 7 ={x:7] A T2 } =

/ D, Ciy D,
myvViband A, U <V

Case S-RcpTop. Thent=Tandn = {x:7 } v mp, where mo e {{y** : 12 }, m > 13}

Pick n{ = L and Dy =T and VlD1 ={x:m } v my, which indeed satisfies 7 = { x :

—_—
SRV (E=F vVlD‘ andUl.C’fﬁVlDl .
—1€0..3

Case S-FuNDEPTH. Then 7=7 —> 1 and 7 =19 — 73 for some 7 . From the
assumption, we have:
A (Tl.’vUiC");‘r:Tl—»Tz (38)
By S-Trans with Lemma A.79 on S-ANDOR12-, (38) implies:
AN US St -1 (39)
By Lemma A.57, (39) implies:
USkct -1 (40)
for some k. By Lemma 4.10, (40) implies:
Utk =\, 11— 1 1)
The premises of the rule are:
PEET)< T (42)

PEFT T3 (43)

133

By the definition of <, (42) and (43) imply:
DT > <T)—>T3
ie, DXk Uka <710 — T3 (44)

So we can pick ﬂ’l =1 and VID1 = 179 — T3, which indeed yields 7 =19y — 13 =
v VID].
Case S-FUNMRG . Then7 =1); > 712 A 721 = T and 7 = (111 v 1721) — (712 A T22) for
some Ti1, T12, 721, and 72;. From the assumption, we have:
/\i (T{VUici)§T=T11—>T12/\T21—>T22 45)
By S-TrANs with Lemma A.72 on S-ANDORI12-, (45) implies:
Ci
N Ui ST = T2 AT — T (46)

Let [range from 1 to 2. By Lemma A.44, (46) implies:

/\i UiCi ST =T 47)

By Lemma A.57, (47) implies:
I

U:;kl ST — TR (48)

for some k_ll. By Lemma 4.10, (48) implies:

7
L

Cx
U=V, m—m (49)

Pick 7 = | and VIDl = (111 v 121) — (712 A T22), Which indeed satisfies 7 = (711 v

Ck
To1) = (Tio A T2) =7} v VIDl and /\, Uklk’ 5V1D‘.

Case S-FUNMRGD?. Then 7 = (11 A 13) — (12 v 74) and 7 =11 — 7» v T3 — 14 for some
T_ll €14 PFrom the assumption, we have:

A <TilvUiCi)§T=(T1 AT3) = (T2 v 14) (50)
By S-TrANS with Lemma A.72 on S-ANDOR12-, (50) implies:
A Ul.ci St am)— (v (51)
By Lemma A.57, (51) implies:
U]f" S(nAan)— (vt (52)
for some k. By Lemma 4.10, (52) implies:
Uka =V, (11 A1) = (12 v 14) (53)

Pick JT,I =1 and VIDl =T > T V T3 — T4, wWhich indeed satisfies 1=1] > 1 v
D C D
oz vV and U * <V,

134

Case S-CLsSuUB. Then 7 = #Cj and m = #C, for some #C and #C,. From the assumption,

we have:
A (Tl/ le.Ci) cT=#C

By S-Trans with Lemma A.79 on S-ANDOR12-, (54) implies:

A US c#Cy
By Lemma A.57, (55) implies:
Ugk c#C
By Lemma 4.10, (56) implies:
USk = \/, #C
The premise of the rule is:
Cr, e S(#Cy)

By the definition of <, (58) implies:
#C) <#Cy

ie, U <#C,

(54)

(35)

(56)

(57)

(58)

(39)

So we can pick 7} = L and VlDl = #C>, which indeed yields 7 = #C, = 7| v VID‘.
Case S-CLsBoOT. Then 7 =#C; A #C, and 7= 1 for some #C; and #C,. From the

assumption, we have:
A (Tl/ V. Ul.c") CT=#C| A #C;
By S-TrANS with Lemma A.72 on S-ANDOR12-, (60) implies:
A UST CHC) A #C,

Let [range from 1 to 2. By Lemma A.44, (61) implies:

—_—
A US4

By Lemma A.57, (62) implies:
_
UM c#ey

1

—1
for some k; . By Lemma 4.10, (63) implies:

—
Cr
Ukl I = \/kz #C

Then (64) implies:

—_—
Cr, = #C,

(60)

(61)

(62)

(63)

(64)

(65)

135

The premises of the rule are:

Ci ¢ S(#C,) (66)
Ca ¢ S(#Cy) (67)

which is impossible by the condition on al

B Formalization of MLstruct, Continued

We now give the full details of MLstruct’s formalization.

B.1 Declarative Typing Rules

The declarative typing rules of 1™ are presented in Figure 25.

Rule T-Boby is used to type programs that happen to be simple terms, after having
accumulated a set of declarations in the context D, which is checked for well-formedness
using the rules presented in Figure 26 and explained later (Section B.2).

In T-DEF, we type the body of a def inside a constraining context Z added on top of the
current declarations context, and subsequently use E as part of the resulting polymorphic
type of this def, which is placed into the typing context for use later in the program.
Importantly, = has to be checked for consistency, which is done with the = cons. judgement,
defined in Figure 25 — essentially, this makes sure that there is at least one assignment of
variable that makes the constraints hold in the base declarations context. This is to forbid the
use of inconsistent bounds on type variables, such as (Bool < «)-(« < Int), which could
lead to accepting ill-typed definitions.

As a concrete example for T-DEF, consider a definition such as def f=Ax. x + 1 in
a program where a type synonym type A = Int is defined. One hypothetical judgement
used to type this definition could be ‘(type A =Int) (¢ <A), ' Ax. x+1:a —Int’
where E = (o < A) is the constraints part of the context. According to T-DEF, because =
is consistent (since lbz(a) = L < ubz(a) = Int), we can type the definition f as V(@ <
A). @ — Int’. As a side note, this type can be rewritten to f : A — A, which is equivalent
in the declarations context (type A = Int).

Rule T-VAR2 is an interesting counterpart to rule T-DEF explained above. It instantiates
a given polymorphic type through the <" relation defined by rule S-ALL.

Rule S-ALL uses a substitution p, a premise that the subtyping holds under this substi-
tution, and the entailment judgement X-E' = p(E), which simply makes sure that every
subtyping constraint in p(Z) holds in ¥ with E’ (which is e for T-VAr2). Condition
dom(p) =TV(E) u TV(t), where TV(-) is defined in Section B.3, is used to make sure
that p assigns a substitution to all the variables quantified by the polymorphic type.

136

T-Boby

T-DEF
BEcons. ETHr:7 Z cons. E.Tr+t:t ET(x:VE.7)F*P:7p
BT+*t:7 ET+*defx=t; P:1p
T-Suss T-Oss
BTkt EF11<1 ET+t:t C final
T
ETl+t:m ET-C{x=r}:#Cnr{x:7}
T-Pros T-Varl T-Var2 T-ABs
ETHt:{x:7} I'x)=r Fx)=0c Ero<"Ver ET(x:m)kt:1m
El-tx:t Elx:7 ElNx:7 El-Ax.t:11 -1
T-App T-Asc
El+t:m1—>n ETHt:1 ETFt:1
ETltpt1in ETH(:7):7
T-CasEl T-Casg2

E,FFI]ZJ_

E,I'casex=rtjofe: L

T-CASE3
ET-H:#C A1 v ~#C AT

ETkHn:ma#C ET(x:t)kF:T

Elcasex=t1of _—1:71

El(x:7m)kt:t ETI(x:mp)Hcasex=xof M:7
El'tcasex=t1of C—t), M:1

Assuming X holds, then bounds >E-E are consistent, as witnessed by p.
’ Z>E-E; pcons. ‘

E cons.=dp. e E; p cons.

split o, (B, dom(p')) = (Bq, Ex) p=[ar a A ubz(a) v lbz(a)]
>EL DB pE g pLE pEa

P DB >Eg-pEy s o cons.
Y+ >E; [] cons.

SpEL-E; p’ op cons.

splite (B, {¥}) =

((Tgﬂ)(Tgﬂ)EE\QE{T’”}, —(Tsﬂ)(Tgn)EE\aif{T,n} .m(a@’ﬁ)emﬁe{?}

)

S-ALL
E.TZEp(B)

B2k pr) <t dom(p)=TV(E)uTV(r)

THVE T <VE.

S-Cons S-Cons>
e S-EmpTY SEY Shn<n TEY <EFT<n
YEE€ 2)=Z/-(T1§T2)

> E Z/-I>(T1 < Tz)

Fig. 25. Full declarative typing, consistency, and subtyping entailment rules.

137

B.1.1 Superclasses

Definition B.1 (Superclasses). We define the superclasses S(t) of a type T as the set of
classes transitively inherited by type T, assuming T is a class type or the expansion of a
class type:
CeS(#D) T exp. 7' CeS(t) C e S(1)uS(n)
CeS(#C) CeS(D[7]) CeS(1) CeS(11 A1)

B.1.2 Substitution

Definition B.2 (Term substitution). A term substitution is a pair of variable and term
[x — t]. Applying a term substitution to a term t', denoted by [x — t]t', replaces all free
occurrences of x in ' with t, which is defined as follows:

ey ={) 27 e (1) = b bt sl

x>t 1) =[x 1]t i1 x> t]t x = ([x—1]t)x
x .t ifx' =x
A [x—t]t ifx #£x

/

[x»—»t]/lx’.l'={ [x—t)(C{x'=t})=C{x'=[x—1]}

case x' =[x+ t]t' of M ifx' =x

1 _
[x+—t] casex’ =t of M { casex' =[x 1]’ of [x+>t]M ifx' #x

Where case branches term substitution [x — t|M is defined as:
[x—rt]le=€ x—t](_—t)=_—[x—1]

[x—>t](C—t, M)=C—[x—1]t, [x > t]M

Similarly, applying a term substitution to a program P, denoted by [x — t|P, replaces
all free occurrences of x in P with t, which is defined as follows:

., _ defx’=t’;P ifxlzx
[x— 1] (defx’ =15 P) = { defx’ =[x 1]t'; [x—>1]P ifx' #x
Definition B.3 (Type substitution). A type substitution p = { @ 7 } is a mapping from
type variables to types.
We use the notation (@ — 1) € p to signify that | € dom(p) and p(a;) = 71.
dom(p) is the domain of p, defined as follows:

dom({ }) = dom({a—rt,d —1'})=dom({a—=7})u{a}

Definition B.4 (Type substitution on type). Application of a type substitution to a type p(7)
is defined as follows:

plri =) = p(r) = p(r2) R A
pl(xiv)) = (x:p(r)) p(T)=T°
p(NTF]) = Np ()] p(ri V¥ 12) = plr) V¥ p(e2)

p(#C) =#C p(=1) =—p(7)

138

Definition B.5 (Type substitution on term). Application of a type substitution to a term
0(t) is defined as follows:

plx)=x p(t.x)=p(t).x
p(t:1)=p(1):p(7) p(C{x=i})=C{x=p(0)}
p(Ax. 1) = Ax. p(t) p(case x =t of M) = case x = p(t) of p(M)
)

(t1)

0
Where type substitution p(M) on case branches is defined as:
ple)=¢ pL—=1)=_—p() p(C—t, M) =C—p(t), p(M)

Definition B.6 (Type substitution on typing context). Application of a type substitution to
a typing context p (') is defined as follows:

ple)=¢ pI-(x:7)) = p(I)-(x: p(7)) p[-(x:0)) = p([)-(x:0)

Definition B.7 (Type substitution on subtyping context). Application of a type substitution
to a subtyping context p(X) is defined as follows:

ple)=¢ p(Z- (11 <m))=p) (p(r1) < p(12))

p(Z->(r1 <1)) =p(T) >(p(r1) < p(r2))

B.2 Well-Formedness

The well-formedness rules are presented in Figure 26. They ensure that the declarations
of a program lead to a decidable type inference algorithm by restricting the shapes of
recursive types to regular trees. This is done by making sure that all recursive occurrences
of class and type declarations are given the same type arguments @ as the declaration’s head
N[a] itself. Note that well-formed type declaration may refer to each other freely, possibly
forming mutually-recursive definitions.

Definition B.8 (Occurrences). We define the occurrences of a type T, written occs(t),
as all the types transitively reachable by progressively traversing the subterms of T and
expanding the alias and class types as we encounter them. This is always a finite set, thanks
to the regularity check (Section 2.3.1).

The type variables of a piece of syntax s, written TV (s), is defined in Section B.3.
Function guardy (7) refers to the guardedness check described in Section 2.1.6.

Theorem B.9 (Regularity). If D wf, then for all T, the set occs (1) is finite.

This notably means that given well-formed declarations D, we can easily compute S(7).

