
N/A, 181 pages, 2024. © N/A 2024 1
doi:N/A

Boolean-Algebraic Subtyping:
Intersections, Unions, Negations,
and Principal Type Inference

CHUN YIN CHAU
The Hong Kong University of Science and Technology (HKUST)

Hong Kong, China
(e-mail: cychauab@connect.ust.hk)

LIONEL PARREAUX
The Hong Kong University of Science and Technology (HKUST)

Hong Kong, China
(e-mail: parreaux@ust.hk)

Abstract

Intersection and union types are becoming more popular by the day, entering the mainstream in
programming languages like TypeScript and Scala 3. But these types are difficult to combine with
practical polymorphic type inference and their metatheory has proven difficult to establish, espe-
cially in the presence of equirecursive types and distributivity between unions and intersections. We
propose Boolean-algebraic subtyping, a new subtyping framework for reasoning about type systems
with conjunction (a.k.a. intersection), disjunction (a.k.a. union), and negation (a.k.a. complement)
connectives. Our framework is algebraic in that it does not appeal to some underlying model of types
and remains generic/extensible with respect to the specific base type constructors of the underlying
language. We also present MLstruct, a programming language based on Boolean-algebraic subtyping
and the first language to support principal polymorphic type inference in the presence of union and
intersection types. MLstruct is structurally typed but also contains a healthy sprinkle of nominality,
enabling the expression of a powerful form of extensible variants that does not require row variables
and makes pivotal use of negation types. The algebraic nature of our framework is crucial in defining
MLstruct: it allows the addition of nonstandard subtyping rules that would not hold in a classical
set-theoretic interpretation of subtyping. With this work, we hope to foster the development of better
type inference for present and future programming languages with expressive subtyping systems.

1 Introduction

Programming languages with ML-style type inference have traditionally avoided subtyping
because of the complexities it brings over a simple unification-based treatment of type
constraints. But Dolan and Mycroft (2017) recently showed with MLsub that an algebraic
account of subtyping resolvedmany of these difficulties and enabled the inference of precise
types thatmore accurately reflect the flow of expressions in programs. Unfortunately, among
other limitations, MLsub does not support unrestricted union and intersection types, which

2

are emerging as important building blocks in the design of structurally-typed programming
languages like TypeScript, Flow, Scala 3, and others.
In this paper, we propose a new algebraic subtyping framework that subsumes MLsub

and adds support for first-class union, intersection, and negation types. By first-class, we
mean that these types can be used without any restrictions, and in particular they can be
written down by users in arbitrary type annotations, which is impossible in MLsub.
We present the MLstruct programming language and thereby show that ML-style type

inference with subtyping can be generalized to include well-behaved forms of union and
intersection types as well as pattern matching on single-inheritance class hierarchies. As a
first example, consider the following definitions:

class Some[A]: { value: A }
class None: {}

def flatMap f opt = case opt of
Some Ñ f opt.value ,
None Ñ None{}

The type inferred by our system for flatMap is:

flatMap : @U, V. pUÑ VqÑ pSomerUs _NoneqÑ pV_Noneq

Interestingly, this is more general than the traditional type given to flatMap for Option

types. Indeed, our flatMap does not require the function passed in argument to return either
a None or a Some value, but allows it to return anything it wants (any V), which gets merged
with the None value returned by the other branch (yielding type V_None). For example,

let res = flatMap (fun x Ñ x) (Some{value = 42})

is given type 42_None1 because the function may return either 42 or None. A value of
this type can later be inspected with an instance match expression of the form:

case res of Int Ñ res , None Ñ 0

which is inferred to be of type 42_ 0, a subtype of Nat. This is not the most general
version of flatMap either. We can also make the function open-ended, accepting either a
Some value or anything else, instead of just Some or None, by using a default case (denoted
by the underscore ‘_’):

def flatMap2 f opt = case opt of Some Ñ f opt.value , _ Ñ opt

This flatMap2 version has the following type inferred, where _ and ^ have the usual
precedence:

flatMap2 : @U, V. pUÑ VqÑ pSomerUs _ V^ #SomeqÑ V

This type demonstrates a central aspect of our approach: the use of negation types (also
called complement types), written g, which allows us to find principal type solutions in
tricky typing situations. Here, type #Some is the nominal tag of class Some. A nominal tag
represents the identity of a class, disregarding the values of its fields and type parameters: if
a value E has type #Some, this means E is an instance of Some, while if E has type #Some,
this means it is not. To showcase different usages of this definition, consider the following
calls along with their inferred types:2

ex1 = flatMap2 (fun x Ñ x + 1) 42 : Int
ex2 = flatMap2 (fun x Ñ Some{value = x}) (Some{value = 12}) : Somer12s
ex3 = flatMap2 (fun x Ñ Some{value = x}) 42 : SomerKs_ 42

1 MLstruct supports singleton types for constant literals. For example, 42 is both a value and a type, with
42 : 42ďNatď Int.

2 Notice that only ex3 features a union of two distinct type constructors ‘SomerKs_ 42’ because in ex1 and ex2
only one concrete type constructor statically flows into the result of the expression (42 and Some, respectively).

3

It is easy to see that instantiating V to Int and Somer12s respectively allows ex1 and ex2 to
type check. In ex3, both types SomerWs and 42 flow into the result, for some type inference
variable W, but W is never constrained and only occurs positively so it can be simplified,
yielding SomerKs _ 42. We can convert ex3 to 42 through a case expression using the
impossible helper function:3

def impossible x = case x of {} : KÑK

case ex3 of Int Ñ ex3 , Some Ñ impossible ex3.value : 42

One may naively think that the following type could fit flatMap2 as well:

flatMap2_wrong : @U, V, W. pUÑ VqÑ pSomerUs _ WqÑ pV_ Wq

but this type does not work. To see why, consider what happens if we instantiate the type
variables to U“ Int, V“ Int, and W “ SomerBools. This yields the type:

flatMap2_wrong1 : pIntÑ IntqÑ pSomerInts _ SomerBoolsqÑ pInt_ SomerBoolsq

which would allow the call flatMap2 (fun x Ñ x + 1) (Some{value = false }) because
SomerBools ď SomerInts _ SomerBools. This expression, however, would crash with a
runtime type mismatch! Indeed, the shape of the Some argument matches the first branch of
flatMap2’s case expression, and therefore false is passed to our argument function, which
tries to add 1 to it as though it was an integer... So we do need the negation that appears in
the correct type of flatMap2, as it prevents passing in arguments that are also of the Some

shape, but with the wrong type arguments.
Finally, let us push the generality of our function further yet, to demonstrate the flexibility

of the system. Consider this last twist on flatMap for optional values, which we will call
mapSome:

def mapSome f opt = case opt of Some Ñ f opt , _ Ñ opt

The difference with the previous function is that this one does not unwrap the Some value
received in argument, but simply passes it unchanged to its function argument. Its inferred
type is:

mapSome : @U, V. pUÑ VqÑ pU^ #Some_ V^ #SomeqÑ V

This type shows that it does not matter what specific subtype of Some we have in the
first branch: as long as the argument has type U when it is a Some instance, then U is the
type the argument function should take, without loss of generality. This demonstrates that
our type system can tease apart different flows of values based on the nominal identities of
individual matched classes.
As an example of the additional flexibility afforded by this new function, consider the

following:
class SomeAnd[A, P]: Some[A] ^ { payload: P }
let arg = if xarbitrary conditiony then SomeAnd{value = 42, payload = 23}

else None{}
in mapSome (fun x Ñ x.value + x.payload) arg

of inferred type Int_None. Here, we define a new subclass of Some containing an additional
payload field, and we use this class instead of Some, allowing the payload field to be used

3 One may expect SomerKs”K, but this does not hold in MLstruct, as it would prevent effective principal
type inference by requiring some amount of backtracking in the constraint solver and by extension in the type
checker as well (Castagna et al., 2016).

4

from within the function argument we pass to mapSome. This is not expressible in OCaml
polymorphic variants (Garrigue, 2001) and related systems (Ohori, 1995). More powerful
systems with row variables (Rémy, 1994; Pottier, 2003) would still fail here because of their
use of unification: mapSome merges its opt parameter with the result, so these systems would
yield a unification error at the mapSome call site, because the argument function returns an
integer instead of a value of the same type as the input:4 subtyping makes MLstruct more
flexible than existing systems based on row variable.
MLscript is a new programming language developed at the Hong Kong University of

Science and Technology5 featuring first-class unions, intersections, negations, andML-style
type inference, among other features. For simplicity, this paper focuses on a core subset
of MLscript referred to as MLstruct, containing only the features relevant to principal
type inference in a Boolean algebra of structural types, used in all examples above. An
MLstruct implementation is provided as an artifact (Parreaux et al., 2022) and available at
github.com/hkust-taco/mlstruct, with a web demonstration at hkust-taco.github.io/mlstruct.
The specific contributions we make are the following:

• We present MLstruct (Section 2), which subsumes both the original ML type system
and the newer MLsub (Dolan, 2017), extending the latter with simple class hierar-
chies and class-instance matching based on union, intersection, and negation type
connectives.

• We formalize theBoolean-Algebraic Subtyping framework as a generic theory of sub-
typing SpT , Rq that makes few assumptions on the concrete base type constructors
T of the underlying language and their base subtyping rules R (Section 3).

• We prove the soundness of Boolean-Algebraic subtyping by showing that SpT , Rq
does not relate unrelated type constructors (Section 4), a crucial property that
underlies the soundness of languages built on top of it, like MLstruct.

• Wedescribe our approach to type inference based on theBoolean-algebraic properties
of MLstruct’s subtyping system (Section 5). To the best of our knowledge, MLstruct
is the first language to support complete polymorphic type inference with union and
intersection types. Moreover, it does not rely on backtracking and yields principal
types that are amenable to simplification.

• We formalize the declarative semantics of MLstruct in the _ calculus (Section 6).
We state the standard soundness properties of progress and preservation, whose
complete proofs are given in Appendix C.

• We formally describe our type inference algorithm (Section 7).We state its soundness
and completeness theorems. Again, the proofs can be found in Appendix C.

4 Wrapping the result in Somewould not work either (as Some Int doesn’t unifywith Some {value: Int, payload: Int}).
5 The GitHub repository of the full MLscript language is available at https://github.com/hkust-taco/
mlscript.

https://github.com/hkust-taco/mlstruct
https://hkust-taco.github.io/mlstruct
https://github.com/hkust-taco/mlscript
https://github.com/hkust-taco/mlscript

5

2 Presentation of MLstruct

MLstruct is a research language designed to explore type inference with subtyping in the
presence of first-class union and intersection types. This minimal language is carved out
from the MLscript programming language which is currently being developed as a real-
world general-purpose programming language. MLstruct subsumes Dolan’s MLsub, the
previous state of the art in type inference with subtyping, which itself subsumes traditional
ML typing: all ML terms are typeable in MLsub and all MLsub terms are typeable in
MLstruct. On top of this fertile ML substrate pollinated with MLsub’s rich subtyping
theory of records and equirecursive types, MLstruct grows structurally-typed abstractions
in the form of unions, intersections, negations, structural class types, and class-instance
matching. We now present these features along with some examples.

2.1 Overview of MLstruct Features

An MLstruct program is made of top-level statements followed by an expression, the
program’s body. A statements can be either a type declaration (class or type alias) or a
top-level function definition, written def f = t or rec def f = t when f is recursive.
MLstruct infers polymorphic types for def bindings, allowing them to be used at different
type instantiations in the program.

2.1.1 Polymorphism

Polymorphic types include a set of type variables with bounds, such as @pUď
Intq. ListrUsÑ ListrUs. The bounds of polymorphic types are allowed to be cyclic, which
can be interpreted as indirectly describing recursive types. For example, @pUďJÑ Uq. U

is the principal type scheme of rec def f = fun a Ñ f which accepts any argument and
returns itself. To simplify the presentation of inferred polymorphic types with recursive
bounds, such as @pUď UÑ Vq, V. UÑ V, we may use an equivalent ‘as’ shorthand, as
follows: @V. ppUÑ Vq as UqÑ V.

MLstruct applies aggressive simplification on inferred types, removing redundant type
variables and inlining simple type variable bounds (see Section 5.5), so that they are usually
fairly concise.

2.1.2 Classes and Inheritance

Because object orientation is not the topic of this paper, which focuses on functional-style
use cases, the basic OO constructs of MLstruct presented here are intentionally bare-bone.
Classes are declared with the following syntax:

class C[A, B, ...]: D[S, T, ...] ^ { x: X, y: Y, ... }

where A, B, etc. are type parameters, S, T, X, Y, etc. are arbitrary types and D is the parent
class of C, which can be left out if the class has no parents. Along with a type constructor
Cr�, �, . . .s, such a declaration also introduces a data constructor C of type:

C : @ V1, V2, ... , pU1 ď g1q, pU2 ď g2q, t G1 : U1, G2 : U2, . . . uÑCrV1, V2 . . .s ^ t G1 : U1, G2 : U2, . . . u

where G8 are all the fields declared by CrV1, V2, . . .s or by any of its ancestors in the
inheritance hierarchy, and g8 are the corresponding types – if a field is declared in several

6

classes of the hierarchy, we take the intersection of all the declared types for that field. To
retain as precise typing as possible, we let the types of the fields taken in parameters to be
arbitrary subtypes U8 of the declared g8 , so we can refine the result typeCrV1, V2 . . .s ^ t G1 :
U1, G2 : U2, . . . u to retain these precise types. For instance, assuming class C: { x: Int },
term C { x = 1 } is given the precise type C^ t G : 1 u.
Classes are restricted to single-inheritance hierarchies. Like in the work of Muehlboeck

and Tate (2018), this has the nice property that it allows union types to be refined by
reducing types like p�0 _ gq ^�1 to �0 ^�1 _ g^�1 by distributivity and to just g^�1
when �0 and �1 are unrelated (�0 ^�1 ”K). But MLstruct can easily be extended to
support traits, which are not subject to this restriction, by slightly adapting the definition
of type normal forms (our artifact (Parreaux et al., 2022) implements this). Thanks to their
use of negation types (described in Section 6.3), the typing rules for pattern matching do
not even have to change, and traits can also be pattern-matched. In fact, the full MLscript
language supports mixin trait composition (Schärli et al., 2003) similar to Scala (Odersky
et al., 2004), whereby traits can be inherited alongside classes, and method overriding is
resolved in so-called “linearization order.”

2.1.3 Shadowing

Non-recursive defs use shadowing semantics,6 so they can simulate the more traditional
field initialization and overriding semantics of traditional class constructors. For instance:

class Person: {name: Str, age: Nat, isMajor: Bool}
def Person n a = Person{name = capitalize n, age = a, isMajor = a >= 18}

in which the def, of inferred type Person1 : @pUďNatq. StrÑ UÑPerson^ t age : U u,
shadows the bare constructor of the Person class (of type Person0 : @pUď Strq, pVď
Natq, pW ďBoolq. t name : U, age : V, isMajor : W uÑPerson^ t name : U, age :
V, isMajor : W u), forcing users of the class to go through it as the official Person

constructor. Function capitalize returns a Str, so no ‘name’ refinement is needed
(Person^ t age : U, name : Str u ”Person^ t age : U u).

2.1.4 Nominality

Classes are not equivalent to their bodies. Indeed, they include a notion of “nominal
identity”, which means that while a class type is a subtype of its body, it is not a supertype
of it. So unlike TypeScript, it is not possible to use a record {x = 1} as an instance of a
class declared as class C: {x: Int}. To obtain a C, one must use its constructor, as in C{x

= 1}. This nominality property is a central part of our type system and is much demanded
by users in practice.7 It comes at no loss of generality, as type synonyms can be used if
nominality is not wanted.

6 Type names, on the other hand, live in a different namespace and are not subject to shadowing.
7 The lack of nominal typing for classes has been a major pain point in TypeScript. The issue requesting it,
created in 2014 and still not resolved, has accumulated more than 500 “thumbs up”. See: https://github.
com/Microsoft/Typescript/issues/202.

https://github.com/Microsoft/Typescript/issues/202
https://github.com/Microsoft/Typescript/issues/202

7

2.1.5 Type Aliases

Arbitrary types can be given names using the syntax type X[A, B, ...] = T. Type aliases
and classes can refer to each other freely and can be mutually recursive.

2.1.6 Guardedness Check

Classes and type aliases are checked to ensure they do not inherit or refer to themselves
immediately without going through a “concrete” type constructor first (i.e., a function or
record type). For instance, the recursive occurrence of A in type A[X] = Id[A[X]] _ Int

where type Id[Y] = Y is unguarded and thus illegal, but type A[X] = { x: A[X] } _ Int is
fine.

2.1.7 Class-Instance Matching

As presented in the introduction, one can match values against class patterns in a form of
primitive pattern matching. Consider the following definitions:

class Cons[A]: Some[A] ^ { tail: List[A] } type List[A] = Cons[A] _
None
rec def mapList f ls = case ls of

Cons Ñ Cons{value = f ls.value, tail = mapList f ls.tail},
None Ñ None{}

of inferred type:8mapList : @U, V. pUÑ VqÑ pConsrUs ^ t tail : W u _Noneq as WÑ
pConsrVs ^ t tail : X u _Noneq as X

We define a List type using None as the “nil” list and whose Cons constructor extends Some

(from the introduction). A list in this encoding can be passed to any function that expects
an option in input — if the list is a Cons instance, it is also a Some instance, and the value

field representing the head of the list will be used as the value wrapped by the option. This
example demonstrates that structural typing lets us mix and match as well as refine different
constructors in a flexible way.
As a slightly bigger motivating example, the List type thus defined can then be used as

follows, defining the classical unzip combinator:
def Cons head tail = Cons { value = head, tail = tail }

def None = None{}

rec def unzip xs = case xs of

None Ñ { fst = None, snd = None },

Some Ñ let tmp = unzip xs.tail in { fst = Cons xs.value.fst tmp.fst ,
snd = Cons xs.value.snd tmp.snd }

Below are two possible types that may be annotated explicitly by the user for these def-
initions, and which will be automatically checked by MLstruct for conformance (a.k.a.,
subsumption, see Section 5.4) against their inferred types.9

def Cons: U Ñ (V ^ List[U]) Ñ (Cons[U] ^ { value: U, tail: V })
def unzip: List[{ fst: U, snd: V }] Ñ { fst: List[U], snd: List[V] }

8 The where keyword is used to visually separate the specification of type variable bounds, making them more
readable.

9 Annotating the types of public functions, while not required by MLstruct, is seen as good practice in some
communities. Moreover, the subsumption mechanism can be used to provide and check module signatures in
an ML-style module system.

8

2.1.8 Records

Record values are built using the syntax {x1 = t1, x2 = t2, ...} and are assigned the
corresponding types t G1 : g1, G2 : g2, ... u. Record types are related via the usual width and
depth subtyping relationships. Width subtyping means that, for instance, t G : g1, H : g2 u ď

t G : g1 u, and depth subtyping means that, for instance, t G : g1, H : g2 u ď t G : g1, H : g3 u if
g2 ď g3.

2.2 Constructing the Lattice of Types

The algebraic subtyping philosophy of type system design is to begin with the subtyping of
data types (records, functions, etc.) and to define the order connectives to fit this subtyping
order, rather than to follow set-theoretic intuitions. We follow this philosophy and aim to
design our subtyping order to tackle the following design constraints:

(A) The order connectives ^, _, and should induce a Boolean algebra, so that we
can manipulate types using well-known and intuitive Boolean-algebraic reasoning
techniques.

(B) Nominal tags and their negations specifically should admit an intuitive set-theoretic
understanding, in the sense that for any class �, type #� should denote all instances
of� while type #� should correspondingly denote all instances that are not derived
from class �.10

(C) The resulting system should admit principal types as well as an effective polymor-
phic type inference strategy, where “effective” means that it should not rely on
backtracking.

2.2.1 Lattice Types

Top, written J, is the type of all values, a supertype of every other type. Its dual bottom,
written K, is the type of no values, a subtype of every other type. For every g, we have
Kď gďJ. Intersection ^ and union _ types are the respective meet and join operators
in the subtyping lattice. It is worth discussing possible treatments one can give these
connectives:

1. We can axiomatize them as denoting the intersection X and union Y of the sets of
values that their operands denote, which is the approach taken by semantic subtyping.

2. We can axiomatize them as greatest lower bound (GLB) and least upper bound
(LUB) operators, usually written [and \, whose meaning is given by following the
structure of a preexisting lattice of simple types (types without order connectives). In
this interpretation, we can calculate the results of these operators when their operands
are concretely known.

3. Finally, we can view ^ and _ as type constructors in their own right, with dedicated
subtyping derivation rules. Then unions and intersections are not “computed away”

10 By contrast, we have no specific requirements on the meaning of negated function and record types, which are
uninhabited.

9

but instead represent proper constructed types, which may or may not be equivalent
to existing simple types.

2.2.2 Subtyping

We base our approach primarily on (3) but we do include a number of subtyping rules
whose goal is to make the order connectives behave like (2) in some specific cases:

• We posit #�1 ^ #�2 ďK whenever classes �1 and �2 are unrelated.11 This makes
sense because there are no values that can be instances of both classes at the same
time, due to single inheritance. We obviously also have #�1 ^ #�2 ěK, meaning the
two sides are equivalent (they subtype each other), which we write #�1 ^ #�2 ”K.
On the other hand, #� ď #� for all �, � where � inherits from �; so when #�1
and #�2 are related then either #�1 ^ #�2 ” #�1 or #�1 ^ #�2 ” #�2. Overall, we
can always “reduce” intersections of nominal class tags to a single non-intersection
type, making ^ behave like a GLB operator in the class inheritance sublattice, made
of nominal tags, J, K, and _, evocative of (2).

• We also posit the nonstandard rule pg1 Ñ g2q ^ pg3 Ñ g4q ď pg1 _ g3qÑ pg2 ^ g4q.
The other direction holds by function parameter contravariance and result covariance,
so again the two sides aremade equivalent.^ behaves like aGLBoperator on function
types in a lattice which does not contain subtyping-based overloaded functions types,
such as those of Pottier (19981); Dolan (2017). This rule is illogical from the set-
theoretic point of view: a function that can be viewed as returning a g2 when given
a g1 and returning a g4 when given a g3 cannot be viewed as always returning a
g2 ^ g4. For instance, consider _G. G, typeable both as IntÑ Int and asBoolÑBool.
According to both classical intersection type systems and the semantic subtyping
interpretation, this term could be assigned type pIntÑ Intq ^ pBoolÑBoolq. But
we posited that this type is equivalent to pInt_BoolqÑ pInt^Boolq. Thankfully,
in _ _G. G cannot be assigned such an intersection type; instead, its most general
type is @U. UÑ U, which does subsume both IntÑ Int and BoolÑBool, but not
pIntÑ Intq ^ pBoolÑBoolq. This explains why intersection types cannot be used
to encode overloading in _ .12

• For record intersections, we have the standard rule that t G : g u ^ t G : c u ď t G :
g^ c u, making the two sides equivalent since the other direction holds by depth
subtyping. Intersections of distinct record fields, on the other hand, do not reduce
and stay as they are — in fact, multi-field record types are encoded, in MLstruct, as
intersections of individual single-field record types, following Reynolds (1997). For
instance, assuming G ‰ H, then t G : g1, H : g2 u is not a core form but merely syntax
sugar for t G : g1 u ^ t H : g2 u.

• We apply similar treatments to various forms of unions: First, pg1 Ñ g2q _ pg3 Ñ

g4q ” pg1 ^ g3qÑ pg2 _ g4q, the dual of the function intersection treatment men-
tioned above. Second, we recognize that t G : g u _ t H : c u and t G : g u _ pc1 Ñ c2q,
where G ‰ H, cannot bemeaningfully used in a program, as the language has no feature

11 This class intersection annihilation rule is not novel; for example, Ceylon has a similar one (Muehlboeck and
Tate, 2018).

12 Other forms of overloading, such as type classes and constructor overloading (see Section 8), are still possible.

10

allowing to tease these two components apart, so we identify these types with J, the
top type. This is done by addingJď t G : g u _ t H : c u andJď t G : g u _ pc1 Ñ c2q

as subtyping derivation rules.

The full specification of our subtyping theory is presented later, in Section 6 (Figure 16).

2.2.3 Soundness

The soundness of subtyping disciplineswas traditionally studied by finding semanticmodels
corresponding to types and subtyping, where types are typically understood as predicates on
the denotations of_ terms (obtained from some_model) andwhere subtyping is understood
as inclusion between the corresponding sets of denotations. In this paper, we take a much
more straightforward approach: all we require from the subtyping relation is that it be
consistent, in the sense that it correctly relate types constructed from the same constructors
and that it not relate unrelated type constructors. For instance, g1 Ñ g2 ď c1 Ñ c2 should
hold if and only if c1 ď g1 and g2 ď c2, and t G : Int u ď #� should not be derivable. This
turns out to be a sufficient condition for the usual soundness properties of progress and
preservation to hold in our language. Consistency is more subtle than it may first appear.We
cannot identify, e.g., #� _ t G : g u with J even though the components of this type cannot
be teased apart through instance matching, as doing so is incompatible with distributivity.
Notice the conjunctive normal form of c“ #� ^ t G : g u _ #� ^ t H : g1 u is c” p#� _
#�q ^ p#� _ t H : g1 uq ^ pt G : g u _ #�q ^ pt G : g u _ t H : g1 uq. We can make t G : g u _
t H : g1 u equivalent to J when G ‰ H because that still leaves c” p#� _ #�q ^ p#� _
t H : g1 uq ^ pt G : g u _ #�q, which is equivalent to the original c by distributivity and
simplification. But making #� _ t H : g1 u and t G : g u _ #� equivalent to J would make
c” #� _ #�, losing all information related to the fields, and breaking pattern matching!

2.2.4 Negation Types

Finally, we can add Boolean-algebraic negation to our subtyping lattice. In some languages,
the values of a negation type g are intuitively understood as all values that are not of
the negated type g. However, nothing dictates that this intuition should always hold in a
Boolean-algebraic subtyping system, where negation is interpreted algebraically and is not
given any a-priorimeaning in terms of the concrete values that can be typed with it, if any.

MLstruct has negation types out of the box as part of its Boolean-Algebraic subtyping
lattice. However, the interpretation of these types is at the same time considerably con-
strained by the conjunction of the rules already presented in Section 2.2.2 and the existing
Boolean-algebraic relationships. In practice, this means that the intuition that the values of
 g are those that are not of type g only holds when g is a nominal tag inMLstruct. For other
constructs, such as functions and records, negations assume a purely algebraic role. For
instance, we have relationships like t G : g u ď c1 Ñ c2 due to t G : g u _ c1 Ñ c2 being
identified with J (see also Section 3.3.5). Because no values inhabit types like t G : g u
and pc1 Ñ c2q, these types should be essentially thought of as special bottom types that,
for algebraic reasons, technically have to contain more static information than K and have
to possess fewer subtyping relationships.
Negations can express interesting patterns, such as safe division, as seen below, where

‘e : T’ is used to ascribe a type T to an expression e:

11

def div n m = n / (m : Int ^ 0)
div: Int Ñ (Int ^ 0) Ñ Int

def f x = div x 2
f: Int Ñ Int

def g (x: Int) = div 100 x ð error: found Int , expected Int ^ 0

def div_opt n m = case m of 0 Ñ None{}, _ Ñ Some{value = div n m}
div_opt: Int Ñ Int Ñ (None _ Some[Int])

Here, ‘case m of ...’ is actually a shorthand for the core form ‘case m = m of ...’ which
shadows the outer m with a local variable m that is assigned a more refined type in each case

branch.
As we saw in the introduction, also allows for the sound typing of class-instance

matching with default cases. Moreover, together with J, K, ^, and _, our type structure
forms a Boolean lattice, whose algebraic properties are essential to enabling principal type
inference (see Section 5.3.1).

2.2.5 Structural Decomposition

We reduce complex object types to simpler elementary parts, which can be handled in a
uniformway. Similarly to type aliases, which can always be replaced by their bodies, we can
replace class types by their fields intersectedwith the corresponding nominal tags. For exam-
ple, Consrgs as defined in Section 2.1.7 reduces to #Cons^ t value : g , tail : Listrgs u.
Recall that class tags like #Cons represent the nominal identities of classes. They are related
with other class tags by a subtyping relationship that follows the inheritance hierarchy.
For instance, given class�rUs : �rU_ 2s ^ t G : 0_ U u and class �rVs : t G : V, H : Int u,
then we have #� ď #�. Moreover, the refined class type �r1s ^ t H : Nat u reduces to the
equivalent #� ^ t G : 0_ 1 u ^ t G : 1_ 2, H : Int u ^ t H : Nat u, which reduces further to
#� ^ t G : 1, H : Nat u.

Decomposing class types into more elementary types makes MLstruct’s approach fun-
damentally structural, while retaining the right amount of nominality to precisely reflect
the semantics of runtime class-instance matching (i.e., pattern matching based on the run-
time class of objet values). It also means that there is no primitive notion of nominal type
constructor variance in MLstruct: the covariance and contravariance of type parameters
simply arise from the way class and alias types desugar into basic structural components.

2.3 Limitations

While MLstruct features very flexible and powerful type inference, this naturally comes
with some limitations, necessary to ensure the decidability and tractability of the type
system. We already mentioned in Section 2.2.2 that intersections cannot be used to type
overloading. Here we explain several other significant limitations.

2.3.1 Regular Structural Types

We restrict the shapes of MLstruct data types to be regular trees to make the problem of
deciding whether one subsumes another decidable: concretely, occurrences of a class or
alias type transitively reachable through the body of that type must have the same shape as
the type’s head declaration. For instance, the following are disallowed:

class C[A]: {x: C[Int]} class C[A]: C[{x: List[A]}]
class C[A]: {x: C[C[A]]}

12

We conjecture that allowing such definitions would give our types the expressive power
of context-free grammars, for which language inclusion is undecidable, making subtyping
undecidable.13 To replace illegal non-regular class fields, one can use either top-level
functions or methods. The latter solve this problem by having their types known in advance
and not participating in structural subtype checking. Methods are implemented in MLstruct
but not presented in this paper.

2.3.2 Simplified Treatment of Unions

MLstruct keeps the expressiveness of unions in check by identifying t G : g1 u _ t H : g2 u

(G ‰ H) and t G : g1 u _ pg2 Ñ g3q with J, as described in Section 2.2.2. To make unions of
different fields useful, one needs to “tag” the different cases with class types, as in �1 ^

t G : g1 u _�2 ^ t H : g2 u, allowing us to separately handle these cases through instance
matching ‘case E of �1 Ñ ... E.G ... , �2 Ñ ... E.H ...’, whereas this is not necessary in, e.g.,
TypeScript.
A direct consequence of this restriction is that inMLstruct, there is no difference between

t G : Int, H : Int u _ t G : Str, H : Str u and t G : Int_ Str, H : Int_ Str u (still assuming
G ‰ H). Indeed, remember that t G : g1, H : g2 u is syntax sugar for t G : g1 u ^ t H : g2 u and
by distributivity of unions over intersections, we can take t G : Int, H : Int u _ t G : Str, H :
Str u to

pt G : Int u _ t G : Str uq ^ pt G : Int u _ t H : Str uq ^ pt H : Int u _ t G : Str uq ^ pt H : Int u _ t H : Str uq

and since t G : g1 u _ t H : g2 u is identifiedwithJ, as explained in Section 2.2.2, this reduces
to

pt G : Int u _ t G : Str uq ^ pt H : Int u _ t H : Str uq

which reduces by field merging to t G : Int_ Str u ^ t H : Int_ Str u, i.e., t G : Int_
Str, H : Int_ Str u.

Another consequence is that, e.g., ListrInts _ ListrStrs is identified with ListrInt_
Strs. Again, to distinguish between these two, one should prefer the use of class-tagged
unions or, equivalently, proper sum types such as EitherrListrInts, ListrStrss, defined in
terms of Left and Right classes.

2.3.3 Fewer Relationships

Unlike in semantic subtyping approaches, but like inmost practical programming languages,
we do not have tG :KuďK. This would in fact lead to unsoundness in MLstruct: con-
sider c“ pt G : SomerInts, H : g1 u _ t G : None, H : g2 uq ^ t G : None u; we would have
c” t G :K, H : g1 u _ t G : None, H : g2 u ” t G : None, H : g2 u by distributivity and also
c” t G :K_None, H : g1 _ g2 u by using (2.3.2) before distributing, but g1 ı g1 _ g2 in
general.

2.3.4 No intersection overloading

Unlike languages like TypeScript, we do not permit the use of intersection types to encode
inclusive function overloading (Pierce, 1991). Thankfully, simpler forms of overloading
compatible with MLstruct exist; we briefly discuss one in Section 8.

13 TypeScript does allow such definitions, meaning its type checker would necessarily be either unsound or
incomplete.

13

Core syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntax

Type g, c ::“) g` g´ g0 | U | J˛ | g_˛ g | g

Mode ˛, ˝ ::“ ¨ |

Polymorphic type f ::“ @ Ξ. g

ContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContexts
Subtyping context Σ, Δ ::“ n | Σ ¨ pgď gq | Σ ¨ Bpgď gq

Bounds context Ξ ::“ n | Ξ ¨ pUď gq | Ξ ¨ pgď Uq

Fig. 1. Syntax of types, terms, and contexts of SpT , Rq.

Type constructors) g` g´ g0 ::“ pÑq g` g´ | tG u g` | #�
(also written as) ::“ gÑ g | t G : g u | #�

Fig. 2. Instantiated syntax specific to _ .

3 Formalization of Boolean-Algebraic Subtyping

In this section, we present SpT , Rq14, a generic Boolean-algebraic subtyping system, and
prove some of its important formal properties.
Along with presenting the generic theory of Boolean-Algebraic subtyping as realized

in SpT , Rq, we also instantiate that theory to the constructors of MLstruct as a running
example to aid intuition. We do this by taking the type constructors T “ t pÑq g` g´ u Y
Ť

8t tG8 u g
` u Y

Ť

9t #� 9 u of functions (of syntax pÑq g`0 g´1 , also written g0 Ñ g1),
records (of syntax tG u g`, also written tG : g u), and class tags (of syntax #�, where � is a
class name), and R “ t S-ClsSub, S-ClsBot, S-RcdTop u, the subtyping rules associated
to single-class inheritance and record widening (presented later in Figure 4). This yields
system SÑtGu#� , the subtyping system of _ , which is the core language of MLstruct15,
presented in Section 6.

3.1 Syntax

The syntax of SpT , Rq is presented in Figure 1. We use the notation �8
8 to denote a

repetition of 8“ 0 to = occurrences of a syntax form � , and we use the shorthand � when
8 is not needed for disambiguation.

The mode ˛ or ˝ of a syntactic form is used to deduplicate sentences that refer to unions
and intersections as well as top and bottom, which are respective duals and can therefore
often be treated symmetrically. For instance, J˛ is to be understood as either J¨ when
˛ “ ¨, i.e., J, or as J when ˛ “ , i.e., K. A similar idea was developed independently

14 As difficult to read as it is, ‘S’ is supposed to be a stylized ‘(’, which stands for “subtyping”.
15 Although _ was already presented in our previous work (Parreaux and Chau, 2022), its subtyping system
SÑtGu#� was not given a name at the time.

14

by d. S. Oliveira et al. (2020) to cut down on boilerplate and repetition in formalizing
subtyping systems.
SpT , Rq is parametrized by a set of type constructors T and a set of subtyping rules R in

addition to the Boolean algebraic rules, as well as depth subtyping and merge rules for the
type constructors. The parameter lists g`, g´, and g0 of) are the covariant, contravariant,
and invariant parameters of) respectively. Naturally, we will impose some restrictions on
the rules in R (in Section 3.7), so that they are well-behaved with respect to the subtyping
system as a whole.
Figure 2 shows the instantiation of type constructors T “ t pÑq g` g´ u Y

Ť

8t tG8 u g
` u Y

Ť

9t #� 9 u needed to obtain the syntax of _ .

3.2 Subtyping and Bounds Contexts

Subtyping contexts Σ record assumptions about subtyping relationships, with some of these
assumptions potentially hidden behind a B (explained in Section 3.3.1). On the other hand,
bounds contexts Ξ contain bounds on type variables that can be generalized as part of a
polymorphic type.

3.3 Subtyping Rules

The subtyping rules of SpT , Rq are presented in Figure 3. and the rules of _ that we use
in its instantiation via R “ t S-ClsSub, S-ClsBot, S-RcdTop u are presented in Figure 4.
Note that the fully specialized subtyping rules of _ are later presented on their own, for
clarity, in Figure 16.
Remember that the mode syntax ˛ is used to factor in dual formulations. For instance,

gď˛ J˛ is to be understood as either gď¨ J¨ when ˛ “ ¨, i.e., gďJ, or as gď J when
˛ “ , i.e., gěK, also written Kď g. The purpose of rule S-Weaken is solely to make
rules which need no context slightly more concise to state. In this paper, we usually treat
applications of S-Weaken implicitly.

3.3.1 Subtyping Recursive Types

A consequence of our syntactic account of subtyping is that we do not define types as
some fixed point over a generative relation, as done in, e.g., (Pierce, 2002; Dolan, 2017).
Instead, we have to account for the fact that we manipulate finite syntactic type trees, in
which recursive types have to be manually unfolded to derive things about them. This is
the purpose of the S-Exp rules, which substitute a possibly-recursive type with its body to
expose one layer of its underlying definition. As remarked by Amadio and Cardelli (1993,
§3.2), to subtype recursive types, it is not enough to simply allow unfolding them a certain
number of times. Moreover, in our system, recursive types may arise from cyclic type
variable constraints (which is important for type inference), and thus not be attached to
any explicit recursive binders. Thus, we cannot simply follow Castagna (2012, §1.3.4) in
admitting a ` rule, which would still be insufficient.

15

Σ$ gď g gď g CΞ“ Ξ CpΣ ¨ �q “ CΣ ¨ � CpΣ ¨ B�q “ CΣ ¨ �

S-Refl

gď g

S-ToB˛

gď˛ J˛

S-Compl˛

g_˛ gě˛ J˛

S-AndOr11˛

g1 _
˛ g2 ě

˛ g1

S-AndOr12˛

g1 _
˛ g2 ě

˛ g2

S-AndOr2˛
Σ$ gě˛ g1 Σ$ gě˛ g2

Σ$ gě˛ g1 _
˛ g2

S-Distrib˛

g^˛ pg1 _
˛ g2q ď

˛ pg^˛ g1q _
˛ pg^˛ g2q

S-Trans
Σ$ g0 ď g1 Σ$ g1 ď g2

Σ$ g0 ď g2

S-Weaken
�

Σ$ �

S-Assum
Σ¨B� $ �

Σ$ �

S-Hyp
� P Σ

Σ$ �

S-TMrg

) pg
`
8
_̨ c

`
8
q
8
pg
´
9
^̨ c

´
9
q
9
g0
:

:
ď˛) g

`
8

8
g
´
9

9
g0
:

:
_˛) c

`
8

8
c
´
9

9
g0
:

:

S-TDepth
CΣ$ g`

8
ď c

`
8

8
CΣ$ c´

9
ď g

´
9

9
CΣ$ g0

:
” c0

:

:

Σ$) g
`
8

8
g
´
9

9
g0
:

:
ď) c

`
8

8
c
´
9

9
c0
:

:
R

Σ(Σ

S-Empty

Σ(n

S-Cons
Σ(Σ1 Σ$ g1 ď g2

Σ(Σ1¨pg1 ď g2q

S-ConsB
Σ(Σ1 CΣ$ g1 ď g2

Σ(Σ1¨Bpg1 ď g2q

Fig. 3. Subtyping rules of SpT , Rq.

S-ClsSub
�2 PSp#�1q

#�1 ď #�2

S-ClsBot
�1 RSp#�2q �2 RSp#�1q

#�1 ^ #�2 ďK

S-RcdTop
g P tt H‰G : g2 u, g2Ñ g3 u

Jď t G : g1 u _ g

Fig. 4. Subtyping rules specific to _ .

3.3.2 Subtyping Hypotheses

We make use of the Σ environment to store subtyping hypotheses via S-Assum, to be
leveraged later using the S-Hyp rule. We should be careful not to allow the use of a
hypothesis right after assuming it, which would obviously make the system unsound (as
it could derive any subtyping). In the specification of their constraint solving algorithm,
Hosoya et al. (2005) use two distinct judgments$ and$1 to distinguish from places where
the hypotheses can or cannot be used. We take a different, but related approach. Our S-
Assum subtyping rule resembles the Löb rule described by Appel et al. (2007), which
uses the “later” modality B in order to delay the applicability of hypotheses — by placing
this symbol in front of the hypothesis being assumed, we prevent its immediate usage by

16

S-Hyp. We eliminate B when passing through a function or record constructor: the dual C
symbol is used to remove all B from the set of hypotheses, making them available for use by
S-Hyp. These precautions reflect the “guardedness” restrictions used by Dolan (2017) on
recursive types, which prevents usages of U that are not guarded byÑ or t ... u in a recursive
type `U. g. Such productivity restriction is also implemented by our guardedness check,
preventing the definition of types such as type �“ � and type �“ � (Section 2.1.6).16

3.3.3 Example

As an example, let us try to derive �1 ď �2 where �1 “ gÑ gÑ �1 and �2 “ gÑ �2,
which states that the type of a function taking two curried g arguments an arbitrary number
of times is a special case of the type of a function taking a single g argument an arbitrary
number of times. To facilitate the development, we use the shorthand � “ �1 ď �2. We
start by deriving that the respective unfoldings of the recursive types are subtypes; that is,
that p1q gÑ gÑ �1 ď gÑ �2. Note that for conciseness, we omit the applications of
S-Weaken in the derivations below:

Fun
Refl

� $ gď g

Fun
Refl

� $ gď g

p�1 ď �2q P �

� $ �1 ď �2
Hyp

� $ gÑ �1 ď gÑ �2 � $ gÑ �2 ď �2
Exp

� $ gÑ �1 ď �2
Trans

B� $ gÑ gÑ �1 ď gÑ �2 p1q

Then, we simply have to fold back the unfolded recursive types, using Exp and Trans:

Assum
Trans

Trans
Exp
B� $ �1 ď gÑ gÑ �1 p1q
B� $ �1 ď gÑ �2 B� $ gÑ �2 ď �2

Exp

B� $ �1 ď �2

�1 ď �2

3.3.4 A Boolean Algebra

The subtyping preorder in SpT , Rq gives rise to a Boolean lattice or algebra when taking
the equivalence relation ‘g1 ” g2’ to be the relation induced by ‘g1 ď g2 and g2 ď g1’. To
see why, let us inspect the standard way of defining Boolean algebras, which is as the set
of complemented distributive lattices. We can define a lattice equivalently as either:

• An algebra x!, ^, _y such that ^ and _ are idempotent, commutative, associative,
and satisfy the absorption law, i.e., g^ pg_ cq ” g_ pg^ cq ” g. Then g1 ď g2 is
taken to mean g1 ” g1 ^ g2 or (equivalently) g1 _ g2 ” g2.

• A partially-ordered set x!, ďy (i.e., ď is reflexive, transitive, and antisymmetric)
where every two elements g1 and g2 have a least upper bound g1 _ g2 (supremum)
and a greatest lower bound g1 ^ g2 (infimum). That is, @ cď g1, g2. cď g1 ^ g2 and
@ cě g1, g2. cě g1 _ g2.

16 Perhaps counter-intuitively, it is not a problem to infer types like ‘@pUď Uq. g’ and ‘@pUď Uq. g’ because
such “funny” cyclic bounds, unlike unproductive recursive types, do not actually allow concluding incorrect
subtyping relationships.

17

The latter is most straightforward to show: we have reflexivity by S-Refl, transitivity by
S-Trans, antisymmetry by definition of ”, and the supremum and infimum properties are
given directly by S-AndOr2¨ and S-AndOr2 respectively.

Moreover, to be a Boolean algebra, our lattice needs to be:

• a complemented lattice, which is

– bounded: J and K are respective least and greatest elements (S-ToB˛);
– such that every g has a complement g where g_ g”J and g^ g”K
(S-Compl˛);17

• a distributive lattice, meaning that g^˛ pg1 _
˛ g2q ” pg^

˛ g1q _
˛ pg^˛ g2q for ˛ P

t , ¨ u.
The first direction ď˛ of distributivity is given directly by S-Distrib. The
other direction ě˛ is admissible: since g1 _

˛ g2 ě
˛ g1 (S-AndOr11˛) and

g1 _
˛ g2 ě

˛ g2 (S-AndOr12˛), we can easily derive g^˛ pg1 _
˛ g2q ě

˛ g^˛ g1
and g^˛ pg1 _

˛ g2q ě
˛ g^˛ g2, and by (S-AndOr2˛) we conclude that

g^˛ pg1 _
˛ g2q ě

˛ pg^˛ g1q _
˛ pg^˛ g2q.

A useful property of Boolean algebras is that the usual De Morgan’s laws hold, which
will allow us to massage constrains into normal forms during type inference.

3.3.5 Purely Algebraic Rules

We call S-FunMrg and S-RcdTop purely algebraic subtyping rules because they do not
follow from a set-theoretic interpretation of order connectives (^, _,). S-FunMrg and
S-RcdMrg respectively make function and record types lattice homomorphisms,18 which
is required to make type inference complete — this allows the existence of well-behaved
normal forms. Though one can still think of types as sets of values, as in the semantic
subtyping approach, in _ the sets of values of g1 ^ g2 is not the intersection of the sets
of values of g1 and g2 (unless g1 and g2 are nominal tags or records), and similarly for
unions and complements. These purely algebraic rules are sound in _ because of the
careful use we make of unions and intersections, e.g., not using intersections to encode
overloading.Notably, S-RcdTop implies surprising relationships like pg1 Ñ g2q ď t G : c u
and t G : c u ď t H : c u (G ‰ H), exemplifying that negation in _ is essentially algebraic.

3.4 Some Useful Subtyping Relationships

Next, we demonstrate a few useful subtyping rules that can be derived in our system as well
as in any Boolean algebra of types (i.e., a Boolean algebra where ordering is interpreted as
subtyping). These are all proven in Appendix A.3.
Figure 5 lists some of these rules that can be expressed as simple inference rules.

Lemma 3.1. For all Σ, we have Σ$ g1 _
˛ g2 ď

˛ g3 ðñ Σ$ g1 ď
˛ g3 ^ Σ$ g2 ď

˛ g3.

17 We can also show that our lattice is uniquely complemented, i.e., g1 ” g2 implies g1 ” g2 (Theorem 3.2).
18 A lattice homomorphism 5 is such that 5 pg _ cq ” 5 pgq _ 5 pcq and 5 pg ^ cq ” 5 pgq ^ 5 pcq.

Function types are lattice homomorphisms in their parameters in the sense that 5 pgq “ p gqÑ c is a
lattice homomorphism.

18

S-Identity
Σ$J˛ ^˛ gď˛ c

Σ$ gď˛ c
r�.5s

S-Duality

J˛ ” K˛
r�.6s

S-Covariance
Σ$ g1 ď

˛ g2 Σ$ g3 ď
˛ g4

Σ$ g1 _
˛ g2 ď

˛ g3 _
˛ g4

r�.7s

S-Swap
Σ$ g1 _

˛ g2 ě
˛ g3

Σ$ g1 ě
˛ g3 ^

˛ g2
r�.9s

S-Neg1

 gď g
r�.11s

S-Neg2

gď g
r�.10s

S-Assoc˛

pg1 _
˛ g2q _

˛ g3 ” g1 _
˛ pg2 _

˛ g3q
r�.12s

S-Commut˛

g1 _
˛ g2 ” g2 _

˛ g1
r�.13s

S-AssocCommut

Σ$ pg1 _
˛ g2q _

˛ g3 ď
˛ pg1 _

˛ g3q _
˛ g2

r�.8s

S-Distr

g1 _
˛ pg2 ^

˛ g3q ” pg1 _
˛ g2q ^

˛ pg1 _
˛ g3q

r�.14s
S-Absorp

g1 _
˛ pg1 ^

˛ g2q ” g1
r�.15s

S-NegInv
Σ$ g1 ď g2

Σ$ g2 ď g1
r�.16s

S-DeMorgan

 pg1 _
˛ g2q ” g1 ^

˛ g2
r�.17s

Fig. 5. Some useful subtyping relationships that hold in SpT , Rq as well as in any other Boolean
algebra of types.

Theorem 3.2 (Unique Complementation). For all g1 and g2, g1 ” g2 implies g1 ” g2,
i.e., “ g1 ď g2 and g2 ď g1” imply ”g1 ď g2 and g2 ď g1”.

3.5 Type Variables & Polymorphism

In line with ML-style type inference, which is based on prenex polymorphism, we seek to
assign type schemes to the term definitions of a program, where a type scheme is a normal
type that references type variables that are quantified at its outermost level.
We could write such type schemes @UtΞu. g, as we do in our work on first-class poly-

morphism (Parreaux et al., 2024), where U are the type variables being quantified and
Ξ is their bounds. However, since in this work we focus on polymorphism only for top-
level definitions (we do not support nested let polymorphism, although the system could
be extended to support it), we instead use the more compact notation @Ξ. g, whereby all
variables mentioned in Ξ are implicitly quantified.
Polymorphism type schemes are implicitly and eagerly instantiated whenever the corre-

sponding definition is used, so that type inference and constraint solving only ever have to
deal with monomorphic types: the polymorphism is only at the top level and not part of the
core subtyping system.

19

3.6 Consistency of Bounds Contexts

A crucial aspect of polymorphic type inference with bounds is that we must ensure that
these bounds are consistent, in the sense that they are “meaningful” and do not lead to
contradictions in the type system.
For example, we must prevent typing definitions with such bounds as @pBoolď Uď

Intq. g — which is a shorthand for @pBoolď Uq¨pUď Intq. g. Indeed, in the body of the
corresponding definition, this would allow one to implicitly upcast any value of type Int
into a value of type Bool, due to the assumptions on the bounds of U and the transitivity of
subtyping implying that Boolď Int.

So we need to make sure thatΞ contexts are consistent, which wewriteΞ cons.. But there
are several possible ways we could define such consistency criterion so that it preserves the
soundness of the type system.

3.6.1 Classical Consistency

Using the most obvious approach, consistency could be defined in the classical way:

(dpΞq

Ξ cons.

That is, a bounds context is considered consistent if there exists a substitution d that makes
all the constraints hold in the empty context, written n (dpΞq or just (dpΞq.

While this definition is quite simple and intuitive, it describes a rather strong consistency
criterion. To see that, consider the bounds contextUďJÑ U, which is cyclic and essentially
describes a recursive type. Such type schemes are important to support since they are
required for complete & principal type inference, so we cannot simply reject them. But to
show that this bounds context is classically consistent requires the existence of some form
of first-class recursive or infinite types as primitives of the underlying type system. Here,
the substitution d would have to map U to a type that is a function type from J to itself. We
usually write these types using a ` binder, as in `-.JÑ - .
While the requirement that ` types (or equivalent) should be available as one of the

core type constructors of the system is not a fundamental problem, it has two major
disadvantages:

• It can complicate the formal developments, requiring the handling of all possible
uses of ` types in the metatheory.

• It is unsatisfying from a practical and theoretical point of view, in that the real type
system of the programming language under study may already have its own notion
of recursive types (in MLstruct, these are user-defined type aliases and class types)
and ` types would play double duty with them, flaunting the principle of economy
of concepts. We would really rather like for a generic theory of Boolean-algebraic
subtyping like SpT , Rq to not make strong assumptions on the constructors of the
underlying language beyond the existence of the base Boolean-algebraic connectives.

While this strong consistency definition is sufficient to achieve soundness (making
impossible to, say, upcast integers to Booleans), it is in fact not necessary.

20

3.6.2 Weak Consistency

As it turns out, it is possible to design an alternative, weaker definition of consistency that
does not assume the existence of recursive structures in the base type forms and instead
relies purely on type variables and the B modality:

BΞ(dpΞq

Ξ cons.

This version of consistency is correct and sufficient for all intents and purposes, but we will
instead use the slightly stronger one below just because we can:

BpU” gq
pU ÞÑgq P d

(dΞ

Ξ cons.

This definition says that Ξ is consistent if there is a substitution d that makes all the
constraints hold in a guarded context where each substituted type variable is equated with
its substitution.
Note that for simplicity of the definition, this assumes substitutions may substitute a

type variable U with a type that still contains occurrences of U. So these are not “proper”
substitutions in the usual sense, where a proper substitution is supposed to be idempotent.
We could call our pseudo-substitutions partial substitutions, but by abuse of terminology
we will usually just call them substitutions.
Using this definition, we can show that our running example Ξ“ pUďJÑ Uq is

consistent by the partial substitution rU ÞÑ pJÑ Uqs, as demonstrated in the derivation
below:

Fun

Refl
pU”JÑ Uq $JďJ pU”JÑ Uq $ UďJÑ U

Hyp

BpU”JÑ Uq $JÑ UďJÑJÑ U

pUďJÑ Uq cons.

This is sufficient to derive the soundness of the declarative type system of MLstruct, but
not quite enough to show the correctness of its type inference algorithm. For that, we need
to enrich the consistency definition in two steps, first to parameterized weak consistency
and then to algorithmic consistency.

3.6.3 Parameterized Weak Consistency

To allow reasoning about consistency in the context of principal type inference, we need to
first generalize the definition to allow for subtyping context assumptions:

BpU” gq
pU ÞÑgq P d

¨dΣ(dΞ

Σ$ Ξ cons.

This is the definition of weak consistency we will retain, as it is more general.
A central property of weak consistency is that it implies the ability to inline type variable

bounds, when they are consistent, into an existing subtyping derivation.

21

Lemma 3.3 (Inlining of consistent bounds). If Σ$ Ξ cons. and Σ¨Ξ$ gď g1, then
dΣ¨BpU” cq

pU ÞÑcq P d
$ dgď dg1 for some d.

Lemma 3.4 (Inlining of consistent bounds on guarded derivations). If Σ$ Ξ cons. and
Σ¨Ξ$ gď g1 and TTVpgq Y TTVpg1q “H, then dΣ¨BpU” cq

pU ÞÑcq P d
$ gď g1 for some

d.

3.6.4 Algorithmic Consistency

When proving facts about the type inference algorithm, we will need to rely on a very
specificway of achieving consistency of the bounds contexts involved. Indeed, we will need
for this consistency criterion to precisely mirror the way the constraint solving part of the
algorithm ensures consistency.
This idea gives rise to the following definition, which now precisely specifies theway type

variables should be substituted one by one to ensure consistency. We chose the substitution
rU ÞÑ U^ ubΞpUq _ lbΞpUqs because the substituted bounds context would be derivable if
and only if the lower bounds are subtypes of the upper bounds. Upon closer inspection, the
definition of algorithmic consistency shares a lot of similarities with that of parametrized
weak consistency: the substituted bounds context should be entailed by the substituted
subtyping context assumptions together with delayed assumption that the type variables
are equivalent to their respective images. The only difference is that in the definition of
algorithmic consistency, the even stronger delayed assumption of the bounds themselves
(which implies that the type variables are equivalent to their images under the specified
substitution) is used, and the type variables are substituted one by one.
The attractiveness of this definition is that we will be able to perform inversion on it,

allowing us to modify the substitution of a specific type variable without worrying about
invalidating the evidence for the other type variables, in the inductive proofs of constraint
solving soundness and completeness.

Σ$ BΞ¨Ξ ; d cons.
Assuming Σ holds, then bounds BΞ¨Ξ are consistent, as witnessed by d.

Ξ cons.”Dd. n $ Ξ ; d cons.

Σ$ BΞ ; r s cons.

splitUpΞ, dompd1qq “ pΞU, Ξ U q d“ rU ÞÑ U^ ubΞpUq _ lbΞpUqs
BΞB¨BΞU¨dΞ U ¨dΣ(dΞU dΣ$ BΞB¨BΞU¨dΞ U ; d1 cons.

Σ$ BΞB¨Ξ ; d1 ˝ d cons.

splitUpΞ, t W uq “

ppgď cq
pgďcq P Ξ | U P t g, c u

, pgď cq
pgďcq P Ξ | U R t g, c u

¨ pUď˛ Vq
pUď˛Vq P Ξ | V P t W u

q

Where lb and ub are defined in Definition 3.5 below.

22

Definition 3.5 (Upper and lower bounds). We use the following definitions of lower and
upper bounds lbΞpUq and ubΞpUq of a type variable U inside a constraining context Ξ:

lbΞpUq : g ubΞpUq : g

lbΞ¨pgďUqpUq “ g_ lbΞpUq ubΞ¨pgďVqpUq “ ubΞpUq
lbΞ¨pgďVqpUq “ lbΞpUq pU‰ Vq ubΞ¨pUďgqpUq “ g^ ubΞpUq
lbΞ¨pVďgqpUq “ lbΞpUq ubΞ¨pVďgqpUq “ ubΞpUq pU‰ Vq

lbn pUq “K ubn pUq “J

Algorithmic consistency shows a way of achieving consistency by picking each type
variable one by one and substituting it with a type that is equivalent to the original variable
but with its bounds inlined. One can understand this definition as getting rid of all the
unguarded type variable bounds, ending with an equivalent subtyping context where these
bounds are integrated into the type variable occurrences themselves. In a sense, this is
reminiscent of the bisubstitution process of Dolan (2017), except that we do not care about
polarity and always integrate both upper and lower bounds with each occurrence.

Naturally, we can show that algorithmic consistency implies weak consistency:

Lemma 3.6 (Algorithmic consistency implies weak consistency). If Σ$ Ξ ; d cons., then
Σ$ Ξ cons..

3.7 Requirements on Base Subtyping Rules

As explained before, we place some requirements on the base subtyping rules R of the
underlying type system so that these rules do not threaten the proof structure of the general
subtyping system SpT , Rq.
For each rule inR with conclusionΣ$ gď c, we require each of its premisesΣ1 $ g1 ď c1

to adhere to the following restrictions:

• CΣ cons. implies CΣ1 cons.
• maxpdepthpg1q, depthpc1qq ďmaxpdepthpgq, depthpcqq
• If maxpdepthpg1q, depthpc1qq “maxpdepthpgq, depthpcqq, then Σ cons. implies
Σ1 cons.

The first restriction ensures that the base subtyping rules do not introduce inconsistencies
in their premises. The two other restrictions ensure that our proofs by inductions can go
through without running into well-foundedness issues.
We are confident that the reader can convince themselves that these rules are eminently

reasonable and should be easily satisfied by any practical underlying type system.

3.8 Subtyping Derivation Shapes

We now give a few definitions characterizing the shapes of subtyping derivations, and prove
properties about them.

23

Definition 3.7 (Right-leaning derivations). A subtyping derivation is said to be right-
leaning if all its applications of rule S-Trans have a first premise which is not itself an
application of rule S-Trans.

It is easy to see that any subtyping derivation can be rewritten into an equivalent right-
leaning derivation of the same size by reorganizing its uses of S-Trans.

Definition 3.8 (Bottom-level rules). A rule is used at the bottom level in a derivation if it
is one of the following:

1. the last rule used in the derivation;
2. either premise of a bottom-level application of rule S-Trans;
3. the premise of a bottom-level application of rule S-Exp˝;
4. the first premise of a bottom-level application of rule T-Subs.

Definition 3.9 (Unassuming derivation). An unassuming derivation is a subtyping
derivation that does not make use of S-Assum at the bottom level.

Lemma 3.10 (Unassuming derivation). Any subtyping derivation can be rewritten to an
equivalent unassuming derivation.

Definition 3.11 (Subsumption-normalized derivation). A subsumption-normalized deriva-
tion is a typing derivation that makes at most one use of T-Subs at the bottom
level.

Lemma3.12 (Subsumption-normalized derivation). Any typing derivation can be rewritten
to an equivalent subsumption-normalized derivation.

4 Soundness of Boolean-Algebraic Subtyping

The reason we can soundly incorporate rules such as S-FunMrg, S-RcdMrg, and S-
RcdTop is that they do not threaten any of the properties we actually need for the type
soundness proofs. As a first step towards showing that, and in order to support the next
important lemmas, we want to prove that subtyping is sound in SÑtGu#� .
In this section, we demonstrate the soundness of Boolean-Algebraic subtypingSpT , Rq

by proving that, assuming a few rather conservative assumptions on the language’s param-
eterized type constructors and their subtyping relationships (which are, naturally, upheld
by theSÑtGu#� instance), then Boolean-Algebraic subtyping will not relate unrelated con-
structors. By extension, this demonstrates that subtyping in _ is sound, which is a key
ingredient in showing that MLstruct can be used as a type-safe programming language
whose well-typed programs “do not go wrong”.

24

4.1 High-Level Goal

Essentially, we want to prove the following property, which we have here instantiated to
SÑtGu#� type constructors for the sake of intuition:

Theorem 4.1 (Soundness of _ subtyping SÑtGu#�). If Ξ cons. and Ξ$ gď c, where:

g P t K, J, #�, g1 Ñ g2, t G8 : g8 8 u u
c P t K, J, #�1, c1 Ñ c2, t G

1 : c1 u u

then exactly one of the following is true:

(a) g“K or c“J;
(b) g“ #� and c“ #�1 and �1 PSp#�q;
(c) g“ g1 Ñ g2 and c“ c1 Ñ c2 and Ξ$ c1 ď g1 and Ξ$ g2 ď c2;
(d) g“ t G8 : g8 8 u and c“ t G: : c1 u and Ξ$ g: ď c1 for some : .