Proof [Proof B.9 (Regularity)] Since each type constructor declared as N[@] can only
appear in its body (and transitively in the bodies of other declarations) with the same
type variables @ as type arguments, the expansion 7 of a type N[may only lead to N
occurrences of the form N[7], which itself has the same occurrences as 7; thus the number
of distinct type occurrences transitively reachable from a given declaration is finite.]

139

W-DECLS I
—d
Ddwf " TV(D)=
D wf
W-ALs

— A[T] € oces(m)

T=a uard,(m) nw
D dwf 8 alm)_mwf
D +type Ala] =7 wf
W-CLsl
——C[7]€oces({x77})
T=a Twf

Diclass Cla]: {x:7} wf

W-CLs2
————C[T] €oces(D[Ti|n{xT
C¢S(Cla]) guard-(D[T]) A{X:T}) T g (et T wf

Dclass Cla]: D[t A {x:T} wf

T wf Twf mwf Tiwf mwf
T wf a_wf -t wf 71 V° T Wf 71 > T Wf
Twf Twf N[T] exp.
{x:t}wf #C wf N[7]| wf
2w L Swf nwf mwf
ewf () (11 <7)
DI C final D#C
e C final D-(class C'[a]: D[7]) + C final

DI C final D#C
D-(class C'[a@]: D[T] A {x 7 }) - C final

Fig. 26. Well-formedness and finality rules.

B.3 Free type variables

Definition B.10 (Free type variables). The set of free type variables of a type T, written
TV(t), is defined as:

TV(ri > 1) =TV(11) uTV(1) TV(a) ={a}
TV({x:7})=TV(7) V(T)=
TV#HC) = TV(r V1) =TV(11) U TV(13)
TV(N[T]) =UzTV(7) TV(—=1)=TV(7)

140

Definition B.11 (Free type variables of declaration context). The free type variables of a
declaration context TV (D) is defined as:

TV(e) = & TV(D-(class C[@] : 7)) = TV(D) U (TV(1)\{@})
TV(D-(type Ala] =7)) =TV(D) u (TV(r)\{a })

Definition B.12 (Free type variables of typing context). The free type variables of a typing
context TV (D) is defined as:

TV(e) = TV([-(x:7))=TV(I) uTV(7) TV([-(X:0))=TV(I)

Definition B.13 (Free type variables of constraining context). The free type variables of a
constraining context TV (E) is defined as:

TV(e) = TV(E (@< 1) =TV(E) u{a}uTV(1)

Definition B.14 (Top-level free type variables). The set of top-level free type variables of
a type 1, written TTV (1), is defined as:

v) =2 1TV(0) = {a)
TTV({x T})= TTV(T) = &
TTV(#C) = TTV (1) V° 1) = TTV(11) U TTV(13)
TTV(N[7]) =TTV(T') when N[7] exp. 7’ TTV(—7) =TTV(7)

The list of top-level free type variables of a type T (i.e., with duplicates), written TTV' (1),
is defined similarly, except for the cases TTV'(a) = a and TTV' (11 V° 1) =TTV'(71)
TTV'(13).

C MLstruct Correctness Proofs

Finally, we now develop the correctness proofs of MLstruct in full detail.

C.1 Progress Proofs

Lemma C.1 (Progress — general). If €, € - P : T and body(P) is not a value then P ~~~> P’
for some P'.

Proof By induction on program typing derivations.

Case T-Bopy. By progress for terms (Lemma C.2).
Case T-DEF. By E-DEF.

Lemma C.2 (Term progress). If €, € t: 7 and t is not a value then t ~~~t’ for some t'.

Proof By induction on typing derivations.

141

Case T-SuBs. Immediate from the induction hypothesis.

CaseT-OBy. t=C {th’ } Ifall ¢ are values, then 7 is a value; otherwise ¢ reduces
by E-Ctx and IH.

Case T-ProJ. t=1t'x
If ¢ is not a value, by IH we have ¢\~ ¢”, and thus ¢ v~~~ " .x by E-CTX. Otherwise,
by canonical form for record types (Lemma C.3), we have t’ = C Rand { x =V’ } € R,
and therefore ¢ v~~~ v’ by E-ProJ.

Cases T-VAR1, T-VAR2. =x
Impossible since there is no rule that would type x in an empty typing context.

Case T-ABs. = Ax.t Immediate since 7 is a value.

Case T-App. =1y 1
We can apply the induction hypothesis on #y and #;, which are given types in the
premises of this typing rule. If either 7y or #; is not a value, then # can progress by
E-Crx, so we only have to consider the case where #yp = vg and #; = v;. By canonical
form for function types (Lemma C.4), we have vo = Ax. . Then ¢ v~ [x — v,]t’ by
E-App.

Case T-Asc. t=t;:7 Immediate since | : T v~ t| by E-Asc.

Case T-CAsel. t=casex=t;ofe¢
By IH, if 7 is not a value, then ¢ progresses by E-CTX. Moreover, by canonical form
for bottom types (Lemma C.6), ¢; cannot be a value.

Case T-CAsg2. t=casex=t;of _—1
By IH, if #; is not a value, then 7 progresses by E-CTX. On the other hand, if 1| = vy,
then 7 v~ 1, by E-CASEWLD.

Case T-CASE3. t=casex=tof C—>t), M
By IH, if 7 is not a value, then 7 progresses by E-CTX. On the other hand, if 1} = vy,
either vi = C| R with C; € S(C), in which case E-CASECLS| applies, or E-CASECLS2
applies since scrutinees can only be classes by Lemma C.7 and canonical form for
class types (Lemma C.5); in either case, progresses.

Lemma C.3 (Canonical form for record types). If €,I'-v:{x:7} then we havev =C R
for some C and R, and { x =V’ } € R.

Proof By induction on typing derivations for the statement: if €, '—v:7 and €7 <
{x:7’"} then {x =V’ } € v. The only cases to consider are those rules that can type values:

Case T-Suss. Then the premises of the rule are v : 7”7 and 7 < 7 for some 7. By S-TRANS
on7’ <tandt < {x:7'}, wehave " < {x:7’}. This allows us to apply the IH on
the premise v : 77, by which we have {x =v' } e v.

Case T-ABs. Then 7 = 11 — 1. By consistency of subtyping (Theorem A.63), 7] — 7 <
{x : 7'} cannot be true, therefore this case is impossible.

Case T-OBJ. Then 7 =#C A {X;:7;' } and v=C {X =;' }. Then by consistency of
subtyping (Theorem A.63) we know that there is an i such that x; = x. Given the

142

conclusion of T-OBJ and the definition of field projection (Section 6.2), this implies
that there is a v/ = v; such that {x =V’ } e v.

Lemma C.4 (Canonical form for function types). If €,I' v : 1 — 1, then we have v =
Ax. t for some x and t.

Proof By induction on typing derivations for the statement: if €, ' v:7,and €7 <
T; — 75 then v = Ax. t for some x and ¢. The only cases to consider are those rules that can
type values:

Case T-Suss. Then the premises of the rule are v : 7/ and 7’ < 7 for some 7’. By S-TRANS
ont’ < tand Tt <1 — T, we have 7’ < 11 — 7. Then the result follows from IH on
vt

Case T-ABs. Immediate.

Case T-OBJ. Then 7 = {ﬁ’ } for some X;' and v;'. By consistency of subtyping
(Theorem A.63), T < 71 — T cannot be true, therefore this case is impossible.

Lemma C.5 (Canonical form for class types). If €, v :#C then we have v = C R for
some R.

Proof By induction on typing derivations for the statement: if €,I'—v:7,and € - 7 <#C
then v = C R for some R. The only cases to consider are those rules that can type values:

Case T-Suss. Then the premises of the rule are v : 7/ and 7’ < 7 for some 7/. By S-TRANS
on 7' <1 and T < #C, we have v’ < #C. Then the result follows from IHon v : 7.

Case T-ABs. Then 7 =71, — 1, for some 7; and 7. By consistency of subtyping
(Theorem A.63), T < #C cannot be true, therefore this case is impossible.

Case T-OBJj. Immediate.

]
Lemma C.6 (Canonical form for bottom type). Forallv, €,I"' v : L cannot be derived.

Proof By case analysis on the last typing rule used in the typing derivation, assuming
without loss of generality that this typing derivation is in subsumption-normalized form
(Lemma 3.12). The only cases to consider are those rules that can type values:

Cases T-ABs, T-OBJ. Immediate.

Case T-SuBs. The premises are €, v :7 and € -7 < 7’ and the goal is to show that
we cannot have 7/ = 1, i.e., that 7 < | cannot be derived. The typing deriva-
tion being subsumption-normalized, the first premise is not an application of
T-Suss, so it must be an application of either T-ABs or T-OBJ, meaning that

143

te{1 -1, #C A {X;77 } }. We conclude that 7 < | cannot be derived by
consistency of subtyping (Theorem A.63).

Lemma C.7 (Scrutinee types). If €,I" - casex =t of M : T then we have €,I" —t : #C for
some C.

Proof By induction of typing derivations.

Case T-Suss. Then the former premise of the rule is €, ' case x = v of M : 7/ for some
7’. The result follows from IH.

Case T-CAsel. Then the premise of the rule is €,I'—v: L, which is impossible by
canonical form for bottom type (Lemma C.6).

Case T-CAsEe2. Then the former premise of the rule is €, v : 1) A #C for some 7; and
C. Then by T-SuBs with 7| A #C < #C (S-ANDOR122), we have €, v : #C.

Case T-CAse3. Then the first premise of the rule is €,['—¢:#C A 71 v —#C A Tp for
some 71 and 7o We have either €, "1t :#C’ or €,I" -t : =#C’ for some C’. For the
former, the result is immediate. For the latter, we have €, T 1: (#C A 11 v —#C A
T2) A —#C, which implies €,T' 7: 7, by T-SuBs since (#C A 71 v —#C A T2) A
—#C = —#C A 12 < 172. By IH on the last premise €, (x: 72) - casex =xof M : 7,
we have €,T-(x: 1) - x: #C” for some C”, i.e., 7» < #C”. Then we have €, 1 :
#C” by T-Suss.

C.2 Preservation Proofs

Lemma C.8 (Preservation — general). If €, ' —* P:tand P ~~ P', thenwe have €,T *
Pt

Proof By induction on program typing derivations.

Case T-Bopby. By preservation for terms (Lemma C.12).

Case T-DEr. P=defx=1¢; P’
The only applicable reduction rule is E-DEF. The premises of the rule are E,I"—7: 7
and €,T-(x:VE. 1) -* P’': 7p for some = and 7. By substitution (Lemma C.9), we
have €, '+ [x —]|P': 7p.

Lemma C.9 (Substitution). For all D wf, T and E such that TV(I') n TV(VE. 7) = (:

I If e T-(x:VE.T)-*P:71p and E,T 1t:7, then €, T +* [x —t|P:1p.
2. If Bo,T-(x:VE. 7)tp:tp and Bo-B, T t:7, then Bo, T+ [x —t]tp: Tp.

144

Proof By induction on program typing derivations of €, I"(x : VE.) * P : 7p and typing
derivations of B, I-(x: VE. 7) tp : 7p. Note that the TV(I') n TV(VE. 1) = & condition
can always be obtained by renaming variables quantified in definitions, when necessary.
The only difficult cases are for T-Bopy and T-VAR2:

Case T-Bopy. P=tp
The premises of the rule are € cons. and €,[-(x: VE.7) - tp : Tp. By assumption,
we have E,T'1:7 By IH, we have €,['+ [x— f]tp : Tp. The result €, ' —* [x —
t]tp : Tp then follows by T-Bopy, as P =tp.
Case T-DEF. P =defx'=¢; P’
If x’ = x, then [x +— ¢]P = P and the result is immediate.
Otherwise, [x — ¢|P = defx’ =[x —t]t'; [x — t]P. We can apply the IH on the sec-
ond premise of T-Def, &, T-(x:VE. 1) ¢ : 7/, to get E',T'+ [x —¢t]¢' : 7/. Then,
the third premise of T-DEF, €,I(x:VE. 7)-(x":VE. 7/)-* P:7p, can be com-
muted (Lemma C.11) to €, [-(x": VE". 7/)-(x : VE. 7) -* P : 7p, on which we can
apply the TH to get €, T-(x": VE'. /) * [x —] P : 7p. We then conclude by T-DEF,
for which we have just derived the last two premises (the first premise is unchanged).
Case T-Suss. The premises of the rule are Eo,[(x:VE. 1) tp: 7 and Eo 11 < 7p.
By IH on the first premise, we have Eg, ' [x — ¢]tp : 71. Then Eo, '+ [x — ¢]tp :
7p by T-Suss with the second premise.
Case T-OB). tp=C{x'=t'} 1p=#CA{x':7'}
The premises of the rule are =y, [(x:VE.7)—#:7. By IH, we have
Z0.T [x— 1]t :7/. Then Eo,[C {x' =[x 1]’} :#C A {x': 7'} by T-Oy,
ie., o, T [x—1](C{x'=1}):#C A {x':7"} by the definition of substitution.
Case T-PrRoJ. tp=1t'x'
The premise of the rule is o, [(x: VE. 7) ¢ : {x': 7p }. By IH, we have By, '+
[x—t]t': {x":7p }. Then Eoy, ' ([x — ¢]t').x": 7p by T-ProJ, ie., Eo, '+ [x —
t]¢'.x" : Tp by the definition of substitution.
Case T-VARl. tp=x" ([(x:VE.7))(x')=1p
Since x’ is mapped to a simple type in the context I'-(x : VE. 1), x # x’, then T'(x") =
7p. Then By, I'+x’: 7p,i.e., By, [+ [x —]x’ : p by the definition of substitution.
Case T-VAR2. tp=x" p(1p)<7tp ([-(x:VE.7))(x')=VE .1, EokpE)
There are two cases to consider:

Case x’ # x. Then [x — t]tp = fp and the result is immediate.
Case x’ = x. Then [x — t]tp =1 and moreover (I':(x:VE. 7))(x) = VE'. 7}, thus
E.1=VE".7p,and thus E=Z"and 7 = 7.
By assumption, E,I'~7:7so Z/,I' -1 : 7,. By preservation of typing under
substitution (Lemma A.28), p(Z'), p(T') -1:p(7p),ie., p(E),T1:7p by
T-Suss and since TV (') n dom(p) = & by assumption.
Moreover, since we have =yl p(E'), this implies that Eo,I'Ht:7p
(Lemma A.27), which is what we wanted to prove (remember ¢ = [x — t]tp).
Case T-ABs. tp=Ax'.t 1p=11—>10
There are two cases to consider:

145

Case x’ = x. The premise of the rule is Eo,I(x:VE. 7)-(x: 1) ¢’ : 7. Since the
binding (x:VE. 7) is shadowed, we can remove it from the typing context
(Lemma C.10), i.e., Eo,[“(x:7)) ¢ :1. Then By, T+ Ax. t': 17y > 12 by
T-ABs, which is the desired result since [x — t]tp =tp and x’ = x.

Case x’ # x. The premise of the rule is o, I-(x : VE. 7)-(x" : 1) - ¢’ : 72, which can
be commuted (Lemma C.11) to Eg,-(x":71)-(x: VE. 7) ' : 7o. By IH, we
have o, I-(x":7y) - [x — t]t' : 1o. Then Eo, T Ax'. [x —¢]t' : 11 —> 1, i,
B, ' [x — #]Ax’. ¢’ : 71 — 12 by the definition of substitution.

Case T-App. 1p =1ph)

The premises of the rule are Eo, I'(x:VE. 7) —1t9: 71 — 7p and By, [(x: VE. 7) -

t; : 1) for some 7. By IH, we have Eo, '+ [x—t]to: 7] > 7p and Eo, [+ [x —

t]t1 i 7. Then Bo, ' [x — t]tg [x — t]t1 : Tp by T-APP, i.e., Bo, ' [x — t](t0 71) :

7p by the definition of substitution.
Case T-Asc. tp=t:1p

The premise of the rule is Eo, [-(x:VE. 7) —¢': 7p. By IH, we have o, ' [x —

t]¢’ :tp. Then Eg, '+ ([x —t]t' :7p): Tp by T-AscC, ie., Bo, '+ [x—¢](¢' :7p):

7p by the definition of substitution.
Case T-CAsel. tp=casex' =tjofe 1p=_1

The premise of the rule is Zo, [-(x:VE. 7)1, : L. By IH, we have E, ' [x+—

t]t1: L. Then Eo, ' case x’ =[x +—¢t]t; of e: L by T-CasEl, i.e., Bo, ' [x —

t]case x’ =t of € : L by the definition of substitution.
Case T-CASE2. tp=casex' =t 0of _—1

There are two cases to consider:

Case x' =x. The premises of the rule are ZEo,[(x:VE.7)F1f:7 and
B, [+(x:VE. 7)-(x: 7)) I 12 : Tp. Since the binding (x : YE. 7) in the second
premise is shadowed, we can remove it from the typing context (Lemma C.10),
ie., Bg,[“(x:7]) t2: 7p. By IH on the first premise, we have Zo, ' [x —
l‘]l‘] :71. Then Ey,I'+ case x = [)U—’l‘]l] of _—1:1p,ie, Eyp,['H [X'—>
t]case x =] of _ — 5 : Tp by the definition of substitution.

Case x’ # x. The premises of the rule are Eo,[(x:VE. 7)1 :7
and o, I"(x:VE.7)-(x":7)12:7p. The latter can be com-
muted (Lemma C.11) to Eo,[(x':7y)-(x:VE.7)ty:7p. By IH,
we have Eo,'H[x—f]fi:m and Eo, (1) [x—f]t2:Tp.
Then Zy,I'case x'=[x—t]ty of _—[x—1t]r, by T-Case2, ie.,
Eo, '+ [x — t]case x' = t; of _— 1, by the definition of substitution.

Case T-CASE3. tp=casex' =t;of C -1, M

There are two cases to consider:

Case x’ = x. The premises of the rule are:
Eo, ["(x:VE. 1)1 :#C ATy v ~#C ATy (1)
Eo, [(x:VE.7)-(x:7)ta: TP (2)
o, [(x:VE.7)-(x:72) - casex’ =x"of M : 7p 3)

146

By IH on (1), we have:
Bo, T [x—t]t1 :#C AT v —#C ATy)

Since the binding (x : VE. 7) in (2) and (3) are shadowed, we can remove them
from the typing contexts (Lemma C.10):

Eo,["(x:1)Htr:7p 5)
Bo,I"(x:m)casex=xof M :1p (6)

Then by T-CAse3 on (4) and (5) and (6), we have:

Ep,['casex=[x—1t]tjof C > 1y, M:71p

ie, Eo['+[x—rt|casex=t10fC—1y, M:Tp @)

Case x’ # x. The premises of the rule are:

Eo, (x:VE. 7)1t :#C AT v —#C AT 8)
B, [(x:VE.7)-(xX :7y) Hta: Tp 9
Bo, [(x:VE.7)-(x": 12) - case x’ =x" of M : 7p (10)

The typing contexts in (9) and (10) can be commuted (Lemma C.11) to:

Bo, [(x":1)-(x:VE.T) - ta: Tp (11)
Z0, T(x": 1) (x:VE.7) - case x' =x’ of M : 7p (12)

By IH on (8) and (11) and (12) respectively, we have:

B, TH[x—t]t1 :#C A1 v —#C A Ty (13)
Eo,r'(xltTl)F[le]tziTp (14)
By, [-(x": 1) - case x’ =x' of [x —{]M : 7p (15)

Then by T-CASE3 on (13) and (14) and (15), we have:

Ep,Hcasex’ =[x—t]tj of C— [x—t]tr, [x—t]M:1p

ie, Eo, '+ [x—t]casex’' =t 0fC—1y, M:1p (16)

Lemma C.10 (Shadowing of typing contexts). Forall y =1 or o, andy =1' or o':

=

=

s
I m
=1~

)T (x iy)T =* P:tp, then E,T-T"-(x:y)-(x:y") " +* P:1p and
x:y)T"*P:1p.
)T (x:y)T tp:1p, then E,T- T (x:y)-(x:y)" tp:1p and
(Y)Y tp TP

=
—
=

m
4

Proof By straightforward induction on typing derivations. The only non-trivial cases are
T-Var1 and T-VAR2.

147

Case T-VAR1. By the definition of T'(-), if (T-(y :y)-I"-(y:y')T”)(x) =" for some 7”,
then (C-T7-(y:y)-(y:y')T")(x) =7"and (T'T"-(y : y')-T”)(x) = v”. The result then
follows from T-VARI.

Case T-VAR2. Similarly.

Lemma C.11 (Commutativity of typing contexts). For all T such that x ¢ dom(T""), and
y=toro:

L If U:(x:y) T +*P:1p, then €, T-T"-(x:y)* P :1p.
2. If E,T(x:y) ' +tp:7p, then E,T'I"-(x:y)tp:Tp.

Proof By induction on typing derivations.

Case T-Bopy. By IH, followed by T-Bopy.

Case T-DEF. P =defx'=¢; P’

The premises are € cons., Er(x:y)l"+1:7, and
e (x:y)I"-(x:VE . 7)-* P':7p. By IH on the second premise, we have
E T (x:y) ¢t :7'.If x’ = x, we can rearrange the third premise (Lemma C.10)
to € ' (x:y)(x :VE . 7)* P':7p. If X’ #x, then x ¢ dom(I"-(x": VE'. 77))
and x" ¢ dom((x :y)), so we have €, T'I""-(x:y)-(x" : VE'. 7/) -* P’ : 7p by IH. The
result €, [-T7-(x:y) -*defx’ =¢'; P’:7p then follows from T-DEF.

Cases T-Suss, T-Rcp, T-Proy, T-App, T-Asc, T-Casel. By IH on the premises, fol-
lowed by the respective rules.

Case T-VAR1. By the definition of T'(-), since x¢dom(I”) by assumption, if
(TC-(x:y)T")(x")=1" for some 7/, then (I'"I"-(x:7y))(x") =17". The result then
follows from T-VARI.

Case T-VAR2. Similar to the case above.

Case T-ABs. tp=2x".t 1p=171—17
The premise is B, I-(x:y)I"-(x':7)) ¢ :1. If x’=x, we can rearrange it
(Lemma C.10)to B, T-I"-(x : y)-(x" : 1) -t : 7. If X’ 5 x, then x ¢ dom(I”-(x" : 71))
and x" ¢ dom((x:vy)), so we have E,["I""-(x : y)-(x" : 71) ¢’ : 7» by IH. The result
E,I'T(x:y)F Ax'.t' : 71 — 1, then follows from T-ABs.

Cases T-CasE2, T-CAse3. Similar to the case above.

Lemma C.12 (Term preservation). If €,I'¢:7and t v~ t', then €, 1" : 7.

Proof By induction on typing derivations. In the following, we sometimes abbreviate
e'—t:7ttot:r.

Case T-SuBs. Immediate from the induction hypothesis.

148

Case T-OB). 1=C{x=1} 7=#CA{Xx:7}
There is only one rule that reduces objects, E-Ctx. By straightforward application
of the induction hypothesis with the respective premises of T-OBy and E-OBJ and by
reapplication of T-OBJ on ¢#'.
Case T-PrRoJ. 1=1yx to:{x:7}
If t v £.x by E-Ctx, we conclude by TH.
Otherwise, ¢ v~ v, reduces by E-Proj, meaning that 7o = vy and { x =v, } € v;. We
conclude by inversion of object types (Lemma C.16), which gives us v, : 7.
Cases T-VAR1,T-VAR2. Immediate since ¢ cannot reduce.
Case T-ABS. = Ax.ty; Immediate since ¢t cannot reduce.
Case T-Aprp. t=tyt) th:7T1 —>T 1:7T
There are two rules by which ¢ v~ ' can hold:
Case E-CtX. The result holds by IH and T-App.
Case E-App fo=Ax.1) t1=vi tvo[x—vi]t
By inversion (Lemma C.13), €,T-(x:71) |-t : 7. Together with substitution
(Lemma C.9, applicable since €, " - vy : 71), this givesus €, I' - [x — v1]t : 7,
ie,e, It t.
Case T-Asc. t=ty:7 t' =1t
Immediate by the premise of the rule.
Case T-CAsel. t=casex =1t of e
Immediate since the only rule that can apply is E-CTX, and it yields a term ¢’ that can
still be typed at | by T-Casgl.
Case T-CASE2. t=casex=t; of _—1
If the rule that applies is E-C1x, by IH. Otherwise, the rule that applies is E-CASEWLD,
and we conclude by substitution.
Case T-CASE3. t=casex=t;of C—tr), M t1:#C A1 v #C A Ty
If the rule that applies is E-CTx, by IH.
Otherwise, if E-CASeECLs] is the rule that applies, it means #; is an instance of a
subclass of C;, so by Lemma C.18 we know that €, ' - ¢ : 71, and we can conclude
by substitution (Lemma C.9).
Otherwise, E-CASECLS2 must be the rule that applies, so by Lemma C.18 we know
that €, I" - #; : 7o, and we can conclude by substitution (Lemma C.9) and IH.

Lemma C.13 (Inversion of function types). If €, - Ax.t:19and € - 19 < 1) — T2, then
e (x:m)Ht:1.

Proof Straightforward induction on typing derivations. The only rules that can be used to
type such a lambda expression are:

Case T-SuBs. Then the premises of the rule are €, Ax. ¢ : T(l) and € T(’) < 19 for some
7., on which we can apply the TH by S-TRANS (7 < 79 < 71 — T2).

149

Case T-ABs. Then 7y = 7 — 75 for some 7| and 7,. The premise is €,I'-(x:7/) -1:7).
By Lemma C.14 we have € - 71 < 7 and € |- 7, < 72. Combined with strengthening
(Lemma C.15) and T-SuUBs, this gives us the desired result.