This property can be read as follows: if the right-hand side of a subtyping relation is a
function type and the left-hand side is a specific constructed type, then that constructed type
must be either bottom or a function type with compatible argument and return types, and
similarly for the other base type constructors. This describes how the basic type constructors
of the language should or should not relate by subtyping, and in particular prevents wrong
relations, such as function types subtyping record types.
The structure of the soundness proof is quite complex and requires additional syntax

forms and inductive relations. This is because the Boolean-algebraic rules are so general
and flexible that wemust find a way of somehow giving themmore “structure” by restricting
the way they may be used to a form amenable for inductive reasoning.
Indeed, proving the theorem stated above cannot proceed by the standard technique of

induction on subtyping derivations. Due to the restricted shape of the type forms involved
on both sides ofď, the inductive hypothesis cannot be applied to the premises of S-Trans,
as the middle type introduced may not adhere to that restricted shape.

4.2 Splitting up Boolean-Algebraic Subtyping

A quick inspection reveals that the problem lies within S-AndOr2. While some usages of
S-AndOr2 can be removed by rewritting the derivation, not all usages can be removed.
The solution we adopt is to split the full ď subtyping relation into two, with Ď covering

the pure Boolean-algebraic relation and ĺ covering the remaining relation between the
atoms and coatoms of the system, referred to as elementary type forms. In a sense, ĺ
defines what base type constructors are considered related or unrelated at the level of the
underlying language (for instance, functions and records are unrelated, but derived classes
are related to their base classes), whereasĎ is only concerned with deciding what is related
in terms of pure Boolean-algebraic structure. Crucially,ĺ can be defined in a way that does
not require a rule for transitivity, greatly simplifying the corresponding proofs.

This allows us to refine the statement of the inductive lemma by stating required properties
on these two aspects of subtyping separately (see Lemma 4.22).

25

4.2.1 Pure Boolean-Algebraic Subtyping

First, we define Ď as the standard Boolean lattice order.

Definition 4.2 (Pure Boolean-Algebraic Subtyping). We define g1 Ď g2 to mean that g1 ď g2
can be derived by using only “Boolean Lattice” subtyping rules, which are those that that
are not specific to T types and simply encode their Boolean-Algebraic structure. More
specifically, these rules are: S-Refl, S-ToB, S-Compl, S-AndOr11, S-AndOr12, S-AndOr2,
S-Distrib, and S-Trans.

Theorem 4.3 (Standard Boolean Lattice Order). Ď holds in every Boolean lattice, i.e., it
does not introduce any extra relations between its atoms, which are the base types T of
SpT , Rq.

Since Ď is itself a Boolean Algebra (see Section 3.3.4), this means our rules for Ď are a
proper axiomatization of Boolean Algebras.

Proof We show that the Ď rules follow from the pure Boolean algebra axioms. In this
proof, ” denotes the pure Boolean algebra equivalence, defined by the following axioms
(Huntington, 1904):

B-Iden˛ : g^˛ J˛ ” g

B-Commut˛ : g1 _
˛ g2 ” g2 _

˛ g1

B-Distrib˛ : g^˛ pg1 _
˛ g2q ” pg^

˛ g1q _
˛ pg^˛ g2q

B-Compl˛ : g_˛ g”J˛

The following laws follow from the axioms (Huntington, 1904):

B-Idem˛ : g_˛ g” g

B-Bound˛ : g_˛ J˛ ”J˛

B-Absorp˛ : g1 ^
˛ pg1 _

˛ g2q ” g1

B-DeMorgan˛ : pg1 _
˛ g2q ” p g1 ^

˛ g2q

B-Assoc˛ : pg1 _
˛ g2q _

˛ g3 ” g1 _
˛ pg2 _

˛ g3q

In the context of Boolean algebras thus axiomatized, g1 Ď g2 is understood to mean
g1 ” g1 ^ g2 (Section 3.3.4). So all we have to show is that all the conclusions of the form
g1 Ď g2 given by our subtyping rules are so that g1 ” g1 ^ g2 holds by the axioms above.

S-Refl.

g” g^ g by B-Idem

S-ToB¨.

g” g^J by B-Iden¨

26

S-ToB .

K” g^K by B-Bound
”K^ g by B-Commut

S-Compl¨.

J” g_ g by B-Compl¨
” pg_ gq ^J by B-Iden¨
” J^ pg_ gq by B-Commut

S-Compl .

g^ g”K by B-Compl
” pg^ gq ^K by B-Bound

S-AndOr11¨.

g1 ” g1 ^ pg1 _ g2q by B-Absorp¨

S-AndOr11 .

g1 ^ g2 ” pg1 ^ g1q ^ g2 by B-Idem
” g1 ^ pg1 ^ g2q by B-Assoc
” pg1 ^ g2q ^ g1 by B-Commut

S-AndOr12¨.

g2 ” g2 ^ pg2 _ g1q by B-Absorp¨
” g2 ^ pg1 _ g2q by B-Commut¨

S-AndOr12 .

g1 ^ g2 ” g1 ^ pg2 ^ g2q by B-Idem
” pg1 ^ g2q ^ g2 by B-Assoc

S-AndOr2¨.

g1 _ g2 ” pg1 ^ gq _ g2 by assumption g1 Ď gô g1 ” g1 ^ g

” pg1 ^ gq _ pg2 ^ gq by assumption g2 Ď gô g2 ” g2 ^ g

” pg^ g1q _ pg2 ^ gq by B-Commut
” pg^ g1q _ pg^ g2q by B-Commut
” g^ pg1 _ g2q by B-Distrib¨
” pg1 _ g2q ^ g by B-Commut

S-AndOr2 .

g” g^ g2 by assumption gĎ g2 ô g” g^ g2

” pg^ g1q ^ g2 by assumption gĎ g1 ô g” g^ g1

” g^ pg1 ^ g2q by B-Assoc

27

S-Distrib¨.

g^ pg1 _ g2q ” pg^ pg1 _ g2qq ^ pg^ pg1 _ g2qq by B-Idem
” pg^ pg1 _ g2qq ^ ppg^ g1q _ pg^ g2qq by B-Distrib¨

S-Distrib .

pg_ g1q ^ pg_ g2q ” ppg_ g1q ^ pg_ g2qq ^ ppg_ g1q ^ pg_ g2qq by B-Idem
” ppg_ g1q ^ pg_ g2qq ^ pg_ pg1 ^ g2qq by B-Distrib

S-Trans.

g0 ” g0 ^ g1 by assumption g0 Ď g1 ô g0 ” g0 ^ g1

” g0 ^ pg1 ^ g2q by assumption g1 Ď g2 ô g1 ” g1 ^ g2

” pg0 ^ g1q ^ g2 by B-Assoc
” g0 ^ g2 by assumption g0 Ď g1 ô g0 ” g0 ^ g1

�

Contrary to fullď-subtyping,Ď only relates concrete type constructors (function, record,
and nominal class tag types) in an obvious and syntactic way, making it easy to reason about.
For example, notice that t G : g1 u Ď t H : g2 u holds iff G “ H and g1 “ g2 (i.e., iff they are
syntactically the same).

Definition 4.4 (Boolean algebra equivalence). We define p–q as Boolean Algebra
equivalence:

g1 – g2 ô g1 Ď g2 and g2 Ď g1

Remark in passing: It is easy to show that g1 – g
1
1 _ g2 implies g2 Ď g1. Indeed, it implies

g11 _ g2 Ď g1, which implies g2 Ď g1. Similarly, g11 ^ g2 – g1 implies g1 Ď g2.

4.2.2 Elementary type forms

The second step in our quest to split the Boolean-Algebraic subtyping relation in two is
to define the elementary type forms making up the “meat” of a type system. This is the
part where one gives formal meaning to whether any two type constructors are considered
“related” or “unrelated”.
We first define the elementary type forms for theSÑtGu#� instantiation ofSpT , Rq, and

then explain how to derive similar rules for any other particular instantiation of the type
system. Up until now, we have assumed that the subtyping rules in R can take arbitrary
shapes. In the following discussion about elementary type forms, we limit rules in R to have
at most two type constructors on the top level, as in S-FunMrg, S-RcdMrg, and S-RcdTop.
We foresee that generalizing to more complex subtyping rules is possible, albeit non-trivial.

Definition 4.5 (Constructors and negated constructors). The syntax of constructors and
negated constructors is presented in Figure 6.

28

The constructors and negated constructors for the elementary type forms, denoted by
�, are straightforward. Each type constructor in T , together with top and bottom, has one
corresponding base (non-negated) constructor �. A constructor can be negated as in � .
Negating a negated constructor cancels out the negations.

� ::“ Ñ | G | #� | K | J

�, � ::“ � | �

Notation: � “

"

� if � “ �
� if � “ �

Fig. 6. Syntax of constructor and negated constructor.

The elementary type forms are also straightforward, given our simplifying assumption.
There are two kinds of elementary type forms: elementary union types*� and elementary
intersection types -� . Each type constructor inT corresponds to a kind of elementary union
type and a kind of elementary intersection type, which are unions and intersections of an
arbitrary number of instances of the type constructor. The top constructor is exclusive to the
elementary union types, and likewise the bottom constructor is exclusive to the elementary
intersection types. This notably means that empty unions and empty intersections cannot
be represented as elementary union types and elementary intersection types respectively.
Each subtyping rule in R adds an extra form to either *J or -K. The choice is arbitrary:
using Theorem A.9, we can either move both type constructors in a rule to the LHS and
add a form to -K, or move them to the RHS and add a form to *J. We chose below such
that the type constructors do not appear under a negation. For elementary type forms of
negated constructors, we can conveniently represent elementary union types of a negated
constructor as negations of an elementary intersection types of the non-negated constructor
and vice versa thanks to the de Morgan rule.
In order to generalize elementary type forms to subtyping rules of arbitrary shapes, they

would need to be parametrized by sets of constructors instead of single constructors.

Definition 4.6 (Elementary type forms). The “elementary” type forms are defined in
Figure 7. These are conceptually the type forms we need to care about for the system to be
sound.

Lemma 4.7 (Inversion of negated elementary types).

(A) For all � and*� , we have *� – -� for some -� .
(B) For all � and -� , we have -� –*� for some*� .

Proof By case analysis on �.

29

Elementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union typesElementary union types *� , +�

*Ñ ::“ pg1 Ñ c1q _ ¨ ¨ ¨ _ pg=Ñ c=q

*G ::“ t G : g1 u _ ¨ ¨ ¨ _ t G : g= u
*#� ::“ #�
*J ::“ J | t G1 : g1 u _ t G2 : g2 u pwhere G1 ‰ G2q

| t G1 : g1 u _ pgÑ cq

* � ::“ -�

Elementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection typesElementary intersection types -� , .�

-Ñ ::“ pg1 Ñ c1q ^ ¨ ¨ ¨ ^ pg=Ñ c=q

- G ::“ t G : g1 u ^ ¨ ¨ ¨ ^ t G : g= u
-#� ::“ #�
-K ::“ K | #�1 ^ #�2 pwhere �1 and �2 are unrelatedq

- � ::“ *�

Fig. 7. Elementary type form definition.

(A) If � “ � for some B, then pick -� “ - � “ *� “ *� . If � “ � for some �,
then*� “* � “ -� by the definition of* � , so *� “ -� – -� “ -� .

(B) If � “ � for some B, then pick *� “* � “ -� “ -� . If � “ � for some �,
then -� “ - � “ *� by the definition of - � , so -� “ *� –*� “*� .

�

Definition 4.8 (Helper pseudo-subtyping relation). The rules of the pseudo-subtyping are
defined in Figure 8. It is easy to show that ĺ implies ď.

The helper pseudo-subtyping relation relates elementary type forms with each other. The
relation for elementary union types has an intersection of the same kind on the LHS, and
a single one, possibly with a different constructor, on the RHS. Similarly, the relation for
elementary intersection types has a union of the same kind on the RHS, and a single one,
possibly with a different constructor, on the LHS.

The relation is made up of a few components:

• Two rules relating the top and bottom elementary types forms to any other
constructors, serving the purpose of S-ToB.

• Two rules applying negations and inverting the two sides, serving the purpose of
S-NegInv.

• Five rules for each type constructor (except the nullary ones): one for depth subtyping,
two for applying the merge rule to the LHS of each kind of elementary type, and two
for applying to the RHS.

30

• One rule for each nullary constructor, serving as reflexivity.
• One rule for each subtyping rule in R, which can be obtained by moving one type
constructor to each side, then applying S-AndOr2 to generalize it to fit the syntax of
the relation (i.e., an intersection of unions on the LHS and a union on the RHS, or a
union of intersections on the RHS and an intersection on the LHS).

In order to generalize the pseudo-subtyping relation to subtyping rules of arbitrary shapes,
we would need to lift the restriction of the elementary type form components of unions or
intersections having the same constructor, together with parametrizing elementary types
forms by sets of constructors as above.

Σ$
Ź

8 *
�
8
ĺ+�

Σ$ -� ĺ
Ž

8 .
�
8 Σ$

Ź

8 *
�
8
ĺ+J Σ$ -K ĺ

Ž

8 .
�
8

Σ$.� ĺ
Ž

8 -
�
8

Σ$
Ź

8 *
�
8

ĺ+ �

Σ$
Ź

8 +
�
8

ĺ*�

Σ$ -� ĺ
Ž

8 .
�
8

CΣ$ g1 ď g CΣ$ cď c1

Σ$ gÑ cĺ g1Ñ c1

Σ$*� ĺ p
Ź

8 g8qÑ p
Ž

8 c8q

Σ$*� ĺ
Ž

8 g8Ñ c8

Σ$ p
Ž

8 g8qÑ p
Ź

8 c8qĺ.
�

Σ$
Ź

8 g8Ñ c8 ĺ.
�

Σ$ p
Ž

8

Ź

9 g8 9qÑ p
Ź

8

Ž

9 c8 9qĺ*
�

Σ$
Ź

8

Ž

9 g8 9Ñ c8 9 ĺ*
�

Σ$ -� ĺ p
Ź

8

Ž

9 g8 9qÑ p
Ž

8

Ź

9 c8 9q

Σ$ -� ĺ
Ž

8

Ź

9 g8 9Ñ c8 9

CΣ$ gď g1

Σ$ t G : g uĺ t G : g1 u

Σ$*� ĺ t G :
Ž

8 g8 u

Σ$*� ĺ
Ž

8 t G : g8 u

Σ$ t G :
Ź

8 g8 uĺ.
�

Σ$
Ź

8 t G : g8 uĺ.�

Σ$ t G :
Ź

8

Ž

9 g8 9 uĺ*
�

Σ$
Ź

8

Ž

9 t G : g8 9 uĺ*�
Σ$ -� ĺ t G :

Ž

8

Ź

9 g8 9 u

Σ$ -� ĺ
Ž

8

Ź

9 t G : g8 9 u

�2 PSp#�1q

Σ$
Ź

8 #�1 ĺ #�2

�2 PSp#�1q

Σ$ #�1 ĺ
Ž

8 #�2

G ‰ H

Σ$
Ź

8 *
G
8
ĺ+ H Σ$

Ź

8 *
G
8
ĺ+Ñ

Σ$
Ź

8 *
Ñ

8
ĺ+ G

�1 RSp#�2q �2 RSp#�1q

Σ$ -#�1 ĺ
Ž

8 .
#�2

Fig. 8. Helper pseudo-subtyping relation rules.

We can now express the soundness of subtyping at the level of elementary types, which
is much easier to verify as their elementary subtyping relation is quite straightforward and
notably does not include transitivity:

Lemma 4.9 (Soundness of elementary subtyping).

31

(A) If
Ź

8 *
�
8
ĺ+� , then either one of the following is true:

• � P t�,J, K u
• � “ #�1 and � “ #�2 and �2 PSp#�1q

• � “ #�1 and � “ #�2 and �1 PSp#�2q

• � “ G and � “ H‰ G
• � “ G and � “Ñ
• � “ Ñ and � “ G
• � “ #�1 and � “ #�2 and �1 RSp#�2q and �2 RSp#�1q

(B) If -� ĺ
Ž

8 .
�
8
, then either one of the following is true:

• � P t �,K, J u
• � “ #�1 and � “ #�2 and �1 PSp#�2q

• � “ #�1 and � “ #�2 and �2 PSp#�1q

• � “ G and � “ H ‰ G

• � “Ñ and � “ G

• � “ G and � “ Ñ
• � “ #�1 and � “ #�2 and �1 RSp#�2q and �2 RSp#�1q

The soundness of elementary subtyping for SpT , Rq can be read off the conclusions of
its helper pseudo-subtyping relations rules.
Notice that Lemma 4.9 defines a binary relation between the constructor on the two sides

ofĺ. Given a set of constructors (, we write 5 ˛ĺ for the set of possible constructors that can
appear on the other side:

5 ¨ĺp(q “
Ť

� P (t � | D*
�
8

8

, +� .
Ź

8 *
�
8
ĺ+� u

5ĺ p(q “
Ť

� P (t� | D-
� , .�

8

8

. -� ĺ
Ž

8 .
�
8
u

Lemma 4.10. For g P t g1 Ñ g2, t G : g1 u, #� u,

(A) If*� Ď g, then*� “
Ž

8 g.
(B) If gĎ -� , then -� “

Ź

8 g.

Corollary 4.11. For g P t g1 Ñ g2, t G : g1 u, #� u,

(A) If*� Ď g, then*� “
Ž

8 g.
(B) If gĎ -� , then -� “

Ź

8 g.

Proof

(A) Wehave*� “
Ž

8 *
�8
8

for some*�8
8

8

, where*�8
8

8

are not unions. Then byS-NegInv,
Theorem A.10, Theorem A.11, and Theorem A.17, we have gĎ

Ź

8 *
�8
8

, which

implies
Ź

8 *
�8
8
“
Ź

8 g by Lemma 4.10, i.e.,*�8
8
“ g

8

. Then we have*� “
Ž

8 g.

32

(B) We have -� “
Ź

8 -
�8
8

for some -�8
8

8

, where -�8
8

8

are not intersections. Then by
S-NegInv, TheoremA.10, TheoremA.11, and TheoremA.17, we have

Ž

8 -
�8
8
Ď g,

which implies
Ž

8 -
�8
8
“
Ž

8 g by Lemma 4.10, i.e., -�8
8
“ g

8

. Then we have -� “
Ź

8 g.

�

4.3 A First Attempt at an Inductive Lemma

Now that the subtyping relation is properly split between its Boolean-algebraic fragment
and its elementary types fragment, we can start sketching what the inductive lemma of
subtyping soundness should look like. However, we will see later that the full statement of
that lemma is quite complex and requires more scaffolding still. So it helps to first look at
the statement of our first attempt, which does not hold in general:

1. IfBΣ$ gď c and g–
Ź

8

´

g1
8
_*

�8
8

¯

, then there exists some c1
9

9
and � 9

9 and+� 9
9

9

such that c–
Ź

9

´

c1
9
_+

� 9

9

¯

and BΣ$
Ź

8 P (9
*
�8
8

ĺ+
� 9

9

9

for some (9
9
.

2. If BΣ$ gď c and c–
Ž

9

´

c1
9
^.

� 9

9

¯

, then there exists some g1
8

8
and �8

8
and -�8

8

8

such that g–
Ž

8

´

g1
8
^ -

�8
8

¯

and BΣ$ -�8
8

ĺ
Ž

9 P (8
.
� 9

9

8

for some (8
8
.

The first direction of this already quite complex statement should be understood intuitively
as follows: Assuming gď c, if it is possible to rewrite g through the rules of pure Boolean
algebra into a big intersection

Ź

8

´

g1
8
_*

�8
8

¯

of arbitrary types g1
8
unioned with some

elementary types*�8
8

of constructors �8 , then c should not be completely “arbitrary” and
should somehow “include” the elementary types *�8

8
after some potential consolidation

(taking the intersection of all*�8
8

together) and some widening into elementary types +� 9
9

,
i.e.,

Ź

8 P (9
*
�8
8

ĺ+
� 9

9
. The other direction reads similarly. Intuitively, no matter how we

manage to reorganize the intersected components of the left-hand side g through Boolean-
algebraic massaging (notably distributivity), we should only be able to reach, through
subtyping, a right-hand side type that is itself no more specific. Finally, notice that we here
assume a guarded subtyping context BΣ without loss of generality thanks to the properties
of unassuming derivations (Section 3.8).

Unfortunately, this lemma does not work as is. Its proof still cannot proceed by standard
induction due to the interaction between S-AndOr2 and S-Distrib. As an example, con-
sider the following derivation for some g P t K, J, #�1, g1 Ñ g2, t G8 : g8 8 u u and unrelated

33

classes � and �:

S-Trans
S-Distrib¨

#� ^ p#� _ #�q ď #� ^ #� _ #� ^ #�

.

.

.

#� ^ #� _ #� ^ #� ďK
(1) #� ^ p#� _ #�q ďK

S-Trans
S-AndOr2

.

.

.

gď #�

.

.

.

gď #� _ #�
gď #� ^ p#� _ #�q (1)

gďK

According to the goal of our Theorem4.1, g can only beK. However, from the subderivations
for gď #� and gď #� _ #�, nothing locally restricts g to beK. This is because S-Distrib
can split a complement into two separate subderivations to be later merged back together by
S-AndOr2. To overcome this difficulty, we normalize the shape of subtyping derivations by
introducing the CDN- and DCN-normalized type forms and derivations, which respectively
stand for conjunctions-disjunctions-negations and disjunctions-conjunctions-negations.

CDN- and DCN-normalized derivations require S-Distrib˛ to be followed immediately
by S-AndOr2˛. We show that all types and subtyping derivations can be translated into an
equivalent CDN-normalized one and an equivalent DCN-normalized one. This will allow
us to carry out the proof of the full inductive lemma (4.22) by induction on CDN- and
DCN-normalized subtyping derivations.

As we mentioned before, the above simplified version of inductive soundness does not
hold in general. The problematic cases arise when g”K for direction 1 and c”J for
direction 2. Since the relation holds by S-Trans with S-ToB for any type on the other side,
we should not be able to conclude anything about it. Fortunately, we do not need to care
about such cases for proving Theorem 4.1. Therefore, we can exclude them by adding side
conditions on the elementary type forms, and making sure that they are preserved in the
conclusion of the lemma, allowing us to apply it successively within a transitivity chain. For
direction 1, in order to reject cases where g–K, we require

Ź

8 *
�8
8

to be complement-free,
thenwe have g–

Ź

8

´

g1
8
_*

�8
8

¯

Ě
Ź

8 *
�8
8
ĘK, which implies gĘK by the antisymmetry

and boundedness of Boolean algebras. For direction 2, we symmetrically require
Ž

9 .
� 9

9

to be complement-free. To reject cases where g”K but gflK for direction 1, we add
restrictions on the set of elementary type constructors t�8

8
u. For example, since we can

derive g1 Ñ g2 ď g3 Ñ g4 for some g8 8 P 1..4, which implies g1 Ñ g2 ^ pg3 Ñ g4q ďK by
Theorem A.9, we reject cases where both ÑP t�8

8
u and Ñ P t�8

8
u. We can derive

similar restrictions from other subtyping rules, and symmetric restrictions for direction 2.

4.4 CDN- and DCN-normalized type forms and derivations

Since the intersection, union, and negation connectives can freely nest within and intertwine
with each other, they introduce significant difficulty for the proof of subtyping consistency.
We introduce the CDN- and DCN-normalized forms to order them one after the other, using
only the Boolean-algebraic relation, i.e., not normalizing deeply under constructors. This is

34

by contrast to the RDNF form we will introduce later as part of type inference (Section 7.2),
where deep normalization is important to ensure termination.
We also present alternative sets of subtyping rules where only the respective normalized

forms appear in the top level, and show that any subtyping derivations can be translated into
a normalized one. Thus we can prove any property by induction on normalized derivations.

4.4.1 CDN-normalized type forms

Definition 4.12 (CDN-normalized form). The syntax of CDN-normalized (conjunction-
disjunction-negation) form is presented in Figure 9.

g0 ::“) g` g´ g0 | U | J

gn ::“ g0 | g0

gdn ::“ gn | gn _ gdn

gcdn ::“ gdn | gdn ^ gcdn

Fig. 9. Syntax of CDN-normalized form.

In the proofs below, we sometimes abuse the notations gdn
1 _ gdn

2 and gcdn
1 ^ gcdn

2
to mean their properly associated versions, i.e., dispgdn

1 , gdn
2 q and conpgcdn

1 , gcdn
2 q in

Figure 10 respectively.

Definition 4.13 (CDN-normalized form translation). The translation from arbitrary types
into CDN-normalized types cdnp¨q is defined in Figure 10.

Lemma 4.14. For any g, cdnpgq – g.

Proof By straightforward induction. �

Definition 4.15 (Complement-free CDN-normalized form). We say that a CDN-
normalized form gcdn is complement-free if gcdn “

Ź

8

Ž

9 P 1..=8 g
n
8 9
, where

@ 98 P 1..=8
8
. @81, negpgn

81 9
q R t gn

8 9

8‰81

u.

It is easy to see that if gcdn “
Ź

8

Ž

9 P 1..=8 g
n
8 9

is complement-free, then

@ 98 P 1..=8
8
.
Ź

8 g
n
8 98
ĘK.

Definition 4.16 (CDN-normalized subtyping context). Σ is CDN-normalized if for all
� P Σ, either one of the following is true:

1. � “ pJď
Ž

8 g
n
8
q, where @U. t U, U u X t gn

8

8
u “H;

2. � “ pUď
Ž

8 g
n
8
q, where the following are true:

35

cdnpgq : gcdn

cdnpg0q “ g0

cdnpKq “ J
cdnp gq “ negpcdnpgqq

cdnpg1 _ g2q “ dispcdnpg1q, cdnpg2qq
cdnpg1 ^ g2q “ conpcdnpg1q, cdnpg2qq

negpgcdnq : gcdn

negpg0q “ g0

negp g0q “ g0

negpgn1 _ g
dn
2 q “ conpnegpgn1 q, negpgdn

2 qq

negpgdn
1 ^ gcdn

2 q “ dispnegpgdn
1 q, negpgcdn

2 qq

dispgcdn, gcdnq : gcdn

dispgdn
11 ^ g

cdn
12 , gcdn

2 q “ conpdispgdn
11 , g

cdn
2 q, dispgcdn

12 , gcdn
2 qq

dispgn11 _ g
dn
12 , g

cdn
2 q “ dispgn11, dispgdn

12 , g
cdn
2 qq

dispgn1 , g
dn
21 ^ g

cdn
22 q “ conpdispgn1 , g

dn
21 q, dispgn1 , g

cdn
22 qq

dispgn1 , g
dn
2 q “ gn1 _ g

dn
2

Dis8 P<..= gcdn
8 “ dispgcdn

< , Dis8 P<`1..= g
cdn
8 q

Dis8 P =..= gcdn
8 “ gcdn

=

conpgcdn, gcdnq : gcdn

conpgdn
11 ^ g

cdn
12 , gcdn

2 q “ conpgdn
11 , conpgcdn

12 , gcdn
2 qq

conpgdn
1 , gcdn

2 q “ gdn
1 ^ gcdn

2
Con8 P<..= gcdn

8 “ conpgcdn
< , Con8 P<`1..= g

cdn
8 q

Con8 P =..= gcdn
8 “ gcdn

=

Fig. 10. CDN-normalized form translation

• t U, U u X t gn
8

8
u “H;

• @V P t gn
8

8
u. V R t gn

8

8
u;

• @V P t gn
8

8
u. Dp

Ź

9 c
n
9
ď Vq P Σ. t cn

9

9
u “ t negpgn

8
q
8 | gn

8
‰V
, U u;

• @ V P t gn
8

8
u. DpVď

Ž

9 c
n
9
q P Σ. t cn

9

9
u “ t gn

8

8 | gn
8
‰ V

, U u;

3. � “ p
Ź

8 g
n
8
ď Uq, where the following are true:

• t U, U u X t gn
8

8
u “H;

• @V P t gn
8

8
u. V R t gn

8

8
u;

36

• @V P t gn
8

8
u. DpVď

Ž

9 c
n
9
q P Σ. t cn

9

9
u “ t negpgn

8
q
8 | gn

8
‰V
, U u;

• @ V P t gn
8

8
u. Dp

Ź

9 c
n
9
ď Vq P Σ. t cn

9

9
u “ t gn

8

8 | gn
8
‰ V

, U u;

Definition 4.17 (CDN-normalized subtyping context translation). The translation from
arbitrary subtyping contexts into CDN-normalized subtyping contexts cdnp¨q is defined in
Figure 11.

cdnpΣq : Σ

cdnpΣq “ cdnpJď cdnp g_ cqq
pgďcq P Σ

¨ B�
B� P Σ

cdnpJď gcdnq : Σ

cdnpJď
Ź

8

Ž

98
gn
8 98
q “ cdnpJď

Ž

98
gn
8 98
q
8

cdnpJď
Ž

8 g
n
8
q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

n if DU. t U, U u Ď t gn
8

8
u

p
Ź

8 | gn
8
‰U negpgn

8
q ď Uq

U P t gn
8

8
u
¨ pUď

Ž

8 | gn
8
‰ U g

n
8
q
U | U P t gn

8

8
u

if pDU. t U, U u X t gn
8

8
u ‰Hq and p@U P t gn

8

8
u. U R t gn

8

8
uq

pJď
Ž

8 g
n
8
q if @U. t U, U u X t gn

8

8
u “H

Fig. 11. CDN-normalized subtyping context translation

Lemma 4.18. For any Σ, we have Σ(cdnpΣq and cdnpΣq (Σ.

Proof Straightforward, notably making use of Theorem A.9 and Lemma 4.14. �

4.4.2 CDN-normalized derivations

For each rule in R with conclusion Σ$ gď c, we assume without loss of generality that
cdnpc_ gq “ cdn for some cdn, since we can otherwise split the rule into multiple
simpler rules while keeping the original rule admissible.

Definition 4.19 (CDN-normalized derivations). The CDN-normalized subtyping relation
ďcdn is defined in Figure 12. The following are the difference compared to the full subtyping
relation ď in Figure 16:

• On the top level, the relation is restricted to Σ$ gcdn ď gcdn.
• On the top level, all occurrences of K are replaced with J.
• The rule S-Distrib˛ is replaced by S-DistribCdn˛, which requires an application of
S-Distrib˛ to be followed immediately by an application of S-AndOr2¨ in a transitivity
chain by merging the two rules into one.

37

• For each rule inR with conclusionΣ$ gď c and premisesΣ1 $ g1 ď c1, we transform
them into the equivalent CDN-normalized derivation rule in Rcdn by performing the
following:

– Transform the conclusion into Σ$ cdnpgq ďcdn cdnpcq
– If maxpdepthpg1q, depthpc1qq ămaxpdepthpgq, depthpcqq, keep the premises as
is

– If maxpdepthpg1q, depthpc1qq “maxpdepthpgq, depthpcqq, then transform the
premises into Σ1 $ cdnpg1q ďcdn cdnpc1q

Notice that S-TDepth is treated the same way as rules in R, so its premises still refer to the
full ď relation, even though its conclusion is about the ďcdn relation.

The CDN-normalized boolean subtyping relation Ďcdn is defined similarly.

Notice that Lemma A.7 and Lemma 3.1 extend to CDN-normalized derivations. In
the proofs below, we also make use of extended versions of commutativity (g1 _

˛

g2p_
˛g3q ď

cdn g2 _
˛ g1p_

˛g3q) and idempotence (g1 _
˛ g1p_

˛g2q ď
cdn g1p_

˛g2q).

Lemma 4.20. Σ$ gcdn
1 ď gcdn

2 if Σ$ gcdn
1 ďcdn gcdn

2 . Similarly, gcdn
1 Ď gcdn

2 if gcdn
1 Ďcdn

gcdn
2 .

Proof It is easy to see that every rule of ďcdn is admissible in ď. �

Lemma 4.21. If Σ$ gď c, then cdnpΣq $ cdnpgq ďcdn cdnpcq. Similarly, if gĎ c, then
cdnpgq Ďcdn cdnpcq.

4.4.3 DCN-normalized type forms and derivations

The DCN-normalized (disjunction-conjunction-negation) type forms and derivations are
symmetric to its CDN counterpart, except that the order of unions and intersections are
swapped. Its detailed description can be found in the appendix.

4.5 Soundness of Subtyping

We can now finally state the general inductive lemma supporting the subtyping soundness
theorem (4.1). Themain intuition over out first attempt in Section 4.3 is to add preconditions
to exclude sets of constructors that can reduce to bottom or top in directions for the
elementary union and intersection types respectively, and ensure that the possible set of
constructors in the conclusion preserves this property.
We can obtain these restrictions on the sets of constructors by examining the subtyping

rules. S-Compl forbids any constructor to appear together its negated counterpart. By mov-
ing all the type constructors in the rules inR to one side, we can read out the restrictions they
impose. We then ensure that for all sets of constructors t� u that satisfies this restriction,
5 ˛ĺpt� uq also satisfies it. This does not hold in general. Adding more rules to R results in
5 ˛ĺ mapping to a larger set of constructors, while simultaneously adding to the restrictions
here. So the rules in R must be designed carefully in order to ensure the soundness of
subtyping.

38

Σ$ gcdn ďcdn gcdn gcdn ďcdn gcdn

CΞ“ Ξ CpΣ ¨ �q “ CΣ ¨ � CpΣ ¨ B�q “ CΣ ¨ �

S-Refl

gcdn ďcdn gcdn

S-ToB¨

gcdn ďcdn J

S-ToB

 Jďcdn gcdn

S-Compl¨

Jďcdn g0 _ g0

S-Compl

g0 ^ g0 ďcdn J

S-AndOr1¨
(Ď t 8 u

Ž

81 P (g
n
81
ďcdn Ž

8 g
n
8

S-AndOr1
(Ď t 8 u

Ź

8 g
dn
8
ďcdn Ź

81 P (g
dn
81

S-AndOr2¨
Σ$ gn

8
ďcdn gcdn

8

Σ$
Ž

8 g
n
8
ďcdn gcdn

S-AndOr2
Σ$ gcdn ďcdn gdn

8

8

Σ$ gcdn ďcdn Ź

8 g
dn
8

S-DistribCdn¨
Σ$ gn

8
^ gcdn ďcdn ccdn

8

Σ$ p
Ž

8 g
n
8
q ^ gcdn ďcdn ccdn

S-DistribCdn
Σ$ gn ďcdn ccdn Σ$

Ź

8 g
dn
8
ďcdn ccdn

Σ$
Ź

8 pg
n _ gdn

8
q ďcdn ccdn

S-Trans
Σ$ gcdn

0 ďcdn gcdn
1 Σ$ gcdn

1 ďcdn gcdn
2

Σ$ gcdn
0 ďcdn gcdn

2

S-Weaken
�

Σ$ �

S-Assum
Σ¨B� $ �

Σ$ �

S-Hyp
� P Σ

Σ$ �

S-TMrg˛

) pg
`
8
_̨ c

`
8
q
8
pg
´
9
^̨ c

´
9
q
9
g0
:

:
ď˛

cdn
) g

`
8

8
g
´
9

9
g0
:

:
_˛) c

`
8

8
c
´
9

9
g0
:

:

S-TDepth
CΣ$ g`

8
ď c

`
8

8
CΣ$ c´

9
ď g

´
9

9
CΣ$ g0

:
” c0

:

:

Σ$) g
`
8

8
g
´
9

9
g0
:

:
ďcdn) c`

8

8
c
´
9

9
c0
:

:
Rcdn

Fig. 12. CDN-normalized subtyping rules for SpT , Rq.

Lemma 4.22 (Soundness of subtyping (inductive)).

(A) If BΣ$ gď c and g–
Ź

8

´

g1
8
_*

�8
8

¯

, where the following are true:

•
Ź

8 *
�8
8

is a complement-free CDN-normalized form
• ÑR t�8

8
u or Ñ R t�8

8
u

• @G P t�8
8
u. G R t�8

8
u

• @#� P t�8
8
u. #� R t�8

8
u

• @#�1 P t�8
8
u, #�2 P t�8

8
u. �1 PSp#�2q or �2 PSp#�1q

• |t G | G P t�8
8
u u| ď 1

• |t G | G P t�8
8
u u| “ 0 or Ñ R t�8

8
u

39

then there exists some c1
9

9
and� 9 P t�8

8
u Y t J, K uY t G G R t�8

8
u
u Y t #�

#� R t�8
8
u

u

9

and +
� 9

9

9

such that c–
Ź

9

´

c1
9
_+

� 9

9

¯

and
Ź

9 +
� 9

9
is a complement-free

CDN-normalized form and BΣ$
Ź

8 P (9
*
�8
8

ĺ+
� 9

9

9

for some (9
9
.

(B) If BΣ$ gď c and c–
Ž

9

´

c1
9
^.

� 9

9

¯

, where the following are true:

•
Ž

9 .
� 9

9
is a complement-free DCN-normalized form

• ÑR t � 9

9
u or Ñ R t � 9

9
u

• @G P t � 9

9
u. G R t � 9

9
u

• @#� P t � 9

9
u. #� R t � 9

9
u

• @#�1 P t�8
8
u, #�2 P t�8

8
u. �1 PSp#�2q or �2 PSp#�1q

• |t G | G P t � 9

9
u u| ď 1

• |t G | G P t � 9

9
u u| “ 0 orÑR t � 9

9
u

then there exists some g1
8

8
and�8 P t � 9

9
u Y t K, J uY t G

G R t� 9
9
u
u Y t #�

#� R t� 9
9
u
u

8

and -
�8
8

8

such that g–
Ž

8

´

g1
8
^ -

�8
8

¯

and
Ž

8 -
�8
8

is a complement-free

DCN-normalized form and BΣ$ -�8
8

ĺ
Ž

9 P (8
.
� 9

9

8

for some (8
8
.

As usual, the proof is given in appendix. It relies on all the definitions and lemmas we
have carefully developed throughout this section as well as some additional less interesting
technical lemmas stated only in the appendix.

Notice that the property to prove has a conclusion that can itself be used as a hypothesis
for another application of the property. When proving (A), we consider the leftmost rule
application in a transitivity chain, show the property for it, and this allows us to apply the
induction hypothesis on the rest of the chain; this works even if the chain is of length 1
(with no uses of S-Trans). When proving (B), we proceed in the same way but from the
right. So we do not have to consider uses of S-Trans explicitly, and only consider uses of
the other rules here.

4.6 Soundness of SpT , Rq Subtyping

We have only stated the soundness of _ subtyping (i.e., SÑtGu#�) and reserved the
statement of the soundness of SpT , Rq for the end of this section as it depends on its
elementary type forms and helper pseudo-subtyping relation. Specifically, by considering
a directed graph with the constructors as nodes and binary relation in Lemma 4.9 as edges,
we can read out what we can state in the soundness statement by considering an induced
subgraph. For types restricted to the constructors corresponding to the nodes of the induced
subgraph, only the subtyping relations corresponding to the edges hold. We can also read
obtain additional information about these types from the premises of the helper pseudo-
subtyping relation rules. For instance, if we consider the non-negated constructors for _ ,
the induced subgraph would only contain self-loops, edges from bottom to every other

40

node, and edges from every other node to top. Then we obtain the following soundness
statement:

Theorem 4.23 (Soundness of _ subtyping (weak)). If Ξ cons. and Ξ$ gď c, where:

g P t K, J, #�, g1 Ñ g2, t G : g u u
c P t K, J, #�1, c1 Ñ c2, t G

1 : c u u

then exactly one of the following is true:

(a) g“K or c“J;
(b) g“ #� and c“ #�1 and �1 PSp#�q;
(c) g“ g1 Ñ g2 and c“ c1 Ñ c2 and Ξ$ c1 ď g1 and Ξ$ g2 ď c2;
(d) g“ t G : g u and c“ t G1 : c u and G “ G1 and Ξ$ g: ď c1 for some : .

We can then modify the record type on the LHS while ensuring that it still satisfies the
restriction in Lemma 4.22 to obtain the full Theorem 4.1.

4.7 Contexts and Type Variables

So far, we have ignored the subtyping context by requiring it to be guarded. Our handling
of type variables and the subtyping context relies on two key insights: for Theorem 4.1,
we do not care about type variables on the top level; and we do not care about all pos-
sible subtyping contexts, only the ones produced by type inference. We have previously
defined the consistency of constraining contexts, and by ensuring that we only manipulate
consistent contexts (as type inference will do), this allows us to guard the context in any
subtyping derivations under consistent contexts and with no type variables on the top level
by Lemma 3.4, which are all we care about for the remaining soundness and completeness
proofs.

5 Inferring Principal Types for MLstruct

We now informally describe our general approach to principal type inference in MLstruct.

5.1 Algebraic Subtyping

MLstruct follows Dolan’s algebraic subtyping (2017) discipline, which distinguishes itself
from so-called semantic subtyping approaches in that it focuses on the algebraic properties
of types, instead of focusing on set-theoretic semantics. In algebraic subtyping, some
subtyping relationships are not necessary and cannot be justified if one were to look at
types purely as denotations for sets of values. These algebraic relationships are nevertheless
sound to have in the type system, and in turn enable principal type inference and type
simplification.
As an example, consider pg1 Ñ g2q ^ pg3 Ñ g4q ď pg1 _ g3qÑ pg2 ^ g4q, which holds

in Dolan’s MLsub. While the other direction holds by simple contravariance of function

41

parameters and covariance of function results, this direction is a lot more contentious. It
does not make sense from the set-theoretic point of view: a function that can be viewed
as returning g2 when given a g1 and returning g4 when given a g3 cannot be viewed as
always returning a g2 ^ g4. For instance, consider _G. G, typable both as IntÑ Int and as
BoolÑBool, and which could therefore be assigned type pIntÑ Intq ^ pBoolÑBoolq.
Surely, this function never returns an Int^Bool value (an uninhabited type) when called
with an Int_Bool argument. But in MLsub, _G. G by design cannot be assigned such an
intersection type; instead, its most general type is @U. UÑ U, which does subsume both
IntÑ Int and BoolÑBool though not pIntÑ Intq ^ pBoolÑBoolq. This explains the
restriction that intersections cannot be used to encode overloading in MLsub and MLstruct.
In MLstruct, we define further additional algebraic subtyping relationships, such as Jď

t G : g1 u _ pg2 Ñ g3q, as hinted in Section 2.3.2. We similarly ensure that this relationship
does not threaten soundness by making sure the language cannot meaningfully distinguish
between values of these two types (i.e., one cannot pattern match on record or function
types).

5.2 Basic Type Inference Idea

We base the core of our type inference algorithm on a simple formulation of MLsub type
inference we formulated in previous work (Parreaux, 2020). The constraint solver attaches
a set of lower and upper bounds to each type variable, and maintain the transitive closure
of these constraints, i.e., it makes sure that at all times the union of all lower bounds
of a variable remains a subtype of the intersection of all its upper bounds. This means
that when registering a new constraint of the form Uď g, we not only have to add g to
the upper bounds of U, but also to constrain lowerBoundspUq ď g in turn. One has to
be particularly careful to maintain a “cache” of subtyping relationships currently being
constrained, as the graphs formed by type variable bounds may contain cycles. Because
types are regular, there is always a point, in a cyclic constraint, where we end up checking
a constraint we are already in the process of checking (it is in the cache), in which case we
can assume that the constraint holds and terminate. Constraints of the general form g1 ď g2
are handled by losslessly decomposing them into smaller constraints, until we arrive at
constraints on type variables, which is made possible by the algebraic subtyping rules. The
losslessness of this approach is needed to ensure that we only infer principal types. In
other words, when decomposing a constraint, we must produce a set of smaller constraints
that is equivalent to the original constraint. For example, we can decompose the constraint
g1 _ pg2 Ñ g3q ď g4 Ñ g5 into the equivalent set of constraints: g1 ď g4 Ñ g5 ; g4 ď g2 ; and
g3 ď g5. If we arrive at a constraint between two incompatible type constructors, such as
g1 Ñ g2 ď t G : g3 u, an error is reported.

42

5.3 Solving Constraints with Unions and Intersections

By contrast with MLsub, MLstruct supports union and intersections types in a first-class
capacity, meaning that one can use these types in both positive and negative positions. 19

This is particularly important to type check instance matching, which requires unions in
negative positions, and class types, which require intersections in positive positions (both
illegal in MLsub).
Themain problem that arises in this setting is:How to resolve constraints with the shapes

g1 ď g2 _ g3 and g1 ^ g2 ď g3 ? Such constraints cannot be easily decomposed into simpler
constraints without losing information—which would prevent us from achieving complete
type inference — and without having to perform backtracking — which would quickly
become intractable, even in non-pathological cases, and would yield a set of possible types
instead of a single principal type. When faced with such constraints, we distinguish two
cases: (1) there is a type variable among g1, g2, and g3; and (2) conversely, none of these
types are type variables.

5.3.1 Negation Types

We use negation types to reformulate constraints involving type variables into forms that
allow us to make progress, relying on the Boolean-algebraic properties of negation. A
constraint such as g1 ď g2 _ U can be rewritten to g1 ^ g2 ď U by turning the “positive”
g2 on the right into a “negative” on the left, as these are equivalent in a Boolean algebra.20
Therefore, it is sufficient and necessary to constrain U to be a supertype of g1 ^ g2 to
solve the constraint at hand. Similarly, we can solve U^ g1 ď g2 by constraining U to be a
subtype of g2 _ g1.21 When both transformations are possible, one may pick one or the
other equivalently. The correctness of these transformations is formally demonstrated in
Theorem A.9.. This approach provides a solution to case (1), but in a way it only pushes
the problem around, delaying the inevitable apparition of case (2).

5.3.2 Normalization of Constraints

To solve problem (2), we normalize constraints until they are in the shape “gcon ď gdis”,
where (using a horizontal overline to denote 0 to = repetitions):

• gcon represents J, K, or the intersection of any non-empty subset of
t #�, g1 Ñ g2, t G : g u u.

• gdis represents types of the formJ,K, pg1 Ñ g2q _ #�, t G : g u _ #�, or #� _ #�1.
19 Positive positions correspond to the types that a term outputs, while negative positions correspond to the types

that a term takes in as input. For instance, in pg0 Ñ g1qÑ g2, type g2 is in positive position since it is the
output of the main function, and the function type pg0 Ñ g1q is in negative position, as it is taken as an input
to the main function. On the other hand, g1, which is returned by the function taken as input is in negative
position (since it is provided by callers via the argument function), and g0 is in positive position (since it is
provided by the main function when calling the argument function).

20 Aiken and Wimmers (1993) used a similar trick, albeit in a more specific set-theoretic interpretation of
unions/intersections.

21 If it were not for patternmatching, we could avoid negation types by adopting amore complicated representation
of type variable bounds that internalizes the same information. That is, instead of Uď g and Uě g for a given
type variable U, we would have bounds of the form U^ c ď g and U_ c ě g, representing Uď g _ c
and Uě g ^ c respectively. But reducing several upper/lower bounds into a single bound, which previously
worked by simply intersecting/taking the union of them, would now be impossible without generalizing bounds
further. Type simplification would also become difficult.

43

Let us consider a few examples. First, given a constraint like pg1 _ g2q ^ g3 ď g4, we
can distribute the intersection over the union thanks to the rules of Boolean algebras (see
Section 3.3.4), which results in pg1 ^ g3q _ pg2 ^ g3q ď g4, allowing us to solve g1 ^ g3 ď g4
and g2 ^ g3 ď g4 independently. Second, given a constraint like g1 ď t G : g2 u _ g3 Ñ g4, we
simply use the fact that t G : g2 u _ g3 Ñ g4 ”J (as explained in Section 2.2.2) to reduce
the constraint to g1 ďJ, a tautology. Third, with constraints containing intersected nominal
class tags on the left, we can compute their greatest lower bound based on our knowledge
of the single-inheritance class hierarchy. We eventually end up with constraints of the
shape “gcon ď gdis” and there always exists a g8 P gcon and g1

9
P gdis such that we can reduce

the constraint to an equivalent constraint g8 ď g19 . Notice that if two related nominal tags
appears on each side, it is always safe to pick that comparison, as doing so does not entail
any additional constraints. If there are no such related nominal tags, the only other choice
is to find a type in the right-hand side to match a corresponding type in the left-hand side,
and the syntax of these normal forms prevents there being more than one possible choice.
All in all, our Boolean algebra of types equipped with various algebraic simplification laws
ensures that we have a lossless way of resolving the complex constraints that arise from
union and intersection types, enabling principal type inference.
The constraint solving algorithm described in Section 7.3 and implemented in the artifact

uses the ideas explored above but puts the entire constraint into a normal form, instead
of normalizing constraints on the fly. This helps to efficiently guarantee termination by
maintaining a cache of currently-processed subtyping relationships in normal forms, which
is straightforward to query.

5.4 Subsumption Checking

Subsumption checking, denoted by ď@, is important to check that definitions conform to
given signatures. Contrary to MLsub, which syntactically separates positive from negative
types (the polarity restriction), and therefore requires different algorithms for constraint
solving and subsumption checking, in MLstruct we can immediately reuse the constraint
solving algorithm for subsumption checking, without requiring much changes to the type
system. To implement @Ξ1. g1 ď

@ @Ξ2. g2, we instantiate all the type variables in Ξ1, with
their bounds, to fresh type variables, and we turn all the variables in Ξ2 into rigid variables
(so-called “skolems”). The latter can be done by turning these type variables into fresh
flexible nominal tags and by inlining their bounds, expressing them in terms of unions,
intersections, and recursive types. Since there is no polarity restrictions in our system, the
resulting types can be compared directly using the normal constraint solving algorithm.

Flexible nominal tags #� are just like nominal class tags #�, except that they can coexist
with unrelated tags without reducing to K. For example, while #�1 ^ #�2 is equivalent to
K in MLstruct when �1 and �2 are unrelated, #� ^ #�2 is not.22 Flexible nominal tags are
also the feature used to encode the nominal tags of traits, necessary to implement mixin
traits as described in Section 2.1.2.
For lack of space, we do not formally describe subsumption checking in this paper.

22 This requires extending the syntax of normal forms in a straightforward way to g1con ::“ gcon ^ #� and
g1dis ::“ gdis _ #� .

44

5.5 Simplification and Presentation of Inferred Types

Type simplification and pretty-printing are important components of any practical imple-
mentation of MLsub and MLstruct. They indeed perform a lot of the heavy-lifting of type
inference, massaging inferred types, which are often big and unwieldy, into neat and con-
cise equivalent type expressions. In this section, we briefly explain how simplification is
performed in MLstruct.

5.5.1 Basic Simplifications

For basic simplifications, we essentially follow Parreaux (2020)— we remove polar occur-
rences of type variables, remove type variables “sandwiched” between identical bounds,
and we perform some hash consing to simplify inferred recursive types. The simplification
of unions, intersections, and negations is not fully addressed by Parreaux, since MLsub
does not fully supports these features. In MLstruct, we apply standard Boolean algebra sim-
plification techniques to simplify these types, such as putting them into disjunctive normal
forms, simplifying complements, and factorizing common conjuncts. We also reduce types
as they arise, based on Section 2.2.2.

5.5.2 Bound Inlining

Many types can be represented equivalently using either bounded quantification or inlined
intersection and union types, so we often have to choose between them. For instance, @pUď
Intq¨pVě Intq. UÑ UÑ V is much better expressed as the equivalent IntÑ IntÑ Int. But
whether pU^ IntqÑ pU^ IntqÑ U is better than the equivalent @pUď Intq. UÑ UÑ U

may depend on personal preferences. As a general rule of thumb, we only inline bounds
when doing so would not duplicate them and when they are not cyclic (i.e., we do not inline
recursive bounds).

5.6 Implementation

MLstruct is implemented in ~5000 lines of Scala code, including advanced type simpli-
fication algorithms and error reporting infrastructure.23 We have an extensive tests suite
consisting of more than 4000 lines of well-typed and ill-typed MLstruct expressions, for
which we automatically check the output of the type simplifier and error reporting for
regressions. Running this test suite in parallel takes ~2s on a 2020 iMac with a 3.8 GHz
8-Core Intel Core i7 and 32 GB 2667 MHz DDR4.

6 Formal Semantics of MLstruct

In this section, we introduce _ , a formal calculus which reflects the core features of
MLstruct.

23 This does not include about 1200 additional lines of code to generate JavaScript (the tests are run through
NodeJS).

45

Core syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntax
Type g, c ::“ gÑ g | t G : g u | #rgs | #� | U | J˛ | g_˛ g | g

Mode ˛, ˝ ::“ ¨ |

Type name # ::“ � | �

Polymorphic type f ::“ @ Ξ. g

Term B, C ::“ G, H, I | C : g | _G. C | C C | C.G | � t G “ C u | case G “ C of "
Case branches " ::“ n | _Ñ C | �Ñ C, "

Value E, F ::“ _G. C | � t G “ E u

Program % ::“ C | def G “ C; %
Top-level declaration 3 ::“ class �rUs : g | type �rUs “ g

ContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContexts
Declarations context D ::“ n | D ¨ 3

Typing context Γ ::“ n | Γ ¨ pG : gq | Γ ¨ pG : fq
Subtyping context Σ, Δ ::“ Ξ | Σ ¨ pgď gq | Σ ¨ Bpgď gq

Constraining context Ξ ::“ n | Ξ ¨ pUď gq | Ξ ¨ pgď Uq

Fig. 13. Syntax of types, terms, and contexts.

6.1 Syntax

The syntax of _ is presented in Figure 13.

6.1.1 Core Syntax

The core syntax of _ follows the MLstruct source language presented previously quite
closely, though it introduces a syntactic novelty: themode ˛ or ˝ of a syntactic form is used
to deduplicate sentences that refer to unions and intersections as well as top and bottom,
which are respective duals and can therefore often be treated symmetrically. For instance,
J˛ is to be understood as either J¨ when ˛ “ ¨, i.e., J, or as J when ˛ “ , i.e., K. A
similar idea was developed independently by d. S. Oliveira et al. (2020) to cut down on
boilerplate and repetition in formalizing subtyping systems.
Parametric polymorphism in _ is attached solely to top-level ‘def’ bindings, whose

semantics, as in languages like Scala, is to re-evaluate their right-hand side every time they
are referred to in the program. In contrast, local let bindings are desugared to immediately-
applied lambdas, and are treated monomorphically. Let polymorphism is orthogonal to
the features presented in this paper, and can be handled by using a level-based algorithm
(Parreaux, 2020) on top of the core algorithmwe describe here, as well as a value restriction
if the language is meant to incorporate mutation.
In _ , def bindings are never recursive. This simplification is made without loss of

generality, as recursion can be recovered using a Z fixed point combinator, typeable in
MLsub (Dolan, 2017) and thus also in _ . This combinator is defined as C/ “ _ 5 . C1/ C

1
/

where C1
/
“ _G. 5 p_E. G G Eq. One can easily verify that C/ can be typed as ppUÑ VqÑ

ppUÑ Vq ^ WqqÑ W.

46

To keep the formalism on point, we only present class object types, and ignore unin-
teresting primitive and built-in types like Int and Bool, which can be encoded as classes.
Note that singleton types like 1, 2, and true, as we use them in the introduction, are easily
encoded as subclasses 1� , 2� , and true� of the corresponding built-in types.

Finally, the syntax of pattern matching ‘case G “ C of . . .’ includes a variable binding
because the rules for typing it will refine the type of that variable in the different branches.
We do not use ‘case G of . . .’ as the core form in order to allow for simple substitution of
variables with terms.

6.1.2 Contexts

We use four kinds of contexts. Declarations contexts D hold the type declarations of
the program. Throughout this paper, we assume an ambient declarations context (i.e.,
our formal developments are implicitly parameterized by D). Typing contexts Γ bind
both monomorphic and polymorphic types, the latter corresponding to ‘def’ bindings.
Subtyping contexts Σ record assumptions about subtyping relationships, with some of
these assumptions potentially hidden behind a B (explained in Section 3.3.1). Finally,
bounds contexts Ξ contain bounds on type variables. The typing rules will ensure that
in a polymorphic type @Ξ. g, context Ξ is consistent, which implies err R Ξ. Note that Σ
contexts are rooted in Ξ contexts because subtyping judgments require the former but are
invoked from typing judgments, which use the latter for polymorphism. While this rooting
is not strictly required here (indeed, bounds contexts would be a strict subset of subtyping
contexts even if the latter was not rooted in the former), it will become convenient once we
extend bounds context to also possibly contain an error marker in Secsec:constr-ctxs.

6.1.3 Shorthands

Throughout this paper, we make use of the following notations and shorthands:

' ::“ t G “ E u � ::“ gď g # ” #rns �Ñ C ” �Ñ C, n

t G : gG G P (, H : gH u ” t G : gG G P (u ^ t H : gH u pH R (q let G “ C1 in C2 ” p_G. C2q C1
case H of " ” case G “ H of rH ÞÑ Gs" pG R FVp"qq

6.2 Evaluation Rules

The small-step reduction semantics of _ is shown in Figure 14. The relation %ù %1

reads “program % evaluates to program %1 in one step.” Note that % here may refer to a
simple term C.
We write t G “ E2 u P E1 to say that E1 is a value of the form ‘� t I“ F, G “ E2 u’ or of

the form ‘� t I“ F, H“ E12 u’ where H‰ G and t G “ E2 u P� t I“ F u. Class instances are
constructed via the � ' introduction form, where ' is a record of the fields of the instance.
Instance matching works by inspecting the runtime instance of a scrutinee value, in order to
determine which corresponding branch to evaluate. This is done through the superclasses
function Spgq. Note that a term of the shape ‘case G “ E of n’ is stuck.

47

�r˝s ::“ ˝ C | E ˝ | ˝.G | � t G “ E, H“ ˝, I“ C u | case G “ ˝ of "

E-Ctx �rCsù �rC1s if Cù C1

E-Def def G “ C ; %ù rG ÞÑ Cs%

E-App p_G. Cq Eù rG ÞÑ EsC

E-Asc C : gù C

E-Proj E1.Gù E2 if t G “ E2 u P E1
E-CaseCls1 case G “�1 ' of �2Ñ C, "ù rG ÞÑ�1 'sC if �2 PSp#�1q

E-CaseCls2 case G “�1 ' of �2Ñ C, "ù case G “ E of " if �2 RSp#�1q

E-CaseWld case G “ E of _Ñ Cù rG ÞÑ EsC

Fig. 14. Small-step evaluation rules.

Definition 6.1 (Superclasses). We define the superclasses Spgq of a type g as the set of
classes transitively inherited by type g, assuming g is a class type or the expansion of a
class type. The full definition is given in appendix (Definition B.1).

6.3 Declarative Typing Rules

Program-typing judgments Ξ, Γ$‹ % : g are used to type programs while term-typing
judgments Ξ, Γ$ C : g are used to type def right-hand sides and program bodies. The latter
judgement is read “under type variable bounds Ξ and in context Γ, term C has type g.” We
present only the rules for the latter judgment in Figure 15, as they are the more interesting
ones, and relegate the auxiliary program-typing (Ξ, Γ$‹ % : g), consistency (Σ cons.) and
subtyping entailment (Σ$ fď@f and Σ(Σ) rules to the appendix (Appendix B.1). The
consistency judgment is used to make sure we type defs and program bodies under valid
(i.e., consistent) bounds only.24
Rule T-Obj features a few technicalities deserving of careful explanations. First, notice

that its result type is an intersection of the nominal class tag #� with a record type of all the
fields passed in the instantiation. Importantly, these fields may have any types, including
ones not compatible with the field declarations in � or its parents. This simplifies the
meta theory (especially type inference) and is done without loss of generality: indeed, we
can desugar ‘C {x = t, ...}’ instantiations in MLstruct into a type-ascribed instantiation
‘�t G “ C, . . . u :�rUs’ in _ ,25 where all U are fresh, which will ensure that the provided
fields satisfy their declared types in �.

T-Obj also requires � to be “final” using the � final judgment (formally defined in
Figure 26). This means that � is not extended by any other classes in D. It ensures that, at
runtime, for every class pattern �, pattern-matching scrutinees are always instances of a
class �1 that is either a subclass of � (meaning #�1 ď #�) or an unrelated class (meaning

24 Indeed, under inconsistent bounds, ill-typed terms become typeable. For example, we have pIntď IntÑ
Intq $ 1 1 : Int.

25 The alternative desugaring ‘let tmp“�t G“ C , . . . u in let “ tmp :�rUs in tmp’ is nicer because it allows
the user to retain refined field types (as described in Section 2.1.2) as well as any new fields that were not
declared in � or its parents.

48

Ξ, Γ$‹ % : g

T-Body
Ξ cons. Ξ, Γ$ C : g

Ξ, Γ$‹ C : g

T-Def
Ξ1 cons. Ξ1, Γ$ C : g Ξ, Γ¨pG : @Ξ1. gq $‹ % : g%

Ξ, Γ$‹ def G “ C ; % : g%

Ξ, Γ$ C : g

T-Subs
Ξ, Γ$ C : g1 Ξ$ g1 ď g2

Ξ, Γ$ C : g2

T-Obj
Ξ, Γ$ C : g � final

Ξ, Γ$� t G “ C u : #� ^ t G : g u

T-Proj
Ξ, Γ$ C : t G : g u
Ξ, Γ$ C.G : g

T-Var1
ΓpGq “ g

Ξ, Γ$ G : g

T-Var2
ΓpGq “ f Ξ$ fď@@n . g

Ξ, Γ$ G : g

T-Abs
Ξ, Γ¨pG : g1q $ C : g2
Ξ, Γ$ _G. C : g1Ñ g2

T-App
Ξ, Γ$ C0 : g1Ñ g2 Ξ, Γ$ C1 : g1

Ξ, Γ$ C0 C1 : g2

T-Asc
Ξ, Γ$ C : g

Ξ, Γ$ pC : gq : g

T-Case1
Ξ, Γ$ C1 :K

Ξ, Γ$ case G “ C1 of n :K

T-Case2
Ξ, Γ$ C1 : g1 ^ #� Ξ, Γ¨pG : g1q $ C2 : g

Ξ, Γ$ case G “ C1 of _Ñ C2 : g

T-Case3
Ξ, Γ$ C1 : #� ^ g1 _ #� ^ g2 Ξ, Γ¨pG : g1q $ C2 : g Ξ, Γ¨pG : g2q $ case G “ G of " : g

Ξ, Γ$ case G “ C1 of �Ñ C2, " : g

Fig. 15. Program and term typing rules.