Lemma C.14 (Inversion of function subtyping). If € -1y — 7 < T» — 13, then € -1 <
Toand €11 < 13,

Proof By consistency of subtyping (Theorem A.63). |

Lemma C.15 (Strengthening). If e,I-(x:7))1t:7 and €t 1 <71, then we have
&(x:m)t:T.

Proof By straightforward induction on typing derivations, using T-Suss for the T-VAR1
case. []

Lemma C.16 (Inversion of object types). If e, T C R:1pand {x=v}e€C R and €+
T9<{x:7} then e~v:t.

Proof
Straightforward induction on typing derivations. The only rules that can be used to type
such a lambda expression are:

Case T-Suss. Then the premises of the rule are €, Ax. ¢ : T(/) and € - 7/ < 1 for some
7, on which we can apply the IH by S-TRANs (1) < T0 S {x:7}).

Case T-OBJ. Then 19 = #C A {X;: 7;' } for some C and 7;'. One of the premises is €, T
v : T, where x; = x. By Lemma C.17 we have € - 7¢ < 7. Combined with T-SUBS,
this gives us the desired result.

Lemma C.17 (Inversion of object subtyping). If € —#C A {X; 7, } <{xx:7}, then
E-TE < T.

" .
Proof LetUOC" =#C and Ul.C" ={xi:7} .Since#C A {Xi T } = Nycqo7y (L V us,
by Lemma 4.22, we have:

D.
{xk:‘r};/\j(n}vvjj) (1)
—
Uk_l_kf <V)

. —j .
for some n;.'] and VJP" and k jj. By S-Trans with Lemma A.79 on S-ANDORI12-, (1)
implies:

/\jV].D-fg{xk:T} 3)

150
By Lemma A.57, (3) implies:

VP e {xet))
for some /. By Lemma 4.10, (4) implies:

VP =\, {xit} 5)
Then D; = xj. By Lemma 4.9, (2) for j = [implies:

Cry = Xk (6)
i.e., k; = k. Then (2) for j = [becomes:
{xeine b <V, {xc:t} 7
By case analysis on the < rules, (7) implies:
T, < \/p T
ie., T <T (8)
]

Lemma C.18 (Inversion of discriminated class types). Assume €,I'\— v : 7 where v is the
scrutinee of a case expression and € -1 <#C A 11 v —#C A T2. Then we have:

o I[fv=Cy R and Cy is a subclass of C (i.e., C€S(Cy)), then €,T' v : 1.
e Otherwise, €, 'V :1s.

Proof By induction on typing derivations.The only rules that can be used to type a value
are:

Case T-SuBs. Then the premises of the rule are €,'—v:7" and € 7’ < 7 for some 7/,
on which we can apply the TH by S-TRANS (7' < 7 <#C A 71 v —#C A 12).
Case T-ABs. v=Ax.t¢
Impossible since scrutinees can only be classes (Lemma C.7).
Case T-OBJ. v=CyR
Wehave R={x=7}and T =#Cy A {X:7 }and 7: 7 and Cj is final.
So we have #Coy A { X T } <HC AT v —#C A T
e, #Co A{X: T} A (#C v —1p) <#C A Ty
ie, (1) #Co A#C A{X T} vH#HCoA{X T} A =Ty <#C A1 Then from the
assumption, we have:

HCo A {X T} <HC AT vV —#C ATy
ie, #CoA{XTT}A#HC Vv 1) <H#C AT
ie., H#HCOAHCA{X T} VHCOA{X T} AT <H#HC AT (1)
Case C € S(Cyp). Then by S-CLsSUB, we have:
#Co <H#C
i.e., #Co AH#HC = #C() (2)

151

Then (1) and (2) imply:

HCo A {X T} vHCOA{X T} A T <HC ATy
ie, #CoA{Xx:T}<#C AT
e, T<#C AT 3)

By S-TrANs on (3) and S-ANDOR122, we have:
T T “)
Then by T-Suss, the assumption €,I" v : 7 and (4) imply:
eTHv:T)
Case C ¢ S(Cp). By S-TraNS on S-ANDOR12- and (1), we have:

#Co A {X T} ATy <H#C
ie., #Con{XTT)<H#C v (6)

Case Cp € S(C). This case is impossible because Cj is final and Cy # C (since
C ¢ S(Co)).
Case Cy ¢ S(C). Then by S-CLsBot and Theorem A.9, we have:

#Co < —#C @)
Then (6) and (7) imply:
#Co A {X T} A —H#C <1
ie, #Con{XxT}<m
ie, T<m ®)
Then by T-Suss, the assumption €,I" v : 7 and (8) imply:
eTHvin)

C.3 Type Inference Soundness Proofs

We first define a few judgements to be used in the remainder of this chapter.
The consistency of subtyping contexts is lifted to typing contexts through the bounds in
the polymorphic bindings.

Definition C.19 (Consistency of typing contexts). The consistency of typing contexts is
defined as follows:

I cons. I cons. = cons.

€ cons. I-(x:7) cons. [-(x:VE.T) cons.

A constraining context is said to be guarded if none of the type variables appear on the
top level of its bounds. Guardedness is also similarly raised to typing contexts.

152

Definition C.20 (Guardedness of constraining contexts). The guardedness of constraining
contexts is defined as follows:

a¢TTV(T) E guard.
- - € guard. E(a<®7) guard.

Definition C.21 (Guardedness of typing contexts). The guardedness of typing contexts is
defined as follows:

I' guard. I' guard. 2 guard.
e

€ guard. I'(x:7) guard. I'(x:VE.) guard.

Lemma C.22 (Soundness of type inference — general). If ['IF* P: 1= E and I" cons.
anderr¢ B, then E,T —* P : .

Proof By induction on type inference derivations.

Case I-Bopy. By soundness of term inference (Lemma C.23).
Case I-DEF. By soundness of term inference (Lemma C.23), we get the subtyping
relationship necessary to apply the IH on P.

Lemma C.23 (Soundness of term type inference). If EOTs:n=2" and Z°T cons.
and 20, T guard. and err ¢ Bl then B0 T s: 7 and E°-E! cons. and Z0-E! guard..

Proof By induction on term type inference derivations.

Case I-PrROJ. s=t.x
By IH, we have Ey-E|}-1:7 and Ey-E; cons. and Ey-E; guard.. And by sound
constraining (Lemma 7.5), we have Eg-Ej-Ex -7 <{x:a} and Ey-E|-E; cons.
and Ey-E;-E, guard.. Therefore, by weakening (Lemma A.27) and T-SuBs we have
Eo-E1-Ep t:{x:a} and by T-PrROJ we have Ey-E|-Ep - t.x:a.

Case I-OBJ. By straightforward applications of the IH and weakening.

Case I-VAR1. By T-VaArl.

Case I-VAR2. r=x TI'(x)=VE;. 7
Let p=[a—=7y,7%5]. We have E-pZ; = pE; by S-Cons and S-Hyp. We
also have EO-pEl o7 < pt1; by S-REFL. Then we have EO-pEl FVE.7 <Y
pT11 by S-ALL, and by S-VAR2, we have EO-pEl, I'~x:pr Since T' cons.,

we have [m“ES]El cons. for some To%€5. Since yq freshaes, we
have [= 7,7 58| = [Yo = Ta“ €5]pE1. Then [a =71, 5]E; cons. implies
PE1 cons.. Similarly, we also have p=; guard..

Case I-ABs. By straightforward applications of the IH.

Cases I-App I-Asc, I-CAsEl. By analogous reasoning to the I-Pros case, applying the IH
and sound constraining (Lemma 7.5) successively on the premises, threading the
inferred constraints through and weakening accordingly.

153

CaseI-CAsg2. r=casex=t;of _—1
By IH, we have Ey-E; cons. and Ey-E| guard. and Z¢-E|,T" | ¢t; : 7, which implies
Ho-Ei-Ep B3, 't : 71 by weakening. By sound constraining (Lemma 7.5), we
have Ey-E-E, cons. and Ey-E-E, guard. and Ey-E|-E, - 1) < #C, which implies
Bo-B1-Ep B3 - 11 < 11 A #C by weakening S-ANDOR2? with S-REFL. Then by T-
SuBs, we have Ey-E1-Ey-E3, '+t : 71 A #C. By IH, we have Ey-E-E,-Z3 cons. and
Eo-E1-Ep-B3 guard. and Ey-E|-Ey-E3,(x: 71) 1 : 7. Therefore, by T-CASE2, we
have Ey-E{-Ey-E3,'casex =t of _—>1:7.

Case I-CAsg3. r=casex=rofC—tH, M

—

By IH, we have E¢-E; cons. and EZ¢-E|; guard. and EZ¢-E, 't :1,

which implies Zg-Ej-Ep-Z3-84, 11 :71 by weakening. Then by IH, we
have Eg-E;-E; cons. and Eyp-E|-E, guard. and Ey-E|-E,, - (x:a)F1: 1,
which implies Zy-E-Ey-E3-Eq, [-(x: @) 12 : 7» v 73 by weakening and S-TRANS

with S-ANDORI11-. Then by IH again, we have Eyg-E;-E;-E3; cons. and
Ey-E-Ep-Bs guard. and Ey-E|-E,-E3,[(x:B)case x=x of M:t3, which
implies Zy-E|-BEy-E3-B4,-(x:B8) - case x =x of M :1, v 13 by weakening and
S-TraNs with S-ANDORI12-. By sound constraining (Lemma 7.5), we have
E4-Bo-E1-By-By cons. and E4-Ey-E-Ey-Ez guard. and E4-Ey-E-E) ug Fn <
#C Aa v —#C Aﬁ which imply Ey-E-E-E3-Ey4 cons. and By-E|-E,-E3-E4 guard.
and Eg-21-Ep-E _4 1 <#C A a v —#C A B by commutation. Then by T-Suss,
we have Ho-BE|-Ey-B3-By, [1] : #C A @ v —#C A . Therefore, by T-CASE3, we
have Ey-21-5y-53-B4, ' -casex=t10f C > 1, M : 15 v 13.

Proof [Proof 7.5 (Soundness of Constraining)] By Lemma C.24 and Theorem C.25. =
Lemma C.24 (Sufficiency of Constraining).

L IfZ-ni<np=EBandt, o, wfanderr¢ E, then X+ 1 <17
2. If 2D = Zand D° wfand err ¢ B, then 2-X D0 < .

Proof
By induction on constraining derivations.

Case C-Hyp. Immediate by S-Hyp.

Case C-Assum. By IH on the latter premise, we have Z-3->(1; <13) - dnff(r; A
—7)<.l. By Lemma 7.3, we have dnfo(n A —T2) =11 A —72. Then we
have E-X->(1) <) 11 A =72 < L, which implies E-Z->(1) < 1) 11 <1 by
Theorem A.9, which implies E-X |- 71 < 15 by S-AsSuM.

Case C-OR. Then D° =D v CY for some D! and C9, and E = E;-E, for some Z; and
Ey. By IH on the former premise, we have X D(l) < L. By IH on the latter
premise, we have Z,-Z2,-X - CY < L, which implies Z-X |- C(l) < 1 by commutation.
Z1-2+ DY < | implies E-X - D(l) < 1 by Lemma A.23. Then by S-ANDOR2-, we
have E-Z |- D? v C(]) <l

Case C-Bort. Immediate by S-REFL.

154

Case C-CLsl. Then D° = 7 [#C{] A —(U v #C) for some C; and C, and U. From the
premise, we have X - #C| < #C, by S-CLsSuB, which implies Z - #C; A F A R <
U v #C, by S-TrRANS with S-ANDOR119 and S-ANDOR12-, which implies X - #C; A
F AR A —(Uv#Cy) < L by Theorem A9, ie., X+ IT[#Ci] A —(U v #Cy) < L.

Case C-CLs2. Then D? = I [#C;] A —(U v #C;) for some C and C; and U. By TH on the
latter premise, we have E-X - 7 [#C] A =U < L. Since —(U v #C») < —U by S-
ANDORI1- and S-NEGINV, we have E-2 - T [#C] A =(U v #C,) < I [#C1] A —U
by Lemma A.7> with S-REFL. Then we have E-X - 7 [#C] A —(U v #C5) < L by
S-TRANS.

Case C-CLs3. Then D? = T¥[T] A —(U v #C) for some C and U. By IH on the premise,
we have -2 ITN[T] A =U < L. Since —(U v #C) < —U by S-ANDORI1- and
S-NEGINV, we have E-X - ITN[T] A =(U v #C) < IN[T] A =U by Lemma A.7>
with S-REFL. Then we have E-X - 7V[T] A —=(U v #C) < L by S-TRANS.