#�1 ď #�). Without this property, type preservation would technically not hold. Indeed,
consider the program:

class C1 class C2: C1 class C3
case x = C1{} of C2 Ñ C3{}, _ Ñx

This program can be given type �2 since �1 ď�2 _ �2 ”J (in T-Case3, we pick
g2 “ �2), but it reduces to �1tu, which does not have type �2 because �1 and �2 are
not unrelated classes.
This finality requirement is merely a technicality of _ and it does not exist in MLstruct,

where non-final classes can be instantiated. This can be understood as each MLstruct class
� implicitly defining a final version �� of itself, which is used upon instantiation. So the
MLstruct program above would actually denote the following desugared _ program:

class C1 class C�1 : C1 class C2: C1 class C3 class C�3 : C3
case x = C�1 {} : C1 of C2 Ñ C�3 {} : C3, _ Ñx

The refined program above now evaluates to ��1 tu, of type �
�
1 , which is a subtype of �2.

In T-Subs, we use the current constraining context Ξ as a subtyping context Σ when
invoking the subtyping judgement Ξ$ g1 ď g2 (presented in the next subsection), which is
possible since the syntax of constraining contexts is a special case of the syntax of subtyping
contexts.
Rule T-Var2 uses the entailment judgment Ξ$ fď@@n . g defined in appendix to

instantiate the polymorphic type found in the context.

49

The typing of instance matching is split over three rules. Rule T-Case1 specifies that no
scrutinee can be matched by a case expression with no branches, which is expressed by
assigning type K (the type inhabited by no value) to the scrutinee.
Rule T-Case2 handles case expressions with a single, default case, which is equivalent

to a let binding, where the body C2 of the default case is typed within a typing context
extended with the case-bound variable G and the type of the scrutinee. This rule requires the
scrutinee to have a class type #�; this is to prevent functions from being matched, because
that would technically break preservation in a similar way as described above (since we do
not have c1 Ñ c2 ď #�26).

T-Case3 is the more interesting instance matching rule.We first assume that the scrutinee
C1 has some type g1 in order to type the first case branch, and then assume C1 has type
g2 to type the rest of the instance matching (by reconstructing a smaller case expression
binding a new variable G which shadows the old variable occurring in "). Then, we make
sure that the scrutinee C1 can be typed at #� ^ g1 _ #� ^ g2, which ensures that if C1 is
an instance of �, then it is also of type g1, and if not, then it is of type g2. In this rule,
g1 can be picked to be anything, so assuming Γ¨pG : g1q to type C2 is sufficient, and there
is no need to assume Γ¨pG : g1 ^ #�q. If the C2 branch needs g1 to be a subtype of #�, we
can always pick g1 “ g

1
1 ^ #�. Notice that the required type for C1 still has the same shape

#� ^ g1 _ #� ^ g2 ” #� ^ p#� ^ g11q _ #� ^ g2 ” #� ^ g11 _ #� ^ g2.

6.4 Declarative Subtyping Rules

The declarative subtyping rules were already mostly presented as the runnign example of
Section 3. They are solidified and recalled in Figure 16.
Remember that the mode syntax ˛ is used to factor in dual formulations. For instance,

gď˛ J˛ is to be understood as either gď¨ J¨ when ˛ “ ¨, i.e., gďJ, or as gď J when
˛ “ , i.e., gěK, also written Kď g.

The presented rules extend those of SpT , Rq shown in Figure 3, except that the depth
subtyping and merge rules are specialized to the type constructors of _ and that we have
a new rule S-Exp˛ which is used to expand named types (type synonyms and class types).

6.4.1 Desugaring Named Types

The reason we did not present the #rgs type form and the S-Exp˛ rule as being a core part
of SÑtGu#� in Section 3 is that these can easily be desugared into core SÑtGu#� .
To do this, observe that the regularity requirement on _ (and MLstruct) type definitions

means that there is always only a finite number of type argument lists g passed in named
type applications #rgs, so we can represent each such application through a unique type
variable U# rgs associated to it.

We then simply type all definitions and the body of the program under consideration
by including a bounds context Ξinit that equates each such named type application type
variableU# rgs to the corresponding expanded body of the type, here rV ÞÑ gsc if we assume,
for example, that # was defined as type #rVs “ c.

26 We cannot support this without breaking subtyping consistency, because it would mean that #� ^ pg1 Ñ
g2q ď ...

50

This contextΞinit essentially makes all named type applications type variables equivalent
to the expansions of the corresponding type applications in the type system, which is the
intent of the original conceived named types and their S-Exp˛ rule.

6.5 Soundness of the Declarative Type System

We now state the main soundness theorems for _ ’s type system, proven in Section C.1 and
C.2. In the following,$‹ is used as the syntax for program-typing judgments (see Figure 25
in appendix).

Theorem 6.2 (Progress). If $‹ % : g and % is not a value, then $ %ù %1 for some %1.

Theorem 6.3 (Preservation). If $‹ % : g and $ %ù %1, then $‹ %1 : g.

Σ$ gď g gď g CΞ“ Ξ CpΣ ¨ �q “ CΣ ¨ � CpΣ ¨ B�q “ CΣ ¨ �

S-Refl

gď g

S-ToB˛

gď˛ J˛

S-Compl˛

g_˛ gě˛ J˛

S-AndOr11˛

g1 _
˛ g2 ě

˛ g1

S-AndOr12˛

g1 _
˛ g2 ě

˛ g2

S-AndOr2˛
Σ$ gě˛ g1 Σ$ gě˛ g2

Σ$ gě˛ g1 _
˛ g2

S-Distrib˛

g^˛ pg1 _
˛ g2q ď

˛ pg^˛ g1q _
˛ pg^˛ g2q

S-Trans
Σ$ g0 ď g1 Σ$ g1 ď g2

Σ$ g0 ď g2

S-Weaken
�

Σ$ �

S-Assum
Σ¨B� $ �

Σ$ �

S-Hyp
� P Σ

Σ$ �

S-ClsSub
�2 PSp#�1q

#�1 ď #�2

S-ClsBot
�1 RSp#�2q �2 RSp#�1q

#�1 ^ #�2 ďK

S-FunDepth
CΣ$ g0 ď g1 CΣ$ g2 ď g3

Σ$ g1Ñ g2 ď g0Ñ g3

S-FunMrg˛

pg1 _
˛ g3qÑ pg2 ^

˛ g4q ě
˛ g1Ñ g2 ^

˛ g3Ñ g4

S-Exp˛
g exp. g1

gě˛ g1

S-RcdDepth
CΣ$ g1 ď g2

Σ$ tG : g1 u ď tG : g2 u

S-RcdMrg˛

tG : g1 _˛ g2 u ď˛ tG : g1 u _˛ tG : g2 u

S-RcdTop
g P tt H‰G : g2 u, g2Ñ g3 u

Jď t G : g1 u _ g

g exp. g

S-AlsExp
ptype �rU8 8 P (s “ gq PD

�rg8
8 P (s exp. rU8 ÞÑ g8

8 P (sg

S-ClsExp
pclass �rU8 8 P (s : gq PD

�rg8
8 P (s exp. #� ^ rU8 ÞÑ g8

8 P (sg

Fig. 16. Declarative subtyping rules. These are essentially the same as the rules of Figure 3 but
specialized to the type constructors of _ .

51

Γ,‹ % : gñ Ξ

I-Body
Γ, C : gñ Ξ

Γ,‹ C : gñ Ξ

I-Def
Γ, C : gñ Ξ Γ¨pG : @Ξ. gq ,‹ % : cñ Ξ1

Γ,‹ def G “ C ; % : cñ Ξ1

Ξ, Γ, C : gñ Ξ

I-Proj
Ξ0, Γ, C : gñ Ξ1 U fresh Ξ0¨Ξ1 $ g! t G : U uñ Ξ2

Ξ0, Γ, C.G : Uñ Ξ1¨Ξ2

I-Obj
Ξ0, Γ, C1 : g1ñ Ξ1

Ξ0¨Ξ1, Γ, C2 : g2ñ Ξ2 . . . Ξ0¨Ξ1¨...¨Ξ=´1, Γ, C= : g=ñ Ξ= � final
Ξ0, Γ,� t G1 “ C1; G2 “ C2; . . . ; G= “ C= u : #� ^ t G1 : g1; G2 : g2; . . . ; G= : g= uñ Ξ1¨...¨Ξ=

I-Var1
ΓpGq “ g

Ξ, Γ, G : gñ n

I-Var2
ΓpGq “ @Ξ1. g1 TVp@Ξ1. g1q “ (WU freshU P (

Ξ0, Γ, G : rU ÞÑ WU
U P (sg1ñrU ÞÑ WU

U P (sΞ1

I-Abs
U fresh Ξ0, Γ¨pG : Uq , C : gñ Ξ1

Ξ0, Γ, _G. C : UÑ gñ Ξ1

I-App
Ξ0, Γ, C1 : g1ñ Ξ1 Ξ0¨Ξ1, Γ, C2 : g2ñ Ξ2
U fresh Ξ0¨Ξ1¨Ξ2 $ g1 ! g2Ñ Uñ Ξ3

Γ, Ξ0 , C1 C2 : Uñ Ξ1¨Ξ2¨Ξ3

I-Asc
Ξ0, Γ, C : g1ñ Ξ1 Ξ0¨Ξ1 $ g1 ! g2ñ Ξ2

Ξ0, Γ, pC : g2q : g2ñ Ξ1¨Ξ2

I-Case1
Ξ0, Γ, C1 : g1ñ Ξ1 Ξ0¨Ξ1 $ g1 !Kñ Ξ2

Ξ0, Γ, case G “ C1 of n :Kñ Ξ1¨Ξ2

I-Case2
Ξ0, Γ, C1 : g1ñ Ξ1 Ξ0¨Ξ1 $ g1 ! #�ñ Ξ2 Ξ0¨Ξ1¨Ξ2, Γ¨pG : g1q , C2 : gñ Ξ3

Ξ0, Γ, case G “ C1 of _Ñ C2 : gñ Ξ1¨Ξ2¨Ξ3

I-Case3
Ξ0, Γ, C1 : g1ñ Ξ1 U fresh

Ξ0¨Ξ1, Γ¨pG : Uq , C2 : g2ñ Ξ2 V fresh Ξ0¨Ξ1¨Ξ2, Γ¨pG : Vq , case G “ G of " : g3ñ Ξ3
Ξ0¨Ξ1¨Ξ2¨Ξ3 $ g1 ! #� ^ U_ #� ^ Vñ Ξ4

Ξ0, Γ, case G “ C1 of �Ñ C2, " : g2 _ g3ñ Ξ1¨Ξ2¨Ξ3¨Ξ4

Fig. 17. Algorithmic type inference rules.

7 Principal Type Inference for _

We now formally describe the type inference algorithm which was presented in Section 5.
In this section, we assume that bounds contexts Ξ are refined to also potentially contain

error markers err as shown below. We call this refined class of contexts constraining
contexts.

Constraining context Ξ ::“ n | Ξ ¨ pUď gq | Ξ ¨ pgď Uq | Ξ ¨ err

52

7.1 Type Inference Rules

Our type inference rules are presented in Figure 17. The judgments Γ,‹ % : gñ Ξ and
Ξ, Γ, C : gñ Ξ are similar to their declarative typing counterparts, except that they are
algorithmic and produce constraining contexts Ξ containing inferred type variables bounds.
We give the following formal meaning to premises of the form ‘U fresh’, and in the rest

of this paper, we implicitly only consider well-formed derivations:

Definition 7.1 (Well-formed derivations). A type inference or constraining derivation is
said to be well-formed if, for every U, the ‘U fresh’ premise appears at most once in the
entire derivation and, if it does, U does not occur in any user-specified type (i.e., on the
right of ascription trees ‘C : g’).

The program-typing inference rules I-Body and I-Def mirror their declarative counter-
parts. In I-Def, notice how the output context corresponding to the definition’s body is the
one used to quantify the corresponding type in the typing context. Notice that in these rules,
the consistency condition (which can be seen in the declarative typing rules in Figure 25)
has disappeared, because type inference only produces consistent contexts by design.
The main difference between type inference rules and declarative typing rules is that

in the former, we immediately produce a type for each subexpression irrelevant of its
context, using type variables for local unknowns, and we then use a constraining judgement
Σ$ g! cñ Ξ (explained in the next subsection) to make sure that the inferred type g
conforms to the expected type c in this context. So whenever we need to guess a type (such
as the type of a lambda’s parameter in I-Abs), we simply introduce a fresh type variable. As
an example, in I-Proj, we infer an unconstrained type g for the field projection’s prefix C, and
thenmake sure that this is a subtype of a record type by constrainingΞ0 $ g! t G : U uñ Ξ1
—whereΞ1 is the output context containing the type variable bounds necessary tomake this
relationship hold. Rules I-App, I-Asc, I-Case1, I-Case2, and I-Case3 all work according
to the same principles, threading the set of constraining contexts currently inferred through
the next type inference steps, which is necessary to make sure that all inferred type variable
bounds are consistent with each other. Rule I-Var2 refreshes all the variables of a type
@Ξ. g obtained from the typing context, which includes both variables that occur in the
constraining context Ξ as well as those that occur in the underlying type g, even when some
of the latter may not be mentioned in Ξ; indeed, in _ all type variables are implicitly
quantified.

7.2 Reduced Disjunctive Normal Forms

To facilitate constraint solving, it is useful to massage types into a normal form which we
call RDNF, for reduced disjunctive normal form. This normal form is similar to a classical
disjunctive normal form (DNF) except that we reduce all “incompatible” intersections
and unions to K and J respectively. Here, incompatible means that the type holds no
useful information, either because it is inhabited by no value or because it cannot be used
meaningfully, as explained in Section 2.2.2.

53

The syntax of RDNF is given below. It is indexed by a level = and there are two possible
levels: level-0 RDNF, written D0 does not contain any occurrence of class or alias types
at the top level (they will have been expanded); whereas level-1 RDNF, written D1, allows
them. Notation: we will often write D as a shorthand for D1 (and similarly for the other
indexed syntax forms).

D= ::“ K | C= | D= _C=

I1 ::“ I0 | I1 ^ #rD1 s

U1 ::“ U0 | U1 _ #rD1 s

C= ::“ I= ^ U= | C= ^ U | C= ^ U

I0 ::“ INrNs | IÑrF s | IturRs
U0 ::“ K | D1ÑD1 | t G : D1 u | U0 _ #�

where the I¨ contexts stand for combinations of nominal tagsN , functions F , and records
R:
INr˝s ::“ ˝^ F ^ R N ::“ J | #� Ir˝s ::“ INr˝s | IÑr˝s | Itur˝s
IÑr˝s ::“ N ^ ˝^ R F ::“ J | D1ÑD1 J3 ::“ J^J^J

Itur˝s ::“ N ^ F ^ ˝ R ::“ J | t G : D1 u

As an example, ‘D1 “ #� ^J^ t G :J u^�rInt, Bools ^ �rStrs ^ K^ U’ is a
valid level-1 RDNF, but not a valid level-0 one because �rInt, Bools and �rStrs occur
at the top level and are not expanded, while ‘D=2 “J^J^ t G :�rInt, Bools u ^ K’ is
well-defined for both = P t0, 1u.

7.2.1 Algorithm

Figures 18 and 19 give an algorithm to convert types g to level-= RDNFs, written dnf=pgq.
The task is essentially straightforward, if relatively tedious. Essentially, dnf= pushes nega-
tions in using DeMorgan laws, distributes intersections over unions, and at the same time
ensures that all constructed conjunctions are de-duplicated and as reduced as possible,
so that for instance intersections of unrelated classes are reduced to K and function and
record types are merged with themselves. We write p qg as a shorthand for either g or
 g (used uniformly in a rule) and make use of auxiliary functions union=pD=, D=q and
inter=pD=, D=q, which rely on the following context definitions (`r¨s and (´r¨s, used to
“dig into” the various shapes of C= syntaxes:

(`r˝s ::“ Ir˝s | (`r˝s ^ U | (`r˝s ^ U | (`r˝s ^ U | (`r˝s ^ #rD1 s

(´r˝s ::“ (´r˝s ^ U | (´r˝s ^ U | I^ (r˝s

(r˝s ::“ ˝ | (r˝s _ #rD1 s | (r˝s _ #� | U_ ˝

For example, we can decompose C= “ I= ^ ppD=1 ÑD=2 q _ #�q ^ U as C= “ (´rD=1 Ñ
D=2 s where (

´r˝s “ I= ^ p˝_ #�q ^ U.
The algorithm is well-defined on well-formed types g wf, assuming a well-formed

declarations context D wf. These notions of well-formedness are defined formally in
Appendix B.2.

Lemma 7.2 (Well-Defined dnf). If D wf, g wf, and = P t0, 1u, then dnf=pgq “D= for
some D=.

Lemma 7.3 (Correctness of dnf). For all g, = P t0, 1u, and D= “ dnf=pgq, we have
g”D=.

54

dnf=pgq : D=

dnf=pJq“ dnf=p Kq“J3 ^ K (7.1)
dnf=pKq“ dnf=p Jq“K (7.2)

dnf=pUq “J3 ^ K^ U (7.3)
dnf=p#�q “ #� ^J^J^ K (7.4)

dnf=pg1 Ñ g2q “J^ dnf1pg1qÑ dnf1pg2q ^J^ K (7.5)

dnf=pt G : g uq “ t G : dnf1pgq u ^J^J^ K (7.6)

dnf0p# rgsq “ dnf0pg1q when # rgs exp. g1 (7.7)

dnf1p# rgsq “J3 ^ # r dnf1pgq s ^ K (7.8)
dnf=pg1 ^ g2q “ interpdnf=pg1q, dnf=pg2qq (7.9)
dnf=pg1 _ g2q “ unionpdnf=pg1q, dnf=pg2qq (7.10)

dnf=p Uq “J3 ^ K^ U (7.11)

dnf=p #�q “J3 ^ pK_ #�q (7.12)

dnf=p t G : g uq “J3 ^ t G : dnf1pgq u (7.13)

dnf=p pg1 Ñ g2qq “J
3 ^ pdnf1pg1qÑ dnf1pg2qq (7.14)

dnf0p # rgsq “ dnf0p g1q when # rgs exp. g1 (7.15)

dnf1p # rgsq “J3 ^ pK_ # r dnf1pgq sq (7.16)
dnf=p pg1 ^ g2qq “ unionpdnf=p g1q, dnf=p g2qq (7.17)
dnf=p pg1 _ g2qq “ interpdnf=p g1q, dnf=p g2qq (7.18)

unionpD= , D=q : D=

unionpD= , Kq“D= (7.19)

unionpD= , C=q “
"

D= when C= PD=
D= _C= otherwise (7.20)

unionpD=1 , D=2 _C=q “ unionpunionpD=1 , C=q, D=2 q (7.21)

interpD= , D=q : D=

interpK, D=q “ interpD= , Kq“K (7.22)
interpD=1 _C= , D=2 q “ unionpinterpD=1 , D=2 q, interpC= , D=2 qq (7.23)
interpC=1 , D= _C=2 q “ unionpinterpC=1 , D=q, interpC=1 , C=2 qq (7.24)

Fig. 18. Normal form construction algorithm.

7.3 Type Constraining Rules

The type constraining rules are defined in Figure 20. They are defined for any pairs of
types and input subtyping contexts, returning an output context containing err in case the
constraining fails. We need err cases to distinguish an infinite loop in the algorithm from a
subtype constraining error, i.e., we want to justify that we have a proper algorithm and not
just a semi-algorithm.
In top-level constraining judgments, of the form Σ$ g! gñ Ξ, we check whether

a subtyping relationship is currently in the assumptions; if not, we extend the set of
assumptions with the current constraint (guarded by a B) and call the nested constraining

55

(7.25)

interpC= | K, C= | I= | U=q : C= | K

interpK, q “K (7.26)

interpC=1 , C=2 ^ p qUq “

$

&

%

interpC=1 , C=2 q when p qU PC=1
K when U, U PC=1 ^ p qU
interpC=1 ^ p qU, C=2 q otherwise

(7.27)
interpC= , I= ^ U=q “ interpinterpC= , I=q, U=q (7.28)

interpC1, I1 ^ # rD1 sq “ interpinterpC1, I1q, # rD1 sq (7.29)
interpC= , N^ F^ Rq “ interpinterpinterpC= , Nq, Fq, Rq (7.30)

interpC1, pU1 _ # rD1 sqq “ interpinterpC1, U1q, # rD1 sq (7.31)
interpC= , Kq“C= (7.32)

interp(´rU=1 s, U=2 q “J
3 when pU=1 , U=2 q P

$

&

%

p Ñ , t G : uq ;
pt G : u , Ñ q ;
pt G : u , t H‰G : uq

,

.

-

(7.33)

interp(´rD1
1 ÑD1

2s, pD
1
3 ÑD1

4qq “ (
´rinterpD1

1, D1
3qÑ unionpD1

2, D1
4qs (7.34)

interp(´rt G : D1
1 us, t G : D1

2 uq “ (
´rt G : unionpD1

1, D1
2q us (7.35)

interp(´rU=1 s, pU
=
2 _ #�qq “

"

interp(´rU=1 s, U=2 q when #� PU=1
interp(´rU=1 _ #�s, U=2 q otherwise (7.36)

interp(´rKs, Unq “ (´rU=s (7.37)

interpD1 | C1, p q# rD1 sq : D1

interpK, p q# rD1 sq “K (7.38)

interpD1
0 _C1, p q# rD1 sq “ interpD1

0, p q# rD1 sq _ interpC1, p q# rD1 sq (7.39)

interpC1 ^ U, p q# rD1 sq “ interpC1, p q# rD1 sq ^ U (7.40)

interpC1 ^ U, p q# rD1 sq “ interpC1, p q# rD1 sq ^ U (7.41)

interpI1 ^ U1, # rD1 sq “

#

I1 ^ U1 when # rD1 s P I1

I1 ^ # rD1 s ^ U1 otherwise
(7.42)

interpI1 ^ U1, # rD1 sq “

#

I1 ^ U1 when # rD1 s PU1

I1 ^ pU1 _ # rD1 sq otherwise
(7.43)

interpC= , N | F | Rq : C= | K

interpC= , Jq“C= (7.44)

interp(`rINrJss, #�q “ (`rINr#�ss (7.45)

interp(`rIr#�1ss, #�2q “

$

&

%

K when �1 R Sp#�2q and �2 R Sp#�1q
(`rIr#�2ss when �1 P Sp#�2q
(`rIr#�1ss when �2 P Sp#�1q

(7.46)

interp(`rIÑrJss, D1
1 ÑD1

2q “ (
`rIÑrD1

1 ÑD1
2ss (7.47)

interp(`rIrD1
1 ÑD1

2ss, D1
3 ÑD1

4q “ (
`rIrunionpD1

1, D1
3qÑ interpD1

2, D1
4qss (7.48)

interpC= , t G : D1
G , H : D1

H uq “ interpinterpC= , t G : D1
G uq, t H : D1

H uq (7.49)

interp(`rIturJss, t G : D1 uq “ (`rIturt G : D1 uss (7.50)

interp(`rIrt G : D1
G

G P (

uss, t H : D1 uq “

$

&

%

(`rIrt G : D1
G

G P (ztHu

, H : interpD1
H , D1q uss when H P (

(`rIrt G : D1
G

G P (

, H : D1 uss otherwise
(7.51)

Fig. 19. Normal form construction algorithm (continued).

56

Σ$ g! gñ Ξ

C-Hyp
pg1 ď g2q P Σ

Σ$ g1 ! g2ñ n

C-Assum
pg1 ď g2q R Σ Σ¨Bpg1 ď g2q $ dnf0pg1 ^ g2qñ Ξ

Σ$ g1 ! g2ñ Ξ

Σ$D0ñ Ξ

C-Or
Σ$D0ñ Ξ Ξ¨Σ$C0ñ Ξ1

Σ$D0 _C0ñ Ξ¨Ξ1

C-Bot

Σ$Kñ n

C-NotBot

Σ$ I0 ^ Kñ err

C-Cls1
�2 PSp#�1q

Σ$Ir#�1s ^ pU_ #�2qñ n

C-Cls2
�2 RSp#�1q Σ$Ir#�1s ^ Uñ Ξ

Σ$Ir#�1s ^ pU_ #�2qñ Ξ

C-Cls3
Σ$INrJs ^ Uñ Ξ

Σ$INrJs ^ pU_ #�qñ Ξ

C-Fun1
CΣ$D3 ! D1ñ Ξ Ξ¨CΣ$D2 ! D4ñ Ξ1

Σ$IrD1ÑD2s ^ pD3ÑD4qñ Ξ¨Ξ1

C-Fun2

Σ$IÑrJs ^ pD1ÑD2qñ err

C-Rcd1
H P (CΣ$DH ! Dñ Ξ

Σ$Irt G : DG
G P (

us ^ t H : D uñ Ξ

C-Rcd2
H R (

Σ$Irt G : DG
G P (

us ^ t H : D uñ err

C-Rcd3

Σ$IturJs ^ t G : D uñ err

C-Var1
Σ¨pUď Cq $ lbΣpUq ! Cñ Ξ

Σ$C^ Uñ Ξ¨pUď Cq

C-Var2
Σ¨pCď Uq $C! ubΣpUqñ Ξ

Σ$C^ Uñ Ξ¨pCď Uq

Fig. 20. Normal form constraining rules.

rules with the two sides g1 and g2 merged into a single dnf0pg1 ^ g2q normal form.27
Nested constraining judgments have syntaxΣ$D0 ñ Ξ; they implicitly solve the constraint
D0 ďK. We can do this because for all g1 and g2, the subtyping relationship Σ$ g1 ď g2
is formally equivalent to Σ$ g1 ^ g2 ďK. This technique was inspired by Pearce (2013),
who also puts constraints into this form to solve subtyping problems involving unions,
intersections, and negations. Our constraining rules are deterministic except for C-Var1
and C-Var2. By convention, we always pick C-Var1 in case both can be applied.
The lb and ub functions are defined in Definition 3.5.
Notice how the C-Var1/2 rules solve tricky constraints involving type variables by

moving the rest of a type expression to the other side of the inequality, relying on negation
types and on the properties of Boolean algebras (see Theorem A.9). Moreover, C-Var1/2
look up the existing bounds of the type variable being constrained and perform a recursive
call to ensure that the new bound is consistent with these existing ones. This is required to
ensure we only produce consistent output contexts, and it explains why we have to thread

27 The real implementation is a little smarter and does not always put the entire constraint into DNF to avoid
needless work in common cases. It also uses a mutable cache to reuse previous computations and avoid
exponential blowups (Pierce, 2002).

57

constraining contexts throughout all type inference derivations. As part of this recursive call,
we extend the subtyping assumptions context with the bound being recorded. For example,
C-Var2 recurses with context Σ¨pCď Uq instead of just Σ. This is crucial for two reasons:
First, it is possible that new upper bounds g8 be recorded for U as part of the recursive call.
By adding C to the current lower bounds of U within the recursive call, we make sure that
any such new upper bounds g8 will be checked againstC as part of the resulting lbΣpUq ! g8
constraining call performed when adding bound g8 . Second, it is quite common for type
inference to result in direct type variable bound cycles, such as Uď V, Vď U, which can for
instance arise from constraining VÑ Vď UÑ U. These cycles do not lead to divergence
of type inference thanks to the use of Σ¨pCď Uq instead of Σ in the recursive call, ensuring
that any constraint resulting from a type variable bound cycle will end up being caught by
C-Hyp.
The other constraining rules are fairly straightforward. The “beauty” of the RDNF is that

it essentially makes constraint solving with _ types obvious. In each case, there is always
an obvious choice to make: either (1) the constraint is unsatisfiable (for example withJďK
in C-NotBot, which yields an err); or (2) the constraint needs to unwrap an irrelevant part
of the type to continue (for example with D1 ÑD2 ďU_ #� in C-Cls3, which can be
solved iffD1 ÑD2 ďU itself can be solved, because function types are unrelated to nominal
class tags); or (3) we can solve the constraint in an obvious, unambiguous way (for example
with t G : DG

G P (
u ď t H : D u where H P (in C-Rcd1).

Normalizing types deeply (i.e., not solely on the outermost level) makes the termination
of constraining (Theorem B.9) straightforward. If we did not normalize nested types and for
example merged t G : g1 u ^ t G : g2 u syntactically as t G : g1 ^ g2 u, constraining recursive
types in a way that repetitively merges the same type constructors together could lead
to unbounded numbers of equivalent types being constrained, such as t G : g1 ^ g1 ^ g1 ^

. . . u, failing to terminate by C-Hyp.

ExampleConsider the constraint g“ t G : Nat, H : Nat u ! c“ t G : Int, H :J u. After
adding the pair to the set of hypotheses, C-Assum computes the RDNF dnf0pg^ cq “

t G : Nat, H : Nat u ^ t G : Int u _ t G : Nat, H : Nat u ^ t H :J u. Then this constrained
type is decomposed into two smaller constrained types t G : Nat, H : Nat u ^ t G : Int u
and t G : Nat, H : Nat u ^ t H :J u by C-Or, and each one is solved individually by C-
Rcd1, which requires constraining respectivelyNat! Int andNat!J. The former yields
RDNF #Nat^ #Int, which is solved by C-ClsCls1, and the latter yields RDNFK, which
is solved by C-Bot.

7.4 Correctness of Type Inference

We conclude this section by presenting the main correctness lemmas and theorems of type
inference.

Theorem 7.4 (Soundness of type inference). If the type inference algorithm successfully
yields a type for program %, then % has this type. Formally: if ,‹ % : gñ Ξ and err R Ξ,
then Ξ$‹ % : g.

58

Lemma 7.5 (Sufficiency of Constraining). Successful type constraining ensures subtyping:
if Σ cons. and Σ$ g! cñ Ξ and err R Ξ, then Ξ¨Σ cons. and Ξ¨Σ$ gď c.

Theorem 7.6 (Constraining Termination). For all g, c,D, Σ wf, Σ$ g! cñ Ξ for some
Ξ.

Theorem 7.7 (Completeness of type inference). If a program % can be typed at typef, then
the type inference algorithm derives a type f1 such that f1 ď@ f. Formally: if Ξ$‹ % : g,
then ,‹ % : g1ñ Ξ1 for some Ξ1 and g1 where Ξ1 cons. and @Ξ1. g1 ď@ @Ξ. g.

In the following lemma, which is crucial for proving the above theorem, d refers to
type variable substitutions and Ξ(Ξ1 denotes that Ξ entails Ξ1 (both defined formally in
Appendix C).

Lemma 7.8 (Completeness of Constraining). If there is a substitution d that makes dpg1q

a subtype of dpg2q in some consistent Ξ, then constraining g1 ! g2 succeeds and only
introduces type variable bounds that are entailed by Ξ (modulo d).
Formally and slightly more generally: if Ξ cons. and Ξ$ dpg1q ď dpg2q and Ξ(dpΞ0q,
then Ξ0 $ g1 ! g2 ñ Ξ1 for some Ξ1 so that err R Ξ1 and Ξ(dpΞ1q.

8 Related Work

We now relate the different aspects of MLstruct and _ with previous work.

Intersection type systems. Intersection types for lambda calculus were pioneered byCoppo
andDezani-Ciancaglini (1980);Barendregt et al. (1983), afterwhom the “BCD” type system
is named. BCD has the very powerful “T-^-I” rule, stating: if Γ$ C : g1 and Γ$ C : g2, then
Γ$ C : g1 ^ g2. Such systems have the interesting property that typeability coincides with
strong normalization (Ghilezan, 1996), making type inference undecidable. Thankfully,
we do not need something as powerful as T-^-I — instead, we introduce intersections in
less general ways (i.e., through T-Obj), and we retain decidability of type inference. Most
intersection type systems, including MLstruct and _ , do admit the following standard
BCD subtyping rules given by Barendregt et al.: (1) g1 ^ g2 ď g1; (2) g1 ^ g2 ď g2; and (3)
if g1 ď g2 and g1 ď g3, then g1 ď g2 ^ g3. Some systems use intersection types to encode
a form of overloading (Pierce, 1991). However, Smith (1991) showed that ML-style type
inference with such a general form of overloading and subtyping is undecidable (more
specifically, finding whether inferred sets of constraints are satisfiable is) and proposed
constructor overloading, a restricted form of overloading with more tractable properties,
sufficient to encode many common functions, such as addition on different primitive types
as well as vectors of those types. Constructor overloading is eminently compatible with
MLstruct and MLscript. Another design decision for intersection systems is whether and
how this connective should distribute over function types. BCD subtyping states28 pgÑ

28 This rule together with T-^-I was shown unsound in the presence of imperative features by Davies and Pfenning
(2000).

59

c1q ^ pgÑ c2q ď gÑpc1 ^ c2q and Barbanera et al. (1995) also propose pg1 Ñ cq ^

pg2 Ñ cq ď pg1 _ g2qÑ c. Together, these correspond to the minimal relevant logic B+
(Dezani-Ciancaglini et al., 1998). Approaches like that of Pottier (19981) use a greatest
lower bound connective [that resembles type intersection ^ but admits a more liberal
rule that generalizes the previous two: pg1 Ñ c1q ^ pg2 Ñ c2q ď pg1 _ g2qÑ pc1 ^ c2q,
which we will refer to as (full) function distributivity. However, notice that in a system
with primitives, full function distributivity is incompatible with T-^-I and thus precludes
intersection-based overloading.29

Union and intersection types in programming.Union types are almost as old as inter-
section types, first introduced by MacQueen et al. (1986),30 and both have a vast (and
largely overlapping) research literature, with popular applications such as refinement types
(Freeman and Pfenning, 1991). These types have seen a recent resurgence, gaining a lot of
traction both in academia (Muehlboeck and Tate, 2018; Huang andOliveira, 2021; Castagna
et al., 2022; Rehman et al., 2022; Dunfield, 2012; Binder et al., 2022; Alpuim et al., 2017)
and in industry,31 with several industry-grade programming languages like TypeScript,
Flow, and Scala 3 supporting them, in addition to a myriad of lesser-known research lan-
guages. It is worth noting that many modern type systems with intersection types do not
support T-^-I in its full generality. For example, in TypeScript, a term can only assume an
overloaded intersection type if that term is a function with a list of pre-declared type sig-
natures, and in Scala intersections can only be introduced through inheritance. Unions and
intersections have also found uses in program analysis. Palsberg and Pavlopoulou (1998)
showed that polyvariant analysis can be related formally to a subtyping system with union,
intersection, and recursive types. Unions model sets of abstract values and intersections
model each usage of an abstract value. Their system conspicuously does not feature poly-
morphism, but it is well-known that there is a correspondence between intersection types
and polymorphism — a polymorphic type can be viewed as an infinite intersection of all
its possible instantiations (Aiken and Wimmers, 1993). Smith and Wang (2000) propose
inferring polymorphic types, rather than intersections, for function definitions, which is
more flexible and composable as it can process unrelated definitions separately, whereas
the approach based solely on intersections is a global process. We believe that having both
intersections and polymorphism, as in MLscript, represents the best of both worlds.

Type inference for unions and intersections.None of the previous approaches we know
have proposed a satisfactory ML-style type inference algorithm for full union and intersec-
tion types. By satisfactory, we mean that the algorithm should infer principal polymorphic
types without backtracking. Earlier approaches used heavily-restricted forms of unions and

29 For instance, term id“ _G. G has both types IntÑ Int and BoolÑBool so by T-^-I it would also have
type pIntÑ Intq ^ pBoolÑBoolq. But by function distributivity and subsumption, this would allow typing
id as pInt_BoolqÑ pInt^Boolq and thus typing id 0 (which reduces to 0) as Int^Bool, breaking type
preservation.

30 Funnily, MacQueen et al. reported at the time that “type-checking difficulties seem to make intersection and
union awkward in practice; moreover it is not clear if there are any potential benefits from their use,” clearly
not anticipating their enduring popularity.

31 The first author of this paper has received emails from various people reimplementing Simple-sub (Parreaux,
2020) and wanting to know how to add support for first-class union and intersection types, showing the enduring
interest in these.

60

intersections. For instance, Aiken and Wimmers (1993); Aiken et al. (1994) impose very
strict restrictions on negative unions (they must be disjoint) and on positive intersections
(theymust not have free variables andmust be “upward closed”). Trifonov and Smith (1996)
go further and restrict intersections to negative or input positions (those appearing on the
right of ď constraints) and unions types to positive or output positions (those appearing on
the left). Pottier (19981); Dolan (2017); Parreaux (2020); Binder et al. (2022) all follow
the same idea. In these systems, unions and intersections are not first-class citizens: they
cannot be used freely in type annotations. Frisch et al. (2008) infer set-theoretic types (see
semantic subtyping below) for a higher-order language with overloading but do not infer
polymorphic types. Castagna et al. (2016) propose a complete polymorphic set-theoretic
type inference system, but their types are not principal so their algorithm returns several
solutions, which leads to the need for backtracking. It seems this should have severe scal-
ability issues, as the number of possible types for an expression would commonly grow
exponentially.32 Petrucciani (2019) describes ways to reduce backtracking, but recognizes
it as fundamentally “unavoidable.”

Negation or complement types.Negation types have not been nearly as ubiquitous as
unions and intersection in mainstream programming language practice and theory, except
in the field of semantic subtyping (see below). Nevertheless, our use of negation types to
make progress while solving constraints is not new—Aiken andWimmers (1993) were the
first to propose using complement types in such a way. However, their complement types
are less precise than our negation types,33 and in their system U^ g1 ď g2 and Uď g2 _ g1
are not always equivalent.

Recursive types.Recursive types in the style of MLstruct, where a recursive type is equiva-
lent to its unfolding (a.k.a. equirecursive types, not to be confused with iso-recursive types),
have a long history in programming languages research (MacQueen et al., 1986; Amadio
and Cardelli, 1993; Abadi and Fiore, 1996; Pierce, 2002; Hosoya et al., 2005; Appel et al.,
2007), dating as far back as Morris’ thesis, where he conjectured their use under the name
of cyclic types (Morris, 1969, pp.122–124). Recursive types with subtyping were devel-
oped in the foundational work of Amadio and Cardelli (1993) and Brandt and Henglein
(1998) gave a coinductive axiomatization of such recursive types. Jim and Palsberg (1999)
described a co-inductive formalization of recursive types as arbitrary infinite trees which is
more general than approaches like ours, which only allows reasoning about regular types.
Nevertheless, the algorithms they gave were unsurprisingly restricted to regular types.
Gapeyev et al. (2002); Pierce (2002) reconciled the representation as infinite regular trees
with the representation as ` types, and described the standard algorithms to decide the
corresponding subtyping relationship. An important aspect of practical recursive type algo-
rithms is that one needs to maintain the cache of discovered subtyping relationships across
recursive calls to avoid exponential blowup (Gapeyev et al., 2002). Our implementation of
MLstruct follows the same principle, as a naive implementation of _ would lead to exactly

32 Hindley-Milner type inference and derived systems like MLsub and MLstruct can also infer types that grow
exponentially in some situations, but these mostly occur in pathological cases, and not in common human-
written programs.

33 For example, in their system pgÑ cq is the type of all values that are not functions, regardless of g and c.

61

the same blowup. Also refer to Section 3.3.2 for more parallels between the handling of
recursive types in _ and previous work.

Early approaches to subtype inference.The problem of type inference in the presence of
subtyping was kick-started in the 1980s (Mitchell, 1984; Stansifer, 1988; Fuh and Mishra,
1989) and studied extensively in the 1990s (Fuh and Mishra, 1990; Curtis, 1990; Smith,
1991; Aiken andWimmers, 1993; Kozen et al., 1994; Palsberg et al., 1997; Pottier, 19980,b;
Jim and Palsberg, 1999), mostly through the lens of constraint solving on top of Hindley-
Milner-style type inference (Hindley, 1969; Milner, 1978; Damas andMilner, 1982). These
approaches often involved combinations of record, intersection, union, and recursive types,
but as far as we know none proposed an effective (i.e., without backtracking) principal type
inference technique for a system with all of these combined. Odersky et al. (1999) gave
them a unified account by proposing a general framework called HM(X), where the ‘X’
stands for a constraint solver to plug into their generic system.While these approaches often
claimed a form of principal type inference (also called minimality34), the constrained types
they inferred were often large and unwieldy. Beyond inferring constraint sets and ensuring
their satisfiability, the related problem of simplification to produce more readable and
efficiently-processable types was also studied, often by leveraging the connection between
regular type trees and finite-state automata (Eifrig et al., 1995; Aiken, 1996; Pottier, 1996,
1998b, 2001; Simonet, 2003). A major stumbling block with all of these approaches was
the problem of non-structural subtyping entailment35 (NSSE), which is to decide whether
a given type scheme, which consists in a polymorphic type along with its constraints on
type variables, subsumes another. Solving this issue is of central importance because it is
needed to check implementations against user-provided interfaces and type signatures, and
because it provides a foundation fromwhich to derive sound type simplification techniques.
However, to this day NSSE remains an open problem, and it is not known whether it is even
decidable (Dolan, 2017). Due to these difficulties, interest in this very powerful form of
subtyping all but faded in the subsequent decade, in what we interpret as a minor “subtype
inference winter.” Indeed, many subsequent approaches were developed in reaction to this
complexity with the aim of being simpler to reason about (e.g., polymorphic variants —
see below).

Algebraic subtyping.Approaches like that of Pottier (19981) used a lattice-theoretic con-
struction of types inspired by the connection between types and term automata. Meet[and
join \ operators resembling intersection and union types are used to compactly represent-
ing conjunctions of constraints, but these are not first-class types, in that they are restricted
to appearing respectively in negative and positive positions only. Full function distributivity
(defined above, in intersection type systems) holds in these approaches due to the lattice
structure. Pottier’s system still suffered from a lack of complete entailment algorithm due

34 Some authors like Aiken et al. (1994) make a distinction between a concept of principality which is purely
syntactic (relating types by a substitution instance relationship) and minimality which involve a semantic
interpretation of types.

35 “Non-structural” here is by opposition to so-called structural subtyping, which is a more tractable but heavily
restricted form of subtyping that only relates type constructors of identical arities (Palsberg et al., 1997)
(precluding, e.g., t G : g uďJ).

62

to NSSE. Dolan (2017); Dolan andMycroft (2017) later built upon that foundation and pro-
posed an algebraic construction of types which allowed breaking free of NSSE and finally
enjoying a sound and complete entailment algorithm. Two magical ingredients allowed this
to be possible: 1. the definition of “extensible” type semantics based on constructing types
as a distributive lattice of coproducts; and 2. a different treatment of type variables than
in previous work, representing them as part of the lattice of types and not as unknowns
ranging over a set of ground types. In this paper, we in turn build on these foundations,
although we only retain the latter innovation, somehow forgoing the “extensible” construc-
tion of types.36 Together with our generalization of the subtyping lattice to a Boolean one
by adding negations and with the additional structure we impose on types (such as reducing
unions of unrelated records to J), this turns out to be sufficient for allowing principal type
inference and decidable entailment (though we only sketched the latter in this paper for
lack of space). Ingredient 1 allowed Dolan to show the soundness of his system in a very
straightforward way, relying on the property (called Proposition 12 by Dolan (2017)) that
any constraint of the form

Ź

8 g8 ď
Ž

8 c8 holds iff there is a : such that g: ď c: when all
g8 have distinct constructors and all c8 similarly. By contrast, we allow some intersections
of unrelated type constructors to reduce to K and some unions of them to J, and we are
thus not “extensible” in Dolan’s terminology. This is actually desirable in the context of
pattern matching, where we want to eliminate impossible cases by making the intersections
of unrelated class types empty. It is also needed in order to remove the ambiguity from
constraints like pg1 Ñ g2q ^ t G : c u ď pg11 Ñ g12q _ t G : c1 u which in our system reduces
to pg1 Ñ g2q ^ t G : c u ďJ. The present paper also takes heavy inspiration from our earlier
operationally-focused take on Dolan’s type inference algorithm (Parreaux, 2020). While
Dolan shirks from explicitly representing constraints, which he prefers to inline inside types
on the fly as [and \ types, we use an approach closer to the original constrained-types
formulation followed by Pottier. Besides being much easier to implement, our approach has
other concrete advantages, such as the ability to deal with invariance seamlessly (class
C[A]: {f: A Ñ A}, which is invariant in A, is valid in MLstruct) and a simpler treatment of
cyclic type variable constraints.

Semantic subtyping and set-theoretic types.The semantic subtyping approaches (Frisch
et al., 2002, 2008; Castagna et al., 2016; Petrucciani, 2019; Castagna et al., 2022) view
types as sets of values which inhabit them and define the subtyping relationship as set
inclusion, giving set-based meaning to union, intersection, and negation (or complement)
connectives. This is by contrast to algebraic subtyping, which may admit subtyping rules
that violate the set-theoretic interpretation, such as function distributivity, to ensure that
the subtyping lattice has desirable algebraic properties. For more detailed discussions
contrasting semantic subtyping with other approaches, we refer the reader to Parreaux
(2020) and Muehlboeck and Tate (2018).

Occurrence and flow typing.Occurrence typing was originally introduced by Tobin-
Hochstadt and Felleisen (2008) for Typed Scheme, and was later incorporated into
TypeScript and Flow, where it is known as flow typing. It allows the types of variables

36 As discussed in prior work (Parreaux, 2020), we believe the argument for Dolan’s notion of extensibility to be
rather weak.

63

to be locally refined based on path conditions encountered in the program. Negation types
are pervasive in this context, though they are often only used at the meta-theoretic level.
Instance-matching in MLstruct can be understood as a primitive form of occurrence typ-
ing in that it refines the types of scrutinee variables in case expressions, similarly to the
approach of Rehman et al. (2022). Occurrence typing was also recently extended to the
semantic subtyping context (Castagna et al., 2021, 2022), where negation types are first-
class types. The latter work proposes a powerful type inference approach that can infer
overloaded function signatures as intersections types; however, this approach does not sup-
port polymorphism and likely does not admit principal types. The idea of simplifying the
definition of core object-oriented type languages by using class tags (or brands) in addition
to structural typing is not new and was notably developed by Jones et al. (2015); Lee et al.
(2015).

Polymorphic records/variants and row polymorphism.Polymorphic records are
structurally-typed products whose types admit the usual width and depth subtyping rela-
tionships. Their dual, polymorphic variants, are another useful language feature (Garrigue,
1998, 2001), used to encode structural sum types. In their simplest expression, polymor-
phic records (resp. variants) do not support ad-hoc field extension (resp. default match
cases). Previous approaches have thus extended polymorphic records and variants with
row polymorphism, which uses a new kind of variables, named “row” variables, to record
the presence and absence of fields (resp. cases) in a given type. Some approaches, like
OCaml’s polymorphic variants and object types, use row polymorphism exclusively to sim-
ulate subtype polymorphism, in order to avoid subtyping in the wider languages. However,
row polymorphism and subtyping actually complement each other well, and neither is as
flexible without the other (Pottier, 19981, Chapter 14.7). There are also techniques for sup-
porting variant and record extensibility through union, intersection, and negation types, as
shown by Castagna et al. (2016), who also explain that their system resolves long-standing
limitations with OCaml-style row polymorphism. In our system, we solve many (though not
all) of these limitations, but we also support principal type inference. It is worth pointing out
that OCaml’s polymorphic variants (Garrigue, 2001) and related systems based on kinds
(Ohori, 1995) lack support for polymorphic extension (White, 2015; Gaster and Jones,
1996), whereas MLstruct does (see mapSome in the introduction). As a simpler example,
def foo x dflt els = case x of { Apple Ñ dflt | _ Ñ els x } would be assigned a
too restrictive type in OCaml and as a consequence foo (Banana {}) 0 (fun z Ñ case z

of { Banana Ñ 1 }) would not type check (OCaml would complains that the function
argument does not handle Apple). A more expressive row-polymorphic system exposing
row variables to users would support this use case (Rémy, 1994; Gaster and Jones, 1996),
but as explained in the introduction, even these have limitations compared to our subtyped
unions.

9 Conclusion and Future Work

In this paper, we developed a general theory of Boolean-algebraic subtyping calledSpT , Rq
and showed how to prove its soundness, a particularly challenging endeavour given the great

64

flexibility of the corresponding subtyping rules. We instantiated this theory to SÑtGu#� ,
the subtyping theory of _ , the core language a new research language called MLstruct.
We saw that with MLstruct, polymorphic type inference for first-class union, intersection,
and negation types is possible, enabling features such as class-instance matching patterns
yielding very precise types, comparable in expressiveness to row-polymorphic variants.
We also saw that this type inference approach relies on two crucial aspects of MLstruct’s
type system, only made possible by our novel Boolean-algebraic approach to subtyping: 1.
using the full power of Boolean algebras to normalize types and massage constraints into
shapes amenable to constraint solving without backtracking; and 2. approximating some
unions and intersections, most notably unions of records and intersections of functions, in
a way that does not naturally follow from a typical set-theoretic interpretation of subtyping,
in order to remove potential ambiguities during constraint solving without threatening the
soundness of the system.

Future Work. In the future, we intend to explore more advanced forms of polymorphism
present in MLscript, such as first-class and ad-hoc polymorphism, as well as how to
remove some of the limitations of regular types, which currently prevent fully supporting
object-oriented programming idioms.

Acknowledgements.We would like to sincerely thank the anonymous reviewers as well as
François Pottier, Didier Rémy, Alan Mycroft, Bruno C. d. S. Oliveira, Andong Fan, and
Anto Chen for their constructive and helpful comments on earlier versions of this paper.
We are particularly grateful to Stephen Dolan, who gave us some invaluable feedback and
mathematical intuitions on the development of this new algebraic subtyping system.

Conflicts of Interest

None.

References

Martin Abadi andMarcelo P. Fiore. 1996. Syntactic considerations on recursive types. InProceedings
11th Annual IEEE Symposium on Logic in Computer Science. IEEE, 242–252.

Alexander Aiken. 1996. Making set-constraint program analyses scale. In In CP96 Workshop on Set
Constraints.

Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints and Type Inference. In
Proceedings of the Conference on Functional Programming Languages and Computer Architecture
(Copenhagen, Denmark) (FPCA ’93). Association for ComputingMachinery, NewYork, NY,USA,
31–41. https://doi.org/10.1145/165180.165188

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft Typing with Conditional
Types. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Portland, Oregon, USA) (POPL ’94). Association for Computing
Machinery, New York, NY, USA, 163–173. https://doi.org/10.1145/174675.177847

João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In
Programming Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1–28.

https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/174675.177847

65

Roberto M. Amadio and Luca Cardelli. 1993. Subtyping Recursive Types. ACM Trans. Program.
Lang. Syst. 15, 4 (Sept. 1993), 575–631. https://doi.org/10.1145/155183.155231

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A
Very Modal Model of a Modern, Major, General Type System. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France)
(POPL ’07). Association for Computing Machinery, New York, NY, USA, 109–122. https:
//doi.org/10.1145/1190216.1190235

F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. 1995. Intersection and Union Types: Syntax
and Semantics. Information and Computation 119, 2 (1995), 202–230. https://doi.org/10.
1006/inco.1995.1086

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic 48, 4 (1983), 931–940.
https://doi.org/10.2307/2273659

David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann. 2022. Structural Refinement Types.
In Proceedings of the 7th ACM SIGPLAN International Workshop on Type-Driven Development
(TyDe ’22). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3546196.3550163

Michael Brandt and Fritz Henglein. 1998. Coinductive axiomatization of recursive type equality and
subtyping. Fundamenta Informaticae 33, 4 (1998), 309–338.

Giuseppe Castagna. 2012. Object-Oriented Programming A Unified Foundation. Springer Science
& Business Media.

Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. 2021. Revisiting Occurrence
Typing. arXiv:1907.05590 [cs.PL]

Giuseppe Castagna, Mickaël Laurent, Kim Nguyundefinedn, and Matthew Lutze. 2022. On Type-
Cases, Union Elimination, and Occurrence Typing. Proc. ACM Program. Lang. 6, POPL, Article
13 (jan 2022), 31 pages. https://doi.org/10.1145/3498674

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-theoretic types for poly-
morphic variants. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming (ICFP 2016). Association for Computing Machinery, Nara, Japan,
378–391. https://doi.org/10.1145/2951913.2951928

M. Coppo and M. Dezani-Ciancaglini. 1980. An extension of the basic functionality theory for the
_-calculus. Notre Dame Journal of Formal Logic 21, 4 (1980), 685 – 693. https://doi.org/
10.1305/ndjfl/1093883253

Pavel Curtis. 1990. Constrained Qualification in Polymorphic Type Analysis. Ph.D. Dissertation.
USA. UMI Order No. GAX90-26980.

Bruno C. d. S. Oliveira, Cui Shaobo, and Baber Rehman. 2020. The Duality of Subtyping. In 34th
European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29:1–29:29. https://doi.org/
10.4230/LIPIcs.ECOOP.2020.29

Luis Damas and RobinMilner. 1982. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL
’82). Association for Computing Machinery, Albuquerque, New Mexico, 207–212. https:
//doi.org/10.1145/582153.582176

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00). Association for Computing Machinery, New York, NY, USA, 198–208. https:
//doi.org/10.1145/351240.351259

Van Bakel Dezani-Ciancaglini, S. Van Bakel, M. Dezani-ciancaglini, and Y. Motohama. 1998. The
Minimal Relevant Logic and the Call-by-Value Lambda Calculus. Technical Report.

Stephen Dolan. 2017. Algebraic subtyping. Ph.D. Dissertation.
StephenDolan andAlanMycroft. 2017. Polymorphism, subtyping, and type inference inMLsub. ACM

SIGPLAN Notices 52, 1 (Jan. 2017), 60–72. https://doi.org/10.1145/3093333.3009882

https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.2307/2273659
https://doi.org/10.1145/3546196.3550163
https://doi.org/10.1145/3546196.3550163
https://doi.org/10.1145/3498674
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/3093333.3009882

66

Jana Dunfield. 2012. Elaborating Intersection and Union Types. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming (Copenhagen, Denmark) (ICFP
’12). Association for Computing Machinery, New York, NY, USA, 17–28. https://doi.org/
10.1145/2364527.2364534

Jonathan Eifrig, Scott Smith, and Valery Trifonov. 1995. Sound Polymorphic Type Inference for
Objects. InProceedings of the Tenth Annual Conference onObject-Oriented Programming Systems,
Languages, and Applications (Austin, Texas, USA) (OOPSLA ’95). Association for Computing
Machinery, New York, NY, USA, 169–184. https://doi.org/10.1145/217838.217858

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation (PLDI ’91).
ACM,NewYork, NY,USA, 268–277. https://doi.org/10.1145/113445.113468 event-place:
Toronto, Ontario, Canada.

A. Frisch, G. Castagna, and V. Benzaken. 2002. Semantic subtyping. In Proceedings 17th Annual
IEEE Symposium on Logic in Computer Science. 137–146. https://doi.org/10.1109/LICS.
2002.1029823

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing
Set-Theoretically with Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article
19 (Sept. 2008), 64 pages. https://doi.org/10.1145/1391289.1391293

You-Chin Fuh and PrateekMishra. 1989. Polymorphic subtype inference: Closing the theory-practice
gap. In TAPSOFT ’89, J. Díaz and F. Orejas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
167–183.

You-Chin Fuh and Prateek Mishra. 1990. Type inference with subtypes. Theoretical Computer
Science 73, 2 (1990), 155–175. https://doi.org/10.1016/0304-3975(90)90144-7

Vladimir Gapeyev, Michael Y Levin, and Benjamin C Pierce. 2002. Recursive subtyping revealed.
Journal of Functional Programming 12, 6 (2002), 511–548.

Jacques Garrigue. 1998. Programming with polymorphic variants. In ML Workshop, Vol. 13.
Baltimore, 7.

Jacques Garrigue. 2001. Simple Type Inference for Structural Polymorphism.. In APLAS. 329–343.
Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records

and Variants.
Silvia Ghilezan. 1996. Strong Normalization and Typability with Intersection Types. Notre Dame

Journal of Formal Logic 37, 1 (1996), 44 – 52. https://doi.org/10.1305/ndjfl/1040067315
Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer.

Math. Soc. 146 (1969), 29–60. https://doi.org/10.2307/1995158 Publisher: American
Mathematical Society.

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2005. Regular Expression Types for
XML. ACM Trans. Program. Lang. Syst. 27, 1 (Jan. 2005), 46–90. https://doi.org/10.1145/
1053468.1053470

Xuejing Huang and Bruno C. d. S. Oliveira. 2021. Distributing Intersection and Union Types with
Splits and Duality (Functional Pearl). Proc. ACM Program. Lang. 5, ICFP, Article 89 (aug 2021),
24 pages. https://doi.org/10.1145/3473594

Edward V. Huntington. 1904. Sets of independent postulates for the algebra of logic. Trans. Amer.
Math. Soc. 5, 3 (1904), 288–309. https://doi.org/10.1090/s0002-9947-1904-1500675-4

Trevor Jim and Jens Palsberg. 1999. Type Inference in Systems of Recursive Types With Subtyping.
Timothy Jones, Michael Homer, and James Noble. 2015. Brand Objects for Nominal Typing. In 29th

European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 37), John Tang Boyland (Ed.). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 198–221. https://doi.org/10.4230/
LIPIcs.ECOOP.2015.198

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. 1994. Efficient inference of partial types.
J. Comput. System Sci. 49, 2 (1994), 306–324. https://doi.org/10.1016/S0022-0000(05)
80051-0

https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/217838.217858
https://doi.org/10.1145/113445.113468
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1016/0304-3975(90)90144-7
https://doi.org/10.1305/ndjfl/1040067315
https://doi.org/10.2307/1995158
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/3473594
https://doi.org/10.1090/s0002-9947-1904-1500675-4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.1016/S0022-0000(05)80051-0
https://doi.org/10.1016/S0022-0000(05)80051-0

67

Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin. 2015. A Theory of Tagged
Objects. In 29th European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang Boyland (Ed.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 174–197. https://doi.org/
10.4230/LIPIcs.ECOOP.2015.174

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1986. An ideal model for recursive poly-
morphic types. Information and Control 71, 1 (1986), 95–130. https://doi.org/10.1016/
S0019-9958(86)80019-5

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3
(Dec. 1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4

John C. Mitchell. 1984. Coercion and Type Inference. In Proceedings of the 11th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Salt Lake City, Utah, USA)
(POPL ’84). Association for Computing Machinery, New York, NY, USA, 175–185. https:
//doi.org/10.1145/800017.800529

James HiramMorris. 1969. Lambda-calculus models of programming languages. Ph.D. Dissertation.
Massachusetts Institute of Technology.

Fabian Muehlboeck and Ross Tate. 2018. Empowering Union and Intersection Types with Integrated
Subtyping. Proc. ACM Program. Lang. 2, OOPSLA, Article 112 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276482

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An
overview of the Scala programming language. (2004).

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type inference with constrained types.
Theory and Practice of Object Systems 5, 1 (1999), 35–55.

Atsushi Ohori. 1995. A Polymorphic Record Calculus and Its Compilation. ACM Trans. Program.
Lang. Syst. 17, 6 (nov 1995), 844–895. https://doi.org/10.1145/218570.218572

Jens Palsberg and Christina Pavlopoulou. 1998. From Polyvariant Flow Information to Intersection
and Union Types. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Diego, California, USA) (POPL ’98). Association for Computing
Machinery, New York, NY, USA, 197–208. https://doi.org/10.1145/268946.268963

Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. 1997. Type inference with non-structural sub-
typing. Formal Aspects of Computing 9, 1 (Jan. 1997), 49–67. https://doi.org/10.1007/
BF01212524

Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type Inference with
Subtyping Made Easy (Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 124 (Aug.
2020), 28 pages. https://doi.org/10.1145/3409006

Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau. 2024. When
Subtyping Constraints Liberate: A Novel Type Inference Approach for First-Class Polymorphism.
Proc. ACM Program. Lang. 8, POPL, Article 48 (jan 2024), 33 pages. https://doi.org/10.
1145/3632890

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type Inference in a Boolean Algebra
of Structural Types (Extended Version). Technical Report. The Hong Kong University of Science
and Technology. https://lptk.github.io/mlscript-paper

Lionel Parreaux, Luyu Cheng, Tony Chau, Ishan Bhanuka, Andong Fan, Malcolm Law, Ali Mahzoun,
and Elise Rouillé. 2022. MLstruct: Principal Type Inference in a Boolean Algebra of Structural
Types (Artifact). https://doi.org/10.5281/zenodo.7121838

David J. Pearce. 2013. Sound and Complete Flow Typing with Unions, Intersections and Negations.
In Verification, Model Checking, and Abstract Interpretation (Lecture Notes in Computer Science),
Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.). Springer, Berlin, Heidelberg,
335–354. https://doi.org/10.1007/978-3-642-35873-9_21

Tommaso Petrucciani. 2019. Polymorphic set-theoretic types for functional languages. Ph.D.
Dissertation. Università di Genova; Université Sorbonne Paris Cité – Université Paris Diderot.

https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/800017.800529
https://doi.org/10.1145/800017.800529
https://doi.org/10.1145/3276482
https://doi.org/10.1145/3276482
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/268946.268963
https://doi.org/10.1007/BF01212524
https://doi.org/10.1007/BF01212524
https://doi.org/10.1145/3409006
https://doi.org/10.1145/3632890
https://doi.org/10.1145/3632890
https://lptk.github.io/mlscript-paper
https://doi.org/10.5281/zenodo.7121838
https://doi.org/10.1007/978-3-642-35873-9_21

68

Benjamin C Pierce. 1991. Programming with intersection types and bounded polymorphism. Ph.D.
Dissertation. Citeseer.

Benjamin C. Pierce. 2002. Types and programming languages. MIT press.
François Pottier. 1996. Simplifying SubtypingConstraints. InProceedings of the First ACMSIGPLAN

International Conference on Functional Programming (Philadelphia, Pennsylvania, USA) (ICFP
’96). Association for Computing Machinery, New York, NY, USA, 122–133. https://doi.org/
10.1145/232627.232642

François Pottier. 1998a. A Framework for Type Inference with Subtyping. In Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming (Baltimore, Maryland,
USA) (ICFP ’98). Association for ComputingMachinery, NewYork, NY, USA, 228–238. https:
//doi.org/10.1145/289423.289448

François Pottier. 1998b. Type Inference in the Presence of Subtyping: from Theory to Practice.
Research Report RR-3483. INRIA. https://hal.inria.fr/inria-00073205

François Pottier. 2001. Simplifying Subtyping Constraints: A Theory. Information and Computation
170, 2 (2001), 153–183. https://doi.org/10.1006/inco.2001.2963

François Pottier. 2003. A Constraint-Based Presentation and Generalization of Rows. In IEEE
Symposium on Logic In Computer Science (LICS). Ottawa, Canada, 331–340. http://cambium.
inria.fr/~fpottier/publis/fpottier-lics03.pdf

Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. 2022. Union Types
with Disjoint Switches. In 36th European Conference on Object-Oriented Programming (ECOOP
2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan
Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 25:1–25:31.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25

Didier Rémy. 1994. Type Inference for Records in Natural Extension of ML. MIT Press, Cambridge,
MA, USA, 67–95.

John C. Reynolds. 1997. Design of the Programming Language Forsythe. Birkhäuser Boston, Boston,
MA, 173–233. https://doi.org/10.1007/978-1-4612-4118-8_9

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits:
Composable units of behaviour. In European Conference on Object-Oriented Programming.
Springer, 248–274.

Vincent Simonet. 2003. Type Inference with Structural Subtyping: A Faithful Formalization of an
Efficient Constraint Solver. InProgramming Languages and Systems, Atsushi Ohori (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 283–302.

Geoffrey Seward Smith. 1991. Polymorphic type inference for languages with overloading and
subtyping. Ph.D. Dissertation. Cornell University.

Scott F. Smith and Tiejun Wang. 2000. Polyvariant Flow Analysis with Constrained Types. In
Programming Languages and Systems, Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 382–396.

R. Stansifer. 1988. Type Inference with Subtypes. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 88–97. https:
//doi.org/10.1145/73560.73568

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed
Scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (San Francisco, California, USA) (POPL ’08). Association for
Computing Machinery, New York, NY, USA, 395–406. https://doi.org/10.1145/1328438.
1328486

Valery Trifonov and Scott Smith. 1996. Subtyping constrained types. In Static Analysis, Radhia
Cousot and David A. Schmidt (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 349–365.

Leo White. 2015. Row polymorphism. https://www.cl.cam.ac.uk/teaching/1415/L28/rows.
pdf

https://doi.org/10.1145/232627.232642
https://doi.org/10.1145/232627.232642
https://doi.org/10.1145/289423.289448
https://doi.org/10.1145/289423.289448
https://hal.inria.fr/inria-00073205
https://doi.org/10.1006/inco.2001.2963
http://cambium.inria.fr/~fpottier/publis/fpottier-lics03.pdf
http://cambium.inria.fr/~fpottier/publis/fpottier-lics03.pdf
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/73560.73568
https://doi.org/10.1145/73560.73568
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://www.cl.cam.ac.uk/teaching/1415/L28/rows.pdf
https://www.cl.cam.ac.uk/teaching/1415/L28/rows.pdf

69

Appendix

A Proofs and Auxiliary Definitions on Subtyping

A.1 Subtyping Derivation Shapes

Proof [Lemma 3.10] Consider a derivation � whose last applied rule is S-Assum. This
rule application introduces a hypothesis B� into the context of its premise derivation �1.
In �1, B� is kept unusable (because of the B) until applications of rules S-FunDepth or
S-RcdDepth, within the premise derivations of which� may be used, through applications
��
8
of the S-Hyp rule Therefore, � is never used at the bottom level of �1. Moreover, each

��
8

will have a premise of the form Σ¨�¨Σ8 . So we can substitute all ��
8

in � with a
weakened form (Lemma A.23) of the derivation � itself. After this substitution, the main
application of S-Assum becomes useless (the � it introduces is no longer used in any
subderivation), and it can therefore be removed, leaving the updated derivation �1.
It is easy to show that we can perform this S-Assum-elimination on bottom-level
subderivations of any given derivation until that derivation becomes unassuming. �

Proof [Lemma 3.12] By induction on the number of bottom-level applications of T-Subs.
The result is immediate for derivations with zero or one bottom-level applications of T-
Subs.
For derivations with =ě 2 bottom-level applications of T-Subs, we first observe that the last
two typing rules applied must be T-Subs (indeed, if the last rule applied was not T-Subs,
then by definition the derivationwould have no bottom-level applications of T-Subs; and the
same reasoning goes for the second last application). The premises of the last application
of T-Subs are C : g1 and g1 ď g for some g1, where the subderivation for C : g1 has =´ 1
bottom-level applications of T-Subs. The premises of the second last application of T-Subs
are C : g2 and g2 ď g1 for some g2, where the subderivation for C : g2 has =´ 2 bottom-
level applications of T-Subs. The subderivations of g2 ď g1 and g1 ď g can be merged by
S-Trans into a derivations for g2 ď g. We can then apply T-Subs to the subderivation for
C : g2 and the new derivation for g2 ď g to obtain a new derivation for C : gwith =´ 1 bottom-
level applications of T-Subs. By IH, such a derivation can be rewritten to an equivalent
subsumption-normalized derivation. �

A.2 Bounds Context Cleanup

Bounds context cleanup removes occurrences of a type variable from the top level of its
bounds, resulting in an equivalent guarded constraining context.

70

Definition A.1 (Bounds context cleanup). The constraining context cleanup function is
defined as follows:

cleanuppnq “ n
cleanuppΞ¨pUď gqq “ cleanuppΞq¨cleanup1pUď cdnpgqq
cleanuppΞ¨pgď Uqq “ cleanuppΞq¨cleanup1pdcnpgq ď Uq

cleanup1pUď
Ź

8 g
dn
8
q “ pUď

Ź

9 c
dn
9
q where cleanup2pUď gdn

8
q
8
“ pUď cdn

9
q
9

cleanup1p
Ž

8 g
cn
8
ď Uq “ p

Ž

9 c
cn
9
ď Uq where cleanup2pgcn

8
ď Uq

8
“ pccn

9
ď Uq

9

cleanup2pUď
Ž

8 g
n
8
q “

#

n when U P t gn
8

8
u

pUď
Ž

8 | gn
8
‰ U g

n
8
q otherwise

cleanup2p
Ź

8 g
n
8
ď Uq “

#

n when U P t gn
8

8
u

p
Ź

8 | gn
8
‰ U g

n
8
ď Uq otherwise

Lemma A.2 (Equivalence of constraining context cleanup). � () cleanupp�q
� P Ξ

for all
Ξ.

Lemma A.3 (Guardedness of constraining context cleanup). cleanuppΞq guard. for all Ξ.

Lemma A.4 (Equivalence of bounds under constraining context cleanup). U^ ubΞpUq _
lbΞpUq ” U^ ubcleanuppΞqpUq _ lbcleanuppΞqpUq for all Ξ and U.

A.3 Some Useful Subtyping Relationships

Lemma A.5 (Identity Element).
Identity
Σ$J˛ ^˛ gď˛ c

Σ$ gď˛ c

Proof

S-Trans
S-AndOr2˛

S-ToB˛
gď˛ J˛

S-Refl
gď˛ g

gď˛ J˛ ^˛ g J˛ ^˛ gď˛ c

gď˛ c

�

Theorem A.6 (Duality of Extrema). J˛ ” K˛

Proof

Case ¨. We have KďJ by S-ToB¨. For Jď K: We have JďK_ K by S-Compl¨,
which implies Jď K by Lemma A.5 .

71

Case . We haveKď J by S-ToB . For JďK: We haveJ^ JďK by S-Compl ,
which implies JďK by Lemma A.5¨.

�

Lemma A.7 (Covariance of unions and intersections).
S-Covariance
Σ$ g1 ď

˛ g2 Σ$ g3 ď
˛ g4

Σ$ g1 _
˛ g2 ď

˛ g3 _
˛ g4

Proof

S-AndOr2˛

S-Trans
g1 ď

˛ g2
S-AndOr11˛

g2 ď
˛ g2 _

˛ g4

g1 ď
˛ g2 _

˛ g4
S-Trans

g3 ď
˛ g4

S-AndOr12˛
g4 ď

˛ g2 _
˛ g4

g3 ď
˛ g2 _

˛ g4

g1 _
˛ g2 ď

˛ g3 _
˛ g4

�

Lemma A.8 (Associativity and Commutativity).

Σ$ pg1 _
˛ g2q _

˛ g3 ď
˛ pg1 _

˛ g3q _
˛ g2

Proof

Lemma A.7˛

S-Refl
g1 ď

˛ g1
S-Commut˛

g2 _
˛ g3 ď

˛ g3 _
˛ g2

(1) g1 _
˛ pg2 _

˛ g3q ď
˛ g1 _

˛ pg3 _
˛ g2q

S-Trans

S-Assoc˛
pg1 _

˛ g2q _
˛ g3 ď

˛ g1 _
˛ pg2 _

˛ g3q
S-Trans

(1)
S-Assoc˛

g1 _
˛ pg3 _

˛ g2q ď
˛ pg1 _

˛ g3q _
˛ g2

g1 _
˛ pg2 _

˛ g3q ď
˛ pg1 _

˛ g3q _
˛ g2

pg1 _
˛ g2q _

˛ g3 ď
˛ pg1 _

˛ g3q _
˛ g2

�

Proof [Proof of Lemma 3.1]

Case ¨,ñ. Given (1)¨ Σ$ g1 _ g2 ď g3, derive (2)¨ Σ$ g1 ď g3 and (3)¨ Σ$ g2 ď g3:

S-Trans

S-AndOr11¨
g1 ď g1 _ g2 (1)¨ g1 _ g2 ď g3

(2)¨ g1 ď g3

Similar derivation for concluding (3)¨.
Case ¨,ð. Given (2)¨ and (3)¨, derive (1)¨:

S-Trans

Lemma A.7¨
(2)¨ g1 ď g3 (3)¨ g2 ď g3

g1 _ g2 ď g3 _ g3
S-AndOr2¨

S-Refl
g3 ď g3

S-Refl
g3 ď g3

g3 _ g3 ď g3

(1)¨ g1 _ g2 ď g3

72

Case ,ñ. Given (1) Σ$ g3 ď g1 ^ g2, derive (2) Σ$ g3 ď g1 and (3) Σ$ g3 ď g2:

S-Trans
(1) g3 ď g1 ^ g2

S-AndOr11
g1 ^ g2 ď g1

(2) g3 ď g1

Similar derivation for concluding (3) .
Case ,ð. Given (2) and (3) , derive (1) :

S-Trans

S-AndOr2

S-Refl
g3 ď g3

S-Refl
g3 ď g3

g3 ď g3 ^ g3
Lemma A.7¨

(2) g3 ď g1 (3) g3 ď g2

g3 _ g3 ď g1 _ g2

(1) g3 ď g1 _ g2

�

Theorem A.9 (Swapping).
S-Swap
Σ$ g1 _

˛ g2 ě
˛ g3

Σ$ g1 ě
˛ g3 ^

˛ g2

Proof

Case . Given (1) Σ$ g1 ^ g2 ď g3, derive (2) Σ$ g1 ď g3 _ g2:

S-Trans

S-ToB¨
g1 ďJ

S-Trans

S-Compl¨
Jď g2 _ g2

S-Commut¨
g2 _ g2 ď g2 _ g2

Jď g2 _ g2

p1q g1 ď g2 _ g2

S-Trans

S-AndOr2

S-AndOr12¨
g1 ď g2 _ g1 p1q

g1 ď p g2 _ g1q ^ p g2 _ g2q
S-Distrib

p g2 _ g1q ^ p g2 _ g2q ď g2 _ pg1 ^ g2q

p2q g1 ď g2 _ pg1 ^ g2q

S-Trans
p2q

S-Trans

Lemma A.7¨

S-Refl
 g2 ď g2 g1 ^ g2 ď g3

 g2 _ pg1 ^ g2q ď g2 _ g3
S-Commut

 g2 _ g3 ď g3 _ g2

 g2 _ pg1 ^ g2q ď g3 _ g2

g1 ď g3 _ g2
Case ¨. Symmetric.

�

Theorem A.10 (Double Negation Introduction).
S-Neg2

gď g

73

Proof

S-Trans
Theorem A.9

S-Compl
g^ gďK

gďK_ g
S-AndOr2¨

S-ToB
Kď g

S-Refl
 gď g

K_ gď g

gď g

�

Theorem A.11 (Double Negation Elimination).
S-Neg1

 gď g

Proof

S-Trans
S-AndOr2

S-ToB¨
 gďJ

S-Refl
 gď g

 gďJ^ g
Theorem A.9¨

S-Compl¨
Jď g_ g

J^ gď g

 gď g

�

Theorem A.12 (Associativity).
S-Assoc˛

pg1 _
˛ g2q _

˛ g3 ” g1 _
˛ pg2 _

˛ g3q

Proof

S-AndOr11˛
(1) pg1 _˛ g2q _˛ g3 ě˛ g1 _˛ g2

S-AndOr2˛
S-Trans

(1)
S-AndOr12˛

g1 _
˛ g2 ě

˛ g2

pg1 _
˛ g2q _

˛ g3 ě
˛ g2

S-AndOr12˛
pg1 _

˛ g2q _
˛ g3 ě

˛ g3

(2) pg1 _˛ g2q _˛ g3 ě˛ g2 _˛ g3

S-AndOr2˛
S-Trans

(1)
S-AndOr11˛

g1 _
˛ g2 ě

˛ g1

pg1 _
˛ g2q _

˛ g3 ě
˛ g1 (2)

pg1 _
˛ g2q _

˛ g3 ě
˛ g1 _

˛ pg2 _
˛ g3q

The other direction follows from S-Commut˛ (Theorem A.13 below). �

Theorem A.13 (Commutativity).
S-Commut˛

g1 _
˛ g2 ” g2 _

˛ g1

74

Proof

S-AndOr2˛
S-AndOr12˛

g1 _
˛ g2 ě

˛ g2
S-AndOr11˛

g1 _
˛ g2 ě

˛ g1

g1 _
˛ g2 ě

˛ g2 _
˛ g1

�

Theorem A.14 (Distributivity).
S-Distr

g1 _
˛ pg2 ^

˛ g3q ” pg1 _
˛ g2q ^

˛ pg1 _
˛ g3q

Proof

Case ˛, ě˛ direction. By S-Distrib˛.
Case ¨, ď direction.

S-AndOr2

Lemma A.7¨

S-Refl
g1 ď g1

S-AndOr11¨
g2 ^ g3 ď g2

g1 _ pg2 ^ g3q ď g1 _ g2
Lemma A.7¨

S-Refl
g1 ď g1

S-AndOr12¨
g2 ^ g3 ď g3

g1 _ pg2 ^ g3q ď g1 _ g3

g1 _ pg2 ^ g3q ď pg1 _ g2q ^ pg1 _ g3q

Case , ě direction. Symmetric.

�

Theorem A.15 (Absorption).
S-Absorp

g1 _
˛ pg1 ^

˛ g2q ” g1

Proof

Case ˛, ě˛ direction. By S-AndOr11˛.
Case ¨, ď direction.

Lemma A.7

S-AndOr2¨

S-Refl
g1 ď g1

S-ToB¨
g1 ďJ

g1 ď g1 ^J
S-Refl

g1 ^ g2 ď g1 ^ g2

(1) g1 _ pg1 ^ g2q ď pg1 ^Jq_ pg1 ^ g2q

S-Trans

(1)

S-Trans

S-Distr
pg1 ^Jq_ pg1 ^ g2q ď g1 ^ pJ_ g2q

S-AndOr11
g1 ^ pJ_ g2q ď g1

pg1 ^Jq_ pg1 ^ g2q ď g1

g1 _ pg1 ^ g2q ď g1
Case , ě direction. Symmetric.

�

75

Theorem A.16 (Negation contravariance).

S-NegInv
Σ$ g1 ď g2

Σ$ g2 ď g1

Proof

Theorem A.9

S-Trans

S-Commut
 g2 ^ g1 ď g1 ^ g2

Theorem A.9¨

S-Trans
g1 ď g2

S-AndOr12¨
g2 ďK_ g2

g1 ďK_ g2

g1 ^ g2 ďK

 g2 ^ g1 ďK

p1q g2 ďK_ g1

S-Trans
p1q

S-AndOr2¨

S-ToB
Kď g1

S-Refl
 g1 ď g1

K_ g1 ď g1

 g2 ď g1
�

Proof [Proof of Theorem 3.2]

S-Trans
S-Neg2

g< ď g<
S-Trans

S-NegInv
 g= ď g<

 g< ď g=
S-Neg1

 g= ď g=

 g< ď g=

g< ď g=

Taking p=, <q “ p1, 2q and p=, <q “ p2, 1q yields the desired results. �

Theorem A.17 (De Morgan’s Laws).
S-DeMorgan

 pg1 _
˛ g2q ” g1 ^

˛ g2

76

Proof

S-Trans

Lemma A.7¨

S-Compl¨
Jď g_ g

S-Refl
cď c

J_ cď pg_ gq _ c
Lemma A.8¨

pg_ gq _ cď pg_ cq _ g

(1) J_ cď pg_ cq _ g

S-Trans

Lemma A.7¨

S-Refl
gď g

S-Compl¨
Jď c_ c

g_Jď g_ pc_ cq
S-Assoc¨

g_ pc_ cq ď pg_ cq _ c

(2) g_Jď pg_ cq _ c

Lemma A.7

S-Trans

S-AndOr11¨
JďJ_ c (1)

Jď pg_ cq _ g
S-Trans

S-AndOr12¨
Jď c_J (2)

Jď pg_ cq _ c

(3) J^Jď ppg_ cq _ gq ^ ppg_ cq _ cq

S-Trans

S-AndOr2

S-Refl
JďJ

S-Refl
JďJ

JďJ^J (3)

(4) Jď ppg_ cq _ gq ^ ppg_ cq _ cq

S-Trans
(4)

S-Distrib
ppg_ cq _ gq ^ ppg_ cq _ cq ď pg_ cq _ p g^ cq

(5) Jď pg_ cq _ p g^ cq

Lemma A.5

Theorem A.9

S-Trans
(5)

S-Commut¨
pg_ cq _ p g^ cq ď p g^ cq _ pg_ cq

Jď p g^ cq _ pg_ cq

J^ pg_ cq ď g^ c

 pg_ cq ď g^ c

 g^ cď pg_ cq can be derived by similar reasoning. �

A.4 Lemmas on Subtyping Entailment

Lemma A.18 (Reflexivity and weakening). Σ¨Σ1 (pBqΣ for all Σ and Σ1.

Proof By repeated applications of S-Cons or S-ConsB on S-Hyp. �

Lemma A.19 (Transitivity). If Σ(Σ1 and Σ1 (Σ2, then Σ(Σ2.

Proof By straightforward induction on subtyping entailment derivations, making use of
Lemma A.23 for cases S-Cons and S-ConsB. �

Lemma A.20 (Merging). If Σ1 (Σ
1
1 and Σ2 (Σ

1
2, then Σ1¨Σ2 (Σ

1
1¨Σ

1
2.

77

Proof By straightforward induction on subtyping entailment derivations for Σ2 (Σ
1
2, mak-

ing use of Lemma A.18 and Lemma A.19 for case S-Empty, and Lemma A.23 for cases
S-Cons and S-ConsB. �

Lemma A.21 (Guarding). If Σ(Σ1, then BΣ(BΣ1.

Proof By straightforward induction on subtyping entailment judgements. �

Lemma A.22 (Unguarding). If Σ(Σ1, then CΣ(CΣ1.

Proof By straightforward induction on subtyping entailment judgements. �

Lemma A.23 (Weakening of subtyping contexts in subtyping judgements). If Σ$ gď c
and Σ1 (Σ, then Σ1 (gď c.

Proof By induction on unassuming subtyping derivations. The only non-trivial cases are
S-Hyp, S-FunDepth, and S-RcdDepth.

Case S-Hyp. Then the premise of the rule is pgď cq P Σ. By straightforward induction on
subtyping entailment judgements, Σ1 (Σ and pgď cq P Σ implies Σ1 $ gď c.

Case S-FunDepth. Then we have g“ g1 Ñ g2 for some g1 and g2, and c“ c1 Ñ c2 for
some c1 and c2. The premises of the rule are CΣ$ c1 ď g1 and CΣ$ g2 ď c2. By
Lemma A.22, Σ1 (Σ implies CΣ1 (CΣ. Then by IH on the premises, we have CΣ1 $
c1 ď g1 and CΣ1 $ g2 ď c2. Then we have Σ1 $ g1 Ñ g2 ď c1 Ñ c2 by S-FunDepth.

Case S-RcdDepth. Then we have g“ t G : g1 u for some g1 and G, and c“ t G : c1 u

for some c1. The premise of the rule is CΣ$ g1 ď c1. By Lemma A.22, Σ1 (Σ
implies CΣ1 (CΣ. Then by IH on the premise, we have CΣ1 $ g1 ď c1. Then we have
Σ1 $ t G : g1 u ď t G : c1 u by S-RcdDepth.

�

Corollary A.24 (Weakening of guarded subtyping contexts in subtyping judgements). If
BΣ$ gď c and Σ1 (Σ, then BΣ1 (gď c.

Proof By Lemma A.21 and Lemma A.23. �

Lemma A.25 (Weakening of guarded constraining contexts in consistency judgements). If
Σ$ BΞB¨Ξ ; d cons. and BΞ1B (BΞB, then Σ$ BΞ1B¨Ξ ; d cons..

Proof By induction on consistency derivations.

Base case. For the base case, we have Ξ“ n . Then by the base case of the definition of
consistency, we have:

Σ$ BΞ1B ; d cons. (1)

78

Inductive case. For the inductive case, we have d“ d2 ˝ d1 for some d1 and d2, where
dompd1q “ t U u for some U. The premises of the rule are:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(d1ΞU (2)
d1Σ$ BΞB¨BΞU¨d1Ξ U ; d2 cons. (3)

where splitUpΞ, dompd2qq “ pΞU, Ξ U q. From the assumption, we have:

BΞ1B (BΞB (4)

By Lemma A.23 with (4), (2) implies:

BΞ1B¨BΞU¨d1Ξ U ¨d1Σ(d1ΞU (5)

By IH on (3), we have:

d1Σ$ BΞ
1
B¨BΞU¨d1Ξ U ; d2 cons. (6)

Then by the inductive case of the definition of consistency, (5) and (6) imply:

Σ$ BΞ1B¨Ξ ; d cons. (7)

�

Lemma A.26 (Weakening of subtyping contexts in consistency judgements). If Σ$
BΞB¨Ξ ; d cons. and BΞB¨Ξ¨Σ1 (Σ, then Σ1 $ BΞB¨Ξ ; d cons..

Proof By induction on consistency derivations.

Base case. For the base case, we have Ξ“ n . Then by the base case of the definition of
consistency, we have:

Σ1 $ BΞB ; d cons. (1)

Inductive case. For the inductive case, we have d“ d2 ˝ d1 for some d1 and d2, where
dompd1q “ t U u for some U. The premises of the rule are:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(d1ΞU (2)
d1Σ$ BΞB¨BΞU¨d1Ξ U ; d2 cons. (3)

where splitUpΞ, dompd2qq “ pΞU, Ξ U q. From the assumption, we have:

BΞB¨Ξ¨Σ
1 (Σ (4)

By Lemma A.38, (4) implies:

BΞB¨BΞU¨d1Ξ U ¨d1Σ
1 (d1Σ (5)

By Lemma A.23 with (5), (2) implies:

BΞB¨BΞU¨d1Ξ U ¨d1Σ
1 (d1ΞU (6)

By IH on (3) and (5), we have:

d1Σ
1 $ BΞB¨BΞU¨d1Ξ U ; d2 cons. (7)

79

Then by the inductive case of the definition of consistency, (6) and (7) imply:

Σ1 $ BΞB¨Ξ ; d cons. (8)

�

Lemma A.27 (Weakening of constraining contexts in typing judgements). If Ξ, Γ$ C : g
and Ξ1 (Ξ, then Ξ1, Γ$ C : g.

Proof By straightforward induction on typing derivations. The only non-trivial vases are
T-Subs and T-Var2.

Case T-Subs. By IH on the first premise, Lemma A.23 on the second premise, followed
by T-Subs.

Case T-Var2. ΓpGq “ @Ξ2. g1

Wefirst notice that the subtyping entailment judgement is transitive by straightforward
induction on subtyping entailment judgements, applying Lemma A.23 to the second
premise of S-Cons. The first premise of S-All is Ξ(dpΞ2q, which implies Ξ1 (
dpΞ2q by transitivity with the assumption Ξ1 (Ξ. The result then follows from
Lemma A.23 on the second premise S-All, followed by S-All and T-Var2.

�

A.5 Lemmas on Substitutions

Lemma A.28 (Preservation of typing under substitution). If Ξ, Γ$ C : g and D wf, then
dpΞq, dpΓq $ dpCq : dpgq.

Proof By induction on typing derivations of Ξ, Γ$ C : g.

Case T-Subs. By IH on the first premise, we have dpΞq, dpΓq $ dpCq : dpg1q. By preser-
vation of subtyping under substitution (Lemma A.29) on the second premise,
dpΞq $ dpg1q ď dpg2q. The result then follows from T-Subs.

Case T-Obj. By the definition of type substitution, dp#� ^ t G : g uq “ #� ^ t G : dpgq u.
By the definition of term substitution, dp� t G “ C uq “� t G “ dpCq u. By IH on
the premises, we have dpΞq, dpΓq $ dpCq : dpgq. Then dpΞq, dpΓq $� t G “ dpCq u :
#� ^ t G : dpgq u by T-Obj, i.e., dpΞq, dpΓq $ dp� t G “ C uq : #� ^ dpt G : g uq.

Case T-Proj. By the definition of term substitution, dpC.Gq “ dpCq.G By IH on the premise,
we have dpΞq, dpΓq $ C : dpt G : g uq, i.e., dpΞq, dpΓq $ dpCq : t G : dpgq u by the
definition of type substitution. Then dpΞq, dpΓq $ dpCq.G : dpgq by T-Proj, i.e.,
dpΞq, dpΓq $ dpC.Gq : dpgq.

Case T-Var1. Then C “ G. By the definition of term substitution, dpGq “ G. From the
premise and the definition of typing context substitution, we have dpΓqpGq “ dpgq.
Then dpΞq, dpΓq $ G : dpgq by T-Var1, i.e., dpΞq, dpΓq $ dpGq : dpgq.

80

Case T-Var2. Then C “ G. By the definition of term substitution, dpGq “ G. From the
premise, we have Ξ$ ΓpGq ď@@n . g, where ΓpGq “ @Ξ1. g1. Note that the judge-
ment ď@ can only be derived by S-All, then from the premises of S-All, we
have Ξ(d1pΞ1q and Ξ$ d1pg1q ď g. By preservation of subtyping under substitu-
tion (Lemma A.29), we have dpΞq (dpd1pΞ1qq and dpΞq $ dpd1pg1qq ď dpgq. Then
dpΞq $ @Ξ1. g1 ď@@n . dpgq by S-All. Note that by the definition of typing context
substitution, ΓpGq “ @Ξ1. g1 implies dpΓqpGq “ @Ξ1. g1, then dpΞq, dpΓq $ G : dpgq
by T-Var, i.e., dpΞq, dpΓq $ dpGq : dpgq.

Case T-Abs. By the definition of type substitution, dpg1 Ñ g2q “ dpg1qÑ dpg2q. By IH on
the premise, we have dpΞq, dpΓ¨pG : g1qq $ C : dpg2q, i.e., dpΞq, dpΓq¨pG : dpg1qq $

C : dpg2q by the definition of typing context substitution. Then dpΞq, dpΓq $ _G. C :
dpg1qÑ dpg2q by T-Abs, i.e., dpΞq, dpΓq $ _G. C : dpg1 Ñ g2q.

Case T-App. By IH on the premise, we have dpΞq, dpΓq $ C1 : dpg1q and dpΞq, dpΓq $

C0 : dpg1 Ñ g2q, i.e., dpΞq, dpΓq $ C0 : dpg1qÑ dpg2q by the definition of type
substitution. Then dpΞq, dpΓq $ C0 C1 : dpg2q by T-App.

Case T-Asc. By the definition of term substitution, dpC : gq “ dpCq : dpgq. By IH on the
premise, we have dpΞq, dpΓq $ dpCq : dpgq. Then dpΞq, dpΓq $ pdpCq : dpgqq : dpgq,
i.e., dpΞq, dpΓq $ dpC : gq : dpgq.

Case T-Case1. By the definition of type substitution, dpKq “K. By the definition of term
substitution, dpcase G “ C1 of nq “ pcase G “ dpC1q of nq. By IH on the premise, we
have dpΞq, dpΓq $ dpC1q : dpKq, i.e., dpΞq, dpΓq $ dpC1q :K. Then dpΞq, dpΓq $

case G “ dpC1q of n :K, i.e., dpΞq, dpΓq $ dpcase G “ C1 of nq : dpKq.
Case T-Case2. By the definition of term substitution, dpcase G “ C1 of _Ñ C2q “

pcase G “ dpC1q of _Ñ dpC2qq. By IH on the premises, we have dpΞq, dpΓq $

dpC1q : dpg1q and dpΞq, dpΓ¨pG : g1qq $ dpC2q : dpgq, i.e., dpΞq, dpΓq¨pG : dpg1qq $

dpC2q : dpgq by the definition of typing context substitution. Then dpΞq, dpΓq $

case G “ dpC1q of _Ñ dpC2q : dpgq, i.e., dpΞq, dpΓq $ dpcase G “ C1 of _Ñ C2q :
dpgq.

Case T-Case3. By the definition of term substitution, dpcase G “ C1 of �Ñ C2, "q “

pcase G “ dpC1q of �Ñ dpC2q, dp"qq. By IH on the first premise,
we have dpΞq, dpΓq $ dpC1q : dp#� ^ g1 _ #� ^ g2q, i.e., dpΞq, dpΓq $ dpC1q :
#� ^ dpg1q _ #� ^ dpg2q by the definition of type substitution. By IH
on the second premise, we have dpΞq, dpΓ¨pG : g1qq $ dpC2q : dpgq, i.e.,
dpΞq, dpΓq¨pG : dpg1qq $ dpC2q : dpgq. By IH on the third premise, we have
dpΞq, dpΓ¨pG : g2qq $ dpcase G “ G of "q : dpgq, i.e., dpΞq, dpΓq¨pG : dpg2qq $

case G “ G of dp"q : dpgq by the definition of term substitution. Then dpΞq, dpΓq $
case G “ dpC1q of �Ñ dpC2q, dp"q : dpgq by T-Case3, i.e., dpΞq, dpΓq $

dpcase G “ C1 of �Ñ C2, "q : dpgq.

�

Lemma A.29 (Preservation of subtyping under substitution). If Σ$ g1 ď g2 and D wf,
then dpΣq $ dpg1q ď dpg2q.

Proof By induction on subtyping derivations of Σ$ g1 ď g2.

81

Case S-Refl. The result dpgq ď dpgq follows immediately from S-Refl.
Case S-ToB˛. By the definition of type substitution, dp J˛ q “ J˛ . By S-ToB˛,

dpgq ď˛ J˛ , i.e., dpgq ď˛ dp J˛ q.
Case S-Compl˛. By the definition of type substitution, dpg_˛ gq “ dpgq _˛ dp gq “

dpgq _˛ dpgq and dp J˛ q “ J˛ . By S-Compl˛, dpgq _˛ dpgq ě˛ J˛ , i.e.,
dpg_˛ gq ě˛ dp J˛ q.

Case S-AndOr11˛. By the definition of type substitution, dpg1 _
˛ g2q “ dpg1q _

˛ dpg2q.
By IH on the premise, we have dpΣq $ dpg1q ě

˛ dpgq. Then dpΣq $

dpg1q _
˛ dpg2q ě

˛ dpgq by S-AndOr11˛, i.e., dpΣq $ dpg1 _g2q ě
˛ dpgq.

Case S-AndOr12˛. Symmetric to the case above.
Case S-AndOr2˛. By the definition of type substitution, dpg1 _

˛ g2q “ dpg1q _
˛ dpg2q. By

IH on the premises, we have dpΣq $ dpgq ě˛ dpg1q and dpΣq $ dpgq ě˛ dpg2q. Then
dpΣq $ dpgq ě˛ dpg1q _

˛ dpg2q by S-AndOr2˛, i.e., dpΣq $ dpgq ě˛ dpg1 _
˛ g2q.

Case S-Distrib˛. By the definition of type substitution,
dpg^˛ pg1 _

˛ g2qq “ dpgq ^
˛ dpg1 _

˛ g2q “ dpgq ^
˛ pdpg1q _

˛ dpg2qq

and dppg^˛ g1q _
˛ pg^˛ g2qq “ dpg^

˛ g1q _
˛ dpg^˛ g2q “ pdpgq

^˛ dpg1qq _
˛ pdpgq ^˛ dpg2qq. ByS-Distrib˛, dpgq ^˛ pdpg1q _

˛ dpg2qq ď
˛ pdpgq ^˛ dpg1qq

_˛ pdpgq ^˛ dpg2qq, i.e., dpg^˛ pg1 _
˛ g2qq ď

˛ dppg^˛ g1q _
˛ pg^˛ g2qq.

Case S-Trans. By IHon the premises, we have dpΣq $ dpg0q ď dpg1q and dpΣq $ dpg1q ď

dpg2q. Then dpΣq $ dpg0q ď dpg2q by S-Trans.
Case S-Weaken. By IH on the premise, we have dpg1q ď dpg2q. Then dpΣq $ dpg1q ď

dpg2q by S-Weaken.
Case S-Assum. By the definition of subtyping context substitution, dpΞ ¨ Bpg1 ď g2qq “

dpΞq ¨ Bpdpg1q ď dpg2qq. By IH on the premise, we have D¨dpΞ ¨ Bpg1 ď g2qq $

dpg1q ď dpg2q, i.e., D¨dpΞq ¨ Bpdpg1q ď dpg2qq $ dpg1q ď dpg2q. Then D¨dpΞq $
dpg1q ď dpg2q by S-Assum.

Case S-Hyp. By the definition of subtyping context substitution and the � P Σ judge-
ment, it is straightforward to show that if pgď g1q P Σ, then pdpgq ď dpg1qq P dpΣq
by induction on the size of Σ. Applying to the premise pg1 ď g2q P Σ, we have
pdpg1q ď dpg2qq P dpΣq. Then dpΣq $ dpg1q ď dpg2q by S-Hyp.

Case S-FunDepth. By the definition of type substitution, dpgÑ g1q “ dpgqÑ dpg1q. By
IH on the premises, we have CdpΣq $ dpg0q ď dpg1q and CdpΣq $ dpg2q ď dpg3q.
Then CdpΣq $ dpg1qÑ dpg2q ď dpg0qÑ dpg3q by S-FunDepth, i.e., CdpΣq $
dpg1 Ñ g2q ď dpg0 Ñ g3q.

Case S-FunMrg˛. By the definition of type substitution, dppg1 _
˛ g3qÑ pg2 ^

˛ g4qq “

dpg1 _
˛ g3qÑ dpg2 ^

˛ g4q “ pdpg1q _
˛ dpg3qqÑ pdpg2q ^

˛ dpg4qq. and dpg1 Ñ

g2 ^g3 Ñ g4q “ dpg1 Ñ g2q ^ dpg3 Ñ g4q “ dpg1qÑ dpg2q ^ dpg3qÑ dpg4q. By
S-FunMrg˛, pdpg1q _

˛ dpg3qqÑ pdpg2q ^
˛ dpg4qq ě

˛ dpg1qÑ dpg2q ^ dpg3qÑ

dpg4q, i.e., dppg1 _
˛ g3qÑ pg2 ^

˛ g4qq ě
˛ dpg1 Ñ g2 ^g3 Ñ g4q.

Case S-RcdDepth. By the definition of type substitution, dpt G : g uq “ t G : dpgq u. By
IH on the premise, we have CdpΣq $ dpg1q ď dpg2q. Then CdpΣq $ t G : dpg1q u ď

t G : dpg2q u by S-RcdDepth, i.e., CdpΣq $ dpt G : g1 uq ď dpt G : g2 uq.
Case S-RcdMrg˛. By the definition of type substitution, dpt G : g1 _

˛ g2 uq “ t G :
dpg1 _

˛ g2q u “ t G : dpg1q _
˛ dpg2q u and dpt G : g1 u _

˛ t G : g2 uq “ dpt G :
g1 uq _

˛ dpt G : g2 uq “ t G : dpg1q u _
˛ t G : dpg2q u. By S-RcdMrg˛, t G :

82

dpg1q _
˛ dpg2q u ď

˛ t G : dpg1q u _
˛ t G : dpg2q u, i.e., dpt G : g1 _

˛ g2 uq ď
˛ dpt G :

g1 u _
˛ t G : g2 uq.

Case S-RcdTop. By the definition of type substitution, dpJq “J and dpt G : g1 u _

gq “ dpt G : g1 uq _ dpgq “ t G : dpg1q u _ dpgq. From the premise, we have dpgq P
tdpt H‰G : g2 uq, dpg2 Ñ g3qu, i.e., dpgq P tt H‰G : dpg2q u dpg2qÑ dpg3qu by the
definition of type substitution. Then gď t G : dpg1q u _ dpgq by S-RcdTop, i.e.,
dpgq ď dpt G : g1 u _ gq.

Case S-ClsSub. Note that the declaration context rooted in by the subtyping context
contains all the information required to determine the superclass relation, i.e.,SD¨Σ “
SD¨Σ1 . Then the premise �2 PSp�1rUsq implies �2 PSp�1rUsq. By the definition of
type substitution, dp#�q “ #�. Then dpΣq $ #�1 ď #�2 by S-ClsSub, i.e., dpΣq $
dp#�1q ď dp#�2q.

Case S-ClsBot. As noted in the case above, SD¨Σ “SD¨Σ1 . By the definition of type sub-
stitution, dp#�1 ^ #�2q “ dp#�1q ^ dp#�2q “ #�1 ^ #�2 and dpKq “K. Then the
premise�1 RSp�2rUsq and�2 RSp�1rVsq imply�1 RSp�2rUsq and�2 RSp�1rVsq.
Then dpΣq $ #�1 ^ #�2 ďK by S-ClsBot, i.e., dpΣq $ dp#�1 ^ #�2q ď dpKq.

Case S-Exp˛. We show that if Σ$ g exp. g1, where D wf, then dpΣq $ dpgq exp. dpg1q.
We consider rules that can derive the judgement Σ$ g exp. g1.
Case S-AlsExp. Note that the declaration context contains all declarations, i.e.,

3 P Σ implies 3 PD¨Σ1. Then the premise implies ptype �rU8
8 P (
s “ gq P

dpΣq. By the definition of type substitution, dp�rg8 8 P (sq “ �rdpg8q
8 P (
s.

By the well-formedness of D, TVpgq Ď t U8 8 P (u, which implies that
all type variables in rU8 ÞÑ g8

8 P (
sg are introduced by the substi-

tution t U8 ÞÑ g8
8 P (

u, and dprU8 ÞÑ g8
8 P (
sgq “ rU8 ÞÑ dpg8q

8 P (
sg. Then

dpΣq $ �rdpg8q
8 P (
s exp. rU8 ÞÑ dpg8q

8 P (
sg by S-AlsExp, i.e., dpΣq $

dp�rg8
8 P (
sq exp. dprU8 ÞÑ g8

8 P (
sgq.

Case S-ClsExp. Similar to the case above, noting that dp#� ^ rU8 ÞÑ g8
8 P (
sgq “

dp#�q ^ dprU8 ÞÑ g8
8 P (
sgq “ #� ^ dprU8 ÞÑ g8

8 P (
sgq.

Then the premise Σ$ g exp. g1 implies dpΣq $ dpgq exp. dpg1q, and dpΣq $

dpgq ě˛ dpg1q follows from S-Exp˛.

�

Corollary A.30 (Preservation of subtyping entailment under substitution). If Σ(Σ1 and
D wf, then dpΣq (dpΣ1q.

Proof By induction on the derivation of subtyping entailment judgement Σ(Σ1.

Case S-Empty. Immediate.
Case S-Cons. By the definition of subtyping context substitution, dpΣ1¨pg1 ď g2qq “

dpΣ1q¨pdpg1q ď dpg2qq. By IH on the premise Σ(Σ1, we have dpΣq (dpΣ1q.
By preservation of subtyping under substitution (Lemma A.29) on the premise
Σ$ g1 ď g2, we have dpΣq $ dpg1q ď dpg2q. Then dpΣq (dpΣ1q¨pdpg1q ď dpg2qq

follows from S-Cons, i.e., dpΣq (dpΣ1¨pg1 ď g2qq.

83

�

Lemma A.31 (Congruence of substitution on types). If Σ$ c” c1, then Σ$ rU ÞÑ csg”

rU ÞÑ c1sg for all g.

Proof By straightforward induction on the syntax of g. The only non-trivial cases are:

Case g“ g1 Ñ g2. From the assumption, we have:

Σ$ c” c1 (1)

By Lemma A.23 with Lemma A.18, (1) implies:

CΣ$ c” c1 (2)

By IH on (2), we have:

CΣ$ rU ÞÑ csg1 ” rU ÞÑ c1sg1 (3)
CΣ$ rU ÞÑ csg2 ” rU ÞÑ c1sg2 (4)

Then by S-FunDepth on (3) and (4), we have:

Σ$ rU ÞÑ cspg1 Ñ g2q ” rU ÞÑ c1spg1 Ñ g2q (5)

Case g“ t G : g1 u. From the assumption, we have:

Σ$ c” c1 (6)

By Lemma A.23 with Lemma A.18, (6) implies:

CΣ$ c” c1 (7)

By IH on (7), we have:

CΣ$ rU ÞÑ csg1 ” rU ÞÑ c1sg1 (8)

Then by S-RcdDepth on (8) and (4), we have:

Σ$ rU ÞÑ cst G : g1 u ” rU ÞÑ c1st G : g1 u (9)

Case g“ U. From the assumption, we have:

Σ$ c” c1

i.e., Σ$ rU ÞÑ csU” rU ÞÑ c1sU (10)

�

Lemma A.32 (Congruence of substitution on guarded types). If Σ$ c” c1 and U R

TTVpgq, then BΣ$ rU ÞÑ csg” rU ÞÑ c1sg.

Proof By straightforward induction on the syntax of g. The only non-trivial cases are:

84

Case g“ g1 Ñ g2. From the assumption, we have:

Σ$ c” c1 (1)

By Lemma A.23 with Lemma A.18, (1) implies:

CΣ$ c” c1 (2)

By Lemma A.31 on (2), we have:

CΣ$ rU ÞÑ csg1 ” rU ÞÑ c1sg1 (3)
CΣ$ rU ÞÑ csg2 ” rU ÞÑ c1sg2 (4)

Then by S-FunDepth on (3) and (4), we have:

BΣ$ rU ÞÑ cspg1 Ñ g2q ” rU ÞÑ c1spg1 Ñ g2q (5)

Case g“ t G : g1 u. From the assumption, we have:

Σ$ c” c1 (6)

By Lemma A.23 with Lemma A.18, (6) implies:

CΣ$ c” c1 (7)

By Lemma A.31 on (7), we have:

CΣ$ rU ÞÑ csg1 ” rU ÞÑ c1sg1 (8)

Then by S-RcdDepth on (8) and (4), we have:

BΣ$ rU ÞÑ cst G : g1 u ” rU ÞÑ c1st G : g1 u (9)

Case g“ U. Impossible since U R TTVpgq.

�

Corollary A.33. Σ$ g” rU ÞÑ U^ ubΣpUq _ lbΣpUqsg for all g.

Proof By Lemma A.31 on Σ$ U” U^ ubΣpUq _ lbΣpUq. �

Corollary A.34. If U R TTVpgq, then BΣ$ g” rU ÞÑ U^ ubΣpUq _ lbΣpUqsg.

Proof By Lemma A.32 on Σ$ U” U^ ubΣpUq _ lbΣpUq. �

LemmaA.35 (Inlining of bound). If Σ¨pUď˛ cq $ gď g1, then dΣ¨BpUď˛ cq $ dgď dg1,
where d“ rU ÞÑ U^˛ cs.

Proof By straightforward induction on unassuming subtyping derivations. The only non-
trivial case is S-Hyp when pgď g1q “ pUď˛ cq.

85

Case S-Hyp when pgď g1q “ pUď˛ cq. Let cleanupppUď˛ cqq “ pUď˛ c1q. By
Lemma A.2, Lemma A.3, and Lemma A.4, we have:

pUď˛ cq () pUď˛ c1q (1)
pUď˛ c1q guard. (2)
U^˛ c” U^˛ c1 (3)

By S-Trans on pUď˛ c1q $ U” U^˛ c1 and (3), we have:

pUď˛ c1q $ U” U^˛ c (4)

By Lemma A.32 on (2) and (4), we have:

BpUď˛ c1q $ c1 ” dc1 (5)

By Lemma A.7 on (4) and (5), we have:

BpUď˛ c1q $ U^˛ c1 ” pU^˛ cq ^˛ dc1

i.e., BpUď˛ c1q $ U^˛ c1 ” dpU^˛ c1q (6)

By S-Trans on (3) and S-AndOr12¯̨, we have:

U^˛ c1 ď˛ c (7)

By Lemma A.29, (7) implies:

dpU^˛ cq ď˛ dc (8)

Then by S-Trans on (3), (6), and (8), we have:

BpUď˛ c1q $ U^˛ cď˛ dc (9)

Then by Lemma A.23 with (1), (9) implies:

BpUď˛ cq $ U^˛ cď˛ dc

i.e., BpUď˛ cq $ dUď˛ dc (10)

�

A.6 Lemmas on Consistency

Proof [Lemma 3.3] From the assumptions, we have:

Σ$ Ξ cons. (1)
Σ¨Ξ$ gď g1 (2)

From the definition of weak consistecy, (1) implies:

dΣ¨BpU” gq
pU ÞÑgq P d

(dΞ (3)

for some d. By Lemma A.29, on (2) implies:

dΣ¨dΞ$ dgď dg1 (4)

86

Then by Lemma A.23 with (3), (4) implies:

dΣ¨BpU” gq
pU ÞÑgq P d

$ dgď dg1 (5)

�

Proof [Lemma 3.4] From the assumptions, we have:

Σ$ Ξ cons. (1)
Σ¨Ξ$ gď g1 (2)

By Lemma 3.3 on (1) and (2), we have:

dΣ¨BpU” cq
pU ÞÑcq P d

$ dgď dg1 (3)

for some d. By S-Hyp, we have:

pU” cq
pU ÞÑcq P d

$ V” c1
pV ÞÑc1q P d

(4)

By Lemma A.32 on (4), we have

BpU” cq
pU ÞÑcq P d

$ g” dg (5)

BpU” cq
pU ÞÑcq P d

$ g1 ” dg1 (6)

Then by S-Trans on (5), (4), and (6), we have:

dΣ¨BpU” cq
pU ÞÑcq P d

$ gď g1 (7)

�

Proof [Lemma 3.6] By induction on consistency derivationsfor the following statement:
if Σ$ BΞB¨Ξ ; d cons., then BΞB¨BpU” gq

pU ÞÑgq P d
¨dΣ(dΞ.

If Ξ is not guarded, we can replace it with cleanuppΞq before applying the lemma, and
restore it back to Ξ in the conclusion. Therefore we can assume Ξ guard..

Base case. The base case is trivial since Ξ“ n .
Inductive case. For the inductive case, we have d“ d2 ˝ d1 for some d1 “ rU ÞÑ U^

ubΞpUq _ lbΞpUqs, d2, and U. The premises of the rule are:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(d1ΞU (1)
d1Σ$ BΞB¨BΞU¨d1Ξ U ; d2 cons. (2)

where splitUpΞ, dompd2qq “ pΞU, Ξ U q. By IH on (2), we have:

BΞB¨BpV” gq
pV ÞÑgq P d2

¨d2d1Σ(d2d1Ξ U

i.e., BΞB¨BpV” gq
pV ÞÑgq P d2

¨dΣ(dΞ U (3)

87

By Lemma A.23 with Lemma A.18, (3) implies:

BΞB¨BpV” gq
pV ÞÑgq P d2

¨Bd2pU” U^ ubΞpUq _ lbΞpUqq¨dΣ(dΞ U

i.e., BΞB¨BpV” gq
pV ÞÑgq P d

¨dΣ(dΞ U (4)

By S-AndOr2 on (1), we have:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(d1Uď d1ubΞUpUq
i.e., BΞB¨BΞU¨d1Ξ U ¨d1Σ(U^ ubΞpUq _ lbΞpUq ď d1ubΞpUq (5)

By S-Trans on S-AndOr12¨ and (5), we have:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(lbΞpUq ď d1ubΞpUq (6)

By Corollary A.34, we have:

BΞU $ g” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqsg
i.e., BΞU $ g” rU ÞÑ U^ ubΞpUq _ lbΞpUqsg

i.e., BΞU $ g” d1g (7)

for all g where U R TTVpgq. Since Ξ guard., we have U R TTVpubΞpUqq. Then by
S-Trans on (6) and (7), we have:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(lbΞpUq ď ubΞpUq (8)

By S-Trans on S-AndOr11¨/S-AndOr12¨ and S-Hyp, we have:

pU” U^ ubΞpUq _ lbΞpUqq¨plbΞpUq ď ubΞpUqq $ gď U (9)

for each pgď Uq P ΞU. By S-Trans on S-Hyp and Lemma A.7¨ on S-AndOr12 and
S-Refl, we have:

pU” U^ ubΞpUq _ lbΞpUqq¨plbΞpUq ď ubΞpUqq $ Uď ubΞpUq _ lbΞpUq (10)

By S-Trans on (10) and S-AndOr2¨ on S-Refl and S-Hyp, we have:

pU” U^ ubΞpUq _ lbΞpUqq¨plbΞpUq ď ubΞpUqq $ Uď ubΞpUq (11)

By S-Trans on (11) and S-AndOr11 /S-AndOr12 , we have:

pU” U^ ubΞpUq _ lbΞpUqq¨plbΞpUq ď ubΞpUqq $ Uď g (12)

for each pUď gq P ΞU. Then (9) and (12) imply:

pU” U^ ubΞpUq _ lbΞpUqq¨plbΞpUq ď ubΞpUqq (ΞU (13)

Then by Lemma A.23 with Lemma A.21 on (13), (8) implies:

BΞB¨BpU” U^ ubΞpUq _ lbΞpUqq¨lbΞpUq ď ubΞpUq¨d1Ξ U ¨d1Σ(lbΞpUq ď ubΞpUq
(14)

By S-Assum on (14), we have:

BΞB¨BpU” U^ ubΞpUq _ lbΞpUqq¨d1Ξ U ¨d1Σ(lbΞpUq ď ubΞpUq (15)

88

By Lemma A.23 with (15), (13) implies:

BΞB¨pU” U^ ubΞpUq _ lbΞpUqq¨d1Ξ U ¨d1Σ(ΞU (16)

By Lemma A.23 with Lemma A.21 on (16), (1) implies:

BΞB¨BpU” U^ ubΞpUq _ lbΞpUqq¨d1Ξ U ¨d1Σ(d1ΞU (17)

By Lemma A.29, (17) implies:

Bd2ΞB¨Bd2pU” U^ ubΞpUq _ lbΞpUqq¨d2d1Ξ U ¨d2d1Σ(d2d1ΞU

i.e., Bd2ΞB¨Bd2pU” U^ ubΞpUq _ lbΞpUqq¨dΞ U ¨dΣ(dΞU (18)

By Lemma A.23 with (4), (18) implies:

Bd2ΞB¨BΞB¨BpV” gq
pV ÞÑgq P d

¨dΣ(dΞU (19)

By Lemma A.31 on S-Hyp, we have:

BpV” gq
pV ÞÑgq P d2

$ c” d2c (20)

for all c. By S-Trans on S-Hyp and (20), we have:

ΞB¨BpV” gq
pV ÞÑgq P d2

(d2ΞB (21)

By Lemma A.23 with Lemma A.21 on (21), (19) implies:

BΞB¨BpV” gq
pV ÞÑgq P d

¨dΣ(dΞU (22)

Then by Lemma A.20, (22) and (4) imply:

BΞB¨BpV” gq
pV ÞÑgq P d

¨dΣ(dΞU¨dΞ U

i.e., BΞB¨BpV” gq
pV ÞÑgq P d

¨dΣ(dΞ (23)

�

LemmaA.36 (Congruence of substitution on consistency). If rU ÞÑ gsΣ$ BΞB¨rU ÞÑ gsΞ ;
d cons. and BΞB $ g” g1, where g and g1 are not type variables, then rU ÞÑ g1sΣ$

BΞB¨rU ÞÑ g1sΞ ; d1 cons. for some d1, where dompd1q “ dompdq.

Proof By induction on consistency derivations for the statement: if d2rU ÞÑ gsΣ$

BΞB¨d
2rU ÞÑ gsΞ ; d cons. and BΞB $ g” g1 and ΞB $ W ” gW

pW ÞÑ gWq P d
2

, where g

and g1 are not type variables and W “ W1
pW ÞÑ W1q P d2

and dompdq X dompd2q “H, then
d2rU ÞÑ g1sΣ$ BΞB¨d

2rU ÞÑ g1sΞ ; d1 cons. for some d1, where dompd1q “ dompdq.

Base case. For the base case, we have Ξ“ n . Then by the base case of the definition of
consistency, we have:

d2rU ÞÑ g1sΣ$ BΞB¨d
2rU ÞÑ g1sΞ ; id cons. (1)

89

Inductive case on U. For the inductive case on U, i.e., where d“ d2 ˝ d1 for some d1 and
d2, where dompd1q “ t U u, the preimses of the rule are:

BΞB¨BΞ
1
U¨d1Ξ

1
U ¨d1d

2rU ÞÑ gsΣ(d1Ξ
1
U (2)

d1d
2rU ÞÑ gsΣ$ BΞB¨BΞ

1
U¨d1Ξ

1
U ; d2 cons. (3)

where splitUpd2rU ÞÑ gsΞ, dompd2qq “ pΞ
1
U, Ξ

1
U q and d1 “ rU ÞÑ U^

ubd2rU ÞÑ gsΞpUq _ lbd2rU ÞÑ gsΞpUqs. Since g is not a type varialbe, we have:

Ξ1U “ n (4)
Ξ1U “ d

2rU ÞÑ gsΞ (5)
d1 “ rU ÞÑ Us (6)

Then (3) implies:

d2rU ÞÑ gsΣ$ BΞB¨d
2rU ÞÑ gsΞ ; d2 cons. (7)

Then by IH on (7), we have:

d2rU ÞÑ g1sΣ$ BΞB¨d
2rU ÞÑ g1sΞ ; d2 cons.

i.e., d2rU ÞÑ g1sΣ$ BΞB¨d
2rU ÞÑ g1sΞ ; d2 ˝ d1 cons. (8)

for some d12, where dompd
1
2q “ dompd2q.

Inductive case not on U. For the inductive case not on U, i.e., where d“ d2 ˝ d1 for some
d1 and d2 and V‰ U, where dompd1q “ t V u, the premises of the rule are:

BΞB¨BΞ
1
V¨d1Ξ

1
V ¨d1d

2rU ÞÑ gsΣ(d1Ξ
1
V (9)

d1d
2rU ÞÑ gsΣ$ BΞB¨BΞ

1
V¨d1Ξ

1
V ; d2 cons. (10)

where splitVpd2rU ÞÑ gsΞ, dompd2qq “ pΞ
1
V , Ξ

1
V q and d1 “ rV ÞÑ V^

ubd2rU ÞÑ gsΞpVq _ lbd2rU ÞÑ gsΞpVqs. Let splitVpΞ, dompd2qq “ pΞV , ΞV q. Since

g is not a type variable and W “ W1
pW ÞÑ W1q P d2

, we have Ξ1V “ d2rU ÞÑ gsΞV and
Ξ1V “ d

2rU ÞÑ gsΞV . Then (9) and (10) imply:

BΞB¨Bd
2rU ÞÑ gsΞV¨d1d

2rU ÞÑ gsΞV ¨d1d
2rU ÞÑ gsΣ(d1d

2rU ÞÑ gsΞV (11)

d1d
2rU ÞÑ gsΣ$ BΞB¨Bd

2rU ÞÑ gsΞV¨d1d
2rU ÞÑ gsΞV ; d2 cons. (12)

Expanding the composition, we have:

d1 ˝ d
2 “ rW ÞÑ d1gW

pW ÞÑ gWq P d
2

, V ÞÑ V^ ubd2rU ÞÑ gsΞpVq _ lbd2rU ÞÑ gsΞpVqs

(13)

From the assumption, we have:

BΞB $ W ” gW
pW ÞÑ gWq P d

2

(14)

By Corollary A.33, we have:

d2rU ÞÑ gsΞV $ c” rV ÞÑ V^ ubd2rU ÞÑ gsΞV pVq _ lbd2rU ÞÑ gsΞV pVqsc for all c
i.e., d2rU ÞÑ gsΞV $ c” rV ÞÑ V^ ubd2rU ÞÑ gsΞpVq _ lbd2rU ÞÑ gsΞpVqsc for all c

i.e., d2rU ÞÑ gsΞV $ c” d1c for all c (15)

90

By S-Trans on (14) and (15), we have:

BΞB¨d2rU ÞÑ gsΞV $ W ” d1gW
pW ÞÑ gWq P d

2

(16)

Taking c“ V, (15) implies:

d2rU ÞÑ gsΞV $ V” V^ ubd2rU ÞÑ gsΞpVq _ lbd2rU ÞÑ gsΞpVq (17)

Then (16) and (17) imply:

BΞB¨d2rU ÞÑ gsΞV $ W ” gW
pW ÞÑ gWq P d1˝d

2

(18)

Then by IH on (12) and (18), we have:

d1d
2rU ÞÑ g1sΣ$ BΞB¨Bd

2rU ÞÑ gsΞV¨d1d
2rU ÞÑ g1sΞV ; d12 cons. (19)

for some d12, where dompd
1
2q “ dompd2q.

From the assumptions, we have:

BΞB $ g” g
1 (20)

By Lemma A.31, (20) implies:

BΞB $ rU ÞÑ gsc” rU ÞÑ g1sc for all c (21)

By S-Trans on Lemma A.18 and (21), we have:

BΞB¨rU ÞÑ g1sΞV (rU ÞÑ gsΞV (22)

By Lemma A.29, (22) implies:

Bd2ΞB¨d
2rU ÞÑ g1sΞV (d

2rU ÞÑ gsΞV (23)

By Lemma A.31, (14) implies:

ΞB $ c” d
2c for all c (24)

By S-Trans on Lemma A.23 and (24), we have

ΞB (d
2ΞB (25)

Then by Lemma A.23 with (25), (23) implies:

BΞB¨d
2rU ÞÑ g1sΞV (d

2rU ÞÑ gsΞV (26)

Then by Lemma A.23 with (26), (19) implies:

d1d
2rU ÞÑ g1sΣ$ BΞB¨Bd

2rU ÞÑ g1sΞV¨d1d
2rU ÞÑ g1sΞV ; d12 cons. (27)

Similarly, we have:

BΞB¨d
2rU ÞÑ g1sΞV ¨d

2rU ÞÑ g1sΣ(d2rU ÞÑ gsΞV ¨d
2rU ÞÑ gsΣ (28)

By Lemma A.29, (28) implies:

Bd1ΞB¨d1d
2rU ÞÑ g1sΞV ¨d1d

2rU ÞÑ g1sΣ(d1d
2rU ÞÑ gsΞV ¨d1d

2rU ÞÑ gsΣ (29)

By S-Trans on Lemma A.18 and (15), we have:

ΞB¨d
2rU ÞÑ gsΞV (d1ΞB (30)

91

Then by Lemma A.23 with (30), (29) implies:

BΞB¨Bd
2rU ÞÑ gsΞV¨d1d

2rU ÞÑ g1sΞV ¨d1d
2rU ÞÑ g1sΣ(d1d

2rU ÞÑ gsΞV ¨d1d
2rU ÞÑ gsΣ

(31)

Then by Lemma A.23 with (31), (11) implies:

BΞB¨Bd
2rU ÞÑ gsΞV¨d1d

2rU ÞÑ g1sΞV ¨d1d
2rU ÞÑ g1sΣ(d1d

2rU ÞÑ gsΞV (32)

Similarly, we have:

BΞB¨Bd
2rU ÞÑ gsΞV¨d1d

2rU ÞÑ gsΞV (d1d
2rU ÞÑ g1sΞV (33)

Then by Lemma A.19 on (32) and (33), we have:

BΞB¨Bd
2rU ÞÑ gsΞV¨d1d

2rU ÞÑ g1sΞV ¨d1d
2rU ÞÑ g1sΣ(d1d

2rU ÞÑ g1sΞV (34)

Then by Lemma A.23 with (26), (34) implies:

BΞB¨Bd
2rU ÞÑ g1sΞV¨d1d

2rU ÞÑ g1sΞV ¨d1d
2rU ÞÑ g1sΣ(d1d

2rU ÞÑ g1sΞV (35)

Let d11 “ rV ÞÑ V^ ubd2rU ÞÑ g1sΞpVq _ lbd2rU ÞÑ g1sΞpVqs. Since g and g1 are not type

variables and W “ W1
pW ÞÑ W1q P d2

, we have:

d1 “ rV ÞÑ V^ d2rU ÞÑ gsubΞpVq _ d2rU ÞÑ gslbΞpVqs (36)
d11 “ rV ÞÑ V^ d2rU ÞÑ g1subΞpVq _ d2rU ÞÑ g1slbΞpVqs (37)

By Lemma A.29, (21) implies:

Bd2ΞB $ d
2rU ÞÑ gsubΞpVq ” d2rU ÞÑ g1subΞpVq (38)

Bd2ΞB $ d
2rU ÞÑ gslbΞpVq ” d2rU ÞÑ g1slbΞpVq (39)

By Lemma A.23 with (25), (38) and (39) imply:

BΞB $ d
2rU ÞÑ gsubΞpVq ” d2rU ÞÑ g1subΞpVq (40)

BΞB $ d
2rU ÞÑ gslbΞpVq ” d2rU ÞÑ g1slbΞpVq (41)

Then by Lemma A.7 on S-Refl, (40), and (41), we have:

B ΞB $ V^ d
2rU ÞÑ gsubΞpVq _ d2rU ÞÑ gslbΞpVq

” V^ d2rU ÞÑ g1subΞpVq _ d2rU ÞÑ g1slbΞpVq (42)

Then by IH on (27) and (42), we have:

d11d
2rU ÞÑ g1sΣ$ BΞB¨Bd

2rU ÞÑ g1sΞV¨d
1
1d
2rU ÞÑ g1sΞV ; d22 cons. (43)

for some d22 , where dompd
2
2q “ dompd

1
2q.