Case C-FuN1. Then D? = 7[D; — D,] A —(D3 — Dy) for some D and D5 and D3 and
D4, and E = E|-E, for some E; and E,. By IH on the former premise, we have
E|-<Z I D3 < Dy, which implies <(E-X) - D3 < D; by Lemma A.23. By IH on the
latter premise, we have E;-2;-<X - D, < Dy, which implies <(E-X) - D, < Dy by
Lemma A.23. Then by S-FUNDEPTH, we have E-Z - D| — D, < D3 — Dy, which
implies E-Z— N AD; — Dy A R < D3 — Dy by S-TraNs with S-ANDOR112 and
S-ANDOR12D, ie., -2+ I[Dy — D,] < D3 — Dy, which implies -2+ 7' [D; —
D;] A —=(D3 — Dy4) < L by Theorem A.9.

Case C-Rcpl. Then DO = I'[{)TDXXGS H A —{y:D} for some D_XXES and D. By IH
on the premise, we have E-<X - D, <D, which implies <(Z-X) D, <D by
Lemma A.23. Then by S-RcpDEPTH, we have E-X+ {y:D, } <{y:D}, which
implies EX N A F A {x:Dy ~}<{y:D} by S-Trans with S-ANDORI1>
and S-ANDORI2D, ie., EXF I[{x:Dy] <{y:D}, which implies % -
I[{)TDXXES } A —{y:D} <1 by Theorem A.9.

Cases C-NotBort, C-Fun2, C-Rcp2, C-Rcp3. Then err e E.

Case C-VARl. By S-Hyp, we have E-(a<—C)ZFa<—C, which implies
E- (e <—C)-ZF C A a<.LlbyTheorem A.9.

Case C-VAR2. By S-Hyp, we have E-(@ < C)-X - a < C, which implies E-(a < C)-Z
a A —C < L by Theorem A.9.

Theorem C.25 (Consistency of constraining). If E cons. and E guard. and E+ v < 1 =
= and err ¢ 2, then -2’ cons. and Z-2' guard..

Proof By Lemma C.26.]

In the remainder of this section, we consider the reformulated type constraining rules in
Figure 27. In these rules, we assume that we always start derivations with an empty X, so
that we start only with bounds, and all these bounds are in E. It is easy to see that they are
equivalent to the ones presented in Figure 20.

EXF-T1«T=E

C-AssuM

155

C-Hyp
(11 <m)eEEX

EXFTI <M =¢€

(<) ¢ET EZe(n<n)dnf'(n A —n)=7
221 <<T235/
C-Or
Ex-DV=5 E2E.5-C0=g C-Bot
c
E2-D'v¥=EE EX-1l=e
C-NotBot
EXFIOA—L=er
C-Crsl C-CLS2
GreSHC) Cr¢S(H#C)) EXRIMHC|A-U=E

EZHT#HC|] A —=(UvH#C)=¢€

C-CLs3
EX-IN[TIA-U=F

EX-I[#Ci] A —=(Uv#GC)=E

C-Funl1
B,<aXD3 « D=8 EE, <Dy « Dy=5"

EX-IN[TIA=(Uv#C)=>E

C-Fun2

=X I—I[D] —>D2] A —'(D3 —>D4) =55

C-Repl

yeS E<+Dy « D=7

EXZHIT[T]A—~(D;—>Dy)=err

xeS

E,X-T[{x:Dyx HAa—{y:D}=5%

C-Rcp3

C-Rcp2
y¢S
EXHTI[{x: xxes}] An={y:D}=err
C-Varl
E-(a =

EX-TYTIA ~{x:D}=err

C-VAR2
E(C<a),Z+C«ub

=/

<—C0),ZF lbz(a) « ~C=
> (@< —C)

Fig. 27. Reformulated normal form constraining rules. The only difference with the rules of Figure 20
is that we now explicitly split the subtyping context into a constraining part Z and a plain subtyping

part 2.

Lemma C.26 (Consistency of constraining).

1. If <<-A+E; p cons. and

<T-A+E-E; p’ cons. and

If <%-A+E; p cons. and
iel.n

TTV'(C?) are distinct

E-E guard. for some p’.

—
=)
—_
—_
- .
—

2.

and err¢ =/,

guard. and E,X 1< n =5 and err¢ E, then

= guard. for some p'.

—_ —_ 0 . =
2 guard. and Z,X+-\/,., ,C/=E and

then <X-A+-E-Z'; p’ cons. and

Proof By induction on constraining derivations.

156
Cases C-Hyp, C-Bort, C-CLs1. Immediate since ' = €.
Case C-AssuM. Then the premise of the rule is:
2,2>(r <7) b dnfl(r A —n) = &
From the assumptions, we have:
<X-AFE; pcons.
By Lemma A.26 with Lemma A.18, (2) implies:
AZ>(r<n))-A-E; p cons.
Then by IH on (3) and (1), we have:
AT>(r<n))A+EE; p cons.
ie, < (r<n)A+EE; p cons.
for some p’. By Lemma C.24, B, X |- 7 « 7 = &' implies:
EE Ikt
By Lemma A.23 with Lemma A.18, (5) implies:
BE . <aXAFT<
Then by Lemma A.26 with (6), (4) implies:
<A EE; p’ cons.
Case C-ORr. Then the premises of the rule are:
EIXHVietn CO:>E/1
EE,I+C)=
= E E Then by IH on (8), we have:
<1ZAP~_1 ; p cons.
for some p”. Then by IH on (10) and (9), we have:

—/

<A+ EE|-E); o cons.

!
1
ie., <XARZE; o cons.
for some p’.
Cases C-CLs2, C-CLs3, C-Rcpl. Immediate by IH on the premise.
Case C-Fun1. Similar to case C-OR.
Case C-VARI1. Then the premise of the rule is:
E(e< ﬂC), T+ lbg(a) « =C=E|

where \/;

iel.n
the assumption, we have:

<X-A+E; p cons.

C?=CAaand B =E/-(o < —C) for some and C and &/

ey

@

3

“

&)

(6)

(N

®)
©))

(10)

Y

12)

. From

13)

157

By Lemma A.26 with Lemma A.18, (13) implies:
(@ < —C)-E|-<=-AFE; p cons. (14)

Since TTV'(C A) are distinct, by the syntax of RDNF, we have a ¢ TTV(C). Then
we have:

E- (e <—C) guard. (15)
)

Since (15) implies a ¢ TTV (lb=(a)) v TTV(—C), by Lemma C.28 on (12) followed
by Lemma A.23, we have:

>Eq (@ < —C)pq (Ba |- X) - Ibz(@) < —C (16)

where split,, (2, dom(p)\{ a }) = (Ea, o) and p, = [@ — @ A ubz.(q<)(@) v
Ibz.(a<7)(@)]. By Lemma A.23 with Lemma A.18, (16) implies:

PEq (@ < —C)-pl (EgB <) - lbz(a) < —C (17)
Then by Lemma C.27 on (14), (15), and (17), we have:

B <A E(a < —C); p cons.

ie, <Z(E]'A)FE-(a<—C); p' cons. (18)
for some p’. Then by IH on (18) and (12), we have:
<=-(B|-A) - (@ < —C)-E| ; p’ cons. (19)
By Lemma A.18, we have:
E-(a < —C)-E|-<S-A £ <%-(E]-A) (20)
Then by Lemma A.26 with (20), (19) implies:

XAt E(a < —C)-E|; p cons.
ie, <XAREE; p cons. 21)

Case C-VAR2. Similar to case C-VARI.

]
Lemma C.27. If (¢a<°7)XFpE.-E;p cons. and E-(¢<°7) guard. and
DE, DB (@ <° 1) 0L (BaX) -2 (a) <1, where split, (B, dom(p)\{«a})=
(Ba» Bo) and ply=[a—a Aubg.(g<or) (@) V bz (g<or)(@)], then X

>E,-E- (@ <°71); p cons. for some p'.

The proof for the - direction is shown below. The 2 direction is symmetric.

Proof
By Lemma A.37, (@ < 7)-2+ >E.-E; p cons. implies:
PEL DRy PeBa Pa((@ <T)L) E peBa (1
Pa((@ <7)X) FbE.>EypaBa; p) cons.)

for some p}, where p, = [@ — a A ubz(a) v Ib=(a)] and dom(p}) = dom(p)\{ a }.

158

Let pr = [@ — a A 7]. By Lemma A.29 on (1), we have:
Pr(PE DBy paBapa((@<T)Z)) E prpaBa €)]
By Corollary A.33 and Corollary A.34, we have:

(a<T)Frn=p.n foraln 4
>a<T)Fnm=p.n forall m where a ¢ TTV (r) Q)

By S-TrANs on Lemma A.18 and (4), we have:
PELDEL P (a@<T)E p (PEPE,) 6)
Then by Lemma A.23 on (3) with (6), we have:
PEL DB, > (@< T) prpa(Ba (@ <T)E) E prpaBa @)
Expanding the composition, we have:
propa=[a—antnApubz(a) v plbz(a)] ®)
By Lemma A.7 on S-REFL and (5), we have:

e@<T)Fa AT Aubz(a) vibz(@)=a AT A prubz(a) v plbs(a)

ie, D(a<7)Fanubz (o< (@) Vibg (o< (@) =a AT A prubz(a) v polbz(a) (9)
Then by Lemma A.31 on (9), we have:
>a<T)Fphn=ppen foraln (10)
By S-TrANs on Lemma A.18 and (10), we have:
>(@ <T)po(Ea(@ <T)E) b prpa(Ea(@ <)) an
prPaBa = PoBa (12)
Then by Lemma A.23 on (7) with (11), followed by Lemma A.19 with (12), we have:
PE. DB, (@< 7) 0L (Ba (@ <1)2) = plEq (13)
From the assumption, we have:
DBy DE, (@ < 7) 0 (EgX) Hilbs(a) <7 (14)
By S-ANDOR2: on S-ANDOR112/S-ANDOR122 and (14), we have:
PEL DE, (@ < 1) 0L (EpZ)a AT Aubs(a) vibz(a) <7 (15)
By Corollary A.34, we have:
PR, (@ <T)FT=p0T (16)
Then by S-TRANS on (15) and (16), we have:
DB DEy > (@ <71) 0L (ExX) FpLa<plht a7)
Then by Lemma A.23 on (13) with (17), we have:

PE. DB (@ < 7) 0L (EaE) EplEs (18)

159

By S-Cons on (18) with (17), we have:
PE. DB (@ < 7) 0L (BaE) EpLEepl(a<T) (19)
By S-TrANS on S-ANDOR119, we have:
(a<t)Fanubzs(a)<T (20)
Then by S-ANDOR2- on (20) and (14), we have:
PEL BEy (@ < 1) 0 (ExZ) - a Aubz(a) vibz(a) <t 1)
By Corollary A.34, we have:
DEL - T=paT 22)
Then by S-TrRANS on (21) and (22), we have:
PEy DEo (@ < 71) 0 (EgZ) Fa A ubz(a) v Ibz(a) < paT
ie, DEDEL(@<T)pL(BaZ) b pe@ <paT (23)
By S-ANDOR22 and Lemma A.7 on S-HyPp and S-REFL, we have:

(a<t)FantArubz(a) v ibz(a)=a A ubs(a) v Ibz(a)

ie, (¢<7T)FaAubz(g<r)(@) Vv lbz.(o<r)(a) =a Aubz(a) v Ib=(a) (24)
By Lemma A.31 on (24), we have:
(@<T)Fplr=per foraln (25)
By S-TraNns on Lemma A.18 and (25), we have:
Pa(EaZ)E po(EaX) (26)
Then by Lemma A.23 on (23) with (26), we have:
PE. DB (@ < T1)pa(BaZ) b pad < paT 27
Then by Lemma A.29 and Lemma A.23 with (27), (2) implies:
(@ <7)peEt PE.PEypaBa; p) cons. (28)
Then by Lemma A.43 on (28), we have:
PrPeE - PEL DBy > (@ < T)prpala; p5cons. (29)
for some p’z. By Lemma A.36 on (29) with (9), we have:
PLE DB DBy > (@ <T)pLE 4 ; pj cons. (30)
for some pg. Then by the definition of consistency on (19) and (30), we have:

LHE(a<T); p§op, cons. (31)

Lemma C.28.

LIf EEXr1«n=8 and a¢TTV(r))UTTV(12) and err¢E, then
PR P(EaBE E) 1 <12, where split,(E, &)= (Eq, BEy) and p=[a—
a A ubz(a) v Ibs(a)].

2. IfE,S+-D=E and a ¢ TTV(D®) and err¢ B, where D*=\/;_, ,, C?, then
bEop(Ex-E-X) DO < L, where split,(E, &) = (Eq» Ex) and p=[a—a A
ubz(@) v lbs(a)].

Proof By induction on constraining derivations.