By Lemma A.31, (42) implies:

BΞB $ d1c” d
1
1c for all c (44)

By S-Trans on Lemma A.18 and (44), we have:

BΞB¨d
1
1d
2rU ÞÑ g1sΞV ¨d

1
1d
2rU ÞÑ g1sΣ(d1d

2rU ÞÑ g1sΞV ¨d1d
2rU ÞÑ g1sΣ (45)

BΞB¨d1d
2rU ÞÑ g1sΞV (d

1
1d
2rU ÞÑ g1sΞV (46)

92

Then by Lemma A.23 with (45), (35) implies:

BΞB¨Bd
2rU ÞÑ g1sΞV¨d

1
1d
2rU ÞÑ g1sΞV ¨d

1
1d
2rU ÞÑ g1sΣ(d1d

2rU ÞÑ g1sΞV (47)

Then by Lemma A.19 on (47) and (46), we have:

BΞB¨Bd
2rU ÞÑ g1sΞV¨d

1
1d
2rU ÞÑ g1sΞV ¨d

1
1d
2rU ÞÑ g1sΣ(d11d

2rU ÞÑ g1sΞV (48)

Since g1 is not a type variable and W “ W1
pW ÞÑ W1q P d2

, we have splitVpd2rU ÞÑ
g1sΞ, dompd22qq “ pd

2rU ÞÑ g1sΞV , d
2rU ÞÑ g1sΞV q. Then by the inductive case of

the definition of consistency, (43) and (48) imply:

d2rU ÞÑ g1sΣ$ BΞB¨d
2rU ÞÑ g1sΞ ; d22 ˝ d

1
1 cons. (49)

�

Lemma A.37 (Inversion of consistency). If Σ$ BΞB¨Ξ ; d cons., then for all U, we have
BΞB¨BΞU¨dUΞ U ¨dUΣ(dUΞU and dUΣ$ BΞB¨BΞU¨dUΞ U ; d1 cons. for some d1, where
splitUpΞ, dompd1qq “ pΞU, Ξ U q, dU “ rU ÞÑ U^ ubΞpUq _ lbΞpUqs, and dompd1q “
dompdqzt U u.

Proof By induction on consistency derivations. If Ξ is not guarded, we can replace it with
cleanuppΞq before applying the lemma, and restore it back to Ξ in the conclusion. Therefore
we can assume Ξ guard..

Base case. For the base case, we have Ξ“ n . Then we have ΞU “ n , Ξ U “ n , and dU “ id.
By S-Empty, we have:

BΞB¨Σ(n

i.e., BΞB¨BΞU¨dUΞ U ¨dUΣ(dUΞU (1)

By the base case of the definition of consistency, we have:

Σ$ BΞB ; id cons.
i.e., dUΣ$ BΞB¨BΞU¨dUΞ U ; id cons. (2)

Inductive case on U. For the inductive case on U, i.e., where d“ d2 ˝ d1 for some d1 and
d2, where dompd1q “ t U u, we have the result immediately from the premises.

Inductive case not on U. For the inductive case not on U, i.e., where d“ d2 ˝ d1 for some
d1 and d2, where dompd1q “ t V u for some V‰ U, the premises of the rule are:

BΞB¨BΞV¨d1ΞV ¨d1Σ(d1ΞV (3)

d1Σ$ BΞB¨BΞV¨d1ΞV ; d2 cons. (4)

where splitVpΞ, dompd2qq “ pΞV , ΞV q and d1 “ rV ÞÑ V^ ubΞpVq _ lbΞpVqs. By IH
on (4), we have:

BΞB¨BΞV¨BΞ
1
U¨d

1
UΞ
1
U ¨d

1
Ud1Σ(d

1
UΞ
1
U (5)

d1Ud1Σ$ BΞB¨BΞV¨BΞ
1
U¨d

1
UΞ
1
U ; d3 cons. (6)

93

for some d3, where splitUpd1ΞV , dompd3qq “ pΞ
1
U, Ξ

1
U q and d1U “ rU ÞÑ U^

ubd1Ξ V pUq _ lbd1Ξ V pUqs and dompd3q “ dompd2qzt U u. It is easy to see that Ξ1U “
d1ΞU and Ξ1U “ d1ΞV U , where splitUpΞV , dompd3qq “ pΞU, ΞV U q. Then (5) and
(6) imply:

BΞB¨BΞV¨Bd1ΞU¨d
1
Ud1ΞV U ¨d

1
Ud1Σ(d

1
Ud1ΞU (7)

d1Ud1Σ$ BΞB¨BΞV¨Bd1ΞU¨d
1
Ud1ΞV U ; d3 cons. (8)

Since pUď˛ d1cq P d1ΞV only if pUď˛ cq P Ξ, we have ubd1Ξ V pVq “ d1ubΞpVq and
lbd1Ξ V pVq “ d1lbΞpVq. Then we have:

d1U “ rU ÞÑ U^ d1ubΞpUq _ d1lbΞpUqs (9)

Expanding the composition, we have:

d1U ˝ d1 “ rU ÞÑ U^ d1ubΞpUq _ d1lbΞpUq, V ÞÑ V^ d1UubΞpVq _ d1UlbΞpUqs
(10)

By Corollary A.33, we have:

ΞV $ V” rV ÞÑ ubΞV pVq _ lbΞV pVqsV
i.e., ΞV $ V” rV ÞÑ ubΞpVq _ lbΞpVqsV

i.e., ΞV $ V” d1V (11)

Then by Lemma A.31, (11) implies:

ΞV $ rV ÞÑ VspU^ ubΞpUq _ lbΞpUqq ” rV ÞÑ d1VspU^ ubΞpUq _ lbΞpUqq
i.e., ΞV $ U^ ubΞpUq _ lbΞpUq ” U^ d1ubΞpUq _ d1lbΞpUq
i.e., ΞV $ U^ ubΞpUq _ lbΞpUq ” U^ ubd1Ξ V pUq _ lbd1Ξ V pUq (12)

Then by Lemma A.32, (12) implies:

BΞV $ dUubΞpVq ” d1UubΞpVq (13)
BΞV $ dUlbΞpVq ” d1UlbΞpVq (14)

By Lemma A.7 on S-Refl, (13) and (14), we have:

BΞV $ V^ dUubΞpVq _ dUlbΞpVq ” V^ d1UubΞpVq _ d1UlbΞpVq (15)

Let d11 “ rV ÞÑ V^ ubdUΣ U pVq _ lbdUΣ U pVqs. By the same reasoning, we have:

d11 ˝ dU “ rU ÞÑ U^ d11ubΞpUq _ d
1
1lbΞpUq, V ÞÑ V^ dUubΞpVq _ dUlbΞpUqs

(16)
BΞU $ U^ d1ubΞpUq _ d1lbΞpUq ” U^ d11ubΞpUq _ d

1
1lbΞpUq (17)

Then by Lemma A.31 on (15) and (17), we have:

BΞU¨BΞV $ d
1
Ud1c” d

1
1dUc for all c (18)

By S-Trans on Lemma A.18 and (18), we have:

BΞU¨BΞV¨d
1
1dUΔ(d

1
Ud1Δ for all Δ (19)

94

By Corollary A.33, we have

ΞV $ c” rV ÞÑ V^ ubΞV pVq _ lbΞV pVqsc for all c
i.e., ΞV $ c” rV ÞÑ V^ ubΞpVq _ lbΞpVqsc for all c

i.e., ΞV $ c” d1c for all c (20)

By S-Trans on Lemma A.18 and (20), we have:

ΞU¨ΞV (d1ΞU (21)

By Lemma A.21, (21) implies:

BΞU¨BΞV (Bd1ΞU (22)

By the same reasoning, we have:

Bd1ΞU¨BΞB¨BΞV (Bd
1
UΞB¨Bd

1
UΞV (23)

BΞU¨BdUΞV (BΞV (24)

By Lemma A.29, (3) implies:

Bd1UΞB¨Bd
1
UΞV¨d

1
Ud1ΞV ¨d

1
Ud1Σ(d

1
Ud1ΞV

i.e., Bd1UΞB¨Bd
1
UΞV¨d

1
Ud1ΞU¨d

1
Ud1ΞV U ¨d

1
Ud1Σ(d

1
Ud1ΞV (25)

By Lemma A.23 with (7), (25) implies:

Bd1UΞB¨Bd
1
UΞV¨BΞB¨BΞV¨Bd1ΞU¨d

1
Ud1ΞV U ¨d

1
Ud1Σ(d

1
Ud1ΞV (26)

Let splitVpΞ U , dompd3qq “ pΞV , Ξ U V q. It is easy to see that Ξ U V “ ΞV U . Then
(26) and (8) imply:

Bd1UΞB¨Bd
1
UΞV¨BΞB¨BΞV¨Bd1ΞU¨d

1
Ud1Ξ U V ¨d

1
Ud1Σ(d

1
Ud1ΞV (27)

d1Ud1Σ$ BΞB¨BΞV¨Bd1ΞU¨d
1
Ud1Ξ U V ; d3 cons. (28)

By Lemma A.23 with (23), (27) implies:

BΞB¨BΞV¨Bd1ΞU¨d
1
Ud1Ξ U V ¨d

1
Ud1Σ(d

1
Ud1ΞV (29)

By Lemma A.23 and Lemma A.25 with (22), (29) and (28) imply:

BΞB¨BΞU¨BΞV¨d
1
Ud1Ξ U V ¨d

1
Ud1Σ(d

1
Ud1ΞV (30)

d1Ud1Σ$ BΞB¨BΞU¨BΞV¨d
1
Ud1Ξ U V ; d3 cons. (31)

By Lemma A.23 and Lemma A.19 with (19), (30) implies:

BΞB¨BΞU¨BΞV¨d
1
1dUΞ U V ¨d

1
1dUΣ(d

1
1dUΞV (32)

By Lemma A.36 with (15) and (17), (31) implies:

d11dUΣ$ BΞB¨BΞU¨BΞV¨d
1
1dUΞ U V ; d13 cons. (33)

95

for some d13, where dompd
1
3q “ dompd3q. By Lemma A.23 and Lemma A.25 with

(24), (32) and (33) imply:

BΞB¨BΞU¨BdUΞV¨d
1
1dUΞ U V ¨d

1
1dUΣ(d

1
1dUΞV (34)

d11dUΣ$ BΞB¨BΞU¨BdUΞV¨d
1
1dUΞ U V ; d13 cons. (35)

It is easy to see that splitVpdUΞ U , dompd13qq “ pdUΞV , dUΞ U V q. Then by the
inductive case of the definition of consistency, (34) and (35) imply:

dUΣ$ BΞB¨BΞU¨dUΞ U ; d13 ˝ d
1
1 cons. (36)

By Lemma A.23 with (22), (7) implies:

BΞB¨BΞU¨BΞV¨d
1
Ud1ΞV U ¨d

1
Ud1Σ(d

1
Ud1ΞU (37)

By Lemma A.23 and Lemma A.19 with (19), (37) implies:

BΞB¨BΞU¨BΞV¨d
1
1dUΞV U ¨d

1
1dUΣ(d

1
1dUΞU (38)

By Lemma A.23 with (24), (38) implies:

BΞB¨BΞU¨BdUΞV¨d
1
1dUΞV U ¨d

1
1dUΣ(d

1
1dUΞU (39)

By Lemma A.23 with Lemma A.18, (39) implies:

BΞB¨BΞU¨dUΞV¨d
1
1dUΞV U ¨d

1
1dUΣ(d

1
1dUΞU (40)

By Corollary A.33, we have

dUΞV $ c” rV ÞÑ V^ ubdUΞV pVq _ lbdUΞV pVqsc for all c
i.e., dUΞV $ c” rV ÞÑ V^ ubdUΞ U pVq _ lbdUΞ U pVqsc for all c

i.e., dUΞV $ c” d
1
1c for all c (41)

By S-Trans on Lemma A.18 and (41), we have:

dUΞV¨Δ(d
1
1Δ for all Δ (42)

Then by Lemma A.23 and Lemma A.19 with (42), (40) implies:

BΞB¨BΞU¨dUΞV¨dUΞV U ¨dUΣ(dUΞU

i.e., BΞB¨BΞU¨dUΞV¨dUΞ U V ¨dUΣ(dUΞU

i.e., BΞB¨BΞU¨dUΞ U ¨dUΣ(dUΞU (43)

�

Lemma A.38 (Inlining of consistent bounds). If Σ$ Ξ ; d cons. and Ξ¨Σ$ gď g1, then
BΞ¨dΣ$ dgď dg1.

Proof By induction on consistency derivations for the statement: if Σ$ BΞB¨Ξ ; d cons.
and BΞB¨Ξ¨Σ$ gď g1, then BΞB¨BΞ¨dΣ$ dgď dg1.

Base case. The base case is trivial since we have Ξ“ n and d“ id.

96

Inductive case. For the inductive case, we have d“ d2 ˝ d1 for some d1 “ rU ÞÑ U^

ubΞpUq _ lbΞpUqs and d2 and U. The premises of the rule are:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(d1ΞU (1)
d1Σ$ BΞB¨BΞU¨d1Ξ U ; d2 cons. (2)

where splitUpΞ, dompd2qq “ pΞU, Ξ U q. From the assumption, we have:

BΞB¨Ξ¨Σ$ gď g
1 (3)

By Lemma A.29, (3) implies:

Bd1ΞB¨d1Ξ¨d1Σ$ d1gď d1g
1

i.e., Bd1ΞB¨d1ΞU¨d1Ξ U ¨d1Σ$ d1gď d1g
1 (4)

By Lemma A.23 with (1), (4) implies:

Bd1ΞB¨BΞB¨BΞU¨d1Ξ U ¨d1Σ$ d1gď d1g
1 (5)

By Corollary A.33, we have:

ΞU $ c” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqsc for all c
i.e., ΞU $ c” rU ÞÑ U^ ubΞpUq _ lbΞpUqsc for all c

i.e., ΞU $ c” d1c for all c (6)

By S-Trans on Lemma A.18 and (6), we have:

ΞB¨ΞU (d1ΞB (7)
ΞU¨Ξ U (d1Ξ U (8)

Then by Lemma A.23 with (7), (5) implies:

BΞB¨BΞU¨d1Ξ U ¨d1Σ$ d1gď d1g
1 (9)

Then by IH on (2) and (9), we have:

BΞB¨BΞU¨Bd1Ξ U ¨d2d1Σ$ d2d1gď d2d1g
1

i.e., BΞB¨BΞU¨Bd1Ξ U ¨dΣ$ dgď dg
1 (10)

Then by Lemma A.23 with (8), (10) implies:

BΞB¨BΞU¨BΞ U ¨dΣ$ dgď dg
1

i.e., BΞB¨BΞ¨dΣ$ dgď dg
1 (11)

�

Lemma A.39 (Equivalence of inlining of consistent bounds). If Σ$ Ξ ; d cons., then
Ξ¨Σ$ U” g

pU ÞÑ gq P d.

Proof By induction on consistency derivations for the statement: if Σ$ BΞB¨Ξ ; d cons.,
then BΞB¨Ξ¨Σ$ U” g

pU ÞÑ gq P d.

Base case. The base case holds vacuously since we have d“ id.

97

Inductive case. For the inductive case, we have d“ d2 ˝ d1 for some d1 “ rU ÞÑ U^

ubΞpUq _ lbΞpUqs and d2 and U. The premises of the rule are:

BΞB¨BΞU¨d1Ξ U ¨d1Σ(d1ΞU (1)
d1Σ$ BΞB¨BΞU¨d1Ξ U ; d2 cons. (2)

where splitUpΞ, dompd2qq “ pΞU, Ξ U q. Let d2 “ rU8 ÞÑ g8
8
s for some U8 8 and g8 8 .

Expanding the composition, we have:

d“ rU8 ÞÑ g8
8 , U ÞÑ d2pU^ ubΞpUq _ lbΞpUqqs (3)

By IH on (2), we have:

BΞB¨BΞU¨d1Ξ U ¨d1Σ$ U8 ” g8
8 (4)

By Corollary A.33, we have:

ΞU $ c” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqsc for all c
i.e., ΞU $ c” rU ÞÑ U^ ubΞpUq _ lbΞpUqsc for all c

i.e., ΞU $ c” d1c for all c (5)

By S-Trans on Lemma A.18 and (5), we have:

ΞU¨Ξ U ¨Σ(d1Ξ U ¨d1Σ (6)

Then by Lemma A.23 with (6), (4) implies:

BΞB¨ΞU¨Ξ U ¨Σ$ U8 ” g8
8

i.e., BΞB¨Ξ¨Σ$ U8 ” g8
8 (7)

By Lemma A.31 on (7), we have:

BΞB¨Ξ¨Σ$ c” d2c for all c (8)

Then by S-Trans on (5) and (8), we have:

BΞB¨Ξ¨Σ$ U” d2pU^ ubΞpUq _ lbΞpUqq (9)

Then (7) and (9) imply:

BΞB¨Ξ¨Σ$ U” g
pU ÞÑ gq P d (10)

�

Lemma A.40 (Congruence of inlining of consistent bounds on types). If Σ$ Ξ ; d cons.,
then Ξ¨Σ$ g” dg for all g.

Proof By induction on the syntax of g.

Case g“ g1 Ñ g2. By IH, we have:

Ξ¨Σ$ g1 ” dg1 (1)
Ξ¨Σ$ g2 ” dg2 (2)

98

By Lemma A.23 with Lemma A.18, (1) and (2) imply:

CΞ¨CΣ$ g1 ” dg1 (3)
CΞ¨CΣ$ g2 ” dg2 (4)

Then by S-FunDepth on (3) and (4), we have:

Ξ¨Σ$ g1 Ñ g2 ” dg1 Ñ dg2

i.e., Ξ¨Σ$ g1 Ñ g2 ” dpg1 Ñ g2q (5)

Case g“ t G : g1 u. By IH, we have:

Ξ¨Σ$ g1 ” dg1 (6)

By Lemma A.23 with Lemma A.18, (6) implies:

CΞ¨CΣ$ g1 ” dg1 (7)

Then by S-RcdDepth on (7), we have:

Ξ¨Σ$ t G : g1 u ” t G : dg1 u

i.e., Ξ¨Σ$ t G : g1 u ” dt G : g1 u (8)

Cases g“ #�, g“J˛, g“ U R dompdq. Then g“ dg. By S-Refl, we have:

g” dg (9)

Case g“ U P dompdq. From the assumption, we have:

Σ$ Ξ ; d cons. (10)

By Lemma A.39 on (10), we have:

Ξ¨Σ$ U” dU (11)

Case g“ g1 _
˛ g2. By IH, we have:

Ξ¨Σ$ g1 ” dg1 (12)
Ξ¨Σ$ g2 ” dg2 (13)

Then by Lemma A.7˛ on (12) and (13), we have:

Ξ¨Σ$ g1 _
˛ g2 ” dg1 _

˛ dg2

i.e., Ξ¨Σ$ g1 _
˛ g2 ” dpg1 _

˛ g2q (14)

Case g“ g1. By IH, we have:

Ξ¨Σ$ g1 ” dg1 (15)

Then by S-NegInv on (15), we have:

Ξ¨Σ$ g1 ” dg1

i.e., Ξ¨Σ$ g1 ” d g1 (16)

�

99

Lemma A.41 (Congruence of inlining of consistent bounds on guarded types). If Σ$ Ξ ;
d cons. and TTVpgq “H, then BΞ¨BΣ$ g” dg.

Proof By induction on the syntax of g.

Case g“ g1 Ñ g2. By Lemma A.40, we have:

Ξ¨Σ$ g1 ” dg1 (1)
Ξ¨Σ$ g2 ” dg2 (2)

By Lemma A.23 with Lemma A.18, (1) and (2) imply:

CΞ¨CΣ$ g1 ” dg1 (3)
CΞ¨CΣ$ g2 ” dg2 (4)

Then by S-FunDepth on (3) and (4), we have:

BΞ¨BΣ$ g1 Ñ g2 ” dg1 Ñ dg2

i.e., BΞ¨BΣ$ g1 Ñ g2 ” dpg1 Ñ g2q (5)

Case g“ t G : g1 u. By Lemma A.40, we have:

Ξ¨Σ$ g1 ” dg1 (6)

By Lemma A.23 with Lemma A.18, (6) implies:

CΞ¨CΣ$ g1 ” dg1 (7)

Then by S-RcdDepth on (7), we have:

BΞ¨BΣ$ t G : g1 u ” t G : dg1 u

i.e., BΞ¨BΣ$ t G : g1 u ” dt G : g1 u (8)

Cases g“ #�, g“J˛. Then g“ dg. By S-Refl, we have:

g” dg (9)

Case g“ U. Impossible since TTVpgq “H.
Case g“ g1 _

˛ g2. By IH, we have:

BΞ¨BΣ$ g1 ” dg1 (10)
BΞ¨BΣ$ g2 ” dg2 (11)

Then by Lemma A.7˛ on (10) and (11), we have:

BΞ¨BΣ$ g1 _
˛ g2 ” dg1 _

˛ dg2

i.e., BΞ¨BΣ$ g1 _
˛ g2 ” dpg1 _

˛ g2q (12)

Case g“ g1. By IH, we have:

BΞ¨BΣ$ g1 ” dg1 (13)

100

Then by S-NegInv on (13), we have:

BΞ¨BΣ$ g1 ” dg1

i.e., BΞ¨BΣ$ g1 ” d g1 (14)

�

Lemma A.42 (Inlining of consistent bounds on guarded derivations). If Σ$ Ξ ; d cons.
and Ξ¨Σ$ gď g1 and TTVpgq Y TTVpg1q “H, then BΞ¨BΣ¨dΣ$ gď g1.

Proof From the assumptions, we have:

Σ$ Ξ ; d cons. (1)
Ξ¨Σ$ gď g1 (2)

By Lemma A.38 on (1) and (2), we have:

BΞ¨dΣ$ dgď dg1 (3)

By Lemma A.41 on (1), we have:

BΞ¨BΣ$ g” dg (4)
BΞ¨BΣ$ g1 ” dg1 (5)

Then by S-Trans on (4), (3), and (5), we have:

BΞ¨BΣ¨dΣ$ gď g1 (6)

�

Lemma A.43 (Inlining of bound in consistency). If Σ¨pUď˛ gq $ BΞB¨Ξ ; d cons., where
U R dompdq, then dUΣ$ BΞB¨BpUď˛ gq¨dUΞ ; d1 cons. for some d1, where dU “ rU ÞÑ
U^˛ gs and dompd1q “ dompdq.

Proof By induction on consistency derivations. If Ξ is not guarded, we can replace it with
cleanuppΞq before applying the lemma, and restore it back to Ξ in the conclusion. Therefore
we can assume Ξ guard..

Base case. For the base case, we have Ξ“ n . Then by the base case of the definition of
consistency, we have:

dUΣ$ BΞB¨BpUď
˛ gq ; id cons. (1)

Inductive case. For the inductive case, we have d“ d2 ˝ d1 for some d1 “ rV ÞÑ V^

ubΞpVq _ lbΞpVqs and d2 and V‰ U. The premises of the rule are:

BΞB¨BΞV¨d1ΞV ¨d1Σ¨d1pUď
˛ gq (d1ΞV (2)

d1Σ¨d1pUď
˛ gq $ BΞB¨BΞV¨d1ΞV ; d2 cons. (3)

101

where splitVpΞ, dompd2qq “ pΞV , ΞV q. By IH on (3), we have:

d1Ud1Σ$ BΞB¨BΞV¨BpUď
˛ d1gq¨d

1
Ud1ΞV ; d12 cons. (4)

for some d12, where d
1
U “ rU ÞÑ U^˛ d1gs and dompd12q “ dompd2q. Expanding the

composition, we have:

d1U ˝ d1 “ rU ÞÑ U^˛ d1g, V ÞÑ V^ d1UubΞpVq _ d1UlbΞpVqs (5)

By Corollary A.33, we have:

pUď˛ gq (V^ ubΞpVq _ lbΞpVq ” rU ÞÑ U^˛ gspV^ ubΞpVq _ lbΞpVqq
i.e., pUď˛ gq (V^ ubΞpVq _ lbΞpVq ” V^ dUubΞpVq _ dUlbΞpVq
i.e., pUď˛ gq (V^ ubΞpVq _ lbΞpVq ” V^ ubdUΞpVq _ lbdUΞpVq (6)

Then by Lemma A.32, (6) implies:

BpUď˛ gq (d1g” d
1
1g (7)

Then by Lemma A.7 on S-Refl and (7), we have:

BpUď˛ gq (U^˛ d1g” U^
˛ d11g (8)

Let d11 “ rV ÞÑ V^ ubdUΞpVq _ lbdUΞpVqs. By the same reasoning, we have:

d11 ˝ dU “ rU ÞÑ U^˛ d11g, V ÞÑ V^ ubdUΞpVq _ lbdUΞpVqs
“ rU ÞÑ U^˛ d11g, V ÞÑ V^ dUubΞpVq _ dUlbΞpVqs

(9)

BΞV (V^ dUubΞpVq _ dUlbΞpVq ” V^ d1UubΞpVq _ d1UlbΞpVq (10)

Then by Lemma A.31 on (8) and (10), we have:

BpU^˛ gq¨BΞV (d
1
Ud1c” d

1
1dUc for all c (11)

By S-Trans on Lemma A.18 and (11), we have:

BpU^˛ gq¨BΞV¨d
1
1dUΔ(d

1
Ud1Δ for all Δ (12)

By Corollary A.33, we have

ΞV $ c” rV ÞÑ V^ ubΞV pVq _ lbΞV pVqsc for all c
i.e., ΞV $ c” rV ÞÑ V^ ubΞpVq _ lbΞpVqsc for all c

i.e., ΞV $ c” d1c for all c (13)

By S-Trans on Lemma A.18 and (13), we have:

pUď˛ gq¨ΞV (pUď
˛ d1gq (14)

By Lemma A.21, (14) implies:

BpUď˛ gq¨BΞV (BpUď
˛ d1gq (15)

102

By the same reasoning, we have:

BpUď˛ d1gq¨BΞB¨BΞV (Bd
1
UΞB¨Bd

1
UΞV (16)

BΞV¨BpUď
˛ gq (BpUď˛ d1gq (17)

BpUď˛ gq¨BdUΞV (BΞV (18)

By Lemma A.35, (2) implies:

Bd1UΞB¨Bd
1
UΞV¨d

1
Ud1ΞV ¨d

1
Ud1Σ¨BpUď

˛ d1gq (d
1
Ud1ΞV (19)

By Lemma A.23 with (16), (19) implies:

BΞB¨BΞV¨d
1
Ud1ΞV ¨d

1
Ud1Σ¨BpUď

˛ d1gq (d
1
Ud1ΞV (20)

By Lemma A.23 with (17), (20) and (4) implies:

BΞB¨BΞV¨BpUď
˛ gq¨d1Ud1ΞV ¨d

1
Ud1Σ(d

1
Ud1ΞV (21)

d1Ud1Σ$ BΞB¨BΞV¨BpUď
˛ d1gq¨d

1
Ud1ΞV ; d12 cons. (22)

By Lemma A.23 and Lemma A.19 with (12), (21) implies:

BΞB¨BΞV¨BpUď
˛ gq¨d11dUΞV ¨d

1
1dUΣ(d

1
1dUΞV (23)

By Lemma A.36 with (8) and (10), (22) implies:

d11dUΣ$ BΞB¨BΞV¨BpUď
˛ d1gq¨d

1
1dUΞV ; d22 cons. (24)

for some d22 , where dompd
2
2q “ dompd

1
2q. By Lemma A.23 with (18), (23) and (24)

implies:

BΞB¨BpUď
˛ gq¨BdUΞV¨d

1
1dUΞV ¨d

1
1dUΣ(d

1
1dUΞV (25)

d11dUΣ$ BΞB¨BpUď
˛ d1gq¨BdUΞV¨d

1
1dUΞV ; d22 cons. (26)

It is easy to see that splitVpdUΞ, dompd22qq “ pdUΞV , dUΞV q. Then by the inductive
case of the definition of consistency, (25) and (26) imply:

dUΣ$ BΞB¨BpUď
˛ d1gq¨dUΞ ; d22 ˝ d

1
1 cons. (27)

�

A.7 Pure Boolean-Algebraic Subtyping

LemmaA.44. If
Ž

8 g8 Ď
Ź

9 c 9 , then g8 Ď c 9
8, 9 . Additionally, if

Ž

8 g8 “ g1 where g1 is not
an intersection; or if

Ź

9 c 9 “ c1 where c1 is not a union, then the derivation for g8 Ď c 9
8, 9

has a size not larger than that of the assumption
Ž

8 g8 Ď
Ź

9 c 9 .

Proof By induction on right-leaning Ď derivations.

Case S-Refl.

103

Case
Ź

9 c 9 “ c1 “
Ž

8 g8 . By repeated applications of S-Trans with S-AndOr11¨,

followed by an application of S-Trans with S-AndOr12¨, we have g8 Ď
Ž

8 g8
8
,

i.e., g8 Ď c 9
8, 9 .

If
Ž

8 g8 “ g1 where g1 is not an intersection, then
Ž

8 g8 “ g1. Then g8 Ď c 9
8, 9

is just g1 Ď c1, which is the assumption itself.
If
Ź

9 c 9 “ c1 where c1 is not a union, then c1 “
Ž

8 g8 is not a union, i.e.,
Ž

8 g8 “ g1. Then g8 Ď c 9
8, 9 is just g1 Ď c1, which is the assumption itself.

Case
Ž

8 g8 “ g1 “
Ź

9 c 9 . By repeated applications of S-Transwith S-AndOr11 ,
followed by an application of S-Trans with S-AndOr12 , we have
Ź

9 c 9 Ď c 9
9
, i.e., g8 Ď c 9

8, 9 .
If
Ž

8 g8 “ g1 where g1 is not an intersection, then g1 “
Ź

9 c 9 is not an intersec-
tion, i.e.,

Ź

9 c 9 “ c1. Then g8 Ď c 9
8, 9 is just g1 Ď c1, which is the assumption

itself.
If
Ź

9 c 9 “ c1 where c1 is not a union, then
Ź

9 c 9 “ c1. Then g8 Ď c 9
8, 9 is just

g1 Ď c1, which is the assumption itself.
Case S-ToB¨.

Ź

9 c 9 “J. The result follows from S-ToB¨ on each of g8 8 .
Case S-ToB .

Ž

8 g8 “K. The result follows from S-ToB on each of c 9 9 .
Case S-Compl¨.

Ž

8 g8 “J and
Ź

9 c 9 “ c1 “ c
1 _ c1 for some c1. The result follows

immediately.
Case S-Compl .

Ź

9 c 9 “K and
Ž

8 g8 “ g1 “ g
1 ^ g1 for some g1. The result follows

immediately.
Case S-AndOr11¨.

Ź

9 c 9 “ c1 “
Ž

8 g8 _ c
1 for some c1. By repeated applications of S-

Trans with S-AndOr11¨, followed by an application of S-Trans with S-AndOr12¨,
we have g8 Ď

Ž

8 g8 _ c
1
8
, i.e., g8 Ď c 9

8, 9 .
If
Ž

8 g8 “ g1 where g1 is not an intersection, then g8 Ď c 9
8, 9 is just gĎ g_ c1, which

is the assumption itself.
It is impossible to have

Ź

9 c 9 “ c1 where c1 is not a union since c1 “
Ž

8 g8 _ c
1.

Case S-AndOr11 .
Ž

8 g8 “ g1 “
Ź

9 c 9 ^ g
1 for some g1. By repeated applications

of S-Trans with S-AndOr11 , followed by an application of S-Trans with
S-AndOr12 , we have

Ź

9 c 9 ^ g
1 Ď c 9

9
, i.e., g8 Ď c 9

8, 9 .
It is impossible to have

Ž

8 g8 “ g1 where g1 is not an intersection since c1 “
Ž

8 g8 _

c1.
If
Ź

9 c 9 “ c1 where c1 is not a union, then g8 Ď c 9
8, 9 is just gĎ g_ c1, which is

the assumption itself.
Cases S-AndOr12˛. Similar to the cases S-AndOr11˛.
Case S-AndOr2¨. Let the range of 8 be 1..<. We have

Ž

8 g8 “
Ž

8 P 1..<´1 g8 _ g<. The
premises of the rule are

Ž

8 P 1..<´1 g8 Ď
Ź

9 c 9 and g< Ď
Ź

9 c 9 . By IH on the first
premise, we have g8 Ď c 9

8 P 1..<´1, 9 . By IH on the second premise, we have g< Ď c 9
9 .

Then we have g8 Ď c 9
8, 9 .

Case S-AndOr2 . Let the range of 9 be 1..=. We have
Ź

9 c 9 “
Ź

9 P 1..=´1 c 9 ^ c 9 . The
premises of the rule are

Ž

8 g8 Ď
Ź

9 P 1..=´1 c 9 and
Ž

8 g8 Ď c=. By IH on the first

104

premise, we have g8 Ď c 9
8, 9 P 1..=´1. By IH on the second premise, we have g8 Ď c=

8 .
Then we have g8 Ď c 9

8, 9 .
Case S-Distrib¨.

Ž

8 g8 “ g1 “ g
1 ^ pg11 _ g

1
2q and

Ź

9 c 9 “ c1 “ pg
1 ^ g11q _ pg

1 ^ g12q

for some g1 and g11 and g
1
2. The result follows immediately.

Case S-Distrib .
Ź

9 c 9 “ c1 “ g
1 _ pg11 ^ g

1
2q and

Ž

8 g8 “ g1 “ pg
1 _ g11q ^ pg

1 _ g12q

for some g1 and g11 and g
1
2. The result follows immediately.

Case S-Trans. The premises of the rule are
Ž

8 g8 Ď g
1 and g1 Ď

Ź

9 c 9 for some g1. By

IH on the former premise, we have g8 Ď g1
8
. By IH on the latter premise, we have

g1 Ď c 9
9
. The result follows from S-Trans on each of g8 Ď g1

8
with each of g8 Ď g1

8
.

�

Proof [Lemma 4.9] By straightforward induction on ĺ rules. �

Proof [Lemma 4.10]

(A) By induction on right-leaning Ď derivations. We only consider rules that can
syntactically apply. Denote the size of the current derivation as =.
Case S-Refl. Immediate.
Case S-AndOr2¨. *� “*�1

1 _*
�2
2 for some *�1

1 and *�2
2 , where *�2

2 is not a
union. The premises of the rule are *�1

1 Ď g and *�2
2 Ď g. By IH, we have

*
�1
1 “

Ž

: g and *
�2
2 “

Ž

; g. Since *
�2
2 is not a union, *�2

2 “ g. Then *� “
*
�1
1 _*

�2
2 “

Ž

: g_ g.
Case S-Trans. Then the premises are*� Ď g1 and g1 Ď g for some g1, both of size

=´ 1. By induction on the size of the subderivation for the former premise,
denoted by <. Denote the inner induction hypothesis as IH1.
Cases (S-Refl, ˚), (˚, S-Refl). By IH on the other premise.
Cases (S-ToB¨, ˚). Then g1 “J. The latter premise is JĎ g, which is

impossible by Lemma A.62. Therefore this case is impossible.
Cases (S-Compl¨, ˚). Then *� “J. The conclusion is JĎ g, which is

impossible by Lemma A.62. Therefore this case is impossible.
Cases (S-AndOr11¨, ˚). Then g1 “*� _ g11 for some g11. By Lemma A.44 on

the latter premise, we have*� Ď g with a derivation of size at most =´ 1.
The result then follows from IH.

Cases (S-AndOr12¨, ˚). Then g1 “ g11 _*
� for some g11. By Lemma A.44 on

the latter premise, we have*� Ď g with a derivation of size at most =´ 1.
The result then follows from IH.

Cases (S-AndOr2¨, ˚). Then*� “*�1
1 _*

�2
2 for some*�1

1 and*�2
2 , where

*
�2
2 is not a union. The premises of the former rule are *�1

1 Ď g1 and
*
�2
2 Ď g1, both of size < ´ 1. By S-Trans with g1 Ď g, we have *�1

1 Ď g

and*�2
2 Ď g, both of size = with a former premise of size < ´ 1. Then by

IH1, we have*�1
1 – g and*�2

2 – g, which imply*�1
1 _*

�2
2 – g.

Cases (S-AndOr2 , ˚). Then g1 “ g11 ^ g
1
2 for some g11 and g12. The premises

of the former rule are *� Ď g11 and *� Ď g12, both of size < ´ 1. By

105

Lemma A.57 on the latter premise, we have g1
;
Ď g of size at most =´ 1

for some ; P t 1, 2 u. By S-Trans on*� Ď g1
;
and g1

;
Ď g, we have*� Ď g

of size = with a former premise of size < ´ 1. The result then follows from
IH1.

(B) By induction on right-leaning Ď derivations. We only consider rules that can
syntactically apply. Denote the size of the current derivation as =.
Case S-Refl. Immediate.
Case S-AndOr2 . -� “ -�1

1 ^ -
�2
2 for some -�1

1 and -�2
2 , where -�2

2 is not a
intersection. The premises of the rule are gĎ -�1

1 and gĎ -�2
2 . By IH, we have

-
�1
1 “

Ź

: g and -�2
2 “

Ź

; g. Since -
�2
2 is not a intersection, -�2

2 “ g. Then
-� “ -

�1
1 ^ -

�2
2 “

Ź

: g^ g.
Case S-Trans. Then the premises are gĎ g1 and g1 Ď -� for some g1, both of size

=´ 1. By induction on the size of the subderivation of the former premise,
denoted by <. Denote the inner induction hypothesis as IH1.
Cases (S-Refl, ˚), (˚, S-Refl). By IH on the other premise.
Cases (S-ToB¨, ˚). Then g1 “J. The latter premise isJĎ -� , which implies

JĎ -
�2
2 for some -

�2
2 P t c1 Ñ c2, t G

1 : c1 u, #�1 u by Lemma A.44,
where -� “ -�1

1 ^ -
�2
2 , which is impossible by Lemma A.62. Therefore

this case is impossible.
Cases (S-AndOr11¨, ˚). Then g1 “ g_ g11 for some g11. By Lemma A.44 on

the latter premise, we have gĎ -� with a derivation of size at most =´ 1.
The result then follows from IH.

Cases (S-AndOr12¨, ˚). Then g1 “ g11 _ g for some g11. By Lemma A.44 on
the latter premise, we have gĎ -� with a derivation of size at most =´ 1.
The result then follows from IH.

Cases (S-AndOr2 , ˚). Then g1 “ g11 ^ g
1
2 for some g11 and g

1
2. The premises of

the former rule are gĎ g11 and gĎ g
1
2, both of size < ´ 1. By Lemma A.44

on the latter premise, we have g11 ^ g
1
2 Ď -

�8
8

8

, where -� “
Ź

8 -
�8
8

and

-
�8
8

8

are not intersections, each of size atmost =´ 1. Then byLemmaA.57,

we have g1
;8
Ď -

�8
8

8

for some ;8 P t 1, 2 u
8
, each of size at most =´ 1. By

S-Trans on gĎ g1
;
and g1

;
Ď -

�8
8
, we have gĎ -�8

8

8

, each of size = with

a former premise of size < ´ 1. Then -�8
8
“ g

8

by IH1 (note that -�8
8

8

are
not intersections), i.e., -� “

Ź

8 g.

�

Lemma A.45.

(A) If Jď g, then*� Ď g for some*� and � P t J, K u.
(B) If gďK, then gĎ -� for some -� and � P t K, J u.

Proof By straightforward induction on subtyping derivations. �

106

A.8 CDN- and DCN-normalized type forms and derivations

Proof [Lemma 4.21] By induction on unassuming subtyping derivations.

Case S-Refl. Then g“ c, which implies cdnpgq “ cdnpcq. Then we have cdnpgq ďcdn

cdnpcq by S-cdn.
Case S-ToB¨. Then c“J and cdnpcq “J. Then we have cdnpgq ďcdn J by S-ToB¨.
Case S-ToB . Then g“K and cdnpgq “ J. Thenwe have Jďcdn cdnpcq by S-ToB .
Case S-Compl¨. Then g“J and c“ c1 _ c1 for some c1. Let

cdnpc1q “
Ź

8 P 1..<
Ž

98 P 1..=8 c
n
8 98
. Then cdnp c1q “ negpcdnpc1qq “

Ź

981 P 1..=81
81 P 1..<

Ž

8 P 1..< negpcn
8 98
q. Then cdnpc1 _ c1q “

dispcdnpcq, cdnpc1qq “
Ź

8 P 1..<, 981 P 1..=81
81 P 1..<

´

Ž

91
8
P 1..=8 c

n
8 91
8

_
Ž

81 P 1..< negpcn
81 981
q

¯

.

For each 8, 981
81 P 1..<,

Ž

91
8
P 1..=8 c

n
8 91
8

contains the disjunct cn
8 98
, and

Ž

81 P 1..< negpcn
81 981
q contains the disjunct negpcn

8 98
q. Then by commutativ-

ity, we have
Ž

91
8
P 1..=8 c

n
8 91
8

_
Ž

81 P 1..< negpcn
81 981
q ěcdn Ž

91
8
P 1..=8zt 98 u c

n
8 91
8

_
Ž

81 P 1..<zt 8 u negpc
n
81 981
q _ cn

8 98
_ negpcn

8 98
q, which implies Jďcdn Ž

91
8
P 1..=8 c

n
8 91
8

_
Ž

81 P 1..< negpcn
81 981
q. Finally by S-AndOr2 , we have Jďcdn cdnpc1 _ c1q.

Case S-Compl . Then g“ g1 ^ g1 and c“K for some g1.
Let cdnpg1q “

Ź

8 P 1..<
Ž

98 P 1..=8 g
n
8 98
. Then cdnp g1q “

negpcdnpg1qq “
Ź

98 P 1..=8
8 P 1..<

Ž

8 P 1..< negpgn
8 98
q. We want to show

Ź

8 P 1..<
Ž

98 P 1..=8 g
n
8 98
^
Ź

98 P 1..=8
8 P 1..<

Ž

8 P 1..< negpgn
8 98
q ď

 J. By S-DistribCdn¨, it suffices to show
gn

1 911
^
Ź

8 P 2..<
Ž

98 P 1..=8 g
n
8 98
^
Ź

98 P 1..=8
8 P 1..<

Ž

8 P 1..< negpgn
8 98
q ď J

911 P 1..=1 ,
i.e.,
gn

1 911
^
Ź

8 P 2..<
Ž

98 P 1..=8 g
n
8 98
^
Ź

98 P 1..=8
8 P 1..<

Ž

8 P 1..<zt 81 P 1..1 | 981“ 9181 u
negpgn

8 98
q ď J

911 P 1..=1

since gn
1 911
^ pnegpgn

1 911
q _ g2q ď gn

1 911
^ g2 for any

g2. Repeating the process, it suffices to show
gn

1 911
^ gn

2 912
^
Ź

8 P 3..<
Ž

98 P 1..=8 g
n
8 98
^
Ź

98 P 1..=8
8 P 1..<

Ž

8 P 1..<zt 81 P 1..2 | 981“ 9181 u
negpgn

8 98
q ď J

911 P 1..=1 , 9
1
2 P 1..=2 .

Repeating the process < times, it suffices to show
Ź

8 P 1..< g
n
8 91
8

^
Ź

98 P 1..=8
8 P 1..<

Ž

8 P 1..<zt 81 P 1..< | 981“ 9181 u
negpgn

8 98
q ď J

91
8
P 1..=8

8 P 1..<

,
which is indeed true since one of the conjuncts is an empty union, i.e., J, when
98 “ 9 1

8

8 P 1..<
.

Case S-AndOr11¨. Then c“ g_ c1 for some c1. Then cdnpcq “ dispcdnpgq, cdnpc1qq.
Let cdnpgq “

Ź

8 g
dn
8

and cdnpc1q “
Ź

9 c
dn
9
. Then dispcdnpgq, cdnpc1qq “

Ź

8, 9 pg
dn
8
_ cdn

9
q. By S-AndOr1¨, we have gdn

8
ďcdn gdn

8
_ cdn

9

8, 9

, which

imply gdn
8
ďcdn

Ź

9 pg
dn
8
_ cdn

9
q
8

by S-AndOr2 , which imply
Ź

8 g
dn
8
ďcdn

Ź

8, 9 pg
dn
8
_ cdn

9
q by Lemma A.7 , i.e., cdnpgq ďcdn cdnpcq.

Case S-AndOr11 . Then g“ c^ g1 for some g1. Then cdnpgq “
conpcdnpcq, cdnpg1qq “ cdnpcq ^ cdnpg1q. Let cdnpg1q “

Ź

8 g
dn
8

and

107

cdnpcq “
Ź

9 c
dn
9
. By S-AndOr1 , we have

Ź

9 c
dn
9
^
Ź

8 g
dn
8
ďcdn Ź

9 c
dn
9
,

i.e., cdnpgq ďcdn cdnpcq.
Cases S-AndOr12˛. Similar to the cases above.
Case S-AndOr2¨. Then g“ g1 _ g2 for some g1 and g2. By IH on the premises,

we have cdnpΣq $ cdnpg1q ď
cdn cdnpcq and cdnpΣq $ cdnpg2q ď

cdn cdnpcq. Then
by Corollary A.47, we have cdnpΣq $ dispcdnpg1q, cdnpg2qq ď

cdn cdnpcq, i.e.,
cdnpΣq $ cdnpg1 _ g2q ď

cdn cdnpcq.
Case S-AndOr2 . Then c“ c1 ^ c2 for some c1 and c2. By IH on the premises,

we have cdnpΣq $ cdnpgq ďcdn cdnpc1q and cdnpΣq $ cdnpgq ďcdn cdnpc2q.
Let cdnpc1q “

Ź

8 c
dn
18 and cdnpc2q “

Ź

9 c
dn
2 9 . By Lemma 3.1, we have

cdnpΣq $ cdnpgq ďcdn cdn
18
8

and cdnpΣq $ cdnpgq ďcdn cdn
2 9
9

. Then by S-AndOr2 ,
we have cdnpΣq $ cdnpgq ďcdn Ź

8 c
dn
18 ^

Ź

9 c
dn
2 9 “ cdnpc1 ^ c2q.

Case S-Distrib¨. Then g“ g0 ^ pg1 _ g2q and c“ pg0 ^ g1q _ pg0 ^ g2q for some g0 and
g1 and g2. Let cdnpg0q “

Ź

: g
dn
0: , cdnpg1q “

Ź

8 g
dn
18 , and cdnpg2q “

Ź

9 g
dn
2 9 . Then

we have:

cdnpgq “ conpcdnpg0q, dispcdnpg1q, cdnpg2qqq

“
Ź

: g
dn
0: ^

Ź

8, 9 pg
dn
18 _ g

dn
2 9 q

cdnpcq “ dispconpcdnpg0q, cdnpg1qq, conpcdnpg0q, cdnpg2qqq

“ disp
Ź

: g
dn
0: ^

Ź

8 g
dn
18 ,

Ź

: g
dn
0: ^

Ź

9 g
dn
2 9 q

“ disp
Ź

81 P t 0:: ,188 u
gdn
81
,
Ź

91 P t 0:: ,2 9 9 u
gdn
91
q

“
Ź

81 P t 0:: ,188 u, 91 P t 0:: ,2 9 9 u
pgdn
81
_ gdn

91
q

For each 81 P t 0:
:
, 18

8
u, 9 1 P t 0:

:
, 2 9

9
u, we have the following: If 81 “ 0:1

for some :1, then we have gdn
0:1
ďcdn gdn

0:1
_ gdn

91
by S-AndOr1¨. If 9 1 “ 0:2 for

some :2, then we have gdn
0:2
ďcdn gdn

81
_ gdn

0:2
by S-AndOr1¨. Otherwise, we have

gdn
18 _ g

dn
2 9 ď

cdn gdn
18 _ g

dn
2 9 by S-Refl.

Then we have
Ź

: g
dn
0: ^

Ź

8, 9 pg
dn
18 _ g

dn
2 9 q ď

cdn
Ź

81 P t 0:: ,188 u, 91 P t 0:: ,2 9 9 u
pgdn
81
_ gdn

91
q by Lemma A.7 , commutativity, and

idempotence, i.e., cdnpg0 ^ pg1 _ g2qq ď
cdn cdnppg0 ^ g1q _ pg0 ^ g2qq.

Case S-Distrib . Then g“ pg0 _ g1q ^ pg0 _ g2q and c“ g0 _ pg1 ^ g2q for some g0
and g1 and g2. Let cdnpg0q “

Ź

: g
dn
0: , cdnpg1q “

Ź

8 g
dn
18 , and cdnpg2q “

Ź

9 g
dn
2 9 .

Then we have cdnppg0 _ g1q ^ pg0 _ g2qq “
Ź

:,8 pg
dn
0: _ g

cdn
18 q ^ pg

dn
0: _ g

dn
2 9 q and

cdnpg0 _ pg1 ^ g2qq “
Ź

:,8 pg
dn
0: _ g

cdn
18 q ^ pg

dn
0: _ g

dn
2 9 q. Then we have cdnppg0 _

g1q ^ pg0 _ g2qq ď
cdn cdnpg0 _ pg1 ^ g2qq by S-Refl.

Case S-Trans. By IH on the premises, followed by S-Trans.
Case S-Hyp. Then the premise of the rule is pgď cq P Σ. Let cdnp g_ cq “

Ź

8

Ž

98
gn
8 98
.

Then we have cdnpJď
Ž

98
gn
8 98
q Ď cdnpΣq

8
. For each 8, we have:

108

Case DU. t U, U u Ď t gn
8 98

98
u. Then we have Jďcdn U_ U by S-Compl¨ and

U_ Uďcdn Ž
98
gn
8 98

by S-AndOr1¨ for some U, which implyJďcdn Ž
98
gn
8 98

by S-Trans.
Case pDU. U P t gn

8 98

98
uq and p@U P t gn

8 98

98
u. U R t gn

8 98

98
uq. Then

p
Ź

98 | g
n
8 98
‰U negpg

n
8 98
q ď Uq P cdnpΣq for some U and we have

cdnpΣq $
Ź

98 | g
n
8 98
‰U negpg

n
8 98
q ďcdn U by S-Hyp, which implies

cdnpΣq $Jďcdn Ž
98
gn
8 98

by Theorem A.9.

Case pDU. U P t gn
8 98

98
uq and p@U P t gn

8 98

98
u. U R t gn

8 98

98
uq. Then pUď

Ž

98 | g
n
8 98
‰ U g

n
8 98
q P cdnpΣq for some U and we have cdnpΣq $ Uďcdn

Ž

98 | g
n
8 98
‰ U g

n
8 98

by S-Hyp, which implies cdnpΣq $Jďcdn Ž
98
gn
8 98

by
Theorem A.9.

Case @U. t U, U u X t gn
8 98

98
u “H. Then pJď

Ž

98
gn
8 98
q P cdnpΣq and we have

cdnpΣq $Jďcdn Ž
98
gn
8 98

by S-Hyp.

Then cdnpΣq $Jďcdn
Ž

98
gn
8 98

8
imply cdnpΣq $Jďcdn Ź

8

Ž

98
gn
8 98

by S-AndOr2 , i.e., cdnpΣq $Jďcdn cdnp g_ cq. Let cdnpgq “
Ź

?

Ž

@?
g1

n
?@?

and cdnpcq “
Ź

A

Ž

BA
c1

n
ABA

. Then by def-
inition, cdnp g_ cq “

Ź

@?
? , A p

Ž

? negpg
1n
?@?
q _

Ž

BA
c1

n
ABA
q.

cdnpΣq $Jďcdn Ź
@?

? , A p
Ž

? negpg
1n
?@?
q _

Ž

BA
c1

n
ABA
q implies

cdnpΣq $Jďcdn
Ž

? negpg1
n
?@?
q _

Ž

BA
c1nABA

@?
? , A

by Lemma 3.1, which

imply cdnpΣq $
Ź

? g
1n
?@?

ďcdn
Ž

BA
c1nABA

@?
? , A

by Theorem A.9, which

imply cdnpΣq $
Ź

? g
1n
?@?

ďcdn
Ź

A

Ž

BA
c1nABA

@?
?

by S-AndOr2 , which
imply cdnpΣq $

Ź

?

Ž

@?
g1

n
?@?

ďcdn Ź
A

Ž

BA
c1

n
ABA

by repeated applications
of S-DistribCdn¨ and commutativity i.e., cdnpΣq $ cdnpgq ďcdn cdnpcq.

Case S-TMrg˛. Immediate since it is already in the desired form.
Case S-TDepth. By Lemma 4.18, we have cdnpΣ1q (Σ1, which implies CcdnpΣ1q (CΣ1

by Lemma A.22. Then for each premise CΣ1 $ g1 ď c1, we have CcdnpΣ1q $ g1 ď c1
by Lemma A.23. Then we have cdnpΣq $ gďcdn c by S-TDepth.

Cases ' P R. For each premise Σ1 $ g1 ď c1:

• If maxpdepthpg1q, depthpc1qq ămaxpdepthpgq, depthpcqq, then by Lemma 4.18,
we have cdnpΣ1q (Σ1, which implies cdnpΣ1q $ g1 ď c1 by Lemma A.23 on
Σ1 $ g1 ď c1.

• If maxpdepthpg1q, depthpc1qq “maxpdepthpgq, depthpcqq, Then we have
cdnpΣ1q $ cdnpg1q ďcdn cdnpc1q by IH on Σ1 $ g1 ď c1.

Note that we are not allowed to apply ' at this point, since the premises of 'may have
contexts with C, and C does not commute with cdnp¨q. C and cdnp¨q do commute up
to the () equivalence relation, so by Lemma A.23 on cdnpΣ1q $ g1 ď c1, we have the
appropriate premises with the ď relation. For the remaining premises with the ďcdn

relation, note that we have the restriction that Σ cons. implies Σ1 cons., so Σ1 cannot
have additional C over Σ, and the non-commutativity between C and cdnp¨q does not
prevent us from applying '. Then we have cdnpΣq $ gďcdn c by '.

109

�

Lemma A.46. If Σ$
Ź

8 g
dn
18 ď

cdn gdn and Σ$
Ź

9 g
dn
2 9 ď

cdn gdn, then Σ$
Ź

8, 9 pg
dn
18 _ g

dn
2 9 q ď

cdn gdn.

Proof For each 8, we have

S-DistribCdn

S-AndOr12¨
gdn

18 ď
cdn gdn _ gdn

18

S-Trans

Ź

9 g
dn
2 9 ď

cdn gdn
S-AndOr11¨

gdn ďcdn gdn _ gdn
18

Ź

9 g
dn
2 9 ď

cdn gdn _ gdn
18

(i)
Ź

9 pg
dn
18 _ g

dn
2 9 q ď

cdn gdn _ gdn
18

Then we have

S-Trans

Lemma A.7
(i)8

Ź

8, 9 pg
dn
18 _ g

dn
2 9 q ď

cdn Ź

8 pg
dn _ gdn

18 q
S-DistribCdn

S-Refl
gdn ďcdn gdn Ź

8 g
dn
18 ď

cdn gdn

Ź

8 pg
dn _ gdn

18 q ď
cdn gdn

Ź

8, 9 pg
dn
18 _ g

dn
2 9 q ď

cdn gcdn

�

Corollary A.47. If Σ$
Ź

8 g
dn
18 ď

cdn gcdn and Σ$
Ź

9 g
dn
2 9 ď

cdn gcdn, then Σ$
Ź

8, 9 pg
dn
18 _ g

dn
2 9 q

ďcdn gcdn. In other words, if Σ$ gcdn
1 ďcdn gcdn and Σ$ gcdn

2 ďcdn gcdn, then Σ$

dispgcdn
1 , gcdn

2 q

ďcdn gcdn.

Proof We have gcdn “
Ź

: g
dn
0: for some gdn

0:
:

. By Lemma 3.1, we

have Σ$
Ź

8 g
dn
18 ď

cdn gdn
0:
:

and Σ$
Ź

9 g
dn
2 9 ď

cdn gdn
0:
:

, which imply

Σ$
Ź

8, 9 pg
dn
18 _ g

dn
2 9 q ď

cdn gdn
0:
:

by Lemma A.46, which imply Σ$
Ź

8, 9 pg
dn
18 _ g

dn
2 9 q ď

cdn Ź
: g

dn
0: “ g

cdn by S-AndOr2 . �

A.8.1 DCN-normalized type forms

The contents of section is symmetric to that of Section 4.4.1 and thus wholly unsurprising,
which is why we develop it in appendix.

Definition A.48 (DCN-normalized form). The syntax of DCN-normalized (disjunction-
conjunction-negation) form is presented in Figure 21. We say that a DCN-normalized form
gdcn is complement-free if gdcn “

Ž

8

Ź

9 P 1..=8 g
n
8 9
, where @ 98 P 1..=8

8
.JĘ

Ž

8 g
n
8 98
.

In the proofs below,we sometimes abuse the notations gcn
1 ^ gcn

2 and gdcn
1 _ gdcn

2 tomean
their properly associated versions, i.e., conpgcn

1 , gcn
2 q and dispgdcn

1 , gdcn
2 q in Figure 22

respectively.

Definition A.49 (DCN-normalized form translation). The translation from arbitrary types
into DCN-normalized types DCNp¨q is defined in Figure 22.

110

g0 ::“) g` g´ g0 | U | K

gn ::“ g0 | g0

gcn ::“ gn | gn ^ gcn

gdcn ::“ gcn | gcn _ gdcn

Fig. 21. Syntax of DCN-normalized form.

Definition A.50 (DCN-normalized subtyping context). Σ is DCN-normalized if for all
� P Σ, either one of the following is true:

1. � “ p
Ź

8 g
n
8
ďKq, where @U. t U, U u X t gn

8

8
u “H;

2. � “ pUď
Ž

8 g
n
8
q, where the following are true:

• t U, U u X t gn
8

8
u “H;

• @V P t gn
8

8
u. V R t gn

8

8
u;

• @V P t gn
8

8
u. Dp

Ź

9 c
n
9
ď Vq P Σ. t cn

9

9
u “ t negpgn

8
q
8 | gn

8
‰V
, U u;

• @ V P t gn
8

8
u. DpVď

Ž

9 c
n
9
q P Σ. t cn

9

9
u “ t gn

8

8 | gn
8
‰ V

, U u;

3. � “ p
Ź

8 g
n
8
ď Uq, where the following are true:

• t U, U u X t gn
8

8
u “H;

• @V P t gn
8

8
u. V R t gn

8

8
u;

• @V P t gn
8

8
u. DpVď

Ž

9 c
n
9
q P Σ. t cn

9

9
u “ t negpgn

8
q
8 | gn

8
‰V
, U u;

• @ V P t gn
8

8
u. Dp

Ź

9 c
n
9
ď Vq P Σ. t cn

9

9
u “ t gn

8

8 | gn
8
‰ V

, U u;

Lemma A.51. For any g, dcnpgq – g.

Proof By straightforward induction. �

Definition A.52 (DCN-normalized subtyping context translation). The translation from
arbitrary subtyping contexts into DCN-normalized subtyping contexts dcnp¨q is defined in
Figure 23.

Lemma A.53. For any Σ, we have Σ(dcnpΣq and dcnpΣq (Σ.

Proof Straightforward, notably making use of Theorem A.9 and Lemma A.51. �

A.8.2 DCN-normalized derivations

For each rule in R with conclusion Σ$ gď c, we assume without loss of generality that
dncpg^ cq “ gcn for some ccn, sincewe can otherwise split the rule intomultiple simpler
rules while keeping the original rule admissible.

111

dcnpgq : gdcn

dcnpg0q “ g0

dcnpJq “ K
dcnp gq “ negpdcnpgqq

dcnpg1 ^ g2q “ conpdcnpg1q, dcnpg2qq
dcnpg1 _ g2q “ dispdcnpg1q, dcnpg2qq

negpgdcnq : gdcn

negpg0q “ g0

negp g0q “ g0

negpgn1 ^ g
cn
2 q “ dispnegpgn1 q, negpgcn2 qq

negpgcn1 _ gdcn
2 q “ conpnegpgcn1 q, negpgdcn

2 qq

conpgdcn, gdcnq : gdcn

conpgcn11 _ g
dcn
12 , gdcn

2 q “ dispconpgcn11 , g
dcn
2 q, conpgdcn

12 , gdcn
2 qq

conpgn11 ^ g
cn
12 , g

dcn
2 q “ conpgn11, conpgcn12 , g

dcn
2 qq

conpgn1 , g
cn
21 _ g

dcn
22 q “ dispconpgn1 , g

cn
21 q, conpgn1 , g

dcn
22 qq

conpgn1 , g
cn
2 q “ g

n
1 ^ g

cn
2

Con8 P<..= gdcn
8 “ conpgdcn

< , Con8 P<`1..= g
dcn
8 q

Con8 P =..= gdcn
8 “ gdcn

=

dispgdcn, gdcnq : gdcn

dispgcn11 _ g
dcn
12 , gdcn

2 q “ dispgcn11 , dispgdcn
12 , gdcn

2 qq

dispgcn1 , gdcn
2 q “ gcn1 _ gdcn

2
Dis8 P<..= gdcn

8 “ dispgdcn
< , Dis8 P<`1..= g

dcn
8 q

Dis8 P =..= gdcn
8 “ gdcn

=

Fig. 22. DCN-normalized form translation

Definition A.54 (DCN-normalized derivations). The DCN-normalized subtyping relation
ďdcn is defined in Figure 24. The following are the difference compared to the full subtyping
relation ď in Figure 16:

• On the top level, the relation is restricted to Σ$ gdcn ď gdcn.
• On the top level, all occurrences of J are replaced with K.
• The rule S-Distrib˛ is replaced by S-DistribCdn˛, which requires an application
of S-Distrib˛ to be followed immediately by an application of S-AndOr2 in a
transitivity chain by merging the two rules into one.

112

dcnpΣq : Σ

dcnpΣq “ dcnpdcnpg^ cq ďKq
pgďcq P Σ

¨ B�
B� P Σ

dcnpgdcn ďKq : Σ

dcnp
Ž

8

Ź

98
gn
8 98
ďKq“ dcnp

Ź

98
gn
8 98
ďKq

8

dcnp
Ź

8 g
n
8
ďKq“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

n if DU. t U, U u Ď t gn
8

8
u

pUď
Ž

8 | gn
8
‰U negpgn

8
qq
U P t gn

8

8
u
¨ p
Ź

8 | gn
8
‰ U g

n
8
ď Uq

U | U P t gn
8

8
u

if pDU. t U, U u X t gn
8

8
u ‰Hq and p@U P t gn

8

8
u. U R t gn

8

8
uq

p
Ź

8 g
n
8
ďKq if @U. t U, U u X t gn

8

8
u “H

Fig. 23. DCN-normalized subtyping context translation

• For each rule inR with conclusionΣ$ gď c and premisesΣ1 $ g1 ď c1, we transform
them into the equivalent DCN-normalized derivation rule in Rdcn by performing the
following:

– Transform the conclusion into Σ$ dcnpgq ďdcn dcnpcq
– If maxpdepthpg1q, depthpc1qq ămaxpdepthpgq, depthpcqq, keep the premises as
is

– If maxpdepthpg1q, depthpc1qq “maxpdepthpgq, depthpcqq, then transform the
premises into Σ1 $ dcnpg1q ďdcn dcnpc1q

Notice that S-TDepth is treated the same way as rules in R, so its premises still refer to the
full ď relation, even though its conclusion is about the ďdcn relation.

The DCN-normalized boolean subtyping relation Ďdcn is defined similarly.

Notice that Lemma A.7 and Lemma 3.1 extend to DCN-normalized derivations. In
the proofs below, we also make use of extended versions of commutativity (g1 _

˛

g2p_
˛g3q ď

dcn g2 _
˛ g1p_

˛g3q) and idempotence (g1 _
˛ g1p_

˛g2q ď
dcn g1p_

˛g2q).

Lemma A.55. Σ$ gdcn
1 ď gdcn

2 if Σ$ gdcn
1 ďdcn gdcn

2 . Similarly, gdcn
1 Ď gdcn

2 if gdcn
1 Ďdcn

gdcn
2 .

Proof It is easy to see that every rule of ďdcn is admissible in ď. �

Lemma A.56. If Σ$ gď c, then dcnpΣq $ dcnpgq ďdcn dcnpcq. Similarly, if gĎ c, then
dcnpgq Ďdcn dcnpcq.

Proof Symmetric to Lemma 4.21. �

A.8.3 Some useful lemmas

Lemma A.57.

113

Σ$ gdcn ďdcn gdcn gdcn ďdcn gdcn

CΞ“ Ξ CpΣ ¨ �q “ CΣ ¨ � CpΣ ¨ B�q “ CΣ ¨ �

S-Refl

gdcn ďdcn gdcn

S-ToB¨

gdcn ďdcn K

S-ToB

Kďdcn gdcn

S-Compl¨

 Kďdcn g0 _ g0

S-Compl

g0 ^ g0 ďdcn K

S-AndOr1¨
(Ď t 8 u

Ž

81 P (g
cn
81
ďdcn Ž

8 g
cn
8

S-AndOr1
(Ď t 8 u

Ź

8 g
n
8
ďdcn Ź

81 P (g
n
81

S-AndOr2¨
Σ$ gcd

8
ďdcn gdcn

8

Σ$
Ž

8 g
cd
8
ďdcn gdcn

S-AndOr2
Σ$ gdcn ďdcn gn

8

8

Σ$ gdcn ďdcn Ź

8 g
n
8

S-DistribDcn¨
Σ$ cdcn ďdcn gn Σ$ cdcn ďdcn Ž

8 g
cn
8

Σ$ cdcn ďdcn Ž

8 pg
n ^ gcn

8
q

S-DistribDcn
Σ$ cdcn ďdcn gn

8
_ gdcn

8

Σ$ cdcn ďdcn p
Ź

8 g
n
8
q _ gdcn

S-Trans
Σ$ gdcn

0 ďdcn gdcn
1 Σ$ gdcn

1 ďdcn gdcn
2

Σ$ gdcn
0 ďdcn gdcn

2

S-Weaken
�

Σ$ �

S-Assum
Σ¨B� $ �

Σ$ �

S-Hyp
� P Σ

Σ$ �

S-TMrg˛

) pg
`
8
_̨ c

`
8
q
8
pg
´
9
^̨ c

´
9
q
9
g0
:

:
ď˛

dcn
) g

`
8

8
g
´
9

9
g0
:

:
_˛) c

`
8

8
c
´
9

9
g0
:

:

S-TDepth
CΣ$ g`

8
ď c

`
8

8
CΣ$ c´

9
ď g

´
9

9
CΣ$ g0

:
” c0

:

:

Σ$) g
`
8

8
g
´
9

9
g0
:

:
ďdcn) c`

8

8
c
´
9

9
c0
:

:
Rdcn

Fig. 24. DCN-normalized subtyping rules for SpT , Rq.

(A) For g P t J,) g` g´ g0 u and
Ź

8 c
dn
8

in complement-free CDN-normalized form, if
Ź

8 c
dn
8
Ď g with a derivation of size =, then cdn

:
Ď g for some : with a derivation of

size =.
(B) For g P t K,) g` g´ g0 u and

Ž

8 c
cn
8

in complement-free DCN-normalized form,
if gĎ

Ž

8 c
cn
8

with a derivation of size =, then either gĎ ccn
:

for some : with a
derivation of size =.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof By induction on right-leaning Ď derivations.

Case S-Refl. Immediate.

114

Case S-ToB¨. Then g“J and we have cdn
8
ĎJ

8

by S-ToB¨, with a derivation of size 1.
Case S-ToB . Then

Ź

8 c
dn
8
“ cdn

1 “K. The result is immediate.
Case S-Compl¨. Impossible since g is not a union.
Case S-Compl . Impossible since g‰K.
Case S-AndOr11¨. Impossible since g is not a union.
Case S-AndOr11 . Then cdn

1 “ g and we have cdn
1 Ď g by S-Refl, with a derivation of

size 1.
Cases S-AndOr12¨. Impossible since g is not a union.
Cases S-AndOr12 . Then

Ź

8ą1 c
dn
8
“ cdn

2 “ g and we have cdn
2 Ď g by S-Refl, with a

derivation of size 1.
Case S-AndOr2¨. Then

Ź

8 c
dn
8
“ cdn

1 “ cn
11 _ c

dn
12 for some cn

11 and cdn
12 . The result is

immediate.
Case S-AndOr2 . Impossible since g is not an intersection.
Case S-Trans. Then the premises are

Ź

8 c
dn
8
Ď g1 and g1 Ď g for some g1, both with a

derivation of size =´ 1. By induction on the size of the subderivation for the former
premise, denoted by <. Denote the inner induction hypothesis as IH1.
Cases (S-Refl, ˚), (˚, S-Refl). By IH on the other premise.
Cases (S-ToB¨, ˚). Then g1 “J. By S-ToB¨, we have cdn

8
ĎJ

8

. By S-Trans with

JĎ g, we have cdn
8
Ď g

8

with a derivation of size =.
Cases (S-ToB , ˚). Then

Ź

8 c
dn
8
“ cdn

1 “K. The result is immediate.
Cases (S-Compl¨, ˚). Then

Ź

8 c
dn
8
“ cdn

1 “J. The result is immediate.
Cases (S-Compl , ˚). Impossible since

Ź

8 c
dn
8

is a complement-free CDN-
normalized form.

Cases (S-AndOr11¨, ˚). Then g1 “
Ź

8 c
dn
8
_ g11 for some g11. By Lemma A.44 on

the latter premise, we have
Ź

8 c
dn
8
Ď g with a derivation of size =´ 1. The

result then follows from IH.
Cases (S-AndOr11 , ˚). Then g1 “ cdn

1 . The result is immediate from the latter
premise.

Cases (S-AndOr12¨, ˚). Then g1 “ g11 _
Ź

8 c
dn
8

for some g11. By Lemma A.44 on
the latter premise, we have

Ź

8 c
dn
8
Ď g with a derivation of size =´ 1. The

result then follows from IH.
Cases (S-AndOr12 , ˚). Then g1 “

Ź

8ą1 c
dn
8
. By IH on the latter rule, we have

cdn
:
Ď g for some : ą 1.

Cases (S-AndOr2¨, ˚). Then
Ź

8 c
dn
8
“ cdn

1 “ cn
11 _ c

dn
12 for some cn

11 and c
dn
12 . The

result is immediate.
Cases (S-AndOr2 , ˚). Then g1 “ g11 ^ g

1
2 for some g11 and g12. Since g is not an

intersection, it is easy to see that the intersection must be consumed by an
application of S-AndOr11 , S-AndOr12 , or S-Distrib˛ in the transitivity
chain. Then it is possible to rewrite the derivation into a smaller one by dropping
the application of S-AndOr2 . The result then follows from IH.

Cases (S-Distrib¨, ˚). Then cdn
2 “ cn

21 _ c
dn
22 and g1 “ pcdn

1 ^ cn
21q _ pc

dn
1 ^ cdn

22 q

for some cn
21 and c

dn
22 . By LemmaA.44 on the latter rule, we have cdn

1 ^ cn
21 Ď g

and cdn
1 ^ cdn

22 Ď g, both with a derivation of size =´ 1. By IH on cdn
1 ^ cn

21 Ď

g, we have cdn
1 Ď g or cn

21 Ď g, both with a derivation of size =´ 1. By IH

115

on cdn
1 ^ cdn

22 Ď g, we have c
dn
1 Ď g or cdn

22 Ď g, both with a derivation of size
=´ 1. If cdn

1 Ď g, then we have the result immediately. Otherwise, we have
cn

21 Ď g and cdn
22 Ď g, which imply cdn

2 “ cn
21 _ c

dn
22 Ď g by S-AndOr2¨, with

a derivation of size =.
Cases (S-Distrib , ˚). Then cdn

1 “ cn
0 _ c

dn
12 and cdn

2 “ cn
0 _ c

dn
22 for some cn

0 and
cdn

12 and cdn
22 , and g

1 “ cn
0 _ pg

1
1 ^ g

1
2q. By Lemma A.44 on the latter rule, we

have cdn
12 ^ c

dn
22 Ď g and cn

0 Ď g, both with a derivation of size =´ 1. By IH,
we have cdn

12 Ď g or cdn
22 Ď g, which implies cdn

1 “ cn
0 _ c

dn
12 Ď g or cdn

2 “

cn
0 _ c

dn
22 Ď g with a derivation of size = by S-AndOr2¨ with cn

0 Ď g.

�

Lemma A.58.

(A) For g P t J,) g` g´ g0 u, if cn
1 ^ c

cn
2 Ď g, then either cn

1 Ď g or ccn
2 Ď g or cn

1 ^

ccn
2 ĎK.

(B) For g P t K,) g` g´ g0 u, if gĎ cn
1 _ c

dn
2 , then either gĎ cn

1 or gĎ cdn
2 or JĎ

cn
1 _ c

dn
2 .

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof By induction on right-leaningĎdcn derivations for the following statements, where
S-AndOr2¨ does not occur as the first premise of S-Trans in any of the judgements (in both
the assumptions and conclusions). It is easy to see that we can rewrite any subderivations
with S-AndOr2¨ as the first premise of S-Trans into an equivalent one by applying S-
Trans to the premises of S-AndOr2¨ and the second premise of S-Trans, followed by an
application of S-AndOr2¨.

1. For g P t K,) g` g´ g0 u, if cn
1 ^ c

cn
2 Ď g with a derivation of size =, then either

cn
1 Ď g or c

cn
2 Ď g with a derivation of size =, or cn

1 ^ c
cn
2 ĎK.

2. For g2 P t) g` g´ g0 u, if
Ž

8 c
cn
8
Ď g2 with a derivation of size =, then ccn

8
Ď g2

8 ,
all with a derivation of size =´ 1.

In the remainder of this proof, we abbreviate Ďdcn as Ď.

Case S-Refl. Impossible
Case S-ToB¨.

1. Then g“ K and we have both cn
1 Ď g and c

cn
2 Ď g by S-ToB¨.

2. Impossible.
Cases S-ToB , S-Compl˛,S-AndOr1¨. Impossible.
Case S-AndOr1 .

1. Then g“ cn
:
for some : , where ccn

2 “
Ź

8ą1 c
n
8
for some cn

8

8ą1. If : “ 1, then
we have cn

1 Ď g by S-Refl. Otherwise, we have ccn
2 Ď g by S-AndOr1 .

2. Impossible.
Case S-AndOr2¨.

116

1. Impossible.
2. The premises of the rule are ccn

8
Ď g2

8 , all of size =´ 1.
Cases S-AndOr2 , S-DistribDcn˛. Impossible.
Case S-Trans.

1. Then the premises of the rule are cn
1 ^ c

cn
2 Ď gdcn and gdcn Ď g for some gdcn,

both of size =´ 1.
2. Then the premises of the rule are

Ž

8 c
cn
8
Ď gdcn and gdcn Ď g2 for some gdcn,

both of size =´ 1.
By induction on the size of the former premise of S-Trans, denoted by <. Denote
the inner induction hypothesis as IH1.
Cases (S-Refl, ˚). By IH on the latter premise.
Cases (S-ToB¨, ˚).

1. Then gdcn “ K. We have both cn
1 Ď K and ccn

2 Ď K by S-ToB¨. Then
we have both cn

1 Ď g and c
cn
2 Ď g by S-Trans with the latter premise, both

with a derivation of size =.
2. Impossible since KĎ g2 cannot be derived (Lemma A.62).

Cases (S-ToB , ˚), (S-Compl¨, ˚). Impossible.
Cases (S-Compl , ˚).

1. Then gdcn “K. cn
1 ^ c

cn
2 ĎK is immediate from the former premise.

2. Impossible.
Cases (S-AndOr1¨, ˚).

1. Then gdcn “ pcn
1 ^ c

cn
2 q _ g

dcn
2 for some gdcn

2 . If g“J, then we have
both cn

1 Ď g and c
cn
2 Ď g with a derivation of size 1 by S-ToB¨. Otherwise,

the latter premise pcn
1 ^ c

cn
2 q _ g

dcn
2 Ď g implies cn

1 ^ c
cn
2 Ď g with a

derivation of size =´ 2 by IH (2). The result then follows from IH (1).
2. Then gdcn “ p

Ž

8 c
cn
8
q _ gdcn

2 for some gdcn
2 . The latter premise

p
Ž

8 c
cn
8
q _ gdcn

2 Ď g2 implies
Ž

8 c
cn
8
Ď g2 with a derivation of size =´ 2

by IH (2), which implies ccn
8
Ď g2

8 , all with a derivation of size =´ 3 by
IH (2).

Cases (S-AndOr1 , ˚).
1. Then gdcn “

Ź

81 P (c
n
81
for some (Ď t 8 u, where ccn

2 “
Ź

8ą1 c
n
8
for some

cn
8

8ą1.
Case 1 P (. By IH (1) on the latter premise, we have either cn

1 Ď g or
Ź

81 P (zt 1 u c
n
81
Ď g with a derivation of size =´ 1, or

Ź

81 P (c
n
81
ĎK.

If cn
1 Ď g, the result is immediate. If

Ź

81 P (zt 1 u c
n
81
Ď g, then we have

ccn
2 Ď g with a derivation of size = by S-Trans with S-AndOr1 .

If
Ź

81 P (c
n
81
ĎK, then we have cn

1 ^ c
cn
2 ĎK by S-Trans with S-

AndOr1 .
Case 1 R (. Then ccn

2 Ď g follows by IH (1) on the latter premise, followed
by S-Trans with S-AndOr1 , with a derivation of size =.

2. Impossible.
Cases (S-AndOr2¨, ˚). Impossible by assumption.

117

Cases (S-AndOr2 , ˚).
1. Then gdcn “

Ź

9 g
n
9
for some gn

9

9 . The premises of the former rule are

cn
1 ^ c

cn
2 Ď gn

9

9 , all of size < ´ 1. By repeated applications of IH (1), the
latter premise

Ź

9 g
n
9
Ď g implies gn

:
Ď g for some : with a derivation of

size =´ 1, or
Ź

9 g
n
9
ĎK.

Case gn
:
Ď g. Then by S-Trans with one of the premises of the former

rule, we have cn
1 ^ c

cn
2 Ď g with a derivation of size = and a former

premise of size < ´ 1. The result then follows from IH1 (1).
Case

Ź

9 g
n
9
ĎK. Then we have cn

1 ^ c
cn
2 ĎK by S-Trans with the

former premise.
2. Then gdcn “

Ź

9 g
n
9
for some gn

9

9 . The premises of the former rule are
Ž

8 c
cn
8
Ď gn

9

9
, all of size < ´ 1. By IH (1), the latter premise

Ź

9 g
n
9
Ď g2

implies gn
:
Ď g2 for some : with a derivation of size =´ 1, or

Ź

9 g
n
9
ĎK.

Case gn
:
Ď g2 . Then by S-Trans with one of the premises of the former

rule, we have
Ž

8 c
cn
8
Ď g2 with a derivation of size = and a former

premise of size < ´ 1. The result then follows from IH1 (2).
Case

Ź

9 g
n
9
ĎK. Then it is easy to see that the transitivity chain in the

derivation for one of
Ž

8 c
cn
8
Ď gn

9

9
must pass throughK, i.e.,

Ž

8 c
cn
8
Ď

K can be derived with size =´ 2. Then we have
Ž

8 c
cn
8
Ď g2 with a

derivation of size =´ 1 by S-Trans with S-ToB . The result then
follows from IH (2).

Cases (S-DistribDcn¨, ˚).
1. Then gdcn “

Ž

9pg
n
0 ^ g

cn
9
q for some gn

0 and gcn
9

9 . The premises of the
former rule are:

cn
1 ^ c

cn
2 Ď gn

0 (1)
cn

1 ^ c
cn
2 Ď

Ž

9 g
cn
9

(2)

both of size < ´ 1. The latter premise is:
Ž

9pg
n
0 ^ g

cn
9
q Ď g (3)

By IH (2), (3) implies:

gn
0 ^ g

cn
9
Ď g

9 (4)

all with derivations of size =´ 2. For each 9 , by IH (1), (4) implies gn
0 Ď g

or gcn
9
Ď g with a derivation of size =´ 2, or gn

0 ^ g
cn
9
ĎK.

Case gn
0 Ď g. Then by S-Trans with (1), we have:

cn
1 ^ c

cn
2 Ď g (5)

with a derivation of size =´ 1. The result then follows from IH (1).
Case gn

0 Ę g. Then for each 9 , we have gcn
9
Ď g or gn

0 ^ g
cn
9
ĎK. Let

(“ t 9 | gn
0 ^ g

cn
9
ĎK u. By S-AndOr2¨, we have

Ž

9 R (g
cn
9
Ď g (6)

118

with a derivation of size =´ 1. From the definiton of (, we have:

gn
0 ^ g

cn
9
ĎK

9 P (
(7)

By Theorem A.9, (7) implies:

gcn
9
Ď gn

01
9 P ((8)

where gn
01 “ negpgn

0 q. By Lemma A.7¨ on (8) and S-Refl, we have:
Ž

9 g
cn
9
Ď
Ž

9 R (g
cn
9
_ gn

01 (9)

Then by S-Trans on (2) and (9), we have:

cn
1 ^ c

cn
2 Ď

Ž

9 R (g
cn
9
_ gn

01 (10)

By Theorem A.9, (10) implies:

gn
0 ^ c

n
1 ^ c

cn
2 Ď

Ž

9 R (g
cn
9

(11)

By S-Trans with S-AndOr2 on (1) and S-Refl, (11) implies:

cn
1 ^ c

cn
2 Ď

Ž

9 R (g
cn
9

(12)

Since we have (2) with a derivation of size < ´ 1 and (12), it is easy
to see that (12) can be derived with size < ´ 1. Then by S-Trans with
(6), we have:

cn
1 ^ c

cn
2 Ď g (13)

with a derivation of size = and a former premise of size < ´ 1. The
result then follows from IH1 (1).

2. Then gdcn “
Ž

9pg
n
0 ^ g

cn
9
q for some gn

0 and gcn
9

9 . The premises of the
former rule are:

Ž

8 c
cn
8
Ď gn

0 (14)
Ž

8 c
cn
8
Ď
Ž

9 g
cn
9

(15)

both with a derivation of size < ´ 1. The latter premise is:
Ž

9pg
n
0 ^ g

cn
9
q Ď g2 (16)

By IH (2), (16) implies:

gn
0 ^ g

cn
9
Ď g2

9 (17)

all with a derivation of size =´ 2. For each 9 , by IH (1), (17) implies
gn

0 Ď g2 or g
cn
9
Ď g2 with a derivation of size =´ 2, or gn

0 ^ g
cn
9
ĎK.

Case gn
0 Ď g2 . Then by S-Trans with (14), we have:

Ž

8 c
cn
8
Ď g2 (18)

with a derivation of size =´ 1. The result then follows from IH.

119

Case gn
0 Ę g2 . Then for each 9 , we have gcn

9
Ď g2 or gn

0 ^ g
cn
9
ĎK. Let

(“ t 9 | gn
0 ^ g

cn
9
ĎK u. By S-AndOr2¨, we have:

Ž

9 R (g
cn
9
Ď g2 (19)

with a derivation of size =´ 1. From the definiton of (, we have:

gn
0 ^ g

cn
9
ĎK

9 P (
(20)

By Theorem A.9, (20) implies:

gcn
9
Ď gn

01
9 P ((21)

where gn
01 “ negpgn

0 q. By Lemma A.7¨ on (21) and S-Refl, we have:
Ž

9 g
cn
9
Ď
Ž

9 R (g
cn
9
_ gn

01 (22)

Then by S-Trans on (15) and (22), we have:
Ž

8 c
cn
8
Ď
Ž

9 R (g
cn
9
_ gn

01 (23)

By Theorem A.9, (23) implies:

gn
0 ^

Ž

8 c
cn
8
Ď
Ž

9 R (g
cn
9

(24)

By S-Trans with S-AndOr2 on (14) and S-Refl, (24) implies:
Ž

8 c
cn
8
Ď
Ž

9 R (g
cn
9

(25)

Since we have (15) with a derivation of size < ´ 1 and (25), it is easy
to see that (25) can be derived with size < ´ 1. Then by S-Trans with
(19), we have:

Ž

8 c
cn
8
Ď g2 (26)

with a derivation of size = and a former premise of size < ´ 1. The
result then follows from IH1 (2).

Cases (S-DistribDcn , ˚).
1. Then gdcn “ p

Ź

9 g
n
9
q _

Ž

: g
cn
:

for some gn
9

9 and gcn
:

: . The premises of
the former rule are:

cn
1 ^ c

cn
2 Ď gn

9
_
Ž

: g
cn
:

9
(27)

all with a derivation of size < ´ 1. The latter premise is:

p
Ź

9 g
n
9
q _

Ž

: g
cn
:
Ď g (28)

By IH (2), (28) implies:
Ź

9 g
n
9
Ď g (29)

gcn
:
Ď g

: (30)

all with a derivation of size =´ 2. By repeated applications of IH (1),
(29) implies gn

;
Ď g for some ; P t 9 u with a derivation of size =´ 2, or

Ź

9 g
n
9
ĎK.

120

Case gn
;
Ď g. Then by S-AndOr2¨ with (30), we have:

gn
;
_
Ž

: g
cn
:
Ď g (31)

with a derivation of size =´ 1. Then by S-Trans on (27) for 9 “ :
and (31), we have:

cn
1 ^ c

cn
2 Ď g (32)

with a derivation of size = and a former premise of size < ´ 1. The
result then follows from IH1 (1).

Case
Ź

9 g
n
9
ĎK. Then it is easy to see that the transitivity chain in the

derivation for one of (27) must pass through either
Ž

: g
cn
:

or K, i.e.,
cn

1 ^ c
cn
2 Ď

Ž

: g
cn
:

or cn
1 ^ c

cn
2 ĎK can be derived with size < ´ 1.

Case cn
1 ^ c

cn
2 Ď

Ž

: g
cn
:
. Then by S-Trans with S-AndOr2¨ on

(30), we have (32) with a derivation of size = and a former derivation
of size < ´ 1. The result then follows from IH1 (1).

Case cn
1 ^ c

cn
2 ĎK. then we have the result immediately.

2. Then gdcn “ p
Ź

9 g
n
9
q _

Ž

: g
cn
:

for some gn
9

9 and gcn
:

: . The premises of
the former rule are:

Ž

8 c
cn
8
Ď gn

9
_
Ž

: g
cn
:

9
(33)

all with a derivation of size < ´ 1. The latter premise is:

p
Ź

9 g
n
9
q _

Ž

: g
cn
:
Ď g2 (34)

By IH (2), (34) implies:
Ź

9 g
n
9
Ď g2 (35)

gcn
:
Ď g2

: (36)

all with a derivation of size =´ 2. By repeated applications of IH (1),
(35) implies gn

;
Ď g2 for some ; P t 9 u with a derivation of size =´ 2, or

Ź

9 g
n
9
ĎK.

Case gn
;
Ď g2 . Then by S-AndOr2¨ with (36), we have:

gn
;
_
Ž

: g
cn
:
Ď g2 (37)

with a derivation of size =´ 1. Then by S-Trans on (33) for 9 “ ; and
(37), we have:

Ž

8 c
cn
8
Ď g2 (38)

with a derivation of size = and a former premise of size < ´ 1. The
result then follows from IH1 (1).

Case
Ź

9 g
n
9
ĎK. Then it is easy to see that the transitivity chain in the

derivation for one of (33) must pass through either
Ž

: g
cn
:

or K, i.e.,
Ž

8 c
cn
8
Ď
Ž

: g
cn
:

or
Ž

8 c
cn
8
ĎK can be derived with size < ´ 1.

121

Case
Ž

8 c
cn
8
Ď
Ž

: g
cn
:
. Then by S-Trans with S-AndOr2¨ on (36),

we have:
Ž

8 c
cn
8
Ď g2 (39)

with a derivation of size = and a former derivation of size < ´ 1.
The result then follows from IH1 (2).

Case
Ž

8 c
cn
8
ĎK. Then by S-Trans with S-ToB , we have:

Ž

8 c
cn
8
Ď g2 (40)

with a derivation of size < ď =´ 1. The result then follows from
IH (2).

�

Corollary A.59. For g P t J˛,) g` g´ g0 u, if
Ź˛

8 c
n
8
Ď˛ g, then either cn

:
Ď˛ g for some

: or
Ź˛

8 c
n
8
Ď˛ K˛.

Proof By repeated applications of Lemma A.58. �

Lemma A.60.

(A) If
Ź

8 P 1..= g
dn
8
Ď cdn with a derivation of size =, where

Ź

8 P 1..= g
dn
8

is a complement-
free CDN-normalized form, then either gdn

1 Ď cdn or
Ź

8 P 2..= g
dn
8
Ď cdn with a

derivation of size =.
(B) If ccn Ď

Ž

8 P 1..= g
cn
8

with a derivation of size =, where
Ž

8 P 1..= g
cn
8

is a complement-
free DCN-normalized form, then either ccn Ď gcn

1 or ccn Ď
Ž

8 P 2..= g
cn
8

with a
derivation of size =.

Only the proof for (A) is shown below. The proof for (B) is symmetric.

Proof By induction on right-leaning Ďcdn derivations, where S-DistribCdn˛ does not
occur as the first premise of S-Trans in any of the judgements (in both the assumptions and
conclusions). It is easy to see that we can rewrite any subderivations with S-DistribCdn˛
as the first premise of S-Trans into an equivalent one by applying S-Trans to the premises
of S-DistribCdn˛ and the second premise of S-Trans, followed by an application of
S-DistribCdn˛.
In the remainder of this proof, we abbreviate Ďcdn as Ď.

Case S-Refl. Then
Ź

8 P 1..= g
dn
8
“ gdn

1 “ cdn, i.e., we have gdn
1 Ď cdn.

Case S-ToB¨. Then cdn “J and we have both gdn
1 ĎJ and

Ź

8 P 2..= g
dn
8
ĎJ by S-ToB¨.

Case S-ToB . Then
Ź

8 P 1..= g
dn
8
“ gdn

1 “ J, i.e., we have gdn
1 Ď cdn.

Case S-Compl¨. Then
Ź

8 P 1..= g
dn
8
“ gdn

1 “J, i.e., we have gdn
1 Ď cdn.

Case S-Compl . Impossible since
Ź

8 P 1..= g
dn
8

is a complement-free CDN-normalized
form.

Case S-AndOr1¨. Then
Ź

8 P 1..= g
dn
8

is not an intersection, i.e.,
Ź

8 P 1..= g
dn
8
“ gdn

1 and
we have gdn

1 Ď cdn.

122

Case S-AndOr1 . Then cdn “ gdn
:

for some : P t 8 u. If : “ 1, then we have gdn
1 Ď cdn

by S-Refl. Otherwise, we have
Ź

8 P 2..= g
dn
8
Ď cdn by S-AndOr1 .

Case S-AndOr2¨. Then
Ź

8 P 1..= g
dn
8
“ gdn

1 , i.e., we have gdn
1 Ď cdn.

Case S-AndOr2 . Impossible since cdn is not an intersection.
Case S-DistribCdn¨. Then gdn

1 “
Ž

9 g
n
9
for some gn

9

9 . The premises of the rule are

gn
9
^
Ź

8 P 2..= g
dn
8
Ď cdn

9

, all with a derivation of size =´ 1. By IH on the premises,

we have gn
9
Ď cdn or

Ź

8 P 2..= g
dn
8
Ď cdn

9

. If
Ź

8 P 2..= g
dn
8
Ď cdn, then we have the

result immediately. Otherwise, we have gn
9
Ď cdn

9
, which imply

Ž

9 g
n
9
Ď cdn with

a derivation of size = by S-AndOr2¨, i.e., gdn
1 Ď cdn.

Case S-DistribCdn . Then gdn
8
“ gn _ gdn

81

8 P 1..=
for some gn and gdn

81

8 P 1..=
. The

premises of the rule are gn Ď cdn and
Ź

8 P 1..= g
dn
81
Ď cdn. By IH on the latter

premise, we have gdn
11 Ď c

dn or
Ź

8 P 2..= g
dn
81
Ď cdn with a derivation of size =´ 1. If

gdn
11 Ď c

dn, then by S-AndOr2¨ with gn Ď cdn, we have gdn
1 “ gn _ gdn

11 Ď c
dn with

a derivation of size =. If
Ź

8 P 2..= g
dn
81
Ď cdn, then by S-DistribCdn with gn Ď cdn,

we have
Ź

8 P 2..= g
dn
8
“
Ź

8 P 2..=pg
n _ gdn

81
q Ď cdn with a derivation of size =.

Case S-Trans. Then the premises of the rule are
Ź

8 P 1..= g
dn
8
Ď gcdn and gcdn Ď cdn for

some gcdn. By induction on the size of the former premise of S-Trans, denoted by
<. Denote the inner induction hypothesis by IH1.
Cases (S-Refl, ˚). By IH on the latter premise.
Cases (S-ToB¨). Then gcdn “J. By S-ToB¨, we have both gdn

1 ĎJ and
Ź

8 P 2..= g
dn
8
ĎJ. Then we have gdn

1 Ď cdn and
Ź

8 P 2..= g
dn
8
Ď cdn by S-Trans

with the latter premise JĎ cdn.
Cases (S-ToB , ˚). Then

Ź

8 P 1..= g
dn
8
“ gdn

1 “ J, i.e., we have gdn
1 Ď cdn.

Cases (S-Compl¨, ˚). Then
Ź

8 P 1..= g
dn
8
“ gdn

1 “J, i.e., we have gdn
1 Ď cdn.

Cases (S-Compl , ˚). Impossible since
Ź

8 P 1..= g
dn
8

is a complement-free CDN-
normalized form.

Cases (S-AndOr1¨, ˚). Then
Ź

8 P 1..= g
dn
8

is not an intersection, i.e.,
Ź

8 P 1..= g
dn
8
“

gdn
1 and we have gdn

1 Ď cdn.
Cases (S-AndOr1 , ˚). Then gcdn “

Ź

81 P (g
dn
81

for some (Ď t 8 u. If 1 P (, by IH
on the latter premise, we have gdn

1 Ď cdn or
Ź

81 P (zt 1 u Ď c
dn with a derivation

of size =´ 1. If gdn
1 Ď cdn, the result is immediate. If

Ź

81 P (zt 1 u Ď c
dn, then

we have
Ź

8 P 2..= g
dn
8
Ď cdn with a derivation of size = by S-Trans with S-

AndOr1 . If 1 R (, then
Ź

8 P 2..= g
dn
8
Ď cdn with a derivation of size = follows

from IH on the latter premise, followed by S-Trans with S-AndOr1 .
Cases (S-AndOr2¨, ˚). Then

Ź

8 P 1..= g
dn
8
“ gdn

1 , i.e., we have gdn
1 Ď cdn.

Cases (S-AndOr2 , ˚). Then gcdn “
Ź

9 c
dn
9

for some cdn
9

9

. The premises of the

former rule are
Ź

8 P 1..= g
dn
8
Ď cdn

9

9

. The latter premise is
Ź

9 c
dn
9
Ď cdn, which

implies cdn
:
Ď cdn for some : P t 9 uwith a derivation of size =´ 1 by repeated

applications of IH, which implies
Ź

8 P 1..= g
dn
8
Ď cdn with a derivation of size

= and a former premise of size< ´ 1 by S-Trans with
Ź

8 P 1..= g
dn
8
Ď cdn

:
. The

result then follows from IH1.
Cases (S-DistribCdn˛, ˚). Impossible by assumption.

123

�

Corollary A.61.

(A) If
Ź

8 g
dn
8
Ď cdn, where

Ź

8 g
dn
8

is a complement-free CDN-normalized form, then
gdn
:
Ď cdn for some : P t 8 u.

(B) If ccn Ď
Ž

8 g
cn
8
, where

Ž

8 g
cn
8

is a complement-free DCN-normalized form, then
ccn Ď gcn

:
for some : P t 8 u.

Proof By repeated application of Lemma A.60. �

Lemma A.62. J˛ Ď˛ g is not derivable for g P t) g` g´ g0 u.

Proof By induction on Ďcdn and Ďdcn derivations respectively. �

A.9 Soundness of Subtyping

Theorem A.63 (Subtyping consistency). If Ξ cons. and Ξ$ gď c, where:

g P t K, J, #�, g1 Ñ g2, t G8 : g8 8 u u
c P t K, J, #�1, c1 Ñ c2, t G

1 : c1 u u

then exactly one of the following is true:

(a) g“K or c“J;
(b) g“ #� and c“ #�1 and �1 PSp#�q;
(c) g“ g1 Ñ g2 and c“ c1 Ñ c2 and Ξ$ c1 ď g1 and Ξ$ g2 ď c2;
(d) g“ t G8 : g8 8 u and c“ t G: : c1 u and Ξ$ g: ď c1 for some : .

Proof By Lemma 3.4 on the assumption, we have:

BΞ$ gď c (1)

Then proceed by case analysis on g.

Case g“K. Then (a) is true and (b), (c), (d) are false.
Case g“J. Then (b), (c), (d) are false. Since g–K_J, by Lemma 4.22 on (1), we have:

c–
Ź

9

´

c1
9
_+

� 9

9

¯

(2)

BΞ$Jĺ+
� 9

9

9

(3)

for some c1
9

9
and � 9

9 and+� 9
9

9

, where
Ź

9 +
� 9

9
is complement-free. By Lemma 4.9,

(3) implies:

� 9 P t J, K u
9

(4)

124

By Lemma A.7 on S-AndOr12¨, we have:
Ź

9 +
� 9

9
Ď
Ź

9

´

c1
9
_+

� 9

9

¯

(5)

By S-Trans on (5) and (2), we have:
Ź

9 +
� 9

9
Ď c (6)

Since
Ź

9 +
� 9

9
is complement-free, we have:

Ź

9 +
� 9

9
ĘK (7)

Then (6) and (7) imply:

cĘK (8)

By Lemma A.57, (6) implies:

+
�:
:
Ď c (9)

for some : . By case analysis on the syntax of +�:
:

and the assumption on the form
of c, (9) can only be derived when c“J. Then we have c“J, i.e., (a) is true.

Case g“ #�. Then (c), (d) are false. Since g–K_ #�, by Lemma 4.22 on (1), we have:

c–
Ź

9

´

c1
9
_+

� 9

9

¯

(10)

BΞ$ #� ĺ+
� 9

9

9

(11)

for some c1
9

9
and � 9

9 and+� 9
9

9

, where
Ź

9 +
� 9

9
is complement-free. By Lemma 4.9,

(11) implies:

� 9 P t #�1, #�2 ,J, K u
9

(12)

where �1 PSp#�q and �2 RSp#�q and � RSp#�2q. By Lemma A.7 on S-
AndOr12¨, we have:

Ź

9 +
� 9

9
Ď
Ź

9

´

c1
9
_+

� 9

9

¯

(13)

By S-Trans on (13) and (10), we have:
Ź

9 +
� 9

9
Ď c (14)

Since
Ź

9 +
� 9

9
is complement-free, we have:

Ź

9 +
� 9

9
ĘK (15)

Then (14) and (15) imply:

cĘK (16)

By Lemma A.57, (14) implies:

+
�:
:
Ď c (17)

for some : . By Lemma 4.10, (17) implies either c“J or +�:
:
“
Ž

; c.

125

Case c“J. Then (a) is true and (b) is false.
Case c‰J. Then we have:

c–
Ž

; c“+
�:
:

(18)

By the syntax of*J and*K , we have:

�: R t J, K u (19)

Then (12) and (19) imply:

�: P t #�1, #�2 u (20)

By case analysis on the assumption on the form of c, we have:

c“ #�1 (21)

where �1 PSp#�q. Then (b) is true and (a) is false.
Case g“ g1 Ñ g2. Then (b), (d) are false. Since g–K_ pg1 Ñ g2q, by Lemma 4.22 on

(1), we have:

c–
Ź

9

´

c1
9
_+

� 9

9

¯

(22)

BΞ$ g1 Ñ g2 ĺ+
� 9

9

9

(23)

for some c1
9

9
and � 9

9 and+� 9
9

9

, where
Ź

9 +
� 9

9
is complement-free. By Lemma 4.9,

(23) implies:

� 9 P tÑ,J, K u
9

(24)

By Lemma A.7 on S-AndOr12¨, we have:
Ź

9 +
� 9

9
Ď
Ź

9

´

c1
9
_+

� 9

9

¯

(25)

By S-Trans on (25) and (10), we have:
Ź

9 +
� 9

9
Ď c (26)

Since
Ź

9 +
� 9

9
is complement-free, we have:

Ź

9 +
� 9

9
ĘK (27)

Then (26) and (27) imply:

cĘK (28)

By Lemma A.57, (26) implies:

+
�:
:
Ď c (29)

for some : . By Lemma 4.10, (29) implies either c“J or +�:
:
“
Ž

; c.
Case c“J. Then (a) is true and (c) is false.
Case c‰J. Then we have:

c–
Ž

; c“+
�:
:

(30)

126

By the syntax of*J and*K , we have:

�: R t J, K u (31)

Then (24) and (31) imply:

�: “Ñ (32)

By case analysis on the assumption on the form of c, we have:

c“ c1 Ñ c2 (33)

Then (23) implies:

BΞ$ g1 Ñ g2 ĺ
Ž

; c1 Ñ c2 (34)

By case analysis on the ĺ rules, (34) implies:

BΞ$ g1 Ñ g2 ĺ p
Ź

; c1qÑ p
Ž

; c2q (35)

Again by case analysis on the ĺ rules, (35) implies:

Ξ$
Ź

; c1 ď g1 (36)
Ξ$ g2 ď

Ž

; c2 (37)

By S-Trans with S-AndOr2˛ on S-Refl, (36) and (37) imply:

Ξ$ c1 ď g1 (38)
Ξ$ g2 ď c2 (39)

Then (c) is true and (a) is false.
Case g“ t G8 : g8 8 u. Then (b), (c) are false. Since g–

Ź

8 pK_ t G8 : g8 uq, by Lemma 4.22
on (1), we have:

c–
Ź

9

´

c1
9
_+

� 9

9

¯

(40)

BΞ$ t G: 9 : g: 9 uĺ+
� 9

9

9

(41)

for some c1
9

9
and � 9

9 and +� 9
9

9

and : 9
9
, where

Ź

9 +
� 9

9
is complement-free. By

Lemma 4.9, (41) implies:

� 9 P t G: 9 ,J, K u
9

(42)

By Lemma A.7 on S-AndOr12¨, we have:
Ź

9 +
� 9

9
Ď
Ź

9

´

c1
9
_+

� 9

9

¯

(43)

By S-Trans on (43) and (10), we have:
Ź

9 +
� 9

9
Ď c (44)

Since
Ź

9 +
� 9

9
is complement-free, we have:

Ź

9 +
� 9

9
ĘK (45)

127

Then (44) and (45) imply:

cĘK (46)

By Lemma A.57, (44) implies:

+
�:
:
Ď c (47)

for some : . By Lemma 4.10, (47) implies either c“J or +�:
:
“
Ž

; c.
Case c“J. Then (a) is true and (d) is false.
Case c‰J. Then we have:

c–
Ž

; c“+
�:
:

(48)

By the syntax of*J and*K , we have:

�: R t J, K u (49)

Then (42) and (49) imply:

�: “ G:: (50)

By case analysis on the assumption on the form of c, we have:

c“ t G:: : c1 u (51)

Then (41) implies:

BΞ$ t G:: : g:: uĺ
Ž

; t G:: : c1 u (52)

By case analysis on the ĺ rules, (52) implies:

BΞ$ t G:: : g:: uĺ t G:: :
Ž

; c1 u (53)

Again by case analysis on the ĺ rules, (53) implies:

Ξ$ g:: ď
Ž

; c1 (54)

By S-Trans with S-AndOr2¨ on S-Refl, (54) implies:

Ξ$ g:: ď c1 (55)

Then (d) is true and (a) is false.

�

Only the proof for (A) of Lemma 4.22 is shown below. The proof for (B) is mostly
symmetric.

Proof [Lemma 4.22] By Lemma 4.14, there exists some gcdn and ccdn such that g– gcdn

and c– ccdn. Then by Lemma 4.21, we only need to consider CDN-normalized derivations
for gcdn ďcdn ccdn, and the result would also apply to the original derivation for gď c. By
induction on unassuming CDN-normalized subtyping derivations.

Case S-Refl. Immediate since g– c. Pick c1
8
“ g1

8

8
and +

�8
8
“*

�8
8

8

. Then c–

Ź

8

´

c1
8
_+

�8
8

¯

and*�8
8

ĺ+
�8
8

8

.

128

Case S-ToB¨. Then c“J. Pick c11 “K and +�1
1 “+J1 “J. Then c– c11 _+

�1
1 and

*
�8
8

ĺ+
�1
1

8

.
Case S-ToB . Then g“ J. So c– c_ g– c_

Ź

8

´

g1
8
_*

�8
8

¯

. By distributivity,

we have c–
Ź

8

´

c_ g1
8
_*

�8
8

¯

. Pick c1
8
“ c_ g1

8

8
and +�8

8
“*

�8
8

8

. Then c–

Ź

8

´

c1
8
_+

�8
8

¯

and*�8
8

ĺ+
�8
8

8

.
Cases S-Compl˛. Immediate since g– c. Proceed with the same reasoning as case S-

Refl.
Case S-AndOr1¨. c“ g_ c1 for some c1. Then c–

Ź

8

´

g1
8
_*

�8
8

¯

_ c1 –

Ź

8

´

g1
8
_ c1 _*

�8
8

¯

. Pick c1
8
“ g1

8
_ c1

8
and +�8

8
“*

�8
8

8

. Then c–
Ź

8

´

c1
8
_+

�8
8

¯

and*�8
8

ĺ+
�8
8

8

.
Case S-AndOr1 . g“ c^ g1 for some g1. Then from the assumption, we have:

g“ c^ g1 –
Ź

8

´

g1
8
_*

�8
8

¯

(1)

By Lemma A.7¨ on S-Refl and (1), we have:

pc^ g1q _ pc^ g1q – pc^ g1q _
Ź

8

´

g1
8
_*

�8
8

¯

i.e., c–
Ź

8

´

pc^ g1q _ g1
8
_*

�8
8

¯

(2)

Pick c1
8
“ pc^ g1q _ g1

8

8
and +

�8
8
“*

�8
8

8

. Then c–
Ź

8

´

c1
8
_+

�8
8

¯

and

*
�8
8

ĺ+
�8
8

8

.
Case S-AndOr2¨. By induction on the number of premises. Denote the inner induc-

tion hypothesis as IH1. We have g“
Ž

ℎ P 1..= g
n
ℎ

for some gn
ℎ

ℎ P 1..=. Let gdn
2 “

Ž

ℎ P 2..= g
n
ℎ
, then g“ gn

1 _ g
dn
2 . The premises of the rule are:

gn
ℎ
ď c

ℎ P 1..= (3)

By S-AndOr2¨ on (3) for ℎ P 2..=, we have:

gdn
2 ď c (4)

with the same size as the current derivation and one fewer premise. From the
assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ gn
1 _ g

dn
2 (5)

By S-Trans with Lemma A.7 on S-AndOr12¨, (5) implies:
Ź

8 *
�8
8
Ď gn

1 _ g
dn
2 (6)

By Corollary A.61, (6) implies:

*
�:
:
Ď gn

1 _ g
dn
2 (7)

for some : .

129

Case �: “ �. If �: “ � for some �, then by Lemma A.44, (7) implies:

*1
�1;
;
Ď gn

1 _ g
dn
2

;

(8)

where*�:
:
“
Ž

; *
1�
1
;

;
and*1�

1
;

;

;

are not unions. By Lemma A.58, (8) implies

either*1�
1
;

;
Ď gn

1 or*1�
1
;

;
Ď gdn

2

;

or JĎ gn
1 _ g

dn
2 .

Case*1�
1
;

;
Ď gn

1 or*1�
1
;

;
Ď gdn

2

;

. By S-AndOr2¨, we have:

*1�1
:“

Ž

; | * 1
�1;
;
Ďgn1

*1
�1;
;
Ď gn

1 (9)

*2�2
:“

Ž

; | * 1
�1;
;
Ďgdn

2
*1
�1;
;
Ď gdn

2 (10)

By S-AndOr2¨ with S-Refl, (9) and (10) imply:

gn
1 _*

1�1
Ď gn

1 (11)

gdn
2 _*2�2

Ď gdn
2 (12)

Since we have the other direction by S-AndOr11¨, (11) and (12) imply:

gn
1 – g

n
1 _*

1�1
(13)

gdn
2 – gdn

2 _*2�2
(14)

Then by IH on the (3) for ℎ“ 1 and (13), we have:

c–
Ź

?

´

c1
? _+

1�1
?

?

¯

(15)

BΣ$*1�1
ĺ+1�

1
?

?

?

(16)

By IH1 on (4) and (14), we have:

c–
Ź

@

´

c2
@ _+

2�2
@

@

¯

(17)

BΣ$*2�2
ĺ+2�

2
@

@

@

(18)

By distributivity, (15) and (17) imply:

c–
Ź

?,@

´

c1
? _ c

2
@ _+

1�1
?

? _+2�2
@

@

¯

(19)

For each pair p?, @q, we pick c1?@ and +
�?@
?@ as follows:

• If �1
? P t J, K u, pick c1?@ “ c1

? _ c
2
@ _+

2�2
@

@ and +�?@?@ “+1�1
?

? .
Then BΣ$*�:

:
ĺ+

�?@
?@ .

• If �2
@ P t J, K u, pick c1?@ “ c1

? _ c
2
@ _+

1�1
?

? and +�?@?@ “+2�2
@

@ .
Then BΣ$*�:

:
ĺ+

�?@
?@ .

• If �1
? R t J, K u and �2

@ R t J, K u and �1
? ‰ �

2
@ , then we have

at least one of the following by Lemma 4.9 (note that since �: “ �,
we have �1 “ �1 and �2 “ �2 for some �1 and �2):

130

– �1
? “�

1 and �2
@ “�

2, which implies �1 ‰�2. Since
*
�:
:
–*1�1

_*2�2
, we have �: “J and p�1, �2q P

t pG, H‰Gq, pG,Ñq, pÑ, Gq u for some G and H. Then
+1�1

?

? _+2�2
@

@ – c3
?@ _+

J
?@ for some c3

?@ and +J?@ . Then
we can pick c1?@ “ c

1
? _ c

2
@ _ c

3
?@ and +�?@?@ “+J?@ , where we

have BΣ$*�:
:

ĺ+
�?@
?@ .

– �1 “ #�1 and �1
? “ #�2, where �2 PSp#�1q. Since *

�:
:
–

*1�1
_*2�2

, we have �: “�1 “�2 “ #�1 Then we can pick
c1?@ “ c

1
? _ c

2
@ _+

2�2
@

@ and +�?@?@ “+1�1
?

? , where we have BΣ$
*
�:
:

ĺ+
�?@
?@ .

– �1 “ #�1 and �1
? “ #�2 , where �1 RSp#�2q and �2 RSp#�1q.

Proceed similarly as above.
– �2 “ #�1 and �2

@ “ #�2, where �2 PSp#�1q. Since *
�:
:
–

*1�1
_*2�2

, we have �: “�1 “�2 “ #�1 Then we can pick
c1?@ “ c

1
? _ c

2
@ _+

1�1
?

? and +�?@?@ “+2�2
@

@ , where we have BΣ$
*
�:
:

ĺ+
�?@
?@ .

– �2 “ #�1 and �2
@ “ #�2 , where �1 RSp#�2q and �2 RSp#�1q.

Proceed similarly as above.

• If �1
? “ �

2
@ R t J, K u, then we have �1 “�2 “ �1

? “ �
2
@ . Then

*
�:
:
–*1�1

_*2�2
and *1�1

ĺ+1�1
?

? and *2�2
ĺ+2�2

@

@ imply

*
�:
:

ĺ+1�1
?

? _+2�2
@

@ , so we can pick c1?@ “ c1
? _ c

2
@ and +�?@?@ “

+1�1
?

? _+2�2
@

@ .

Then we have:

c–
Ź

?,@

´

c1?@ _+
�?@
?@

¯

(20)

� ?@ P t�8
8
u Y t J, K uY t G G R t�8

8
u
u Y t #�

#� R t�8
8
u

u

?,@

(21)

BΣ$*�:
:

ĺ+
�?@
?@

?,@

(22)

The conditions on � ?@ in (21) ensures that we can rewrite
Ź

?,@

´

c1?@ _+
�?@
?@

¯

to an equivalent complement-free form, where the
ĺ relation is still satisfyable.

Case JĎ gn
1 _ g

dn
2 . By Lemma A.45, we have +� Ď c for some +� and � P

t J, K u. Then we can pick c11 “ c and +�1
1 “+� , which indeed satisfies

c– c1 _+
�1
1 and*�:

:
ĺ+

�1
1 .

Case �: “ � . If �: “ � for some �, then we proceed symmetrically to the case
above on the negation-inversion of*�:

:
Ď gn

1 _ g
dn
2 , i.e., g1n1 _ g1

cn
2 Ď -

�:

:
for

some g1n1 and g1cn2 and -�:
:

, and finally apply negation-inversion again to obtain
the desired result.

131

Case S-AndOr2 . Then c“
Ź

ℎ c
dn
ℎ

for some cdn
ℎ

ℎ

. The premises are gď cdn
ℎ

ℎ

.

By IH on each premise, we have cdn
ℎ
–
Ź

?ℎ

ˆ

cℎ?ℎ _+
ℎ
�ℎ?ℎ
?ℎ

˙

and

BΣ$*
�
:ℎ?ℎ

:ℎ?ℎ

ĺ+ℎ
�ℎ?ℎ
?ℎ

?ℎ

for some cℎ?ℎ
?ℎ

and +ℎ
�ℎ?ℎ
?ℎ

?ℎ

and :ℎ?ℎ
?ℎ
. Then we have

c–
Ź

ℎ

Ź

?ℎ

ˆ

cℎ?ℎ _+
ℎ
�ℎ?ℎ
?ℎ

˙

.

Cases S-DistribCdn˛. Similar to case S-AndOr2¨.
Case S-RcdDepth. Then g“ t G : g1 u and c“ t G : c1 u for some g1 and c1. From the

assumption, we have:
Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ t G : g1 u (23)

By S-Trans with Lemma A.7 on S-AndOr12¨, (23) implies:
Ź

8 *
�8
8
Ď t G : g1 u (24)

By Lemma A.57, (24) implies:

*
�:
:
Ď t G : g1 u (25)

for some : . By Lemma 4.10, (25) implies:

*
�:
:
“
Ž

; t G : g1 u (26)

The premise of the rule is:

BΣ$ g1 ď c1 (27)

By the definition of ĺ, (27) implies:

BΣ$ t G : g1 uĺ t G : c1 u

i.e., BΣ$*�:
:

ĺ t G : c1 u (28)

So we can pick c11 “K and +�1
1 “ t G : c1 u, which indeed yields c“ t G : c1 u –

c11 _+
�1
1 .

Case S-RcdMrg¨. Then g“ t G : g1 _ g2 u and c“ t G : g1 u _ t G : g2 u for some g1 and
g2. From the assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ t G : g1 _ g2 u (29)

By S-Trans with Lemma A.7 on S-AndOr12¨, (29) implies:
Ź

8 *
�8
8
Ď t G : g1 _ g2 u (30)

By Lemma A.57, (30) implies:

*
�:
:
Ď t G : g1 _ g2 u (31)

for some : . By Lemma 4.10, (31) implies:

*
�:
:
“
Ž

; t G : g1 _ g2 u (32)

132

Pick c11 “K and +�1
1 “ t G : g1 u _ t G : g2 u, which indeed satisfies c“ t G : g1 u _

t G : g2 u – c
1
1 _+

�1
1 and*�:

:
ĺ+

�1
1 .

Case S-RcdMrg . Then g“ t G : g1 u ^ t G : g2 u and c“ t G : g1 ^ g2 u for some g1 and
g2. From the assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ t G : g1 u ^ t G : g2 u (33)

By S-Trans with Lemma A.7 on S-AndOr12¨, (33) implies:
Ź

8 *
�8
8
Ď t G : g1 u ^ t G : g2 u (34)

Let ; range from 1 to 2. By Lemma A.44, (34) implies:
Ź

8 *
�8
8
Ď t G : g; u

;

(35)

By Lemma A.57, (35) implies:

*
�:;
:;
Ď t G : g; u

;

(36)

for some :;
;
. By Lemma 4.10, (36) implies:

*
�:;
:;
“
Ž

;;
t G : g; u

;

(37)

Pick c11 “K and +�1
1 “ t G : g1 ^ g2 u, which indeed satisfies c“ t G : g1 ^ g2 u –

c11 _+
�1
1 and

Ź

; *
�:;
:;

ĺ+
�1
1 .

Case S-RcdTop. Then g“J and c“ t G : c1 u _ c0, where c0 P tt H
‰G : g2 u, g2 Ñ g3 u.

Pick c11 “K and �1 “J and +�1
1 “ t G : c1 u _ c0, which indeed satisfies c“ t G :

c1 u _ c0 – c
1
1 _+

�1
1 and*�8

8
ĺ+

�1
1

8

.
Case S-FunDepth. Then g“ g1 Ñ g2 and c“ g0 Ñ g3 for some g;

; P 0..3. From the
assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ g1 Ñ g2 (38)

By S-Trans with Lemma A.7 on S-AndOr12¨, (38) implies:
Ź

8 *
�8
8
Ď g1 Ñ g2 (39)

By Lemma A.57, (39) implies:

*
�:
:
Ď g1 Ñ g2 (40)

for some : . By Lemma 4.10, (40) implies:

*
�:
:
“
Ž

; g1 Ñ g2 (41)

The premises of the rule are:

BΣ$ g0 ď g1 (42)
BΣ$ g2 ď g3 (43)

133

By the definition of ĺ, (42) and (43) imply:

BΣ$ g1 Ñ g2 ĺ g0 Ñ g3

i.e., BΣ$*�:
:

ĺ g0 Ñ g3 (44)

So we can pick c11 “K and +�1
1 “ g0 Ñ g3, which indeed yields c“ g0 Ñ g3 –

c11 _+
�1
1 .

Case S-FunMrg¨. Then g“ g11 Ñ g12 ^ g21 Ñ g22 and c“ pg11 _ g21qÑ pg12 ^ g22q for
some g11, g12, g21, and g22. From the assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ g11 Ñ g12 ^ g21 Ñ g22 (45)

By S-Trans with Lemma A.7 on S-AndOr12¨, (45) implies:
Ź

8 *
�8
8
Ď g11 Ñ g12 ^ g21 Ñ g22 (46)

Let ; range from 1 to 2. By Lemma A.44, (46) implies:
Ź

8 *
�8
8
Ď g;1 Ñ g;2

;

(47)

By Lemma A.57, (47) implies:

*
�:;
:;
Ď g;1 Ñ g;2

;

(48)

for some :;
;
. By Lemma 4.10, (48) implies:

*
�:;
:;
“
Ž

;;
g;1 Ñ g;2

;

(49)

Pick c11 “K and +�1
1 “ pg11 _ g21qÑ pg12 ^ g22q, which indeed satisfies c“ pg11 _

g21qÑ pg12 ^ g22q – c
1
1 _+

�1
1 and

Ź

; *
�:;
:;

ĺ+
�1
1 .

Case S-FunMrg . Then g“ pg1 ^ g3qÑ pg2 _ g4q and c“ g1 Ñ g2 _ g3 Ñ g4 for some
g;
; P 1..4. From the assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ pg1 ^ g3qÑ pg2 _ g4q (50)

By S-Trans with Lemma A.7 on S-AndOr12¨, (50) implies:
Ź

8 *
�8
8
Ď pg1 ^ g3qÑ pg2 _ g4q (51)

By Lemma A.57, (51) implies:

*
�:
:
Ď pg1 ^ g3qÑ pg2 _ g4q (52)

for some : . By Lemma 4.10, (52) implies:

*
�:
:
“
Ž

; pg1 ^ g3qÑ pg2 _ g4q (53)

Pick c11 “K and +�1
1 “ g1 Ñ g2 _ g3 Ñ g4, which indeed satisfies c“ g1 Ñ g2 _

g3 Ñ g4 – c
1
1 _+

�1
1 and*�:

:
ĺ+

�1
1 .

134

Case S-ClsSub. Then g“ #�1 and c“ #�2 for some #�1 and #�2. From the assumption,
we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ #�1 (54)

By S-Trans with Lemma A.7 on S-AndOr12¨, (54) implies:
Ź

8 *
�8
8
Ď #�1 (55)

By Lemma A.57, (55) implies:

*
�:
:
Ď #�1 (56)

By Lemma 4.10, (56) implies:

*
�:
:
“
Ž

; #�1 (57)

The premise of the rule is:

�2 PSp#�1q (58)

By the definition of ĺ, (58) implies:

#�1 ĺ #�2

i.e., *
�:
:

ĺ #�2 (59)

So we can pick c11 “K and +�1
1 “ #�2, which indeed yields c“ #�2 – c

1
1 _+

�1
1 .