Case C-Hyp. Since a ¢ TTV (1) u TTV(12), we have from the premise:
(11 <T)EELXZ
ie, (o1 <pm)ep(ExY) (1
Then by S-Hyp on (1), we have:

PELZ)FpTi <pn ()

By Corollary A.34, we have:
DYy T =pT 3
DX, FT=pD 4)

Then by S-TRANS on (2), (3), and (4), we have:
PEop(EgZ) 11 <1 (5)
Case C-AssuM. Then the premise of the rule is:
B 2>(1 <) - dof'(r A =) = & 6)
By IH on (6), we have:
by p(Bu B -2>(1 <1)) - dnfl (1 A —=1) < L (7
By Corollary A.33, we have:
EobT1=p1 ®)
Eobm=pm 9)
Then by S-TrRANS on Lemma A.18, (8), and (9), we have:
PEL (T <T)Ep> (11 <) (10)
Then by Lemma A.23 with (10), (7) implies:
BB p(EyrE X) (1 <) - dnf(1y A =m) < L an
By S-TrRANS on Lemma 7.3 and (11), we have:
PRy p(Ep B T)>(n<n)F1A—T< L (12)
By Theorem A.9 on (12), we have:

DEa'p(Eﬂ-EI-Z)-D(Tl <T2)) (13)

161

By S-Assum on (13), we have:
P p(BaB 2)F11<n (14)

Case C-ORr. Itiseasy to see thatif 7TV’ (Cg) are not distinct for some k, we can deduplicate

them before preceeding, and duplicate them again in the conclusion. Therefore we
iel.n
can assume that 77V’(C?) are distinct

The premises of the rule are:
B2 Ve O =E (15)
EE, X C) =5, (16)

where &’ = 2| -E’, for some Z| and Z. By IH on (15), we have:

/

1
DEa'p(Eﬂ'E/l'Z) = \/ie l.n—1 C? <l a7

By IH on (16), we have:

PEq B, 0 (BBl B E) - O < L (18)

where split,(E}, &) = (8], E|) and p’ = [a — a A ubzz (@) v b=z (a)].

By Lemma C.29 on (15), we have:

=\ guard. (19)
By Lemma A.18, we have:

pE} E pE), (20)
By Corollary A.33, we have:

EeFn=la—aAubg, (@) vibs,(a)|r foralln

—=a —=a

ie., EBgbm=prn foralln 21
Then by S-TRANS on (20) and (21), we have:
e pE EE, (22)
By Lemma A.21 on (22), we have:
>Eq o2 E>E|, 23)
By Lemma A.19 on (23) and Lemma A.18, we have:
>EqpE| E>E], (24)
By Corollary A.34, we have:
>Eq b ubz (@) = [@— @ Aubg, (@) v bz, (a)]ubz (@)
ie., DEqtubg ()= pubg () (25)
By S-ANDOR2) on S-Hyp, we have:
PE| - pa < pubs ()
ie., pE|FaAubz(a) v ibz(a) < pubz () (26)

162

Then by S-TrRANS on S-ANDORI2-, (26) and (25), we have:
>EqpE| F lbe(a) < ubg; (a) 27
By S-ANDOR2? on S-REFL and (27), we have:
>EqpE) b lbz(a) < lbz(a) A ubg (@) (28)
Then by S-ANDOR1 12 and (28), we have:
>EqpB| F lbz(e) = lbs(a) A ubg; () (29)
Then by (29) and S-DISTR, we have:
PEqpE| - @ Aubzg (@) v ibzz ()
=a Aubs(a) A ubz () v Ibz(a) v bz (@) 30)
=a A ubz(a) A ubz (@) v Ibz(a) A ubz (@) v bz (@)
= (@ A ubz(a) v Ibz(a)) A ubz (@) v lb= (@)

By S-ANDOR2) on S-REFL and S-Hyp, followed by S-TRANS with S-ANDOR11-, we
have:

PE| - a Aubz(a) v Ibs(a) < (a A ubs(a) v Ibz(a)) A pubs: (@) v plbz: (@)
(€20)

Similarly, by S-ANDOR2- on S-REfL and S-Hyp, followed by S-TrRANS with S-
ANDOR119, we have:

PE| (@ A ubs(a) v Ibz(a)) A pubz: () v plbz (@) < @ A ubz(a) v Ibz(a)

(32)

By Corollary A.34, we have:
>E, - Mbag ()= pubg? (a) (33)
>Eq i lbg (@) = plbz; (@) (34)

Then by S-TRANS on (31)/(32), (33), and (34), we have:
DEqpB| F a Aubs(a) v lbz(a) = (@ A ubs(a) v Ibz(a)) A ubg; (@) v lbz (@)
(35)
Then by S-TRANS on (35) and (30), we have:
>EqpE| - a A ubz(a) v ibz(a) =a A ubzg (@) v bzz (@) (36)
By Lemma A.31 on (36), we have:
>EopB| Fprn=p'n foralln 37
Then by S-TRANS on Lemma A.18 and (37), we have:
bEe 0 (BaB-EyE) E o (Ba B By) (38)
Then by Lemma A.23 with (24) and (38), (18) implies:
bEep (B BBy E) ECO< L (39)

163

Then by S-ANDOR2- on (17) and (39), we have:
DE(IP(EKEQE }_\/IEI nC <l
ie, PE,p(EL EZ)-DV< L (40)

Case C-Bot. Immediate by S-ToBo>.
Case C-CLsl. Then D° = 7[#C;] A —(U v #C,) for some Cy, Cy, I[#C], and U. By
S-CLsSUB on the premise C; € S(#C1), we have:

#C) < #HCy 41)
By S-TrANS on S-ANDOR112, (41), and S-ANDORI12-, we have:
T[#C) < U v #Cy (42)
Then by Theorem A.9, (42) implies:
THC) A —=(Uv#C) <L (43)

Cases C-CLs2, C-CLs3. Then D? = TN¥[N] A =(U v #C) for some N, C, TN[N], and
U. The premise of the rule is:

EX-INNA-U=8E (44)
By IH on (44), we have:
bR, p(Ba B2 IN[N]A-U<L (45)
By S-ANDORI11- followed by S-NEGINV, we have:
—(Uv#C)<—-U (46)
Then by S-TRANS on (46) and (45), we have:
bRy p(BaE -2 - IV[N]A=(Uv#C) < L (47)
Case C-Fun1. Then D° = 7[D; — D,] A —(D3 — Dy) for some D_jje 4 and I[Dy—
D,]. The premises of the rule are:
B, <X+ D3 <D =E] (48)
EE|,<¥+D; <Dy=5 (49)
for some E’l and 5’2 where B/ = E. E By Lemma C.24 on (48) and (49), we have:

B-<X-E| D3 <Dy (50)
BE-E|-<2-E) Dy <Dy (51)

By Lemma A.23 with Lemma A.18, (50) and (51) imply:
EE <X+ D3 <D (52)
E-E <Xt Dy <Dy (53)
By Corollary A.33, we have:
EeFn=[a—aAubg, (@) vibs,(a)|r foralln
ie., EBgbm=prn foralln 54

164

By S-TraNns on Lemma A.18 and (54), we have:
Eo-p(By B <%) B, 8 < (55)
Then by Lemma A.23 with (55), (52) and (53) imply:
Bap(BEpE <) D; <Dy (56)
Eop(BaE <X) =Dy <Dy (57)
Then by S-FUNDEPTH on (56) and (57), we have:
PEyp(BEgB Z) D) —>Dy<D3— Dy (58)
By S-TraANS on S-ANDORI119, S-ANDOR129, and (58), we have:
PRy p(EpB Z)FI[D; — D3] <D3;— Dy 59)
By Theorem A.9, (59) implies:
PRy p(EgB Z) I [D; > D] A =(D3—>Dy) < L (60)

Case C-Rcpl. Similar to case C-FUuN1.
Case C-VARL. ThenD" = C A BandE = E/-(B < —C) for some B, C, and E,. By S-Hyp,
we have:

p(B<—C)EpB<p—C
ie, p(B<—C)EpB<—pC (61)

By Theorem A.9, (61) implies:

p(B<—C)EpCrpp<L
ie, p(B<—C)Ep(CAp) <L (62)

By Corollary A.34, we have:

PEqFCAB=[a—a nAubs, (@) v bz, (@)](C A B)
ie, PELFCAB=p(CAP) (63)

Then by S-TRANS on (63) and (62), we have:
PR, p(BrEl-(BL—C)E)FCABSL (64)

Case C-VAR2. Similar to case C-VARI.

Lemma C.29 (Guardedness of constraining).

1L IfE, 21«1y =E and err ¢ 2/, then ' guard..
= 0= 0 stinct = =
2. IfE. XV, C] = E and TTV'(C}) are distinct and err ¢ 2/, then E' guard..

Proof By straightforward induction on constraining derivations.]

165

C.4 Type Inference Termination Proof

The basic intuition is that by Theorem B.9, we know that in well-formed declarations
contexts, there is only a finite number of types that can be reached by expanding all the
user-defined type constructors in a given type. Therefore, the number of types that may be
reached while applying constraining rules is finite, and since each traversed type is saved
as part of the current subtyping hypotheses, all executions of constraining will eventually
halt.

Proof [Proof 7.6 (Termination of Constraining)]

Let 7; be the set of type pairs that are constrained at any recursive depth i of the type
constraining algorithm.

We can see from the constraining rules of Figure 20 that if we start from the constraint

—_—
EF 19 <, thenTy = {79 <o } and T; S T/ where:

Ty={to<m}juUE
T/ = {Ds<D;|I[D; —>Ds] n—=S"[D;—DyleS;}
U{D; <Dy | I[D; —>Dy] A =S7[D3 —>Dy]€eS; }
U{Dy <D|T[{x:Ds J] A =S"[{y:D}Hes;, ye{T}}
U{ViesT<=C|Craces, SeP({n|n<acl;o; T/ })}
u{a<—-C|Chraes;}
U{C<A;estICA—aes;, SeP({n|a<nel;,;T;})}
u{C<a|ChA—aes;}
S;={C|(r<m)eT,, daf’(r A —1) = \/, C;, Ce{T; }}

S; puts each constraint in 7} into RDNF, as is done by C-Assum. The first two components
in the inductive definition of 7} correspond to the premises of C-FuN1, and the third
component to the premise of C-Rcp1. In addition to the pairs of types constrained (i.e., the
hypotheses assumed), T} also contains the bounds assumed in the premises of C-VAr1 and
C-VAR2, as seen in the fifth and seventh components. Therefore we can simply look up the
bounds from the union of T’ for j < i in the fourth and sixth components, which correspond
to the premise of C- VAR] and C-VAR2 respectively. To exclude hypotheses assumed by
C-AssuM, which may not end up being assumed as a bound by C-Var1 and C-VAR2, we
overapproximate by considering all subsets of such pairs of types.

Next, we show that the size of | J; T} is bounded.

The functions collectcc traverse a type and collect the type variables, class and alias
types, nominal tags, and record labels, which we abbreviate as ¢, reachable from the type.

¢ :=TV (type variables)
| CA (class and alias types)
| NT (nominal tags)
| RL (record labels)
N[7]* =€ | N[T]*N[7]

166

collectﬁ’[ﬂ* (1—>m)= COZI@Cf[-Vm* (Tl) v collectN[ﬂ* (12)

collectjcv[ﬂ* ({x:7})= { COlleCt (Ju{x} ifc=RL

collect (T) otherwise
. collect TN () G {N[F]} if N[F]¢ N[T]* and ¢ = CA
collect?’[T] (N[T]) =1 collect, NN (") if N[7] ¢ N[T|* and ¢ # CA
%) if N[t]e N[T]*

where N[T] exp. 7’
{#C} ifc=NT
%) otherwise

N[7T]* _ e} ife=TV
collect, () = { 1%} otherwise

collecty 71 (#C) = {

collecty 71 (TY=0

N[7T]*

collect,. A

(11 v° 1) = collect, (1) v collecty 7% (1)
collect 71 (—1) = collect (71 (1)
Similarly, the function depth traverses a type and measures the nesting depth of type
constructors up to the first recursive occurrence of a class or alias type.

depthNT) (1) — 17) = max(depth™) (7)), depth™ 7 (1)) + 1
depth™N T ({x :7}) = deprh™ T (1) + 1
depth N7 (N[F]) = { depth™ [7]*-N[7] (') ifN [f] N[7]*, where N[7] exp. 7’
0 if N[t]e N[T]*
depthN TV #C) = depth™¥ ™) (@) = depthV [F1(T<) =
depth¥ T (1) v° 15) = max(depthV) (1)), depth™ 7 (1)
depthN™) (—1) = depth™ 7] (1)

0
)

By the Theorem B.9, if D wf, then for all 7, the sets collect, (T)C are finite, and depth(7)
is finite.