Case S-ClsBot. Then g“ #�1 ^ #�2 and c“K for some #�1 and #�2. From the
assumption, we have:

Ź

8

´

g1
8
_*

�8
8

¯

Ď g“ #�1 ^ #�2 (60)

By S-Trans with Lemma A.7 on S-AndOr12¨, (60) implies:
Ź

8 *
�8
8
Ď #�1 ^ #�2 (61)

Let ; range from 1 to 2. By Lemma A.44, (61) implies:
Ź

8 *
�8
8
Ď #�;

;

(62)

By Lemma A.57, (62) implies:

*
�:;
:;
Ď #�;

;

(63)

for some :;
;
. By Lemma 4.10, (63) implies:

*
�:;
:;
“
Ž

:;
#�;

;

(64)

Then (64) implies:

�:; “ #�;
;

(65)

135

The premises of the rule are:

�1 RSp#�2q (66)
�2 RSp#�1q (67)

which is impossible by the condition on �8
8
.

�

B Formalization of MLstruct, Continued

We now give the full details of MLstruct’s formalization.

B.1 Declarative Typing Rules

The declarative typing rules of _ are presented in Figure 25.
Rule T-Body is used to type programs that happen to be simple terms, after having

accumulated a set of declarations in the context D, which is checked for well-formedness
using the rules presented in Figure 26 and explained later (Section B.2).
In T-Def, we type the body of a def inside a constraining context Ξ added on top of the

current declarations context, and subsequently use Ξ as part of the resulting polymorphic
type of this def, which is placed into the typing context for use later in the program.
Importantly,Ξ has to be checked for consistency, which is done with theΞ cons. judgement,
defined in Figure 25 — essentially, this makes sure that there is at least one assignment of
variable that makes the constraints hold in the base declarations context. This is to forbid the
use of inconsistent bounds on type variables, such as pBoolď Uq¨pUď Intq, which could
lead to accepting ill-typed definitions.
As a concrete example for T-Def, consider a definition such as def 5 “ _G. G ` 1 in

a program where a type synonym type �“ Int is defined. One hypothetical judgement
used to type this definition could be ‘ptype �“ Intq¨pUď �q, Γ$ _G. G ` 1 : UÑ Int’
where Ξ“ pUď �q is the constraints part of the context. According to T-Def, because Ξ
is consistent (since lbΞpUq “Kď ubΞpUq “ Int), we can type the definition 5 as ‘@pUď
�q. UÑ Int’. As a side note, this type can be rewritten to 5 : �Ñ �, which is equivalent
in the declarations context ptype �“ Intq.

Rule T-Var2 is an interesting counterpart to rule T-Def explained above. It instantiates
a given polymorphic type through the ď@ relation defined by rule S-All.
Rule S-All uses a substitution d, a premise that the subtyping holds under this substi-

tution, and the entailment judgement Σ¨Ξ1 (dpΞq, which simply makes sure that every
subtyping constraint in dpΞq holds in Σ with Ξ1 (which is n for T-Var2). Condition
dompdq “ TVpΞq Y TVpgq, where TVp¨q is defined in Section B.3, is used to make sure
that d assigns a substitution to all the variables quantified by the polymorphic type.

136

Ξ, Γ$‹ % : g

T-Body
Ξ cons. Ξ, Γ$ C : g

Ξ, Γ$‹ C : g

T-Def
Ξ1 cons. Ξ1, Γ$ C : g Ξ, Γ¨pG : @Ξ1. gq $‹ % : g%

Ξ, Γ$‹ def G “ C ; % : g%

Ξ, Γ$ C : g

T-Subs
Ξ, Γ$ C : g1 Ξ$ g1 ď g2

Ξ, Γ$ C : g2

T-Obj
Ξ, Γ$ C : g � final

Ξ, Γ$� t G “ C u : #� ^ t G : g u

T-Proj
Ξ, Γ$ C : t G : g u
Ξ, Γ$ C.G : g

T-Var1
ΓpGq “ g

Ξ, Γ$ G : g

T-Var2
ΓpGq “ f Ξ$ fď@@n . g

Ξ, Γ$ G : g

T-Abs
Ξ, Γ¨pG : g1q $ C : g2
Ξ, Γ$ _G. C : g1Ñ g2

T-App
Ξ, Γ$ C0 : g1Ñ g2 Ξ, Γ$ C1 : g1

Ξ, Γ$ C0 C1 : g2

T-Asc
Ξ, Γ$ C : g

Ξ, Γ$ pC : gq : g

T-Case1
Ξ, Γ$ C1 :K

Ξ, Γ$ case G “ C1 of n :K

T-Case2
Ξ, Γ$ C1 : g1 ^ #� Ξ, Γ¨pG : g1q $ C2 : g

Ξ, Γ$ case G “ C1 of _Ñ C2 : g

T-Case3
Ξ, Γ$ C1 : #� ^ g1 _ #� ^ g2 Ξ, Γ¨pG : g1q $ C2 : g Ξ, Γ¨pG : g2q $ case G “ G of " : g

Ξ, Γ$ case G “ C1 of �Ñ C2, " : g

Σ$ BΞ¨Ξ ; d cons.
Assuming Σ holds, then bounds BΞ¨Ξ are consistent, as witnessed by d.

Ξ cons.”Dd. n $ Ξ ; d cons.

Σ$ BΞ ; r s cons.

splitUpΞ, dompd1qq “ pΞU, Ξ U q d“ rU ÞÑ U^ ubΞpUq _ lbΞpUqs
BΞB¨BΞU¨dΞ U ¨dΣ(dΞU dΣ$ BΞB¨BΞU¨dΞ U ; d1 cons.

Σ$ BΞB¨Ξ ; d1 ˝ d cons.

splitUpΞ, t W uq “

ppgď cq
pgďcq P Ξ | U P t g, c u

, pgď cq
pgďcq P Ξ | U R t g, c u

¨ pUď˛ Vq
pUď˛Vq P Ξ | V P t W u

q

Σ$ fď@f

S-All
Ξ1¨Σ(dpΞq Ξ1¨Σ$ dpgq ď g1 dompdq “ TVpΞq Y TVpgq

Σ$@Ξ. g ď@ @Ξ1. g1

Σ(Σ

S-Empty

Σ(n

S-Cons
Σ(Σ1 Σ$ g1 ď g2

Σ(Σ1¨pg1 ď g2q

S-ConsB
Σ(Σ1 CΣ$ g1 ď g2

Σ(Σ1¨Bpg1 ď g2q

Fig. 25. Full declarative typing, consistency, and subtyping entailment rules.

137

B.1.1 Superclasses

Definition B.1 (Superclasses). We define the superclasses Spgq of a type g as the set of
classes transitively inherited by type g, assuming g is a class type or the expansion of a
class type:

� PSp#�q
� PSp#�q
� PSp�rgsq

g exp. g1 � PSpg1q
� PSpgq

� P Spg1q YSpg2q
� PSpg1 ^ g2q

B.1.2 Substitution

Definition B.2 (Term substitution). A term substitution is a pair of variable and term
rG ÞÑ Cs. Applying a term substitution to a term C1, denoted by rG ÞÑ CsC1, replaces all free
occurrences of G in C1 with C, which is defined as follows:

rG ÞÑ CsH“

"

C if H“ G
H if H‰ G rG ÞÑ CspC0 C1q “ rG ÞÑ CsC0 rG ÞÑ CsC1

rG ÞÑ CspC1 : gq “ rG ÞÑ CsC1 : g rG ÞÑ CsC1.G1 “ prG ÞÑ CsC1q.G1

rG ÞÑ Cs_G1. C1 “

"

_G1. C1 if G1 “ G
_G1. rG ÞÑ CsC1 if G1 ‰ G rG ÞÑ Csp� t G1 “ C1 uq “� t G1 “ rG ÞÑ CsC1 u

rG ÞÑ Cs case G1 “ C1 of " “
"

case G1 “ rG ÞÑ CsC1 of " if G1 “ G
case G1 “ rG ÞÑ CsC1 of rG ÞÑ Cs" if G1 ‰ G

Where case branches term substitution rG ÞÑ Cs" is defined as:

rG ÞÑ Cs n “ n rG ÞÑ Csp_Ñ C1q “ _ÑrG ÞÑ CsC1

rG ÞÑ Csp�Ñ C1, "q “�ÑrG ÞÑ CsC1, rG ÞÑ Cs"

Similarly, applying a term substitution to a program %, denoted by rG ÞÑ Cs%, replaces
all free occurrences of G in % with C, which is defined as follows:

rG ÞÑ Cs pdef G1 “ C1; %q “
"

def G1 “ C1; % if G1 “ G
def G1 “ rG ÞÑ CsC1; rG ÞÑ Cs% if G1 ‰ G

Definition B.3 (Type substitution). A type substitution d“ t U ÞÑ g u is a mapping from
type variables to types.
We use the notation pU1 ÞÑ g1q P d to signify that U1 P dompdq and dpU1q “ g1.
dompdq is the domain of d, defined as follows:

dompt uq “H dompt U ÞÑ g, U1 ÞÑ g1 uq “ dompt U ÞÑ g uq Y t U1 u

Definition B.4 (Type substitution on type). Application of a type substitution to a type dpgq
is defined as follows:

dpg1Ñ g2q “ dpg1qÑ dpg2q dpUq “

"

g if pU ÞÑ gq P d

U if U R dompdq
dpt G : g uq “ t G : dpgq u dp J˛ q “ J˛

dp#rgsq “ #rdpgqs dpg1 _
˛ g2q “ dpg1q _

˛ dpg2q

dp#�q “ #� dp gq “ dpgq

138

Definition B.5 (Type substitution on term). Application of a type substitution to a term
dpCq is defined as follows:

dpGq “ G dpC.Gq “ dpCq.G

dpC : gq “ dpCq : dpgq dp� t G “ C uq “� t G “ dpCq u

dp_G. Cq “ _G. dpCq dpcase G “ C of "q “ case G “ dpCq of dp"q
dpC0 C1q “ dpC0q dpC1q

Where type substitution dp"q on case branches is defined as:

dpnq “ n dp_Ñ Cq “ _Ñ dpCq dp�Ñ C, "q “�Ñ dpCq, dp"q

Definition B.6 (Type substitution on typing context). Application of a type substitution to
a typing context dpΓq is defined as follows:

dpnq “ n dpΓ¨pG : gqq “ dpΓq¨pG : dpgqq dpΓ¨pG : fqq “ dpΓq¨pG : fq

Definition B.7 (Type substitution on subtyping context). Application of a type substitution
to a subtyping context dpΣq is defined as follows:

dpnq “ n dpΣ ¨ pg1 ď g2qq “ dpΣq ¨ pdpg1q ď dpg2qq

dpΣ ¨ Bpg1 ď g2qq “ dpΣq ¨ Bpdpg1q ď dpg2qq

B.2 Well-Formedness

The well-formedness rules are presented in Figure 26. They ensure that the declarations
of a program lead to a decidable type inference algorithm by restricting the shapes of
recursive types to regular trees. This is done by making sure that all recursive occurrences
of class and type declarations are given the same type arguments U as the declaration’s head
#rUs itself. Note that well-formed type declaration may refer to each other freely, possibly
forming mutually-recursive definitions.

Definition B.8 (Occurrences). We define the occurrences of a type g, written occspgq,
as all the types transitively reachable by progressively traversing the subterms of g and
expanding the alias and class types as we encounter them. This is always a finite set, thanks
to the regularity check (Section 2.3.1).

The type variables of a piece of syntax B, written TVpBq, is defined in Section B.3.
Function guard# pgq refers to the guardedness check described in Section 2.1.6.

Theorem B.9 (Regularity). If D wf, then for all g, the set occspgq is finite.

This notably means that given well-formed declarationsD, we can easily compute Spgq.

Proof [Proof B.9 (Regularity)] Since each type constructor declared as #rUs can only
appear in its body (and transitively in the bodies of other declarations) with the same
type variables U as type arguments, the expansion g of a type #rcs may only lead to #
occurrences of the form #rcs, which itself has the same occurrences as g; thus the number
of distinct type occurrences transitively reachable from a given declaration is finite. �

139

D wf

W-Decls

D $ 3 wf 3 PD TVpDq “H

D wf

D $ 3 wf

W-Als
g“ U

�rgs P occspcq
guard�pcq c wf

D $ type �rUs “ c wf

W-Cls1
g“ U

�rgs P occspt G: g uq
g wf

D $ class �rUs : t G : g u wf

W-Cls2
� RSp�rUsq guard�p�rg8s ^ t G : g uq g“ U

�rgs P occsp�rg8s^t G: g uq
g wf

D $ class �rUs : �rg8s ^ t G : g u wf

g wf
J˛ wf U wf

g wf
 g wf

g1 wf g2 wf
g1 _

˛ g2 wf
g1 wf g2 wf
g1 Ñ g2 wf

g wf
t G : g u wf #� wf

g wf #rgs exp. c
#rgs wf

pΣ | Ξq wf
n wf

Σ wf g1 wf g2 wf
Σ¨pBqpg1 ď g2q

D $� final
n $� final

D $� final � ‰�

D¨pclass �1rUs : �rgsq $� final

D $� final � ‰�

D¨pclass �1rUs : �rgs ^ t G : c uq $� final

Fig. 26. Well-formedness and finality rules.

B.3 Free type variables

Definition B.10 (Free type variables). The set of free type variables of a type g, written
TVpgq, is defined as:

TVpg1Ñ g2q “ TVpg1q Y TVpg2q TVpUq “ tUu
TVpt G : g uq “ TVpgq TVp J˛ q “H
TVp#�q “H TVpg1 _˛ g2q “ TVpg1q Y TVpg2q
TVp#rgsq “

Ť

g TVpgq TVp gq “ TVpgq

140

Definition B.11 (Free type variables of declaration context). The free type variables of a
declaration context TVpDq is defined as:

TVpnq “H TVpD¨pclass �rUs : gqq “ TVpDq Y pTVpgqzt U uq

TVpD¨ptype �rUs “ gqq “ TVpDq Y pTVpgqzt U uq

Definition B.12 (Free type variables of typing context). The free type variables of a typing
context TVpΓq is defined as:

TVpnq “H TVpΓ¨pG : gqq “ TVpΓq Y TVpgq TVpΓ¨p- : fqq “ TVpΓq

Definition B.13 (Free type variables of constraining context). The free type variables of a
constraining context TVpΞq is defined as:

TVpnq “H TVpΞ¨pUď˛ gqq “ TVpΞq Y tUu Y TVpgq

Definition B.14 (Top-level free type variables). The set of top-level free type variables of
a type g, written TTVpgq, is defined as:

TTVpg1Ñ g2q “H TTVpUq “ tUu
TTVpt G : g uq “H TTVp J˛ q “H
TTVp#�q “H TTVpg1 _˛ g2q “ TTVpg1q Y TTVpg2q
TTVp#rgsq “ TTVpg1q when #rgs exp. g1 TTVp gq “ TTVpgq

The list of top-level free type variables of a type g (i.e., with duplicates), written TTV 1pgq,
is defined similarly, except for the cases TTV 1pUq “ U and TTV 1pg1 _

˛ g2q “ TTV 1pg1q ¨

TTV 1pg2q.

C MLstruct Correctness Proofs

Finally, we now develop the correctness proofs of MLstruct in full detail.

C.1 Progress Proofs

LemmaC.1 (Progress— general). If n, n $ % : g and bodyp%q is not a value then %ù %1

for some %1.

Proof By induction on program typing derivations.

Case T-Body. By progress for terms (Lemma C.2).
Case T-Def. By E-Def.

�

Lemma C.2 (Term progress). If n, n $ C : g and C is not a value then Cù C1 for some C1.

Proof By induction on typing derivations.

141

Case T-Subs. Immediate from the induction hypothesis.
Case T-Obj. C “� t G “ C1 u If all C1 are values, then C is a value; otherwise C reduces

by E-Ctx and IH.
Case T-Proj. C “ C1.G

If C1 is not a value, by IH we have C1ù C2, and thus Cù C2.G by E-Ctx. Otherwise,
by canonical form for record types (Lemma C.3), we have C1 “� ' and t G “ E1 u P ',
and therefore Cù E1 by E-Proj.

Cases T-Var1, T-Var2. C “ G

Impossible since there is no rule that would type G in an empty typing context.
Case T-Abs. C “ _G. C1 Immediate since C is a value.
Case T-App. C “ C0 C1

We can apply the induction hypothesis on C0 and C1, which are given types in the
premises of this typing rule. If either C0 or C1 is not a value, then C can progress by
E-Ctx, so we only have to consider the case where C0 “ E0 and C1 “ E1. By canonical
form for function types (Lemma C.4), we have E0 “ _G. C

1. Then Cù rG ÞÑ E2sC
1 by

E-App.
Case T-Asc. C “ C1 : g Immediate since C1 : gù C1 by E-Asc.
Case T-Case1. C “ case G “ C1 of n

By IH, if C1 is not a value, then C progresses by E-Ctx. Moreover, by canonical form
for bottom types (Lemma C.6), C1 cannot be a value.

Case T-Case2. C “ case G “ C1 of _Ñ C2
By IH, if C1 is not a value, then C progresses by E-Ctx. On the other hand, if C1 “ E1,
then Cù C2 by E-CaseWld.

Case T-Case3. C “ case G “ C1 of �Ñ C2, "

By IH, if C1 is not a value, then C progresses by E-Ctx. On the other hand, if C1 “ E1,
either E1 “�1 'with�2 PSp�1q, inwhich case E-CaseCls1 applies, or E-CaseCls2
applies since scrutinees can only be classes by Lemma C.7 and canonical form for
class types (Lemma C.5); in either case, C progresses.

�

Lemma C.3 (Canonical form for record types). If n, Γ$ E : t G : g u then we have E “� '
for some � and ', and t G “ E1 u P '.

Proof By induction on typing derivations for the statement: if n, Γ$ E : g and n $ gď

t G : g1 u then t G “ E1 u P E. The only cases to consider are those rules that can type values:

Case T-Subs. Then the premises of the rule are E : g2 and g2 ď g for some g2. By S-Trans
on g2 ď g and gď t G : g1 u, we have g2 ď t G : g1 u. This allows us to apply the IH on
the premise E : g2, by which we have t G “ E1 u P E.

Case T-Abs. Then g“ g1 Ñ g2. By consistency of subtyping (Theorem A.63), g1 Ñ g2 ď

t G : g1 u cannot be true, therefore this case is impossible.
Case T-Obj. Then g“ #� ^ t G8 : g8 8 u and E “� t G8 “ E8

8
u. Then by consistency of

subtyping (Theorem A.63) we know that there is an 8 such that G8 “ G. Given the

142

conclusion of T-Obj and the definition of field projection (Section 6.2), this implies
that there is a E1 “ E8 such that t G “ E1 u P E.

�

Lemma C.4 (Canonical form for function types). If n, Γ$ E : g1 Ñ g2 then we have E “
_G. C for some G and C.

Proof By induction on typing derivations for the statement: if n, Γ$ E : g, and n $ gď

g1 Ñ g2 then E “ _G. C for some G and C. The only cases to consider are those rules that can
type values:

Case T-Subs. Then the premises of the rule are E : g1 and g1 ď g for some g1. By S-Trans
on g1 ď g and gď g1 Ñ g2, we have g1 ď g1 Ñ g2. Then the result follows from IH on
E : g1.

Case T-Abs. Immediate.
Case T-Obj. Then g“ t G8 : g8 8 u for some G8 8 and E8

8 . By consistency of subtyping
(Theorem A.63), gď g1 Ñ g2 cannot be true, therefore this case is impossible.

�

Lemma C.5 (Canonical form for class types). If n, Γ$ E : #� then we have E “� ' for
some '.

Proof By induction on typing derivations for the statement: if n, Γ$ E : g, and n $ gď #�
then E “� ' for some '. The only cases to consider are those rules that can type values:

Case T-Subs. Then the premises of the rule are E : g1 and g1 ď g for some g1. By S-Trans
on g1 ď g and gď #�, we have g1 ď #�. Then the result follows from IH on E : g1.

Case T-Abs. Then g“ g1 Ñ g2 for some g1 and g2. By consistency of subtyping
(Theorem A.63), gď #� cannot be true, therefore this case is impossible.

Case T-Obj. Immediate.

�

Lemma C.6 (Canonical form for bottom type). For all E, n, Γ$ E :K cannot be derived.

Proof By case analysis on the last typing rule used in the typing derivation, assuming
without loss of generality that this typing derivation is in subsumption-normalized form
(Lemma 3.12). The only cases to consider are those rules that can type values:

Cases T-Abs, T-Obj. Immediate.
Case T-Subs. The premises are n, Γ$ E : g and n $ gď g1 and the goal is to show that

we cannot have g1 “K, i.e., that gďK cannot be derived. The typing deriva-
tion being subsumption-normalized, the first premise is not an application of
T-Subs, so it must be an application of either T-Abs or T-Obj, meaning that

143

g P t g1 Ñ g2, #� ^ t G8 : g8 8 u u. We conclude that gďK cannot be derived by
consistency of subtyping (Theorem A.63).

�

Lemma C.7 (Scrutinee types). If n, Γ$ case G “ C of " : g then we have n, Γ$ C : #� for
some �.

Proof By induction of typing derivations.

Case T-Subs. Then the former premise of the rule is n, Γ$ case G “ E of " : g1 for some
g1. The result follows from IH.

Case T-Case1. Then the premise of the rule is n, Γ$ E :K, which is impossible by
canonical form for bottom type (Lemma C.6).

Case T-Case2. Then the former premise of the rule is n, Γ$ E : g1 ^ #� for some g1 and
�. Then by T-Subs with g1 ^ #� ď #� (S-AndOr12), we have n, Γ$ E : #�.

Case T-Case3. Then the first premise of the rule is n, Γ$ C : #� ^ g1 _ #� ^ g2 for
some g1 and g2 We have either n, Γ$ C : #�1 or n, Γ$ C : #�1 for some �1. For the
former, the result is immediate. For the latter, we have n, Γ$ C : p#� ^ g1 _ #� ^
g2q ^ #�, which implies n, Γ$ C : g2 by T-Subs since p#� ^ g1 _ #� ^ g2q ^

 #� ” #� ^ g2 ď g2. By IH on the last premise n, Γ¨pG : g2q $ case G “ G of" : g,
we have n, Γ¨pG : g2q $ G : #�2 for some �2, i.e., g2 ď #�2. Then we have n, Γ$ C :
#�2 by T-Subs.

�

C.2 Preservation Proofs

LemmaC.8 (Preservation—general). If n, Γ$‹ % : g and %ù %1, then we have n, Γ$‹
%1 : g.

Proof By induction on program typing derivations.

Case T-Body. By preservation for terms (Lemma C.12).
Case T-Def. %“ def G “ C ; %1

The only applicable reduction rule is E-Def. The premises of the rule are Ξ, Γ$ C : g
and n, Γ¨pG : @Ξ. gq $‹ %1 : g% for some Ξ and g. By substitution (Lemma C.9), we
have n, Γ$ rG ÞÑ Cs%1 : g% .

�

Lemma C.9 (Substitution). For all D wf, Γ and Ξ such that TVpΓq X TVp@Ξ. gq “H:

1. If n, Γ¨pG : @Ξ. gq $‹ % : g% and Ξ, Γ$ C : g, then n, Γ$‹ rG ÞÑ Cs% : g% .
2. If Ξ0, Γ¨pG : @Ξ. gq $ C% : g% and Ξ0¨Ξ, Γ$ C : g, then Ξ0, Γ$ rG ÞÑ CsC% : g% .

144

Proof By induction on program typing derivations of n, Γ¨pG : @Ξ. gq $‹ % : g% and typing
derivations of Ξ0, Γ¨pG : @Ξ. gq $ C% : g% . Note that the TVpΓq X TVp@Ξ. gq “H condition
can always be obtained by renaming variables quantified in definitions, when necessary.
The only difficult cases are for T-Body and T-Var2:

Case T-Body. %“ C%

The premises of the rule are n cons. and n, Γ¨pG : @Ξ.gq $ C% : g% . By assumption,
we have Ξ, Γ$ C : g By IH, we have n, Γ$ rG ÞÑ CsC% : g% . The result n, Γ$‹ rG ÞÑ
CsC% : g% then follows by T-Body, as %“ C% .

Case T-Def. %“ def G1 “ C1 ; %1
If G1 “ G, then rG ÞÑ Cs%“ % and the result is immediate.
Otherwise, rG ÞÑ Cs%“ def G1 “ rG ÞÑ CsC1 ; rG ÞÑ Cs%. We can apply the IH on the sec-
ond premise of T-Def, Ξ1, Γ¨pG : @Ξ. gq $ C1 : g1, to get Ξ1, Γ$ rG ÞÑ CsC1 : g1. Then,
the third premise of T-Def, n, Γ¨pG : @Ξ. gq¨pG1 : @Ξ1. g1q $‹ % : g% , can be com-
muted (Lemma C.11) to n, Γ¨pG1 : @Ξ1. g1q¨pG : @Ξ. gq $‹ % : g% , on which we can
apply the IH to get n, Γ¨pG1 : @Ξ1. g1q $‹ rG ÞÑ Cs% : g% . We then conclude by T-Def,
for which we have just derived the last two premises (the first premise is unchanged).

Case T-Subs. The premises of the rule are Ξ0, Γ¨pG : @Ξ. gq $ C% : g1 and Ξ0 $ g1 ď g% .
By IH on the first premise, we have Ξ0, Γ$ rG ÞÑ CsC% : g1. Then Ξ0, Γ$ rG ÞÑ CsC% :
g% by T-Subs with the second premise.

Case T-Obj. C% “� t G
1 “ C1 u g% “ #� ^ t G1 : g1 u

The premises of the rule are Ξ0, Γ¨pG : @Ξ. gq $ C1 : g1. By IH, we have
Ξ0, Γ$ rG ÞÑ CsC1 : g1. Then Ξ0, Γ$� t G1 “ rG ÞÑ CsC1 u : #� ^ t G1 : g1 u by T-Obj,
i.e., Ξ0, Γ$ rG ÞÑ Csp� t G1 “ C1 uq : #� ^ t G1 : g1 u by the definition of substitution.

Case T-Proj. C% “ C
1.G1

The premise of the rule is Ξ0, Γ¨pG : @Ξ. gq $ C1 : t G1 : g% u. By IH, we have Ξ0, Γ$

rG ÞÑ CsC1 : t G1 : g% u. Then Ξ0, Γ$ prG ÞÑ CsC1q.G1 : g% by T-Proj, i.e., Ξ0, Γ$ rG ÞÑ

CsC1.G1 : g% by the definition of substitution.
Case T-Var1. C% “ G

1 pΓ¨pG : @Ξ. gqqpG1q “ g%
Since G1 is mapped to a simple type in the context Γ¨pG : @Ξ. gq, G ‰ G1, then ΓpG1q “
g% . Then Ξ0, Γ$ G

1 : g% , i.e., Ξ0, Γ$ rG ÞÑ CsG1 : g% by the definition of substitution.
Case T-Var2. C% “ G

1 dpg1
%
q ď g% pΓ¨pG : @Ξ. gqqpG1q “ @Ξ1. g1

%
Ξ0 (dpΞ

1q

There are two cases to consider:
Case G1 ‰ G. Then rG ÞÑ CsC% “ C% and the result is immediate.
Case G1 “ G. Then rG ÞÑ CsC% “ C and moreover pΓ¨pG : @Ξ. gqqpGq “ @Ξ1. g1

%
, thus

@Ξ. g“@Ξ1. g1
%
, and thus Ξ“ Ξ1 and g“ g1

%
.

By assumption, Ξ, Γ$ C : g so Ξ1, Γ$ C : g1
%
. By preservation of typing under

substitution (Lemma A.28), dpΞ1q, dpΓq $ C : dpg1
%
q, i.e., dpΞ1q, Γ$ C : g% by

T-Subs and since TVpΓq X dompdq “H by assumption.
Moreover, since we have Ξ0 (dpΞ

1q, this implies that Ξ0, Γ$ C : g%
(Lemma A.27), which is what we wanted to prove (remember C “ rG ÞÑ CsC%).

Case T-Abs. C% “ _G
1. C1 g% “ g1 Ñ g2

There are two cases to consider:

145

Case G1 “ G. The premise of the rule is Ξ0, Γ¨pG : @Ξ. gq¨pG : g1q $ C
1 : g2. Since the

binding pG : @Ξ. gq is shadowed, we can remove it from the typing context
(Lemma C.10), i.e., Ξ0, Γ¨pG : g1q $ C

1 : g2. Then Ξ0, Γ$ _G. C
1 : g1 Ñ g2 by

T-Abs, which is the desired result since rG ÞÑ CsC% “ C% and G1 “ G.
Case G1 ‰ G. The premise of the rule is Ξ0, Γ¨pG : @Ξ. gq¨pG1 : g1q $ C

1 : g2, which can
be commuted (Lemma C.11) to Ξ0, Γ¨pG

1 : g1q¨pG : @Ξ. gq $ C1 : g2. By IH, we
have Ξ0, Γ¨pG

1 : g1q $ rG ÞÑ CsC1 : g2. Then Ξ0, Γ$ _G
1. rG ÞÑ CsC1 : g1 Ñ g2, i.e.,

Ξ0, Γ$ rG ÞÑ Cs_G1. C1 : g1 Ñ g2 by the definition of substitution.
Case T-App. C% “ C0C1

The premises of the rule are Ξ0, Γ¨pG : @Ξ. gq $ C0 : g1 Ñ g% and Ξ0, Γ¨pG : @Ξ. gq $
C1 : g1 for some g1. By IH, we have Ξ0, Γ$ rG ÞÑ CsC0 : g1 Ñ g% and Ξ0, Γ$ rG ÞÑ

CsC1 : g1. Then Ξ0, Γ$ rG ÞÑ CsC0 rG ÞÑ CsC1 : g% by T-App, i.e., Ξ0, Γ$ rG ÞÑ CspC0 C1q :
g% by the definition of substitution.

Case T-Asc. C% “ C
1 : g%

The premise of the rule is Ξ0, Γ¨pG : @Ξ. gq $ C1 : g% . By IH, we have Ξ0, Γ$ rG ÞÑ

CsC1 : g% . Then Ξ0, Γ$ prG ÞÑ CsC1 : g%q : g% by T-Asc, i.e., Ξ0, Γ$ rG ÞÑ CspC1 : g%q :
g% by the definition of substitution.

Case T-Case1. C% “ case G1 “ C1 of n g% “K

The premise of the rule is Ξ0, Γ¨pG : @Ξ. gq $ C1 :K. By IH, we have Ξ0, Γ$ rG ÞÑ

CsC1 :K. Then Ξ0, Γ$ case G1 “ rG ÞÑ CsC1 of n :K by T-Case1, i.e., Ξ0, Γ$ rG ÞÑ

Cscase G1 “ C1 of n :K by the definition of substitution.
Case T-Case2. C% “ case G1 “ C1 of _Ñ C2

There are two cases to consider:
Case G1 “ G. The premises of the rule are Ξ0, Γ¨pG : @Ξ. gq $ C1 : g1 and

Ξ0, Γ¨pG : @Ξ. gq¨pG : g1q $ C2 : g% . Since the binding pG : @Ξ. gq in the second
premise is shadowed, we can remove it from the typing context (Lemma C.10),
i.e., Ξ0, Γ¨pG : g1q $ C2 : g% . By IH on the first premise, we have Ξ0, Γ$ rG ÞÑ

CsC1 : g1. Then Ξ0, Γ$ case G “ rG ÞÑ CsC1 of _Ñ C2 : g% , i.e., Ξ0, Γ$ rG ÞÑ

Cscase G “ C1 of _Ñ C2 : g% by the definition of substitution.
Case G1 ‰ G. The premises of the rule are Ξ0, Γ¨pG : @Ξ. gq $ C1 : g1

and Ξ0, Γ¨pG : @Ξ. gq¨pG1 : g1q $ C2 : g% . The latter can be com-
muted (Lemma C.11) to Ξ0, Γ¨pG

1 : g1q¨pG : @Ξ. gq $ C2 : g% . By IH,
we have Ξ0, Γ$ rG ÞÑ CsC1 : g1 and Ξ0, Γ¨pG

1 : g1q $ rG ÞÑ CsC2 : g% .
Then Ξ0, Γ$ case G1 “ rG ÞÑ CsC1 of _ÑrG ÞÑ CsC2 by T-Case2, i.e.,
Ξ0, Γ$ rG ÞÑ Cscase G1 “ C1 of _Ñ C2 by the definition of substitution.

Case T-Case3. C% “ case G1 “ C1 of �Ñ C2, "

There are two cases to consider:
Case G1 “ G. The premises of the rule are:

Ξ0, Γ¨pG : @Ξ. gq $ C1 : #� ^ g1 _ #� ^ g2 (1)
Ξ0, Γ¨pG : @Ξ. gq¨pG : g1q $ C2 : g% (2)

Ξ0, Γ¨pG : @Ξ. gq¨pG : g2q $ case G1 “ G1 of " : g% (3)

146

By IH on (1), we have:

Ξ0, Γ$ rG ÞÑ CsC1 : #� ^ g1 _ #� ^ g2 (4)

Since the binding pG : @Ξ. gq in (2) and (3) are shadowed, we can remove them
from the typing contexts (Lemma C.10):

Ξ0, Γ¨pG : g1q $ C2 : g% (5)
Ξ0, Γ¨pG : g2q $ case G “ G of " : g% (6)

Then by T-Case3 on (4) and (5) and (6), we have:

Ξ0, Γ$ case G “ rG ÞÑ CsC1 of �Ñ C2, " : g%
i.e., Ξ0, Γ$ rG ÞÑ Cscase G “ C1 of �Ñ C2, " : g% (7)

Case G1 ‰ G. The premises of the rule are:

Ξ0, Γ¨pG : @Ξ. gq $ C1 : #� ^ g1 _ #� ^ g2 (8)
Ξ0, Γ¨pG : @Ξ. gq¨pG1 : g1q $ C2 : g% (9)

Ξ0, Γ¨pG : @Ξ. gq¨pG1 : g2q $ case G1 “ G1 of " : g% (10)

The typing contexts in (9) and (10) can be commuted (Lemma C.11) to:

Ξ0, Γ¨pG
1 : g1q¨pG : @Ξ. gq $ C2 : g% (11)

Ξ0, Γ¨pG
1 : g2q¨pG : @Ξ. gq $ case G1 “ G1 of " : g% (12)

By IH on (8) and (11) and (12) respectively, we have:

Ξ0, Γ$ rG ÞÑ CsC1 : #� ^ g1 _ #� ^ g2 (13)
Ξ0, Γ¨pG

1 : g1q $ rG ÞÑ CsC2 : g% (14)
Ξ0, Γ¨pG

1 : g2q $ case G1 “ G1 of rG ÞÑ Cs" : g% (15)

Then by T-Case3 on (13) and (14) and (15), we have:

Ξ0, Γ$ case G1 “ rG ÞÑ CsC1 of �ÑrG ÞÑ CsC2, rG ÞÑ Cs" : g%
i.e., Ξ0, Γ$ rG ÞÑ Cscase G1 “ C1 of �Ñ C2, " : g% (16)

�

Lemma C.10 (Shadowing of typing contexts). For all W “ g or f, and W1 “ g1 or f1:

1. If Ξ, Γ¨pG : Wq¨Γ1¨pG : W1q¨Γ2 $‹ % : g% , then Ξ, Γ¨Γ1¨pG : Wq¨pG : W1q¨Γ2 $‹ % : g% and
Ξ, Γ¨Γ1¨pG : W1q¨Γ2 $‹ % : g% .

2. If Ξ, Γ¨pG : Wq¨Γ1¨pG : W1q¨Γ2 $ C% : g% , then Ξ, Γ¨Γ1¨pG : Wq¨pG : W1q¨Γ2 $ C% : g% and
Ξ, Γ¨Γ1¨pG : W1q¨Γ2 $ C% : g% .

Proof By straightforward induction on typing derivations. The only non-trivial cases are
T-Var1 and T-Var2.

147

Case T-Var1. By the definition of Γp¨q, if pΓ¨pH : Wq¨Γ1¨pH : W1q¨Γ2qpGq “ g2 for some g2,
then pΓ¨Γ1¨pH : Wq¨pH : W1q¨Γ2qpGq “ g2 and pΓ¨Γ1¨pH : W1q¨Γ2qpGq “ g2. The result then
follows from T-Var1.

Case T-Var2. Similarly.

�

Lemma C.11 (Commutativity of typing contexts). For all Γ1 such that G R dompΓ1q, and
W “ g or f:

1. If n, Γ¨pG : Wq¨Γ1 $‹ % : g% , then n, Γ¨Γ1¨pG : Wq $‹ % : g% .
2. If Ξ, Γ¨pG : Wq¨Γ1 $ C% : g% , then Ξ, Γ¨Γ1¨pG : Wq $ C% : g% .

Proof By induction on typing derivations.

Case T-Body. By IH, followed by T-Body.
Case T-Def. %“ def G1 “ C1 ; %1

The premises are n cons., Ξ1, Γ¨pG : Wq¨Γ1 $ C1 : g1, and
n, Γ¨pG : Wq¨Γ1¨pG1 : @Ξ1. g1q $‹ %1 : g% . By IH on the second premise, we have
Ξ1, Γ¨Γ1¨pG : Wq $ C1 : g1. If G1 “ G, we can rearrange the third premise (Lemma C.10)
to n, Γ¨Γ1¨pG : Wq¨pG1 : @Ξ1. g1q $‹ %1 : g% . If G1 ‰ G, then G R dompΓ1¨pG1 : @Ξ1. g1qq
and G1 R domppG : Wqq, so we have n, Γ¨Γ1¨pG : Wq¨pG1 : @Ξ1. g1q $‹ %1 : g% by IH. The
result n, Γ¨Γ1¨pG : Wq $‹ def G1 “ C1 ; %1 : g% then follows from T-Def.

Cases T-Subs, T-Rcd, T-Proj, T-App, T-Asc, T-Case1. By IH on the premises, fol-
lowed by the respective rules.

Case T-Var1. By the definition of Γp¨q, since G R dompΓ1q by assumption, if
pΓ¨pG : Wq¨Γ1qpG1q “ g1 for some g1, then pΓ¨Γ1¨pG : WqqpG1q “ g1. The result then
follows from T-Var1.

Case T-Var2. Similar to the case above.
Case T-Abs. C% “ _G

1. C1 g% “ g1 Ñ g2
The premise is Ξ, Γ¨pG : Wq¨Γ1¨pG1 : g1q $ C

1 : g2. If G1 “ G, we can rearrange it
(Lemma C.10) to Ξ, Γ¨Γ1¨pG : Wq¨pG1 : g1q $ C

1 : g2. If G1 ‰ G, then G R dompΓ1¨pG1 : g1qq

and G1 R domppG : Wqq, so we have Ξ, Γ¨Γ1¨pG : Wq¨pG1 : g1q $ C
1 : g2 by IH. The result

Ξ, Γ¨Γ1¨pG : Wq $ _G1. C1 : g1 Ñ g2 then follows from T-Abs.
Cases T-Case2, T-Case3. Similar to the case above.

�

Lemma C.12 (Term preservation). If n, Γ$ C : g and Cù C1, then n, Γ$ C1 : g.

Proof By induction on typing derivations. In the following, we sometimes abbreviate
n, Γ$ C : g to C : g.

Case T-Subs. Immediate from the induction hypothesis.

148

Case T-Obj. C “� t G “ C u g“ #� ^ t G : g u
There is only one rule that reduces objects, E-Ctx. By straightforward application
of the induction hypothesis with the respective premises of T-Obj and E-Obj and by
reapplication of T-Obj on C1.

Case T-Proj. C “ C0.G C0 : t G : g u
If Cù C10.G by E-Ctx, we conclude by IH.
Otherwise, Cù E2 reduces by E-Proj, meaning that C0 “ E1 and t G “ E2 u P E1. We
conclude by inversion of object types (Lemma C.16), which gives us E2 : g.

Cases T-Var1,T-Var2. Immediate since C cannot reduce.
Case T-Abs. C “ _G. C0 Immediate since C cannot reduce.
Case T-App. C “ C0 C1 C0 : g1 Ñ g C1 : g1

There are two rules by which Cù C1 can hold:
Case E-Ctx. The result holds by IH and T-App.
Case E-App C0 “ _G. C

1
0 C1 “ E1 Cù rG ÞÑ E1sC

1
0

By inversion (Lemma C.13), n, Γ¨pG : g1q $ C
1
0 : g. Together with substitution

(LemmaC.9, applicable since n, Γ$ E1 : g1), this gives us n, Γ$ rG ÞÑ E1sC
1
0 : g,

i.e., n, Γ$ C1 : g.
Case T-Asc. C “ C0 : g C1 “ C0

Immediate by the premise of the rule.
Case T-Case1. C “ case G “ C1 of n

Immediate since the only rule that can apply is E-Ctx, and it yields a term C1 that can
still be typed at K by T-Case1.

Case T-Case2. C “ case G “ C1 of _Ñ C2
If the rule that applies is E-Ctx, by IH.Otherwise, the rule that applies is E-CaseWld,
and we conclude by substitution.

Case T-Case3. C “ case G “ C1 of �Ñ C2, " C1 : #� ^ g1 _ #� ^ g2
If the rule that applies is E-Ctx, by IH.
Otherwise, if E-CaseCls1 is the rule that applies, it means C1 is an instance of a
subclass of �2, so by Lemma C.18 we know that n, Γ$ C1 : g1, and we can conclude
by substitution (Lemma C.9).
Otherwise, E-CaseCls2 must be the rule that applies, so by Lemma C.18 we know
that n, Γ$ C1 : g2, and we can conclude by substitution (Lemma C.9) and IH.

�

Lemma C.13 (Inversion of function types). If n, Γ$ _G. C : g0 and n $ g0 ď g1 Ñ g2, then
n, Γ¨pG : g1q $ C : g2.

Proof Straightforward induction on typing derivations. The only rules that can be used to
type such a lambda expression are:

Case T-Subs. Then the premises of the rule are n, Γ$ _G. C : g10 and n $ g
1
0 ď g0 for some

g10, on which we can apply the IH by S-Trans (g10 ď g0 ď g1 Ñ g2).

149

Case T-Abs. Then g0 “ g
1
1 Ñ g12 for some g11 and g12. The premise is n, Γ¨pG : g11q $ C : g12.

By Lemma C.14 we have n $ g1 ď g
1
1 and n $ g

1
2 ď g2. Combined with strengthening

(Lemma C.15) and T-Subs, this gives us the desired result.

�

Lemma C.14 (Inversion of function subtyping). If n $ g0 Ñ g1 ď g2 Ñ g3, then n $ g2 ď

g0 and n $ g1 ď g3.

Proof By consistency of subtyping (Theorem A.63). �

Lemma C.15 (Strengthening). If n, Γ¨pG : g1q $ C : g and n $ g2 ď g1, then we have
n, Γ¨pG : g2q $ C : g.

Proof By straightforward induction on typing derivations, using T-Subs for the T-Var1
case. �

Lemma C.16 (Inversion of object types). If n, Γ$� ' : g0 and t G “ E u P� ' and n $

g0 ď t G : g u, then n $ E : g.

Proof
Straightforward induction on typing derivations. The only rules that can be used to type

such a lambda expression are:

Case T-Subs. Then the premises of the rule are n, Γ$ _G. C : g10 and n $ g
1
0 ď g0 for some

g10, on which we can apply the IH by S-Trans (g10 ď g0 ď t G : g u).
Case T-Obj. Then g0 “ #� ^ t G8 : g8 8 u for some � and g8 8 . One of the premises is n, Γ$

E : g: , where G: “ G. By Lemma C.17 we have n $ g: ď g. Combined with T-Subs,
this gives us the desired result.

�

Lemma C.17 (Inversion of object subtyping). If n $ #� ^ t G8 : g8 8 u ď t G: : g u, then
n $ g: ď g.

Proof Let*�0
0 “ #� and*�8

8
“ t G8 : g8 u

8

. Since #� ^ t G8 : g8 8 u –
Ź

81 P t 0,8 u pK_*
�8
8
q,

by Lemma 4.22, we have:

t G: : g u –
Ź

9 pc
1
9
_+

� 9

9
q (1)

*
�: 9

: 9
ĺ+

� 9

9

9

(2)

for some c1
9

9
and +� 9

9

9

and : 9
9
. By S-Trans with Lemma A.7 on S-AndOr12¨, (1)

implies:
Ź

9 +
� 9

9
Ď t G: : g u (3)

150

By Lemma A.57, (3) implies:

+
�;
;
Ď t G: : g u (4)

for some ;. By Lemma 4.10, (4) implies:

+
�;
;
“
Ž

? t G: : g u (5)

Then �; “ G: . By Lemma 4.9, (2) for 9 “ ; implies:

�:; “ G: (6)

i.e., :; “ : . Then (2) for 9 “ ; becomes:

t G: : g: uĺ
Ž

? t G: : g u (7)

By case analysis on the ĺ rules, (7) implies:

g: ď
Ž

? g

i.e., g: ď g (8)

�

Lemma C.18 (Inversion of discriminated class types). Assume n, Γ$ E : g where E is the
scrutinee of a case expression and n $ gď #� ^ g1 _ #� ^ g2. Then we have:

• If E “�0 ' and �0 is a subclass of � (i.e., � PSp�0q), then n, Γ$ E : g1.
• Otherwise, n, Γ$ E : g2.

Proof By induction on typing derivations.The only rules that can be used to type a value
are:

Case T-Subs. Then the premises of the rule are n, Γ$ E : g1 and n $ g1 ď g for some g1,
on which we can apply the IH by S-Trans (g1 ď gď #� ^ g1 _ #� ^ g2).

Case T-Abs. E “ _G. C

Impossible since scrutinees can only be classes (Lemma C.7).
Case T-Obj. E “�0 '

We have '“ t G “ C u and g“ #�0 ^ t G : g u and C : g and �0 is final.
So we have #�0 ^ t G : g u ď #� ^ g1 _ #� ^ g2
i.e., #�0 ^ t G : g u ^ p#� _ g2q ď #� ^ g1
i.e., (1) #�0 ^ #� ^ t G : g u _ #�0 ^ t G : g u ^ g2 ď #� ^ g1 Then from the
assumption, we have:

#�0 ^ t G : g u ď #� ^ g1 _ #� ^ g2

i.e., #�0 ^ t G : g u ^ p#� _ g2q ď #� ^ g1

i.e., #�0 ^ #� ^ t G : g u _ #�0 ^ t G : g u ^ g2 ď #� ^ g1 (1)

Case � PSp�0q. Then by S-ClsSub, we have:

#�0 ď #�
i.e., #�0 ^ #� ” #�0 (2)

151

Then (1) and (2) imply:

#�0 ^ t G : g u _ #�0 ^ t G : g u ^ g2 ď #� ^ g1

i.e., #�0 ^ t G : g u ď #� ^ g1

i.e., gď #� ^ g1 (3)

By S-Trans on (3) and S-AndOr12 , we have:

gď g1 (4)

Then by T-Subs, the assumption n, Γ$ E : g and (4) imply:

n, Γ$ E : g1 (5)

Case � RSp�0q. By S-Trans on S-AndOr12¨ and (1), we have:

#�0 ^ t G : g u ^ g2 ď #�
i.e., #�0 ^ t G : g u ď #� _ g2 (6)

Case �0 PSp�q. This case is impossible because�0 is final and�0 ‰� (since
� RSp�0q).

Case �0 RSp�q. Then by S-ClsBot and Theorem A.9, we have:

#�0 ď #� (7)

Then (6) and (7) imply:

#�0 ^ t G : g u ^ #� ď g2

i.e., #�0 ^ t G : g u ď g2

i.e., gď g2 (8)

Then by T-Subs, the assumption n, Γ$ E : g and (8) imply:

n, Γ$ E : g2 (9)

�

C.3 Type Inference Soundness Proofs

We first define a few judgements to be used in the remainder of this chapter.
The consistency of subtyping contexts is lifted to typing contexts through the bounds in

the polymorphic bindings.

Definition C.19 (Consistency of typing contexts). The consistency of typing contexts is
defined as follows:

Γ cons.
n cons.

Γ cons.
Γ¨pG : gq cons.

Γ cons. Ξ cons.
Γ¨pG : @Ξ. gq cons.

A constraining context is said to be guarded if none of the type variables appear on the
top level of its bounds. Guardedness is also similarly raised to typing contexts.

152

Definition C.20 (Guardedness of constraining contexts). The guardedness of constraining
contexts is defined as follows:

Ξ guard.
n guard.

U R TTVpgq Ξ guard.
Ξ¨pUď˛ gq guard.

Definition C.21 (Guardedness of typing contexts). The guardedness of typing contexts is
defined as follows:

Γ guard.
n guard.

Γ guard.
Γ¨pG : gq guard.

Γ guard. Ξ guard.
Γ¨pG : @Ξ. gq guard.

Lemma C.22 (Soundness of type inference — general). If Γ,‹ % : cñ Ξ and Γ cons.
and err R Ξ, then Ξ, Γ$‹ % : c.

Proof By induction on type inference derivations.

Case I-Body. By soundness of term inference (Lemma C.23).
Case I-Def. By soundness of term inference (Lemma C.23), we get the subtyping

relationship necessary to apply the IH on %.

�

Lemma C.23 (Soundness of term type inference). If Ξ0, Γ, B : cñ Ξ1 and Ξ0, Γ cons.
and Ξ0, Γ guard. and err R Ξ1, then Ξ0¨Ξ1, Γ$ B : c and Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard..

Proof By induction on term type inference derivations.

Case I-Proj. B“ C.G

By IH, we have Ξ0¨Ξ1 $ C : g and Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard.. And by sound
constraining (Lemma 7.5), we have Ξ0¨Ξ1¨Ξ2 $ gď t G : U u and Ξ0¨Ξ1¨Ξ2 cons.
and Ξ0¨Ξ1¨Ξ2 guard.. Therefore, by weakening (Lemma A.27) and T-Subs we have
Ξ0¨Ξ1¨Ξ2 $ C : t G : U u and by T-Proj we have Ξ0¨Ξ1¨Ξ2 $ C.G : U.

Case I-Obj. By straightforward applications of the IH and weakening.
Case I-Var1. By T-Var1.
Case I-Var2. C “ G ΓpGq “ @Ξ1. g1

Let d“ rU ÞÑ WU
U P (

s. We have Ξ0¨dΞ1 (dΞ1 by S-Cons and S-Hyp. We
also have Ξ0¨dΞ1 $ dg1 ď dg1 by S-Refl. Then we have Ξ0¨dΞ1 $@Ξ1. g1 ď

@

dg1 by S-All, and by S-Var2, we have Ξ0¨dΞ1, Γ$ G : dg1 Since Γ cons.,
we have rU ÞÑ gU

U P (
sΞ1 cons. for some gU

U P (. Since WU freshU P (, we
have rU ÞÑ gU

U P (
sΞ1 “ rWU ÞÑ gU

U P (
sdΞ1. Then rU ÞÑ gU

U P (
sΞ1 cons. implies

dΞ1 cons.. Similarly, we also have dΞ1 guard..
Case I-Abs. By straightforward applications of the IH.
Cases I-App I-Asc, I-Case1. By analogous reasoning to the I-Proj case, applying the IH

and sound constraining (Lemma 7.5) successively on the premises, threading the
inferred constraints through and weakening accordingly.

153

Case I-Case2. C “ case G “ C1 of _Ñ C2
By IH, we have Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard. and Ξ0¨Ξ1, Γ$ C1 : g1, which implies
Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ$ C1 : g1 by weakening. By sound constraining (Lemma 7.5), we
have Ξ0¨Ξ1¨Ξ2 cons. and Ξ0¨Ξ1¨Ξ2 guard. and Ξ0¨Ξ1¨Ξ2 $ g1 ď #�, which implies
Ξ0¨Ξ1¨Ξ2¨Ξ3 $ g1 ď g1 ^ #� by weakening S-AndOr2 with S-Refl. Then by T-
Subs, we haveΞ0¨Ξ1¨Ξ2¨Ξ3, Γ$ C1 : g1 ^ #�. By IH, we haveΞ0¨Ξ1¨Ξ2¨Ξ3 cons. and
Ξ0¨Ξ1¨Ξ2¨Ξ3 guard. and Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ¨pG : g1q $ C2 : g. Therefore, by T-Case2, we
have Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ$ case G “ C1 of _Ñ C2 : g.

Case I-Case3. C “ case G “ C1 of �Ñ C2, "

By IH, we have Ξ0¨Ξ1 cons. and Ξ0¨Ξ1 guard. and Ξ0¨Ξ1, Γ$ C1 : g1,
which implies Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ$ C1 : g1 by weakening. Then by IH, we
have Ξ0¨Ξ1¨Ξ2 cons. and Ξ0¨Ξ1¨Ξ2 guard. and Ξ0¨Ξ1¨Ξ2, Γ¨pG : Uq $ C2 : g2,
which implies Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ¨pG : Uq $ C2 : g2 _ g3 by weakening and S-Trans
with S-AndOr11¨. Then by IH again, we have Ξ0¨Ξ1¨Ξ2¨Ξ3 cons. and
Ξ0¨Ξ1¨Ξ2¨Ξ3 guard. and Ξ0¨Ξ1¨Ξ2¨Ξ3, Γ¨pG : Vq $ case G “ G of " : g3, which
implies Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ¨pG : Vq $ case G “ G of " : g2 _ g3 by weakening and
S-Trans with S-AndOr12¨. By sound constraining (Lemma 7.5), we have
Ξ4¨Ξ0¨Ξ1¨Ξ2¨Ξ3 cons. and Ξ4¨Ξ0¨Ξ1¨Ξ2¨Ξ3 guard. and Ξ4¨Ξ0¨Ξ1¨Ξ2¨Ξ3 $ g1 ď

#� ^ U_ #� ^ V, which implyΞ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4 cons. andΞ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4 guard.
and Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4 $ g1 ď #� ^ U_ #� ^ V by commutation. Then by T-Subs,
we have Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ$ C1 : #� ^ U_ #� ^ V. Therefore, by T-Case3, we
have Ξ0¨Ξ1¨Ξ2¨Ξ3¨Ξ4, Γ$ case G “ C1 of �Ñ C2, " : g2 _ g3.

�

Proof [Proof 7.5 (Soundness of Constraining)] By Lemma C.24 and Theorem C.25. �

Lemma C.24 (Sufficiency of Constraining).

1. If Σ$ g1 ! g2 ñ Ξ and g1, g2 wf and err R Ξ, then Ξ¨Σ$ g1 ď g2.
2. If Σ$D0 ñ Ξ and D0 wf and err R Ξ, then Ξ¨Σ$D0 ďK.

Proof
By induction on constraining derivations.

Case C-Hyp. Immediate by S-Hyp.
Case C-Assum. By IH on the latter premise, we have Ξ¨Σ¨Bpg1 ď g2q $ dnf0pg1 ^

 g2q ďK. By Lemma 7.3, we have dnf0pg1 ^ g2q ” g1 ^ g2. Then we
have Ξ¨Σ¨Bpg1 ď g2q $ g1 ^ g2 ďK, which implies Ξ¨Σ¨Bpg1 ď g2q $ g1 ď g2 by
Theorem A.9, which implies Ξ¨Σ$ g1 ď g2 by S-Assum.

Case C-Or. Then D0 “D0
1 _C0

1 for some D0
1 and C0

1, and Ξ“ Ξ1¨Ξ2 for some Ξ1 and
Ξ2. By IH on the former premise, we have Ξ1¨Σ$D0

1 ďK. By IH on the latter
premise, we have Ξ2¨Ξ1¨Σ$C0

1 ďK, which implies Ξ¨Σ$C0
1 ďK by commutation.

Ξ1¨Σ$D0
1 ďK implies Ξ¨Σ$D0

1 ďK by Lemma A.23. Then by S-AndOr2¨, we
have Ξ¨Σ$D0

1 _C0
1 ďK.

Case C-Bot. Immediate by S-Refl.

154

Case C-Cls1. Then D0 “Ir#�1s ^ pU_ #�2q for some �1 and �2 and U. From the
premise, we have Σ$ #�1 ď #�2 by S-ClsSub, which implies Σ$ #�1 ^ F ^ R ď
U_ #�2 by S-Transwith S-AndOr11 and S-AndOr12¨, which impliesΣ$ #�1 ^

F ^ R ^ pU_ #�2q ďK by Theorem A.9, i.e., Σ$Ir#�1s ^ pU_ #�2q ďK.
Case C-Cls2. ThenD0 “Ir#�1s ^ pU_ #�2q for some�1 and�2 andU. By IH on the

latter premise, we have Ξ¨Σ$Ir#�1s ^ UďK. Since pU_ #�2q ď U by S-
AndOr11¨ and S-NegInv, we have Ξ¨Σ$Ir#�1s ^ pU_ #�2q ďIr#�1s ^ U
by Lemma A.7 with S-Refl. Then we have Ξ¨Σ$Ir#�1s ^ pU_ #�2q ďK by
S-Trans.

Case C-Cls3. ThenD0 “INrJs ^ pU_ #�q for some� andU. By IH on the premise,
we have Ξ¨Σ$INrJs ^ UďK. Since pU_ #�q ď U by S-AndOr11¨ and
S-NegInv, we have Ξ¨Σ$INrJs ^ pU_ #�q ďINrJs ^ U by Lemma A.7
with S-Refl. Then we have Ξ¨Σ$INrJs ^ pU_ #�q ďK by S-Trans.

Case C-Fun1. Then D0 “IrD1 ÑD2s ^ pD3 ÑD4q for some D1 and D2 and D3 and
D4, and Ξ“ Ξ1¨Ξ2 for some Ξ1 and Ξ2. By IH on the former premise, we have
Ξ1¨CΣ$D3 ďD1, which implies CpΞ¨Σq $D3 ďD1 by Lemma A.23. By IH on the
latter premise, we have Ξ2¨Ξ1¨CΣ$D2 ďD4, which implies CpΞ¨Σq $D2 ďD4 by
Lemma A.23. Then by S-FunDepth, we have Ξ¨Σ$D1 ÑD2 ďD3 ÑD4, which
implies Ξ¨Σ$N ^D1 ÑD2 ^ R ďD3 ÑD4 by S-Trans with S-AndOr11 and
S-AndOr12 , i.e., Ξ¨Σ$IrD1 ÑD2s ďD3 ÑD4, which implies Ξ¨Σ$IrD1 Ñ

D2s ^ pD3 ÑD4q ďK by Theorem A.9.
Case C-Rcd1. Then D0 “Irt G : DG

G P (
us ^ t H : D u for some DG

G P (
and D. By IH

on the premise, we have Ξ¨CΣ$DH ďD, which implies CpΞ¨Σq $DH ďD by
Lemma A.23. Then by S-RcdDepth, we have Ξ¨Σ$ t H : DH u ď t H : D u, which
implies Ξ¨Σ$N ^ F ^ t G : DG

G P (
u ď t H : D u by S-Trans with S-AndOr11

and S-AndOr12 , i.e., Ξ¨Σ$Irt G : DG
G P (

us ď t H : D u, which implies Ξ¨Σ$
Irt G : DG

G P (
us ^ t H : D u ďK by Theorem A.9.

Cases C-NotBot, C-Fun2, C-Rcd2, C-Rcd3. Then err P Ξ.
Case C-Var1. By S-Hyp, we have Ξ¨pUď Cq¨Σ$ Uď C, which implies

Ξ¨pUď Cq¨Σ$C^ UďK by Theorem A.9.
Case C-Var2. By S-Hyp, we have Ξ¨pUďCq¨Σ$ UďC, which implies Ξ¨pUďCq¨Σ$

U^ CďK by Theorem A.9.

�

Theorem C.25 (Consistency of constraining). If Ξ cons. and Ξ guard. and Ξ$ g! cñ
Ξ1 and err R Ξ1, then Ξ¨Ξ1 cons. and Ξ¨Ξ1 guard..

Proof By Lemma C.26. �

In the remainder of this section, we consider the reformulated type constraining rules in
Figure 27. In these rules, we assume that we always start derivations with an empty Σ, so
that we start only with bounds, and all these bounds are in Ξ. It is easy to see that they are
equivalent to the ones presented in Figure 20.

155

Ξ, Σ$ g! gñ Ξ

C-Hyp
pg1 ď g2q P Ξ¨Σ

Ξ, Σ$ g1 ! g2ñ n

C-Assum
pg1 ď g2q R Ξ¨Σ Ξ, Σ¨Bpg1 ď g2q $ dnf0pg1 ^ g2qñ Ξ1

Ξ, Σ$ g1 ! g2ñ Ξ1

Ξ, Σ$D0ñ Ξ

C-Or
Ξ, Σ$D0ñ Ξ1 Ξ¨Ξ1, Σ$C0ñ Ξ2

Ξ, Σ$D0 _C0ñ Ξ1¨Ξ2

C-Bot

Ξ, Σ$Kñ n

C-NotBot

Ξ, Σ$ I0 ^ Kñ err

C-Cls1
�2 PSp#�1q

Ξ, Σ$Ir#�1s ^ pU_ #�2qñ n

C-Cls2
�2 RSp#�1q Ξ, Σ$Ir#�1s ^ Uñ Ξ1

Ξ, Σ$Ir#�1s ^ pU_ #�2qñ Ξ1

C-Cls3
Ξ, Σ$INrJs ^ Uñ Ξ1

Ξ, Σ$INrJs ^ pU_ #�qñ Ξ1

C-Fun1
Ξ, CΣ$D3 ! D1ñ Ξ1 Ξ¨Ξ1, CΣ$D2 ! D4ñ Ξ2

Ξ, Σ$IrD1ÑD2s ^ pD3ÑD4qñ Ξ1¨Ξ2

C-Fun2

Ξ, Σ$IÑrJs ^ pD1ÑD2qñ err

C-Rcd1
H P (Ξ, CΣ$DH ! Dñ Ξ1

Ξ, Σ$Irt G : DG
G P (

us ^ t H : D uñ Ξ1

C-Rcd2
H R (

Ξ, Σ$Irt G : DG
G P (

us ^ t H : D uñ err

C-Rcd3

Ξ, Σ$IturJs ^ t G : D uñ err

C-Var1
Ξ¨pUď Cq, Σ$ lbΞpUq ! Cñ Ξ1

Ξ, Σ$C^ Uñ Ξ1¨pUď Cq

C-Var2
Ξ¨pCď Uq, Σ$C! ubΞpUqñ Ξ1

Ξ, Σ$C^ Uñ Ξ1¨pCď Uq

Fig. 27. Reformulated normal form constraining rules. The only difference with the rules of Figure 20
is that we now explicitly split the subtyping context into a constraining part Ξ and a plain subtyping
part Σ.