Given a set of types S, we can collect the ¢ reachable from it as
collect(S) =, . g collect () and the type constructor nesting depth as depth(S) =
max; ¢ s depth(t). Then we can inductively construct the universes U; of C’s up to depth i
that only contain collect.(S) without duplicates, as do the results of dnf’. Notice that all
of U; are finite. _

For any " where collect.(S") collect..(S) , depth(S') is the type constructor nesting
depth after expanding class and alias types up to the first recursive occurrences, while dnf®
expands class and alias types on the top level, which by the guardedness check does not
include their first recursive occurrences. Since the RDNF subexpression unnesting in the
first three components of the inductive definition of 7}, the Boolean algebraic connectives in
the remaining four components, and dnf’ in S; all preserve the depth and do not introduce

167

new c, we have:

Si S Udepin(ty)
T;cTyv ({Vies Tl S€PUepmry)) } v collectry(Ty))
X ({VresTIS€PWUaepmy) } V{ Nres 71 SEPUaepmry)) }
u{t]|te Udepm(ty) } U collecttv (Ty))

Therefore the set T = [J; T; of all pairs of types ever constrained by the algorithm is bounded
by:

TcU T/ cTju ({ViesT|Se P(Udepth(To’)) } U collectry (T}))
X ({Vees T I S€PWUipma)) } V{ Nres | SEPUaepnry)) }

{7 | 7€ Uepry) } L collectry (Ty))

and is thus finite.

Since C-Hyp ensures that the subtyping context X reachable by the subtyping algorithm
cannot contain duplicates, we have ¥ € T U { err }. Since T is finite, X is also finite. Since
recursive calls to the constraining algorithm always increases the size of X, this implies that
constraining always terminates. |

C.5 Type Inference Completeness Proofs

Lemma C.30 (Completeness of type inference — general). If E,I'—*P: 71, then I' |-* P:
7! = 2/ for some Z' and 1’ so that VE'. v’ <" VE. 1.

Proof By induction on program typing derivations.

Case T-Bopy. Then P =t for some ¢. The premises of the rule are:

E cons. (D
ETHt:7 (2

By Lemma C.34 on (2) and (1), we have:

't:7"=78 3)
Erpr' <7t)
B pE ®)

for some 7/ and E and p, where dom(p) = fresh((3)). By I-Bopy on (3), we have:
r-*t:7==25 (6)
By S-ALL on (4) and (5), we have:

Ve ' <"V

[

T @)

168

Case T-DEF. Then P =def x =1 ; P’ for some x and ¢ and P’. The premises of the rule

are:
=, cons. ®)
2, N+t ©)]
ET(x:VEL1) - Pt (10)

By Lemma C.34 on (9) and (8), we have:

Ci-t:7 =& (1D
Bipit <1 (12)
B EpiE] (13)

for some 7] and E| and p;, where dom(p1) = fresh((11)). By S-ALL on (12) and
(13), we have:

VE,. 7 <Y VE|. 7 (14)
By Lemma C.31 on (10) and (14), we have:
E(x:VE.7) " P:1 15)
By IH on (15), we have:

[1]

[(x:VE. 1)) - Pt = F (16)
vE . 7' <"VE.r 17)
for some 7’ and Z’. By I-Bopy on (11) and (16), we have:

I'-*defx=¢t; P:7'=5 (18)

Lemma C.31 (Strengthening). If E,T-(x:0y)t:7 and et oy <" 0oy, then
Elx:o) bt

Proof By straightforward induction on typing derivations. |

Definition C.32. We write fresh(A) to denote all the type variables that are taken as fresh
in the given derivation A.

((t»—»T)ep,aedom(p’)] /

Definition C.33. We say p extends p’ if [a— 7 =p.

Lemma C.34 (Completeness of polymorphic type inference). If E,I'—1:7 and E cons.
and E = poEy, then (A) Eo,T'IF1:7' =8 and B+ ptv’ < 7 and E = p(Bo-E') for some 7’
and B and p, where err ¢ E' and p extends po and dom(p)\dom(pg) = fresh(A).

Proof By induction on term typing derivations.

169

Case T-Suss. Then the premises of the rule are:

Elt:n (D
E-T1<T (2
for some 71. By IH on (1), we have:
o, Cl-t:7' =& 3)
Bt pr' < @)
Bk p(EoE) ©)

for some 7’ and E' and p, where err ¢ = and p extends po and dom(p)\dom(pg) =
fresh((3)). By S-TrRANS on (4) and (2), we have:

EFpt' <71 (6)

Case T-OBJ. Then r=C {x; = tii }and T =#C A {X; 2 } for some C and %' and t_ii
and 7;'. The premises of the rule are:

ET—r .1)
C final 3

Then for each i, repeat the following:

Assume the following:

— —j€0..i—1

EEpi-1(8;) 9
———F—jel.i-l
:l—pi,lrjg‘rj (10)

By IH on (7), we have:

CRARRS I) (11)
B piti <7 (12)

—_ —je0.i—1
== pi(.:jj ' 'di) (13)

for some t and E; and p;, where err ¢ E; and p; extends p;_, and dom(p;)\
dom(p;—1) =fresh((11)). Since p; extends p;— and dom(pi)\dom(p?,l)_are

—jel.i—1
picked to be fresh in (11), which means they could not have appeared in T}J o ,
we have:
—_——jel.i—1
piT; = Pi-1T; (14)

Then (10) implies:

5)

170

Then in the end we have:

T Ty = 5 (16)
EEp(E0E) a7
Erpr <t (18)

for some T_i/l and E_ii and p, where err ¢ E_,-i and p extends pg and dom(p)\dom(pg) =
\U; (dom(p;)\dom(p;—1)) =, fresh((16);). By I-OBy on (16) and (8), we have:

Eo,FH—C{x,':l[i}Z#C/\{xiZTi/l}:>E_il (19)

By S-RcDDEPTH on (18), we have:

El—{xi:pTi’}é{xi:Ti}; (20)
By Lemma A.72 on S-REFL and (20), we have:
E-#C A {xiipT! } <HC A (77T }
ie., EI—p(#C/\{)TTi'i Y <H#C A {XiTT) 1)

Case T-ProJ. Then ¢t = ¢’ .x for some ¢’ and x. The premise of the rule is:

ETH:{x:7} (22)
By IH on (22), we have:
Z0, Tt 17 =& (23)
Epir’ <{x:7} (24)
Erpi1(BoEr) (25)
for some 7/ and 2 and p1, where err ¢ E; and p; extends po and dom(p1)\dom(pg) =
fresh((23)).Introduce afresha andletp = [@ — T, ,m('g - Epl]. Then we have:
pt =pi7’ (26)
o{x:a})={x:7} (27)
p(Eo-Er) = p1(E0-E1) (28)
Then (24) and (25) imply:
Ef-pt'<p({x:a}) (29)
EEp(EoEr) (30)
By Lemma 7.8 on (29) and (30), we have:
BB et «{x:a}=E, 31)

for some E,, where err ¢ £, and E = p=,. Then by I-Proy on (23) and (31), we have:

B, TIF' x:a =55 (32)

171

Since pa = 7, by S-REFL, we have:
Etpa<t (33)
(30) and E = pE, implies:

[1]
[1]

EEp(EoEl-E) (34

Case T-VAR1. Immediate by I-VARI.

Case T-VAR2. Then 7 = x and I'(x) = VE;. 7| for some x and E; and 7;. By the definition
of <Y, we have:

EEp1E; (35)
EFpimi <7t (36)

for some p, where dom(p) = TV(E;) u TV(71) =: S. Introduce a fresh y, for each
a € S. Then by I-VAR2, we have:

E0.TIFx: [@= 7,75t = [a= 7,755 (37)

Let p = [y = p1a@” €5]. Then we have:
pola=ya"’
=pro[fa—ma® | o[a=ya"’] (38)
=proyarma=?]
Since Y55 are picked to be fresh, which means they could not have appeared in

=, and 11, we have:

Vo= a®c5]5, =& (39)
Vo=@]n =1 (40)
Then we have:
E — '_)a,(YES E
P1Z21 = p1([Va (teS']—l) @1
= ([a"_’ya Er)
= a'_)a,a/eS T
P1ITL pl(. 1) (42)
=p([@a=7a"""17n1)
Then (35) and (36) imply:
Etp([@=7a"*1E1) 43)
Erp([@=y"’ln) <t (44)

Case T-ABs. Thent = Ax.t' and T = 1) — 1, for some x and ¢ and 7, and 7,. The premise
of the rule is:

El(x:m) -t :n (45)

172

Introduce a fresh a. By Lemma C.35 on (45), we have:

E(e<n),xa)-t: 7 (46)
Etla—1n]r<n 47)
By IH on (46), we have:
Eo.[(x:a) -t 7" =E (48)
E(a<t)Fpit" <7 (49)
E(e<t)Ep1(EeE) (50)

for some 7”7 and E” and p;, where err ¢ E' and p; extends pg and dom(p)\dom(pg) =
fresh((48)). By I-ABs on (48), we have:

. TFAx.t -1 =5 (5D
By Lemma A.29, (49) and (50) imply:

" /

[Q"—>T1](E-(a < Tl)) = [a’ HT]] opIT < [ab—)Tl]T
<[a— 1] (52)

[a"_’Tl](E'(O’ <T1)) = [a»—vr]] opl(EO-E’)

ie, [a—7n|E(m<n)F[a—>T]opT”
ie, [a—>7]|E(n<n)E[a—T1]0op1(EyE) (53)
By S-Cons on Lemma A.18 and S-REFL, we have:
[~ 1B [a—1]E (1 <1) (54)
By Lemma A.23 with (53), (51) and (52) imply:

[@ = 7|2 [@— 1] opi7”" <[a—7]7’ (55)
[QHTI]E‘l: [(Z'—>T1] Op](EO'E/) (56)

Since « is picked to be fresh, which means it could not have appeared in Z, we have
[@ — 71]E = E. Then (54) and (55) imply:

Erla—1]opit" <[a— 1] (57)
EkEa—11]0p1(BpE) (58)
By S-TraNs on (57) and (47), we have:
Erfla—nlopit’ <n (59
By S-FuNDEPTH on S-REFL and (60), we have:

EFT]"[Q’HTI]OplTﬂgTIHTZ

ie, Erla—t]opila—7")<T1—>n (60)

Cases T-Aprp, T-Asc, T-Caskl, T-CAsSE2, T-Casg3. Similar to case T-Pros.

Lemma C35. If E,[-(x:7)t:7, then E-(a<7),[-(x:@)1:7" and E+ [a+—
T1|t' < 1 for any « fresh and some v'.

173

Proof By straightforward induction on typing derivations. |
Proof [Proof 7.8 (Completeness of Constraining)] By Theorem 7.6, we have:
B eFTI &< =8 (D)

for some Z’. The result then follows from Lemma C.36. [|
Lemma C.36 (Necessity of Constraining).

1. IfE+ p1y < pryand E cons. and E = pEy and Eg, 2+ 1) <K 7y = &, then E = p='.
2. IfE+ pD° < | and E cons. and E = pZy and Eg, 2+ D = &', then E = p&'.

Proof By induction on constraining derivations.

Cases C-Hyp, C-Bot, C-CLs1. Immediate by S-EMPTY since E' = e.
Case C-AssuM. From the assumptions, we have:

Bk pri <pm (1)
The premise of the rule is:

Bo, 2> (11 <) - dnfl (1) A =) = & 2)
By Theorem A.9, (1) implies:

EprpA—pn< L
ie, Erlp(niAn—-n)<l 3)

By Lemma 7.3, we have:
71 A~y =dnfl (1) A —12) 4
By Lemma A.29, (4) implies:
p(t1 A =) = pdnf®(1; A —12) %)
By S-TrANS on (5) and (3), we have:
2 pdnfo(rp A =) < L (6)

The result then follows from IH on (2) and (6).
Case C-OR. Then D% = D(l) v CY for some D(l) and CY. From the assumptions, we have:

E—p(D(l)vCO)SJ_ @)
2 k pEy ®)

The premises of the rule are:
Eo, 2+ D)= & (€

EpE,Z-C'=&, (10)

174

—

for some Z| and Z, where E
respectively, we have:

ie, pDY<p(DYvCY) (11)
pC0 < pD(l) v pC0
ie, pC'<pDYvC) (12)
By S-Trans with (7), (11) and (12) respectively imply:
EFpDY< L (13)
EFpC< L (14)

By IH on (13) and (8) and (9), we have:

[1]

- pE, (15)
(8) and (15) imply:
EFE pEo-pE]
ie, EFp(EeE]) (16)
By IH on (14) and (16) and (10), we have:
EF pE, a7
(15) and (17) imply:
EE pE|-pE,
ie, ZEp= (18)

Case C-NoTBOT. Then D =N A F AR A —L for some N and F and R. From the
assumptions, we have:

EFp(INAFARA-L) <L
ie, EFNApF ApRA—-L<L (19)
E cons. (20)

By S-Trans on S-ToB- and Theorem A.6, we have:
NApF ApR<—1L (21
By S-ANDOR2? on S-REFL and (21), we have:
NAPF ApRSN ApF ApRA—L (22)
By S-TRANS on (22) and (19), we have:
EENApF ApR<L (23)

Since TTV(N A pF A pR) 0 TTV(L) = &, by Lemma 3.4 on (20) and (23), we
have:

PE-NAPpF ApR<L 24)

175

Notice that N A pF A pR is in CDN-normalized form. Since none of
{N, pF, pR} is a negation, N A pF A pR is complement-free. Then by
Lemma 4.22 on (24), we have:

LA (@ v V) (25)

for some 7r_’].j and D_jj and VJ.Dj , where A; VJ.Dj is complement-free. By
S-ANDORI12-, we have:
J

vier vy (26)
By Lemma A.72 on (26), we have:
D; D;
/\jijg/\j(n;.ij") 27
By S-TrANS on (27) and (25), we have:
A, VJ’.)f cl (28)

which is impossible since /\ j VJ.Dj is complement-free. Therefore this case is
impossible.