Lemma C.26 (Consistency of constraining).

1. If CΣ¨Δ$ Ξ ; d cons. and Ξ guard. and Ξ, Σ$ g! cñ Ξ1 and err R Ξ1, then
CΣ¨Δ$ Ξ¨Ξ1 ; d1 cons. and Ξ¨Ξ1 guard. for some d1.

2. If CΣ¨Δ$ Ξ ; d cons. and Ξ guard. and Ξ, Σ$
Ž

8 P 1..= C
0
8
ñ Ξ1 and

TTV 1pC0
8
q are distinct

8 P 1..=
and err R Ξ1, then CΣ¨Δ$ Ξ¨Ξ1 ; d1 cons. and

Ξ¨Ξ1 guard. for some d1.

Proof By induction on constraining derivations.

156

Cases C-Hyp, C-Bot, C-Cls1. Immediate since Ξ1 “ n .
Case C-Assum. Then the premise of the rule is:

Ξ, Σ¨Bpgď cq $ dnf0pg^ cqñ Ξ1 (1)

From the assumptions, we have:

CΣ¨Δ$ Ξ ; d cons. (2)

By Lemma A.26 with Lemma A.18, (2) implies:

CpΣ¨Bpgď cqq¨Δ$ Ξ ; d cons. (3)

Then by IH on (3) and (1), we have:

CpΣ¨Bpgď cqq¨Δ$ Ξ¨Ξ1 ; d1 cons.
i.e., CΣ¨pgď cq¨Δ$ Ξ¨Ξ1 ; d1 cons. (4)

for some d1. By Lemma C.24, Ξ, Σ$ g! cñ Ξ1 implies:

Ξ¨Ξ1¨Σ$ gď c (5)

By Lemma A.23 with Lemma A.18, (5) implies:

Ξ¨Ξ1¨CΣ¨Δ$ gď c (6)

Then by Lemma A.26 with (6), (4) implies:

CΣ¨Δ$ Ξ¨Ξ1 ; d1 cons. (7)

Case C-Or. Then the premises of the rule are:

Ξ, Σ$
Ž

8 P 1..=´1 C
0
8
ñ Ξ11 (8)

Ξ¨Ξ11, Σ$C0
=ñ Ξ12 (9)

where Ξ1 “ Ξ11¨Ξ
1
2. Then by IH on (8), we have:

CΣ¨Δ$ Ξ¨Ξ11 ; d2 cons. (10)

for some d2. Then by IH on (10) and (9), we have:

CΣ¨Δ$ Ξ¨Ξ11¨Ξ
1
2 ; d1 cons.

i.e., CΣ¨Δ$ Ξ¨Ξ1 ; d1 cons. (11)

for some d1.
Cases C-Cls2, C-Cls3, C-Rcd1. Immediate by IH on the premise.
Case C-Fun1. Similar to case C-Or.
Case C-Var1. Then the premise of the rule is:

Ξ¨pUď Cq, Σ$ lbΞpUq ! Cñ Ξ11 (12)

where
Ž

8 P 1..= C
0
i “C^ U and Ξ1 “ Ξ11¨pUď Cq for some U and C and Ξ11. From

the assumption, we have:

CΣ¨Δ$ Ξ ; d cons. (13)

157

By Lemma A.26 with Lemma A.18, (13) implies:

pUď Cq¨Ξ11¨CΣ¨Δ$ Ξ ; d cons. (14)

Since TTV 1pC^ Uq are distinct, by the syntax of RDNF, we have U R TTVpCq. Then
we have:

Ξ¨pUď Cq guard. (15)

Since (15) implies U R TTVplbΞpUqq Y TTVp Cq, by Lemma C.28 on (12) followed
by Lemma A.23, we have:

BΞU¨BpUď Cq¨d1UpΞ U ¨Ξ
1
1¨Σq $ lbΞpUq ď C (16)

where splitUpΞ, dompdqzt U uq “ pΞU, Ξ U q and d1U “ rU ÞÑ U^ ubΞ¨pUďgqpUq _
lbΞ¨pUďgqpUqs. By Lemma A.23 with Lemma A.18, (16) implies:

BΞU¨BpUď Cq¨d1UpΞ U ¨Ξ
1
1¨CΣq $ lbΞpUq ď C (17)

Then by Lemma C.27 on (14), (15), and (17), we have:

Ξ11¨CΣ¨Δ$ Ξ¨pUď Cq ; d1 cons.
i.e., CΣ¨pΞ11¨Δq $ Ξ¨pUď Cq ; d1 cons. (18)

for some d1. Then by IH on (18) and (12), we have:

CΣ¨pΞ11¨Δq $ Ξ¨pUď Cq¨Ξ
1
1 ; d1 cons. (19)

By Lemma A.18, we have:

Ξ¨pUď Cq¨Ξ11¨CΣ¨Δ(CΣ¨pΞ
1
1¨Δq (20)

Then by Lemma A.26 with (20), (19) implies:

CΣ¨Δ$ Ξ¨pUď Cq¨Ξ11 ; d1 cons.
i.e., CΣ¨Δ$ Ξ¨Ξ1 ; d1 cons. (21)

Case C-Var2. Similar to case C-Var1.

�

Lemma C.27. If pUď˛ gq¨Σ$ BΞB¨Ξ ; d cons. and Ξ¨pUď˛ gq guard. and
BΞB¨BΞU¨BpUď

˛ gq¨d1UpΞ U ¨Σq $ lb˛ΞpUq ď
˛ g, where splitUpΞ, dompdqzt U uq “

pΞU, Ξ U q and d1U “ rU ÞÑ U^ ubΞ¨pUď˛gqpUq _ lbΞ¨pUď˛gqpUqs, then Σ$

BΞB¨Ξ¨pUď
˛ gq ; d1 cons. for some d1.

The proof for the ¨ direction is shown below. The direction is symmetric.

Proof
By Lemma A.37, pUď gq¨Σ$ BΞB¨Ξ ; d cons. implies:

BΞB¨BΞU¨dUΞ U ¨dUppUď gq¨Σq (dUΞU (1)
dUppUď gq¨Σq $ BΞB¨BΞU¨dUΞ U ; d11 cons. (2)

for some d11, where dU “ rU ÞÑ U^ ubΞpUq _ lbΞpUqs and dompd11q “ dompdqzt U u.

158

Let dg “ rU ÞÑ U^ gs. By Lemma A.29 on (1), we have:

dgpBΞB¨BΞU¨dUΞ U ¨dUppUď gq¨Σqq (dgdUΞU (3)

By Corollary A.33 and Corollary A.34, we have:

pUď gq $ c” dgc for all c (4)
BpUď gq $ c” dgc for all c where U R TTVpcq (5)

By S-Trans on Lemma A.18 and (4), we have:

BΞB¨BΞU¨BpUď gq (dgpBΞB¨BΞUq (6)

Then by Lemma A.23 on (3) with (6), we have:

BΞB¨BΞU¨BpUď gq¨dgdUpΞ U ¨pUď gq¨Σq (dgdUΞU (7)

Expanding the composition, we have:

dg ˝ dU “ rU ÞÑ U^ g^ dgubΞpUq _ dg lbΞpUqs (8)

By Lemma A.7 on S-Refl and (5), we have:

BpUď gq $ U^ g^ ubΞpUq _ lbΞpUq ” U^ g^ dgubΞpUq _ dg lbΞpUq
i.e., BpUď gq $ U^ ubΞ¨pUďgqpUq _ lbΞ¨pUďgqpUq ” U^ g^ dgubΞpUq _ dg lbΞpUq (9)

Then by Lemma A.31 on (9), we have:

BpUď gq $ d1Uc” dgdUc for all c (10)

By S-Trans on Lemma A.18 and (10), we have:

BpUď gq¨d1UpΞ U ¨pUď gq¨Σq (dgdUpΞ U ¨pUď gq¨Σq (11)
dgdUΞU (d

1
UΞU (12)

Then by Lemma A.23 on (7) with (11), followed by Lemma A.19 with (12), we have:

BΞB¨BΞU¨BpUď gq¨d
1
UpΞ U ¨pUď gq¨Σq (d

1
UΞU (13)

From the assumption, we have:

BΞB¨BΞU¨BpUď gq¨d
1
UpΞ U ¨Σq $ lbΞpUq ď g (14)

By S-AndOr2¨ on S-AndOr11 /S-AndOr12 and (14), we have:

BΞB¨BΞU¨BpUď gq¨d
1
UpΞ U ¨Σq $ U^ g^ ubΞpUq _ lbΞpUq ď g (15)

By Corollary A.34, we have:

BΞU¨BpUď gq $ g” d
1
Ug (16)

Then by S-Trans on (15) and (16), we have:

BΞB¨BΞU¨BpUď gq¨d
1
UpΞ U ¨Σq $ d

1
UUď d

1
Ug (17)

Then by Lemma A.23 on (13) with (17), we have:

BΞB¨BΞU¨BpUď gq¨d
1
UpΞ U ¨Σq (d

1
UΞU (18)

159

By S-Cons on (18) with (17), we have:

BΞB¨BΞU¨BpUď gq¨d
1
UpΞ U ¨Σq (d

1
UΞU¨d

1
UpUď gq (19)

By S-Trans on S-AndOr11 , we have:

pUď gq $ U^ ubΞpUq ď g (20)

Then by S-AndOr2¨ on (20) and (14), we have:

BΞB¨BΞU¨pUď gq¨d
1
UpΞ U ¨Σq $ U^ ubΞpUq _ lbΞpUq ď g (21)

By Corollary A.34, we have:

BΞU $ g” dUg (22)

Then by S-Trans on (21) and (22), we have:

BΞB¨BΞU¨pUď gq¨d
1
UpΞ U ¨Σq $ U^ ubΞpUq _ lbΞpUq ď dUg

i.e., BΞB¨BΞU¨pUď gq¨d
1
UpΞ U ¨Σq $ dUUď dUg (23)

By S-AndOr2 and Lemma A.7 on S-Hyp and S-Refl, we have:

pUď gq $ U^ g^ ubΞpUq _ lbΞpUq ” U^ ubΞpUq _ lbΞpUq
i.e., pUď gq $ U^ ubΞ¨pUďgqpUq _ lbΞ¨pUďgqpUq ” U^ ubΞpUq _ lbΞpUq (24)

By Lemma A.31 on (24), we have:

pUď gq $ d1Uc” dUc for all c (25)

By S-Trans on Lemma A.18 and (25), we have:

dUpΞ U ¨Σq (d
1
UpΞ U ¨Σq (26)

Then by Lemma A.23 on (23) with (26), we have:

BΞB¨BΞU¨pUď gq¨dUpΞ U ¨Σq $ dUUď dUg (27)

Then by Lemma A.29 and Lemma A.23 with (27), (2) implies:

pUď gq¨dUΣ$ BΞB¨BΞU¨dUΞ U ; d11 cons. (28)

Then by Lemma A.43 on (28), we have:

dgdUΣ$ BΞB¨BΞU¨BpUď gq¨dgdUΞ U ; d12 cons. (29)

for some d12. By Lemma A.36 on (29) with (9), we have:

d1UΣ$ BΞB¨BΞU¨BpUď gq¨d
1
UΞ U ; d13 cons. (30)

for some d13. Then by the definition of consistency on (19) and (30), we have:

Σ$ Ξ¨pUď gq ; d13 ˝ d
1
U cons. (31)

�

Lemma C.28.

160

1. If Ξ, Σ$ g1 ! g2 ñ Ξ1 and U R TTVpg1q Y TTVpg2q and err R Ξ1, then
BΞU¨dpΞ U ¨Ξ

1¨Σq $ g1 ď g2, where splitUpΞ, Hq“ pΞU, Ξ U q and d“ rU ÞÑ

U^ ubΞpUq _ lbΞpUqs.
2. If Ξ, Σ$D0 ñ Ξ1 and U R TTVpD0q and err R Ξ1, where D0 “

Ž

8 P 1..= C
0
8
, then

BΞU¨dpΞ U ¨Ξ
1¨Σq $D0 ďK, where splitUpΞ, Hq“ pΞU, Ξ U q and d“ rU ÞÑ U^

ubΞpUq _ lbΞpUqs.

Proof By induction on constraining derivations.

Case C-Hyp. Since U R TTVpg1q Y TTVpg2q, we have from the premise:

pg1 ď g2q P Ξ U ¨Σ

i.e., pdg1 ď dg2q P dpΞ U ¨Σq (1)

Then by S-Hyp on (1), we have:

dpΞ U ¨Σq $ dg1 ď dg2 (2)

By Corollary A.34, we have:

BΣU $ g1 ” dg1 (3)
BΣU $ g2 ” dg2 (4)

Then by S-Trans on (2), (3), and (4), we have:

BΣU¨dpΞ U ¨Σq $ g1 ď g2 (5)

Case C-Assum. Then the premise of the rule is:

Ξ, Σ¨Bpg1 ď g2q $ dnf0pg1 ^ g2qñ Ξ1 (6)

By IH on (6), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σ¨Bpg1 ď g2qq $ dnf0pg1 ^ g2q ďK (7)

By Corollary A.33, we have:

ΞU $ g1 ” dg1 (8)
ΞU $ g2 ” dg2 (9)

Then by S-Trans on Lemma A.18, (8), and (9), we have:

BΞU¨Bpg1 ď g2q (d B pg1 ď g2q (10)

Then by Lemma A.23 with (10), (7) implies:

BΞU¨dpΞ U ¨Ξ
1¨Σq¨Bpg1 ď g2q $ dnf0pg1 ^ g2q ďK (11)

By S-Trans on Lemma 7.3 and (11), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq¨Bpg1 ď g2q $ g1 ^ g2 ďK (12)

By Theorem A.9 on (12), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq¨Bpg1 ď g2q $ g1 ď g2 (13)

161

By S-Assum on (13), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq $ g1 ď g2 (14)

Case C-Or. It is easy to see that ifTTV 1pC0
:
q are not distinct for some : , we can deduplicate

them before preceeding, and duplicate them again in the conclusion. Therefore we
can assume that TTV 1pC0

8
q are distinct

8 P 1..=
.

The premises of the rule are:

Ξ, Σ$
Ž

8 P 1..=´1 C
0
8
ñ Ξ11 (15)

Ξ¨Ξ1, Σ$C0
=ñ Ξ12 (16)

where Ξ1 “ Ξ11¨Ξ
1
2 for some Ξ11 and Ξ

1
2. By IH on (15), we have:

BΞU¨dpΞ U ¨Ξ
1
1¨Σq $

Ž

8 P 1..=´1 C
0
8
ďK (17)

By IH on (16), we have:

BΞU¨BΞ
1
1U¨d

1pΞ U ¨Ξ
1
1 U ¨Ξ

1
2¨Σq $C0

= ďK (18)

where splitUpΞ11, Hq“ pΞ
1
1U, Ξ

1
1 U q and d

1 “ rU ÞÑ U^ ubΞ¨Ξ11pUq _ lbΞ¨Ξ11pUqs.
By Lemma C.29 on (15), we have:

Ξ11 guard. (19)

By Lemma A.18, we have:

dΞ11 (dΞ
1
1U (20)

By Corollary A.33, we have:

ΞU $ c” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqsc for all c
i.e., ΞU $ c” dc for all c (21)

Then by S-Trans on (20) and (21), we have:

ΞU¨dΞ
1
1 (Ξ

1
1U (22)

By Lemma A.21 on (22), we have:

BΞU¨BdΞ
1
1 (BΞ

1
1U (23)

By Lemma A.19 on (23) and Lemma A.18, we have:

BΞU¨dΞ
1
1 (BΞ

1
1U (24)

By Corollary A.34, we have:

BΞU $ ubΞ11pUq ” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqsubΞ11pUq

i.e., BΞU $ ubΞ11pUq ” dubΞ11pUq (25)

By S-AndOr2 on S-Hyp, we have:

dΞ11 $ dUď dubΞ11pUq

i.e., dΞ11 $ U^ ubΞpUq _ lbΞpUq ď dubΞ10pUq (26)

162

Then by S-Trans on S-AndOr12¨, (26) and (25), we have:

BΞU¨dΞ
1
1 $ lbΞpUq ď ubΞ11pUq (27)

By S-AndOr2 on S-Refl and (27), we have:

BΞU¨dΞ
1
1 $ lbΞpUq ď lbΞpUq ^ ubΞ11pUq (28)

Then by S-AndOr11 and (28), we have:

BΞU¨dΞ
1
1 $ lbΞpUq ” lbΞpUq ^ ubΞ11pUq (29)

Then by (29) and S-Distr, we have:

BΞU¨dΞ
1
1 $ U^ ubΞ¨Ξ11pUq _ lbΞ¨Ξ11pUq

“ U^ ubΞpUq ^ ubΞ11pUq _ lbΞpUq _ lbΞ11pUq

” U^ ubΞpUq ^ ubΞ11pUq _ lbΞpUq ^ ubΞ11pUq _ lbΞ11pUq

” pU^ ubΞpUq _ lbΞpUqq ^ ubΞ11pUq _ lbΞ11pUq

(30)

By S-AndOr2 on S-Refl and S-Hyp, followed by S-Trans with S-AndOr11¨, we
have:

dΞ11 $ U^ ubΞpUq _ lbΞpUq ď pU^ ubΞpUq _ lbΞpUqq ^ dubΞ11pUq _ dlbΞ11pUq
(31)

Similarly, by S-AndOr2¨ on S-Refl and S-Hyp, followed by S-Trans with S-
AndOr11 , we have:

dΞ11 $ pU^ ubΞpUq _ lbΞpUqq ^ dubΞ11pUq _ dlbΞ11pUq ď U^ ubΞpUq _ lbΞpUq
(32)

By Corollary A.34, we have:

BΞU $ ubΞ11pUq ” dubΞ11pUq (33)

BΞU $ lbΞ11pUq ” dlbΞ11pUq (34)

Then by S-Trans on (31)/(32), (33), and (34), we have:

BΞU¨dΞ
1
1 $ U^ ubΞpUq _ lbΞpUq ” pU^ ubΞpUq _ lbΞpUqq ^ ubΞ11pUq _ lbΞ11pUq

(35)

Then by S-Trans on (35) and (30), we have:

BΞU¨dΞ
1
1 $ U^ ubΞpUq _ lbΞpUq ” U^ ubΞ¨Ξ11pUq _ lbΞ¨Ξ11pUq (36)

By Lemma A.31 on (36), we have:

BΞU¨dΞ
1
1 $ dc” d

1c for all c (37)

Then by S-Trans on Lemma A.18 and (37), we have:

BΞU¨dpΞ U ¨Ξ
1
1¨Ξ

1
2¨Σq (d

1pΞ U ¨Ξ
1
1 U ¨Ξ

1
2¨Σq (38)

Then by Lemma A.23 with (24) and (38), (18) implies:

BΞU¨dpΞ U ¨Ξ
1
1¨Ξ

1
2¨Σq (C0

= ďK (39)

163

Then by S-AndOr2¨ on (17) and (39), we have:

BΞU¨dpΞ U ¨Ξ
1
1¨Ξ

1
2¨Σq $

Ž

8 P 1..= C
0
8
ďK

i.e., BΞU¨dpΞ U ¨Ξ
1¨Σq $D0 ďK (40)

Case C-Bot. Immediate by S-ToB .
Case C-Cls1. Then D0 “Ir#�1s ^ pU_ #�2q for some �1, �2, Ir#�1s, and U. By

S-ClsSub on the premise �2 PSp#�1q, we have:

#�1 ď #�2 (41)

By S-Trans on S-AndOr11 , (41), and S-AndOr12¨, we have:

Ir#�1s ďU_ #�2 (42)

Then by Theorem A.9, (42) implies:

Ir#�1s ^ pU_ #�2q ďK (43)

Cases C-Cls2, C-Cls3. Then D0 “INrNs ^ pU_ #�q for some N , �, INrNs, and
U. The premise of the rule is:

Ξ, Σ$INrNs ^ Uñ Ξ1 (44)

By IH on (44), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq $INrNs ^ UďK (45)

By S-AndOr11¨ followed by S-NegInv, we have:

 pU_ #�q ď U (46)

Then by S-Trans on (46) and (45), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq $INrNs ^ pU_ #�q ďK (47)

Case C-Fun1. Then D0 “IrD1 ÑD2s ^ pD3 ÑD4q for some D 9

9 P 1..4
and IrD1 Ñ

D2s. The premises of the rule are:

Ξ, CΣ$D3 ăD1 ñ Ξ11 (48)
Ξ¨Ξ11, CΣ$D2 ăD4 ñ Ξ12 (49)

for some Ξ11 and Ξ
1
2, where Ξ

1 “ Ξ11¨Ξ
1
2. By Lemma C.24 on (48) and (49), we have:

Ξ¨CΣ¨Ξ11 $D3 ďD1 (50)
Ξ¨Ξ11¨CΣ¨Ξ

1
2 $D2 ďD4 (51)

By Lemma A.23 with Lemma A.18, (50) and (51) imply:

Ξ¨Ξ1¨CΣ$D3 ďD1 (52)
Ξ¨Ξ1¨CΣ$D2 ďD4 (53)

By Corollary A.33, we have:

ΞU $ c” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqsc for all c
i.e., ΞU $ c” dc for all c (54)

164

By S-Trans on Lemma A.18 and (54), we have:

ΞU¨dpΞ U ¨Ξ
1¨CΣq (Ξ U ¨Ξ

1¨CΣ (55)

Then by Lemma A.23 with (55), (52) and (53) imply:

ΞU¨dpΞ U ¨Ξ
1¨CΣq $D3 ďD1 (56)

ΞU¨dpΞ U ¨Ξ
1¨CΣq $D2 ďD4 (57)

Then by S-FunDepth on (56) and (57), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq $D1 ÑD2 ďD3 ÑD4 (58)

By S-Trans on S-AndOr11 , S-AndOr12 , and (58), we have:

BΞU¨dpΞ U ¨Ξ
1¨Σq $IrD1 ÑD2s ďD3 ÑD4 (59)

By Theorem A.9, (59) implies:

BΞU¨dpΞ U ¨Ξ
1¨Σq $IrD1 ÑD2s ^ pD3 ÑD4q ďK (60)

Case C-Rcd1. Similar to case C-Fun1.
Case C-Var1. ThenD0 “C^ V andΞ1 “ Ξ11¨pVď Cq for some V,C, andΞ11. By S-Hyp,

we have:

dpVď Cq (dVď d C
i.e., dpVď Cq (dVď dC (61)

By Theorem A.9, (61) implies:

dpVď Cq (dC^ dVďK
i.e., dpVď Cq (dpC^ Vq ďK (62)

By Corollary A.34, we have:

BΞU $C^ V” rU ÞÑ U^ ubΞUpUq _ lbΞUpUqspC^ Vq
i.e., BΞU $C^ V” dpC^ Vq (63)

Then by S-Trans on (63) and (62), we have:

BΞU¨dpΞ U ¨Ξ
1
1¨pVď Cq¨Σq $C^ VďK (64)

Case C-Var2. Similar to case C-Var1.

�

Lemma C.29 (Guardedness of constraining).

1. If Ξ, Σ$ g1 ! g2 ñ Ξ1 and err R Ξ1, then Ξ1 guard..
2. If Ξ, Σ$

Ž

8 C
0
8
ñ Ξ1 and TTV 1pC0

8
q are distinct

8

and err R Ξ1, then Ξ1 guard..

Proof By straightforward induction on constraining derivations. �

165

C.4 Type Inference Termination Proof

The basic intuition is that by Theorem B.9, we know that in well-formed declarations
contexts, there is only a finite number of types that can be reached by expanding all the
user-defined type constructors in a given type. Therefore, the number of types that may be
reached while applying constraining rules is finite, and since each traversed type is saved
as part of the current subtyping hypotheses, all executions of constraining will eventually
halt.

Proof [Proof 7.6 (Termination of Constraining)]
Let)8 be the set of type pairs that are constrained at any recursive depth 8 of the type

constraining algorithm.
We can see from the constraining rules of Figure 20 that if we start from the constraint

Ξ$ g0 ď c0, then)0 “ t g0 ď c0 u and)8 Ď) 18
8
where:

) 10 “ t g0 ď c0 u Y Ξ

) 1
8`1 “ tD3 ďD1 | IrD1 ÑD2s ^ (

 rD3 ÑD4s P (8 u

Y tD2 ďD4 | IrD1 ÑD2s ^ (
 rD3 ÑD4s P (8 u

Y tDH ďD | Irt G : DG
G
us ^ (rt H : D us P (8 , H P t G u u

Y t
Ž

g P (gď C | C^ U P (8 , (P Ppt c | cď U P
Ť

9ď8)
1
9
uq u

Y t Uď C | C^ U P (8 u
Y tCď

Ź

g P (g | C^ U P (8 , (P Ppt c | Uď c P
Ť

9ď8)
1
9
uq u

Y tCď U | C^ U P (8 u

(8 “ tC | pgď cq P) 18 , dnf
0pg^ cq “

Ž

8 C8 , C P tC8
8
u u

(8 puts each constraint in) 18 into RDNF, as is done byC-Assum. The first two components
in the inductive definition of) 1

8
correspond to the premises of C-Fun1, and the third

component to the premise of C-Rcd1. In addition to the pairs of types constrained (i.e., the
hypotheses assumed),) 1

8
also contains the bounds assumed in the premises of C-Var1 and

C-Var2, as seen in the fifth and seventh components. Therefore we can simply look up the
bounds from the union of) 1

9
for 9 ď 8 in the fourth and sixth components, which correspond

to the premise of C-Var1 and C-Var2 respectively. To exclude hypotheses assumed by
C-Assum, which may not end up being assumed as a bound by C-Var1 and C-Var2, we
overapproximate by considering all subsets of such pairs of types.
Next, we show that the size of

Ť

8)
1
8
is bounded.

The functions collect2
2
traverse a type and collect the type variables, class and alias

types, nominal tags, and record labels, which we abbreviate as 2, reachable from the type.

2 ::“ TV (type variables)
| CA (class and alias types)
| NT (nominal tags)
| RL (record labels)

#rgs˚ ::“ n | #rgs˚¨#rgs

166

collect# rgs
˚

2 pg1 Ñ g2q “ collect
rgs˚

2 pg1q Y collect
rgs˚

2 pg2q

collect# rgs
˚

2 pt G : g uq “

#

collect# rgs
˚

2 pgq Y t G u if 2“RL
collect# rgs

˚

2 pgq otherwise

collect# rgs
˚

2 p#rgsq “

$

’

&

’

%

collect# rgs
˚¨# rgs

2 pg1q Y t #rgs u if #rgs R #rgs˚ and 2“CA
collect# rgs

˚¨# rgs
2 pg1q if #rgs R #rgs˚ and 2‰CA

H if #rgs P #rgs˚

where #rgs exp. g1

collect# rgs
˚

2 p#�q “
"

t #� u if 2“NT
H otherwise

collect# rgs
˚

2 pUq “

"

t U u if 2“ TV
H otherwise

collect# rgs
˚

2 pJ˛q “H

collect# rgs
˚

2 pg1 _
˛ g2q “ collect

rgs˚

2 pg1q Y collect
rgs˚

2 pg2q

collect# rgs
˚

2 p gq “ collect# rgs
˚

2 pgq

Similarly, the function depth traverses a type and measures the nesting depth of type
constructors up to the first recursive occurrence of a class or alias type.

depth# rgspg1 Ñ g2q “maxpdepth# rgspg1q, depth# rgspg2qq ` 1
depth# rgspt G : g uq “ depth# rgspgq ` 1

depth# rgsp#rgsq “

#

depth# rgs˚¨# rgspg1q if #rgs R #rgs˚, where #rgs exp. g1
0 if #rgs P #rgs˚

depth# rgsp#�q “ depth# rgspUq “ depth# rgspJ˛q “ 0
depth# rgspg1 _

˛ g2q “maxpdepth# rgspg1q, depth# rgspg2qq

depth# rgsp gq “ depth# rgspgq

By the Theorem B.9, if D wf, then for all g, the sets collect2pgq
2
are finite, and depthpgq

is finite.
Given a set of types (, we can collect the 2 reachable from it as

collect2p(q “
Ť

g P (collect2pgq
2
and the type constructor nesting depth as depthp(q “

maxg P (depthpgq. Then we can inductively construct the universes*8 of C’s up to depth 8
that only contain collect2p(q

2
without duplicates, as do the results of dnf0. Notice that all

of*8 are finite.
For any (1 where collect2p(1q Ď collect2p(q

2
, depthp(1q is the type constructor nesting

depth after expanding class and alias types up to the first recursive occurrences, while dnf0

expands class and alias types on the top level, which by the guardedness check does not
include their first recursive occurrences. Since the RDNF subexpression unnesting in the
first three components of the inductive definition of) 1

8
, the Boolean algebraic connectives in

the remaining four components, and dnf0 in (8 all preserve the depth and do not introduce

167

new 2, we have:

(8 Ď*depthp) 10 q

) 1
8
Ď) 10 Y pt

Ž

g P (g | (P Pp*depthp) 10 qq u Y collectTVp)
1
0qq

ˆ pt
Ž

g P (g | (P Pp*depthp) 10 qq u Y t
Ź

g P (g | (P Pp*depthp) 10 qq u
Yt g | g P*depthp) 10 q u Y collectTVp)

1
0qq

Therefore the set) “
Ť

8)8 of all pairs of types ever constrained by the algorithm is bounded
by:

) Ď
Ť

8)
1
8
Ď) 10 Y pt

Ž

g P (g | (P Pp*depthp) 10 qq u Y collectTVp)
1
0qq

ˆ pt
Ž

g P (g | (P Pp*depthp) 10 qq u Y t
Ź

g P (g | (P Pp*depthp) 10 qq u
Yt g | g P*depthp) 10 q u Y collectTVp)

1
0qq

and is thus finite.
Since C-Hyp ensures that the subtyping context Σ reachable by the subtyping algorithm

cannot contain duplicates, we have ΣĎ) Y t err u. Since) is finite, Σ is also finite. Since
recursive calls to the constraining algorithm always increases the size of Σ, this implies that
constraining always terminates. �

C.5 Type Inference Completeness Proofs

Lemma C.30 (Completeness of type inference— general). If Ξ, Γ$‹ % : g, then Γ,‹ % :
g1ñ Ξ1 for some Ξ1 and g1 so that @Ξ1. g1 ď@ @Ξ. g.

Proof By induction on program typing derivations.

Case T-Body. Then %“ C for some C. The premises of the rule are:

Ξ cons. (1)
Ξ, Γ$ C : g (2)

By Lemma C.34 on (2) and (1), we have:

Γ, C : g1ñ Ξ1 (3)
Ξ$ dg1 ď g (4)
Ξ(dΞ1 (5)

for some g1 and Ξ1 and d, where dompdq “ freshpp3qq. By I-Body on (3), we have:

Γ,‹ C : g1ñ Ξ1 (6)

By S-All on (4) and (5), we have:

@Ξ1. g1 ď@ @Ξ. g (7)

168

Case T-Def. Then %“ def G “ C ; %1 for some G and C and %1. The premises of the rule
are:

Ξ1 cons. (8)
Ξ1, Γ$ C : g1 (9)

Ξ, Γ¨pG : @Ξ1. g1q $
‹ %1 : g (10)

By Lemma C.34 on (9) and (8), we have:

Γ, C : g11 ñ Ξ11 (11)
Ξ1 $ d1g

1
1 ď g1 (12)

Ξ1 (d1Ξ
1
1 (13)

for some g11 and Ξ11 and d1, where dompd1q “ freshpp11qq. By S-All on (12) and
(13), we have:

@Ξ11. g
1
1 ď

@ @Ξ1. g1 (14)

By Lemma C.31 on (10) and (14), we have:

Ξ, Γ¨pG : @Ξ11. g
1
1q $

‹ %1 : g (15)

By IH on (15), we have:

Γ¨pG : @Ξ11. g
1
1q ,

‹ %1 : g1ñ Ξ1 (16)
@Ξ1. g1 ď@ @Ξ. g (17)

for some g1 and Ξ1. By I-Body on (11) and (16), we have:

Γ,‹ def G “ C ; %1 : g1ñ Ξ1 (18)

�

Lemma C.31 (Strengthening). If Ξ, Γ¨pG : f1q $ C : g and n $ f2 ď
@ f1, then

Ξ, Γ¨pG : f2q $ C : g.

Proof By straightforward induction on typing derivations. �

Definition C.32. We write freshp�q to denote all the type variables that are taken as fresh
in the given derivation �.

Definition C.33. We say d extends d1 if rU ÞÑ gpU ÞÑ gq P d,U P dompd1q
s “ d1.

Lemma C.34 (Completeness of polymorphic type inference). If Ξ, Γ$ C : g and Ξ cons.
and Ξ(d0Ξ0, then (�) Ξ0, Γ, C : g1ñ Ξ1 and Ξ$ dg1 ď g and Ξ(dpΞ0¨Ξ

1q for some g1
and Ξ1 and d, where err R Ξ1 and d extends d0 and dompdqzdompd0q “ freshp�q.

Proof By induction on term typing derivations.

169

Case T-Subs. Then the premises of the rule are:

Ξ, Γ$ C : g1 (1)
Ξ$ g1 ď g (2)

for some g1. By IH on (1), we have:

Ξ0, Γ, C : g1ñ Ξ1 (3)
Ξ$ dg1 ď g1 (4)
Ξ(dpΞ0¨Ξ

1q (5)

for some g1 and Ξ1 and d, where err R Ξ1 and d extends d0 and dompdqzdompd0q “

freshpp3qq. By S-Trans on (4) and (2), we have:

Ξ$ dg1 ď g (6)

Case T-Obj. Then C “� t G8 “ C8
8
u and g“ #� ^ t G8 : g8 8 u for some � and G8 8 and C8

8

and g8 8 . The premises of the rule are:

Ξ, Γ$ C8 : g8
8 (7)

� final (8)

Then for each 8, repeat the following:

Assume the following:

Ξ(d8´1pΞ 9
9 P 0..8´1

q (9)

Ξ$ d8´1g
1
9
ď g9

9 P 1..8´1
(10)

By IH on (7), we have:

Ξ 9
9 P 0..8´1

, Γ, C8 : g18 ñ Ξ8 (11)
Ξ$ d8g

1
8 ď g8 (12)

Ξ(d8pΞ 9
9 P 0..8´1

¨Ξ8q (13)

for some g1
8
and Ξ8 and d8 , where err R Ξ8 and d8 extends d8´1 and dompd8qz

dompd8´1q “ freshpp11qq. Since d8 extends d8´1 and dompd8qzdompd8´1q are
picked to be fresh in (11), which means they could not have appeared in g1

9

9 P 1..8´1
,

we have:

d8g
1
9
“ d8´1g

1
9

9 P 1..8´1
(14)

Then (10) implies:

Ξ$ d8g
1
9
ď g9

9 P 1..8´1
(15)

170

Then in the end we have:

Ξ 9
9 P 0..8´1

, Γ, C8 : g1
8
ñ Ξ8

8

(16)

Ξ(dpΞ0¨Ξ8
8
q (17)

Ξ$ dg1
8
ď g8

8
(18)

for some g1
8

8
and Ξ8

8 and d, where err R Ξ8
8 and d extends d0 and dompdqzdompd0q “

Ť

8 pdompd8qzdompd8´1qq “
Ť

8 freshpp16q8q. By I-Obj on (16) and (8), we have:

Ξ0, Γ,� t G8 “ C8
8
u : #� ^ t G8 : g1

8

8
uñ Ξ8

8 (19)

By S-RcdDepth on (18), we have:

Ξ$ t G8 : dg1
8
u ď t G8 : g8 u

8
(20)

By Lemma A.7 on S-Refl and (20), we have:

Ξ$ #� ^ t G8 : dg1
8

8
u ď #� ^ t G8 : g8 u

i.e., Ξ$ dp#� ^ t G8 : g1
8

8
uq ď #� ^ t G8 : g8 u (21)

Case T-Proj. Then C “ C1.G for some C1 and G. The premise of the rule is:

Ξ, Γ$ C1 : t G : g u (22)

By IH on (22), we have:

Ξ0, Γ, C
1 : g1ñ Ξ1 (23)

Ξ$ d1g
1 ď t G : g u (24)

Ξ(d1pΞ0¨Ξ1q (25)

for some g1 andΞ1 and d1, where err R Ξ1 and d1 extends d0 and dompd1qzdompd0q “

freshpp23qq. Introduce a freshU and let d“ rU ÞÑ g, V ÞÑ c
pV ÞÑ cq P d1

s. Thenwe have:

dg1 “ d1g
1 (26)

dpt G : U uq “ t G : g u (27)
dpΞ0¨Ξ1q “ d1pΞ0¨Ξ1q (28)

Then (24) and (25) imply:

Ξ$ dg1 ď dpt G : U uq (29)
Ξ(dpΞ0¨Ξ1q (30)

By Lemma 7.8 on (29) and (30), we have:

Ξ0¨Ξ1, n $ g
1 ! t G : U uñ Ξ2 (31)

for some Ξ2, where err R Ξ2 and Ξ(dΞ2. Then by I-Proj on (23) and (31), we have:

Ξ0, Γ, C
1.G : Uñ Ξ1¨Ξ2 (32)

171

Since dU“ g, by S-Refl, we have:

Ξ$ dUď g (33)

(30) and Ξ(dΞ2 implies:

Ξ(dpΞ0¨Ξ1¨Ξ2q (34)

Case T-Var1. Immediate by I-Var1.
Case T-Var2. Then C “ G and ΓpGq “ @Ξ1. g1 for some G and Ξ1 and g1. By the definition

of ď@, we have:

Ξ(d1Ξ1 (35)
Ξ$ d1g1 ď g (36)

for some d1, where dompd1q “ TVpΞ1q Y TVpg1q “: (. Introduce a fresh WU for each
U P (. Then by I-Var2, we have:

Ξ0, Γ, G : rU ÞÑ WU
U P (

sg1 ñrU ÞÑ WU
U P (

sΞ1 (37)

Let d“ rWU ÞÑ d1U
U P (

s. Then we have:

d ˝ rU ÞÑ WU
U P (

s

“ d1 ˝ rWU ÞÑ UU P (s ˝ rU ÞÑ WU
U P (

s

“ d1 ˝ rWU ÞÑ UU P (s

(38)

Since WUU P (are picked to be fresh, which means they could not have appeared in
Ξ1 and g1, we have:

rWU ÞÑ UU P (sΞ1 “ Ξ1 (39)
rWU ÞÑ UU P (sg1 “ g1 (40)

Then we have:
d1Ξ1 “ d1prWU ÞÑ UU P (sΞ1q

“ dprU ÞÑ WU
U P (

sΞ1q
(41)

d1g1 “ d1prWU ÞÑ UU P (sg1q

“ dprU ÞÑ WU
U P (

sg1q
(42)

Then (35) and (36) imply:

Ξ(dprU ÞÑ WU
U P (

sΞ1q (43)
Ξ$ dprU ÞÑ WU

U P (
sg1q ď g (44)

Case T-Abs. Then C “ _G. C1 and g“ g1 Ñ g2 for some G and C1 and g1 and g2. The premise
of the rule is:

Ξ, Γ¨pG : g1q $ C
1 : g2 (45)

172

Introduce a fresh U. By Lemma C.35 on (45), we have:

Ξ¨pUď g1q, Γ¨pG : Uq $ C1 : g1 (46)
Ξ$ rU ÞÑ g1sg

1 ď g2 (47)

By IH on (46), we have:

Ξ0, Γ¨pG : Uq , C1 : g2ñ Ξ1 (48)
Ξ¨pUď g1q $ d1g

2 ď g1 (49)
Ξ¨pUď g1q (d1pΞ0¨Ξ

1q (50)

for some g2 andΞ1 and d1, where err R Ξ1 and d1 extends d0 and dompd1qzdompd0q “

freshpp48qq. By I-Abs on (48), we have:

Ξ0, Γ, _G. C
1 : UÑ g2ñ Ξ1 (51)

By Lemma A.29, (49) and (50) imply:

rU ÞÑ g1spΞ¨pUď g1qq $ rU ÞÑ g1s ˝ d1g
2 ď rU ÞÑ g1sg

1

i.e., rU ÞÑ g1sΞ¨pg1 ď g1q $ rU ÞÑ g1s ˝ d1g
2 ď rU ÞÑ g1sg

1 (52)
rU ÞÑ g1spΞ¨pUď g1qq (rU ÞÑ g1s ˝ d1pΞ0¨Ξ

1q

i.e., rU ÞÑ g1sΞ¨pg1 ď g1q (rU ÞÑ g1s ˝ d1pΞ0¨Ξ
1q (53)

By S-Cons on Lemma A.18 and S-Refl, we have:

rU ÞÑ g1sΞ(rU ÞÑ g1sΞ¨pg1 ď g1q (54)

By Lemma A.23 with (53), (51) and (52) imply:

rU ÞÑ g1sΞ$ rU ÞÑ g1s ˝ d1g
2 ď rU ÞÑ g1sg

1 (55)
rU ÞÑ g1sΞ(rU ÞÑ g1s ˝ d1pΞ0¨Ξ

1q (56)

Since U is picked to be fresh, which means it could not have appeared in Ξ, we have
rU ÞÑ g1sΞ“ Ξ. Then (54) and (55) imply:

Ξ$ rU ÞÑ g1s ˝ d1g
2 ď rU ÞÑ g1sg

1 (57)
Ξ(rU ÞÑ g1s ˝ d1pΞ0¨Ξ

1q (58)

By S-Trans on (57) and (47), we have:

Ξ$ rU ÞÑ g1s ˝ d1g
2 ď g2 (59)

By S-FunDepth on S-Refl and (60), we have:

Ξ$ g1 ÑrU ÞÑ g1s ˝ d1g
2 ď g1 Ñ g2

i.e., Ξ$ rU ÞÑ g1s ˝ d1pUÑ g2q ď g1 Ñ g2 (60)

Cases T-App, T-Asc, T-Case1, T-Case2, T-Case3. Similar to case T-Proj.

�

Lemma C.35. If Ξ, Γ¨pG : g1q $ C : g, then Ξ¨pUď g1q, Γ¨pG : Uq $ C : g1 and Ξ$ rU ÞÑ

g1sg
1 ď g for any U fresh and some g1.

173

Proof By straightforward induction on typing derivations. �

Proof [Proof 7.8 (Completeness of Constraining)] By Theorem 7.6, we have:

Ξ0, n $ g1 ! g2 ñ Ξ1 (1)

for some Ξ1. The result then follows from Lemma C.36. �

Lemma C.36 (Necessity of Constraining).

1. If Ξ$ dg1 ď dg2 and Ξ cons. and Ξ(dΞ0 and Ξ0, Σ$ g1 ! g2 ñ Ξ1, then Ξ(dΞ1.
2. If Ξ$ dD0 ďK and Ξ cons. and Ξ(dΞ0 and Ξ0, Σ$D0 ñ Ξ1, then Ξ(dΞ1.

Proof By induction on constraining derivations.

Cases C-Hyp, C-Bot, C-Cls1. Immediate by S-Empty since Ξ1 “ n .
Case C-Assum. From the assumptions, we have:

Ξ$ dg1 ď dg2 (1)

The premise of the rule is:

Ξ0, Σ¨Bpg1 ď g2q $ dnf0pg1 ^ g2qñ Ξ1 (2)

By Theorem A.9, (1) implies:

Ξ$ dg1 ^ dg2 ďK

i.e., Ξ$ dpg1 ^ g2q ďK (3)

By Lemma 7.3, we have:

g1 ^ g2 ” dnf0pg1 ^ g2q (4)

By Lemma A.29, (4) implies:

dpg1 ^ g2q ” ddnf0pg1 ^ g2q (5)

By S-Trans on (5) and (3), we have:

Ξ$ ddnf0pg1 ^ g2q ďK (6)

The result then follows from IH on (2) and (6).
Case C-Or. Then D0 “D0

1 _C0 for some D0
1 and C0. From the assumptions, we have:

Ξ´ dpD0
1 _C0q ďK (7)

Ξ(dΞ0 (8)

The premises of the rule are:

Ξ0, Σ$D0
1 ñ Ξ11 (9)

Ξ0¨Ξ
1
1, Σ$C0 ñ Ξ12 (10)

174

for some Ξ11 and Ξ12, where Ξ1 “ Ξ11¨Ξ
1
2. By S-AndOr11¨ and S-AndOr12¨

respectively, we have:

dD0
1 ď dD

0
1 _ dC

0

i.e., dD0
1 ď dpD

0
1 _C0q (11)

dC0 ď dD0
1 _ dC

0

i.e., dC0 ď dpD0
1 _C0q (12)

By S-Trans with (7), (11) and (12) respectively imply:

Ξ$ dD0
1 ďK (13)

Ξ$ dC0 ďK (14)

By IH on (13) and (8) and (9), we have:

Ξ(dΞ11 (15)

(8) and (15) imply:

Ξ(dΞ0¨dΞ
1
1

i.e., Ξ(dpΞ0¨Ξ
1
1q (16)

By IH on (14) and (16) and (10), we have:

Ξ(dΞ12 (17)

(15) and (17) imply:

Ξ(dΞ11¨dΞ
1
2

i.e., Ξ(dΞ1 (18)

Case C-NotBot. Then D0 “N ^ F ^ R ^ K for some N and F and R. From the
assumptions, we have:

Ξ$ dpN ^ F ^ R ^ KqďK
i.e., Ξ$N ^ dF ^ dR ^ KďK (19)

Ξ cons. (20)

By S-Trans on S-ToB¨ and Theorem A.6, we have:

N ^ dF ^ dR ď K (21)

By S-AndOr2 on S-Refl and (21), we have:

N ^ dF ^ dR ďN ^ dF ^ dR ^ K (22)

By S-Trans on (22) and (19), we have:

Ξ$N ^ dF ^ dR ďK (23)

Since TTVpN ^ dF ^ dRq Y TTVpKq “H, by Lemma 3.4 on (20) and (23), we
have:

BΞ$N ^ dF ^ dR ďK (24)

175

Notice that N ^ dF ^ dR is in CDN-normalized form. Since none of
tN , dF , dR u is a negation, N ^ dF ^ dR is complement-free. Then by
Lemma 4.22 on (24), we have:

K–
Ź

9 pc
1
9
_+

� 9

9
q (25)

for some c1
9

9
and � 9

9 and +
� 9

9

9

, where
Ź

9 +
� 9

9
is complement-free. By

S-AndOr12¨, we have:

+
� 9

9
Ď c1

9
_+

� 9

9

9

(26)

By Lemma A.7 on (26), we have:
Ź

9 +
� 9

9
Ď
Ź

9 pc
1
9
_+

� 9

9
q (27)

By S-Trans on (27) and (25), we have:
Ź

9 +
� 9

9
ĎK (28)

which is impossible since
Ź

9 +
� 9

9
is complement-free. Therefore this case is

impossible.
Case C-Cls2. Then D0 “Ir#�1s ^ pU_ #�2q for some �1 and �2 and Ir#�1s and U.

From the assumptions, we have:

Ξ$ dpIr#�1s ^ pU_ #�2qq ďK (29)
Ξ cons. (30)

The premises of the rule are:

�2 RSp#�1q (31)
Ξ0, Σ$Ir#�1s ^ Uñ Ξ1 (32)

By Theorem A.9 on (29), we have:

Ξ$ dIr#�1s ď dpU_ #�2q

i.e., Ξ$ dIr#�1s ď dg
0 _

Ž

9 #�1
9
_ #�2 (33)

for some g0 P t K, D1 ÑD2, t H : D1 u u and �19
9
, where U“ dg0 _

Ž

9 #�1
9
. Since

TTVpdIr#�1sq Y TTVpdg0 _
Ž

9 #�1
9
_ #�2q “H, by Lemma 3.4 on (30) and (33),

we have:

BΞ$ dIr#�1s ď dg
0 _

Ž

9 #�1
9
_ #�2 (34)

By Lemma 4.22 on (34), we have:

dIr#�1s –
Ž

8 pg
1
8
^ -

�8
8
q (35)

BΞ$ -�8
8

ĺ.8

8

(36)

176

for some g1
8

8
and �8

8
and -

�8
8

8

and .8 P t dg0, #�2, #�1
9

9
u

8

, where
Ž

8 -
�8
8

is
complement-free. By S-AndOr12 , we have:

g1
8
^ -

�8
8
Ď -

�8
8

8

(37)

By Lemma A.7¨ on (37), we have:
Ž

8 pg
1
8
^ -

�8
8
q Ď

Ž

8 -
�8
8

(38)

By S-Trans on (35) and (38), we have:

dIr#�1s –
Ž

8 -
�8
8

(39)

By Corollary A.61, (39) implies:

dIr#�1s – -
�:
:

(40)

for some : .
Case �: P t K, J u. Then we have:

-
�:
:
”K (41)

By S-Trans on (40) and (41), we have:

dIr#�1s ď K (42)

By S-AndOr11 , we have:

dIr#�1s ^ dp Uq ď dIr#�1s

i.e., dpIr#�1s ^ Uq ď dIr#�1s (43)

By S-Trans on (43) and (42), we have:

dpIr#�1s ^ Uq ďK (44)

The result then follows from IH on (32) and (44).

Case �: R t K, J u. Let -
�:
:
“
Ź

; -
�:
:;

for some -
�:
:;

;

where -
�:
:;

;

are not
intersections. By S-AndOr11 and S-AndOr12 , we have:

-
�:
:
Ď -

�:
:;

;

(45)

By S-Trans on (40) and (45), we have:

dIr#�1s Ď -
�:
:;

;

(46)

Notice that dIr#�1s is in CDN-normalized form. Since none of the conjuncts
of dIr#�1s is a negation, dIr#�1s is complement-free. Then by Lemma A.57,
(46) implies:

dg0
;
Ď -

�:
:;

;

(47)

177

for some g0
;
P tN , F , R u

;

, where Ir#�1s “N ^ F ^ R. By Lemma A.62,
(47) implies:

g0
;
‰J

;

(48)

Then by Lemma 4.10 on (47), we have:

-
�:
:;
“ dg0

;

;

(49)

By the syntax of -�:
:

and (49), we have:

dg0
;
“ dg0

1
;

(50)

Then we have:

-
�:
:
“
Ź

; dg
0
1 (51)

Then (36) implies:

BΞ$
Ź

; dg
0
1 ĺ.: (52)

Since ĺ implies ď, (52) implies:

BΞ$
Ź

; dg
0
1 ĺ.:

i.e., BΞ$ dg0
1 ď.: (53)

By Theorem A.63 on (53), (31) implies .: ‰ #�2. By S-AndOr11˛ and S-
AndOr12˛, we have:

dIr#�1s “ dpN ^ F ^ Rq ď dg0
1 (54)

.: ď g
0 _

Ž

9 #�1
9
“U (55)

By S-Trans on (54) and (53) and (55), we have:

BΞ$ dIr#�1s ďU (56)

By Theorem A.9, (56) implies:

BΞ$ dIr#�1s ^ UďK (57)

By Lemma A.23 with Lemma A.18, (57) implies:

Ξ$ dIr#�1s ^ UďK (58)

The result then follows from IH on (32) and (58).
Case C-Cls3. Similar to case C-Cls2.
Case C-Fun1. Then D0 “IrD1 ÑD2s ^ pD3 ÑD4q for some D8

8 P 1..4
. From the

assumptions, we have:

Ξ$ dpIrD1 ÑD2s ^ pD3 ÑD4qq ďK (59)
Ξ cons. (60)
Ξ(dΞ0 (61)

178

The premises of the rule are:

Ξ0, CΣ$D3 !D1 ñ Ξ11 (62)
Ξ0¨Ξ

1
1, CΣ$D2 !D4 ñ Ξ12 (63)

for some Ξ11 and Ξ
1
2, where Ξ

1 “ Ξ11¨Ξ
1
2. By Theorem A.9 on (59), we have:

Ξ$ dIrD1 ÑD2s ď dpD3 ÑD4q (64)

Since TTVpdIrD1 ÑD2sq Y TTVpdpD3 ÑD4qq “H, by Lemma 3.4 on (60) and
(64), we have:

BΞ$ dIrD1 ÑD2s ď dpD3 ÑD4q (65)

By Lemma 4.22 on (65), we have:

dIrD1 ÑD2s –
Ž

8 pg
1
8
^ -

�8
8
q (66)

BΞ$ -�8
8

ĺ dpD3 ÑD4q
8

(67)

for some g1
8

8
and�8

8
and -�8

8

8

, where
Ž

8 -
�8
8

is complement-free. By S-AndOr12 ,
we have:

g1
8
^ -

�8
8
Ď -

�8
8

8

(68)

By Lemma A.7¨ on (68), we have:
Ž

8 pg
1
8
^ -

�8
8
q Ď

Ž

8 -
�8
8

(69)

By S-Trans on (66) and (69), we have:

dIrD1 ÑD2s Ď
Ž

8 -
�8
8

(70)

By Lemma 4.9, (67) implies that each of �8
8
is either bottom, arrow, or a negated

record field. By Corollary A.61, (70) implies:

dIrD1 ÑD2s Ď -
�:
:

(71)

for some : .
Case �: P t K, J u. Then we have:

-
�:
:
”K (72)

By S-Trans on (71) and (72), we have:

dIrD1 ÑD2s ď K (73)

which is impossible by the same reasoning as case C-NotBot. Therefore this
case is impossible.

Case �: “Ñ. Let -�:
:
“
Ź

; -
�:
:;

for some -�:
:;

;

where -�:
:;

;

are not intersections.
By S-AndOr11 and S-AndOr12 , we have:

-
�:
:
Ď -

�:
:;

;

(74)

179

By S-Trans on (71) and (74), we have:

dIrD1 ÑD2s Ď -
�:
:;

;

(75)

Notice that dIrD1 ÑD2s is in CDN-normalized form. Since none of the con-
juncts of dIrD1 ÑD2s is a negation, dIrD1 ÑD2s is complement-free. Then
by Lemma A.57, (75) implies:

dg0
;
Ď -

�:
:;

;

(76)

for some g0
;
P tN , F , R u

;

, where IrD1 ÑD2s “N ^ F ^ R. By
Lemma A.62, (76) implies:

g0
;
‰J

;

(77)

Then by Lemma 4.10 on (76), we have:

-
�:
:;
“ dg0

;

;

(78)

By the syntax of -�:
:

and (78), we have:

dg0
;
“ dg0

1
;

(79)

Then we have:

-
�:
:
“
Ź

; dg
0
1 (80)

Then (67) implies:

BΞ$
Ź

; dg
0
1 ĺ dpD3 ÑD4q (81)

Since ĺ implies ď, (81) implies:

BΞ$
Ź

; dg
0
1 ď dpD3 ÑD4q

i.e., BΞ$ dg0
1 ď dpD3 ÑD4q (82)

By Theorem A.63 on (82), we have:

g0
1 “D1 ÑD2 (83)

Ξ$ dD3 ď dD1 (84)
Ξ$ dD2 ď dD4 (85)

By IH on (84) and (61) and (62), we have:

Ξ(dΞ11 (86)

(61) and (86) imply:

Ξ(dΞ0¨dΞ
1
1

i.e., Ξ(dpΞ0¨Ξ
1
1q (87)

By IH on (85) and (87) and (63), we have:

Ξ(dΞ12 (88)

180

(86) and (88) imply:

Ξ(dΞ11¨dΞ
1
2

i.e., Ξ(dpΞ11¨Ξ
1
2q (89)

Case �: “ G . Then -�:
:
“

Ž

9 t G : c 9 u for some c 9 9 . Then (71) implies:

dIrD1 ÑD2s –
Ž

9 t G : c 9 u (90)

By S-AndOr11¨, we have:

t G : c1 u Ď
Ž

9 t G : c 9 u (91)

By S-NegInv on (91), we have:

Ž

9 t G : c 9 u Ď t G : c1 u (92)

By S-Trans on (90) and (92), we have:

dIrD1 ÑD2s Ď t G : c1 u (93)

By Theorem A.9 on (93), we have:

dIrD1 ÑD2s ^ t G : c1 u ĎK (94)

which is impossible by the same reasoning as case C-NotBot. Therefore this
case is impossible.

Case C-Rcd1. Similar to case C-Fun1.
Cases C-Fun2, C-Rcd2, C-Rcd3. Similar to case C-NotBot.
Case C-Var1. Then D0 “C^ U and Ξ1 “ Ξ11¨pUď Cq for some C and U and Ξ11. From

the assumptions, we have:

Ξ$ dpC^ Uq ďK (95)
Ξ cons. (96)
Ξ(dΞ0 (97)

The premise of the rule is:

Ξ0¨pUď Cq, Σ$ lbΞ0pUq ! Cñ Ξ11 (98)

By Theorem A.9, (95) implies:

Ξ$ dUď dC
i.e., Ξ$ dUď dp Cq (99)

By S-AndOr2 on S-Hyp, we have:

Ξ0 $ lbΞ0pUq ď U (100)

By S-Hyp, we have:

pUď Cq $ Uď C (101)

By S-Trans on (100) and (101), we have:

Ξ0¨pUď Cq $ lbΞ0pUq ď C (102)

181

By Lemma A.29, (102) implies:

dpΞ0¨pUď Cqq $ dlbΞ0pUq ď dp Cq (103)

By S-Cons on (97) and (99), we have:

Ξ(dΞ0¨pdUď dp Cqq
i.e., Ξ(dpΞ0¨pUďCqq (104)

By Lemma A.23 with (104), (103) implies:

Ξ$ dlbΞ0pUq ď dp Cq (105)

By IH on (105) and (104) and (98), we have:

Ξ(dΞ11 (106)

By S-Cons on (106) and (99), we have:

Ξ(dΞ11¨pdUď dp Cqq
i.e., Ξ(dΞ1 (107)

Case C-Var2. Similar to case C-Var1.

�

	Introduction
	Presentation of MLstruct
	Overview of MLstruct Features
	Polymorphism
	Classes and Inheritance
	Shadowing
	Nominality
	Type Aliases
	Guardedness Check
	Class-Instance Matching
	Records

	Constructing the Lattice of Types
	Lattice Types
	Subtyping
	Soundness
	Negation Types
	Structural Decomposition

	Limitations
	Regular Structural Types
	Simplified Treatment of Unions
	Fewer Relationships
	No intersection overloading

	Formalization of Boolean-Algebraic Subtyping
	Syntax
	Subtyping and Bounds Contexts
	Subtyping Rules
	Subtyping Recursive Types
	Subtyping Hypotheses
	Example
	A Boolean Algebra
	Purely Algebraic Rules

	Some Useful Subtyping Relationships
	Type Variables & Polymorphism
	Consistency of Bounds Contexts
	Classical Consistency
	Weak Consistency
	Parameterized Weak Consistency
	Algorithmic Consistency

	Requirements on Base Subtyping Rules
	Subtyping Derivation Shapes

	Soundness of Boolean-Algebraic Subtyping
	High-Level Goal
	Splitting up Boolean-Algebraic Subtyping
	Pure Boolean-Algebraic Subtyping
	Elementary type forms

	A First Attempt at an Inductive Lemma
	CDN- and DCN-normalized type forms and derivations
	CDN-normalized type forms
	CDN-normalized derivations
	DCN-normalized type forms and derivations

	Soundness of Subtyping
	Soundness of [(T, R)] Subtyping
	Contexts and Type Variables

	Inferring Principal Types for MLstruct
	Algebraic Subtyping
	Basic Type Inference Idea
	Solving Constraints with Unions and Intersections
	Negation Types
	Normalization of Constraints

	Subsumption Checking
	Simplification and Presentation of Inferred Types
	Basic Simplifications
	Bound Inlining

	Implementation

	Formal Semantics of MLstruct
	Syntax
	Core Syntax
	Contexts
	Shorthands

	Evaluation Rules
	Declarative Typing Rules
	Declarative Subtyping Rules
	Desugaring Named Types

	Soundness of the Declarative Type System

	Principal Type Inference for
	Type Inference Rules
	Reduced Disjunctive Normal Forms
	Algorithm

	Type Constraining Rules
	Correctness of Type Inference

	Related Work
	Conclusion and Future Work
	Proofs and Auxiliary Definitions on Subtyping
	Subtyping Derivation Shapes
	Bounds Context Cleanup
	Some Useful Subtyping Relationships
	Lemmas on Subtyping Entailment
	Lemmas on Substitutions
	Lemmas on Consistency
	Pure Boolean-Algebraic Subtyping
	CDN- and DCN-normalized type forms and derivations
	DCN-normalized type forms
	DCN-normalized derivations
	Some useful lemmas

	Soundness of Subtyping

	Formalization of MLstruct, Continued
	Declarative Typing Rules
	Superclasses
	Substitution

	Well-Formedness
	Free type variables

	MLstruct Correctness Proofs
	Progress Proofs
	Preservation Proofs
	Type Inference Soundness Proofs
	Type Inference Termination Proof
	Type Inference Completeness Proofs