Case C-CLs2. Then D = 7 [#C;] A —(U v #C;) for some C; and C; and 7 [#C;] and U.
From the assumptions, we have:

B p(I[#C1] A —~(U v #Cy)) < L (29)

= cons. 30)
The premises of the rule are:

Cr ¢ S(#Ch) (3
Ep,ZHI[#Ci] A -U=F (32)
By Theorem A.9 on (29), we have:
EpI[#C]<p(U v #G,)
ie, ErpI[#Ci]<pt’ v\ #C) v #C, (33)

for some %€ { 1, D; —»D,, {y:D;}} andC_}], where U = p7¥ v \/j #C}. Since
TTV(pI[#Ci]) U TTV (p7° v V; #C} v #C3) = J, by Lemma 3.4 on (30) and (33),
we have:

>E - pI[#C1] < p70 v \/ #C) v #Cy (34)
By Lemma 4.22 on (34), we have:
pI[#C1 =/, (1) A X&) (35)

SE- XS <Y, (36)

176

— — —i —
for some Tl./l and C; and Xl.c" and Y; € { p79, #C;, #C}] }, where \/; Xl.c" is
complement-free. By S-ANDOR129, we have:

T AXT X G7)
By Lemma A.7- on (37), we have:
V; (7 A XEY e \/, X 38)
By S-TrANS on (35) and (38), we have:
pI[#C] =\, X (39)
By Corollary A.61, (39) implies:
pI[#C1] = X[(40)

for some k.
Case Ci € { L, I }. Then we have:

Xok=1 1)
By S-TrANS on (40) and (41), we have:
pI[HCI] <L 42)
By S-ANDOR119, we have:
pI[#C1] A p(=U) < pI[#Cy]
ie, p(I[#HC] A —U)<pI[#C] (43)
By S-TrRANS on (43) and (42), we have:
p(I[#C]A-U)< L (44)
The result then follows from IH on (32) and (44). l

I
Case Cr ¢ { L, 7' }. Let Xka =N\, Xkclk for some Xkclk where Xkclk are not
intersections. By S-ANDOR112 and S-ANDOR122, we have:

_
Xk XCF (45)

By S-TrANS on (40) and (45), we have:
_
pI[#Ci] < X (46)

Notice that pJ [#C] is in CDN-normalized form. Since none of the conjuncts
of pI [#C] is a negation, pZ [#C] is complement-free. Then by Lemma A.57,
(46) implies:

—_—
Pt S X} 7

177

-
for some TIOE{N, F, R}, where I[#C1] =N A F A R. By Lemma A.62,

(47) implies:

TlO #T
Then by Lemma 4.10 on (47), we have:

S —
Cr _ 0
X =P7y

By the syntax of Xkc" and (49), we have:
1

o1 = p7)
Then we have:
C
X VAV pT]O

Then (36) implies:
pE A o) <Yk
Since < implies <, (52) implies:

E A\ o) <Yk
ie., DER ,07'10 <Y

(48)

(49)

(50)

(51

(52)

(53)

By Theorem A.63 on (53), (31) implies Y # #C>. By S-ANDOR11¢ and S-

ANDOR12¢, we have:

pI[#Ci]=p(N A F AR) < p7)
Ykg‘rov\/j#C}:U

By S-TraNs on (54) and (53) and (55), we have:
>E pl[#C1]<U
By Theorem A.9, (56) implies:

PER pI [#C] A -U< L

By Lemma A.23 with Lemma A.18, (57) implies:

Eb pI[#Ci] A —-U< L

The result then follows from IH on (32) and (58).

Case C-CLs3. Similar to case C-CLS2.

(54)
(55)

(56)

(57)

(58)

Case C-FuN1. Then D°=T7[D; — D,] A =(D3 — Dy) for some ﬁ,-ie 1"4. From the

assumptions, we have:

= p(I[Dl - Dz] A —'(D3 - D4)) <L

—
—
—
—_
I
—

cons.

= pEO

(59)
(60)
(61)

178

The premises of the rule are:

5y, <X D3« Dy = Ell (62)
Eg-E, <Dy « Dy = E) (63)
for some 2| and &', where 2’ = Z|-Z). By Theorem A.9 on (59), we have:

Er pI[D; —» D3] <p(D3s— Dy) (64)

Since TTV(pI[D; — D3]) u TTV(p(D3 — D4)) = &, by Lemma 3.4 on (60) and
(64), we have:

>E 1 pI[Di — Ds] < p(D3 — Dy) (65)

By Lemma 4.22 on (65), we have:
pI[D; —Ds] =V, (t/ A X5) (66)
b2+ XS < p(Ds — Dy) 67)

for some T_l./l and ai and Xici , Where \/ i XZ.C" is complement-free. By S-ANDOR120,
we have:

T AXT X (68)
By Lemma A.7- on (68), we have:
Vi@ X eV, X1 (69)
By S-TrANS on (66) and (69), we have:
pI[D; —Dy]c\/, X&' (70)
By Lemma 4.9, (67) implies that each of ai is either bottom, arrow, or a negated
record field. By Corollary A.61, (70) implies:
pI[D; — Dy c X< (71)

for some k.
Case Cy € { L, ¥ }. Then we have:

XC=1 (72)

By S-TrANs on (71) and (72), we have:
pI[D;—>Dy]< L (73)

which is impossible by the same reasoning as case C-NoTBoT. Therefore this

case is impossible.
1

1
Case Cy =—. Let Xkc" =/, X,S"' for some Xkclk where Xkcl" are not intersections.
By S-ANDORI119 and S-ANDOR122, we have:

—_—
Xt e Xt (74)

179

By S-TraNs on (71) and (74), we have:

pI[D; — D] < Xk (75)

Notice that pZ [D; — D3] is in CDN-normalized form. Since none of the con-
juncts of pZ [D| — D] is a negation, pJ [D; — D] is complement-free. Then
by Lemma A.57, (75) implies:

—

ptd C X (76)

_

for some 7)e{N,F, R}, where I[D;—Dy]=NAF AR By
Lemma A.62, (76) implies:

e S—
AT 7

Then by Lemma 4.10 on (76), we have:
[

XG=pr? (78)
By the syntax of Xka and (78), we have:
pr? = pd (79)
Then we have:
Xt =N pt) (80)
Then (67) implies:
>E A, p1) < p(D3 — Dy) (81)
Since < implies <, (81) implies:
>E A\, p1) < p(D3 — D4)
ie., DER pT? < p(D3 — Dy) (82)
By Theorem A.63 on (82), we have:
T]O =D;—-D; (83)
E+ pD; < pDy (84)
2t pDs < pDs (85)
By IH on (84) and (61) and (62), we have:
EE pE] (86)
(61) and (86) imply:
B pBo-pE]
ie, EFpEeE) 87)

By IH on (85) and (87) and (63), we have:
EE pE) (88)

180

(86) and (88) imply:

ie, EFp(E|E)

Case Ci = x. Then Xkc"' =—V, {x:n;} for some 7;/. Then (71) implies:

pI[D1—Do)=—=\ {x:n;}
By S-ANDORI11-, we have:
{x:m}cV;{xin;}
By S-NEGINV on (91), we have:
—Vi{xim e —{xim}
By S-TrANS on (90) and (92), we have:
pI[Dy—>Dy]c—{x:m }
By Theorem A.9 on (93), we have:
pI[Di—>DyAa{x:m}cl

(89)

(90)

oD

92)

93)

(94)

which is impossible by the same reasoning as case C-NoTBoT. Therefore this

case is impossible.

Case C-Rcpl. Similar to case C-FuNn1.
Cases C-Fun2, C-Rcp2, C-Rcp3. Similar to case C-NoTBOT.

Case C-VARL. Then D =C A @ and &' = /(o < —C) for some C and e and Z/. From

the assumptions, we have:

By Theorem A.9, (95) implies:
Et pa < —pC

ie., EFpa<p(—C)

By S-ANDOR2 on S-Hyp, we have:
Bo b lbg,(a) < a
By S-Hyp, we have:
(e <—-C)Fax<—C

By S-Trans on (100) and (101), we have:

By (@ < =C) I lbg,(a) < —=C

95)
(96)
o7

(98)

99)

(100)

(101)

(102)

181

By Lemma A.29, (102) implies:
p(Eo-(@ < —C)) F plbz, (@) < p(~C) (103)
By S-Cons on (97) and (99), we have:
E k& pEo-(pa < p(—0))
ie, EEpE)y(a<C)) (104)
By Lemma A.23 with (104), (103) implies:
B plbz, (@) < p(—C) (105)
By IH on (105) and (104) and (98), we have:
EE pE’1 (106)
By S-Cons on (106) and (99), we have:
E k= pE|-(pa < p(—C))
ie, EEpE (107)

Case C-VAR2. Similar to case C-VARI.

	Introduction
	Presentation of MLstruct
	Overview of MLstruct Features
	Polymorphism
	Classes and Inheritance
	Shadowing
	Nominality
	Type Aliases
	Guardedness Check
	Class-Instance Matching
	Records

	Constructing the Lattice of Types
	Lattice Types
	Subtyping
	Soundness
	Negation Types
	Structural Decomposition

	Limitations
	Regular Structural Types
	Simplified Treatment of Unions
	Fewer Relationships
	No intersection overloading

	Formalization of Boolean-Algebraic Subtyping
	Syntax
	Subtyping and Bounds Contexts
	Subtyping Rules
	Subtyping Recursive Types
	Subtyping Hypotheses
	Example
	A Boolean Algebra
	Purely Algebraic Rules

	Some Useful Subtyping Relationships
	Type Variables & Polymorphism
	Consistency of Bounds Contexts
	Classical Consistency
	Weak Consistency
	Parameterized Weak Consistency
	Algorithmic Consistency

	Requirements on Base Subtyping Rules
	Subtyping Derivation Shapes

	Soundness of Boolean-Algebraic Subtyping
	High-Level Goal
	Splitting up Boolean-Algebraic Subtyping
	Pure Boolean-Algebraic Subtyping
	Elementary type forms

	A First Attempt at an Inductive Lemma
	CDN- and DCN-normalized type forms and derivations
	CDN-normalized type forms
	CDN-normalized derivations
	DCN-normalized type forms and derivations

	Soundness of Subtyping
	Soundness of [(T, R)] Subtyping
	Contexts and Type Variables

	Inferring Principal Types for MLstruct
	Algebraic Subtyping
	Basic Type Inference Idea
	Solving Constraints with Unions and Intersections
	Negation Types
	Normalization of Constraints

	Subsumption Checking
	Simplification and Presentation of Inferred Types
	Basic Simplifications
	Bound Inlining

	Implementation

	Formal Semantics of MLstruct
	Syntax
	Core Syntax
	Contexts
	Shorthands

	Evaluation Rules
	Declarative Typing Rules
	Declarative Subtyping Rules
	Desugaring Named Types

	Soundness of the Declarative Type System

	Principal Type Inference for
	Type Inference Rules
	Reduced Disjunctive Normal Forms
	Algorithm

	Type Constraining Rules
	Correctness of Type Inference

	Related Work
	Conclusion and Future Work
	Proofs and Auxiliary Definitions on Subtyping
	Subtyping Derivation Shapes
	Bounds Context Cleanup
	Some Useful Subtyping Relationships
	Lemmas on Subtyping Entailment
	Lemmas on Substitutions
	Lemmas on Consistency
	Pure Boolean-Algebraic Subtyping
	CDN- and DCN-normalized type forms and derivations
	DCN-normalized type forms
	DCN-normalized derivations
	Some useful lemmas

	Soundness of Subtyping

	Formalization of MLstruct, Continued
	Declarative Typing Rules
	Superclasses
	Substitution

	Well-Formedness
	Free type variables

	MLstruct Correctness Proofs
	Progress Proofs
	Preservation Proofs
	Type Inference Soundness Proofs
	Type Inference Termination Proof
	Type Inference Completeness Proofs

