
Being Lazy When it Counts
Practical Constant-Time Memory Management for

Functional Programming

Chun Kit Lam[0000−0002−8856−9095] and Lionel Parreaux[0000−0002−8805−0728]

HKUST {cklamaq,parreaux}@ust.hk

Abstract. Functional programming (FP) lets users focus on the busi-
ness logic of their applications by providing them with high-level and
composable abstractions. However, both automatic memory management
schemes traditionally used for FP, namely tracing garbage collection and
reference counting, may introduce latencies in places that can be hard to
predict, which limits the applicability of the FP paradigm.
We reevaluate the use of lazy reference counting in single-threaded func-
tional programming with guaranteed constant-time memory management,
meaning that allocation and deallocation take only a bounded and pre-
dictable amount of time. This approach does not leak memory as long as
we use uniform allocation sizes. Uniform allocation sizes were previously
considered impractical in the context of imperative programming, but we
find it to be surprisingly suitable for FP.
Preliminary benchmark results suggest that our approach is practical, as
its performance is on par with Koka’s existing state-of-the-art implemen-
tation of reference counting for FP, sometimes even outperforming it. We
also evaluate the effect of different allocation sizes on application perfor-
mance and suggest ways of allowing large allocation in non-mission-critical
parts of the program via Koka’s effect system.
We believe this potentially opens the door to many new industrial ap-
plications of FP, such as its use in real-time embedded software. In fact,
the development of a high-level domain-specific language for describing
latency-critical quantum physics experiments was one of the original use
cases that prompted us to initiate this work.

1 Introduction

Functional programming allows software developers to design applications at a
very high level of abstraction. It lets them focus on immutability and function
composition to design programs in a way that can often be described as “correct
by construction”.

For example, the functional reactive programming (FRP) pattern [10, 15,
22], as found in popular languages like Haskell and Elm, uses immutable data
structures and higher-order functions to let users declaratively specify reactive
designs, such as animations, graphical user interfaces, and video games.

In practice however, a major problem with FRP, as well as with a number of
other functional design patterns, is that it is extremely memory-intensive — on

2 Chun Kit Lam and Lionel Parreaux

each event, the old immutable states of objects that change are discarded and
reconstructed from scratch, and new closures are allocated to register actions to
be performed when new events occur. This means that typical FRP programs
continuously allocate and free lots of memory, which can translate to jerky
animations and small pauses in graphical user interface rendering.

Some FRP implementations allow users to avoid needless recomputation by
telling parent components whether the state has changed [7]. This enables the
runtime to reuse computation results for unaffected parts of the GUI, which
reduces memory allocator pressure and makes the program less memory-intensive.
However, the effectiveness of this kind of optimization depends not only on the
GUI layout design, but also programmer efforts and discipline. Beginner users
may not understand the need for such optimization, or may not know for sure if
the layout is truly unchanged.

Traditional Memory Management for Functional Programming Func-
tional programming languages typically rely on some kind of garbage collection
for automatic memory management. They often rely on generational, copying
garbage collectors [9] to efficiently process short-lived objects while performing
tracing garbage collection for older generations.

Reference counting, one of the oldest memory management techniques [5]
[24], was historically considered less practical than garbage collectors in this
context, because frequent reference count updates can have a large performance
impact and because reference counting cannot handle cycles [14]. However, there
has been a recent surge in the popularity of reference counting for general-
purpose memory management. Shahriyar et al. [20] analyzed the overhead of
reference counting compared to tracing garbage collectors and introduced several
strategies for improving its performance. Ullrich and de Moura [21] showed that
destructive updates enabled by precise reference counting can provide significant
performance improvements for functional programming languages. Reinking
et al. [19] introduced Perceus, an algorithm for precise reference counting with
destructive updates and specialization, and implemented the algorithm on Koka,
a functional programming language with a type and effect system. These papers
showed that functional programming languages using reference counting can have
good performance too and can compete with state-of-the-art garbage collectors.

On the other hand, latency is also a key metric for system performance,
sometimes even more important than throughput, and it has not been directly
addressed by these recent works. Indeed, eager forms of reference counting can
often lead to garbage collection pauses, sometimes even longer than those of
tracing garbage collectors [3]. For example, consider an application that represents
a news feed as an infinitely-scrollable view on which various widgets can appear.
Imagine that a particular drawing-board widget interacts with user input by
letting the user draw shapes in it. Each of these shapes will be represented as
some vector-graphics object in a collection of shapes that have been drawn so far,
which could grow very large. Thus, when the user finally loses interest and scrolls
past the widget, its deallocation in a normal reference counting implementation
will require recursively deallocating an unbounded number of vector-graphic

Being Lazy When it Counts 3

objects, which is likely to cause a small pause in the scrolling animation, making
it appear jerky.

Constant-Time Memory Management for Functional Programming
In this paper, we revisit the old idea of lazy reference counting, which avoids
the long delays introduced by cascading deallocations. Our technique works by
deferring the deallocation of an object’s fields until the memory is needed by
further allocations, which can progressively reuse memory by traversing the graph
of objects no longer in use. This effectively gives us constant-time allocation and
deallocation procedures, which we refer to as constant-time memory management.

There are naturally a number of limitations and caveats to this approach.
First, in order to be truly (non-amortized) constant-time without the possibility
of leaking unbounded amounts of memory, we need all allocations to share the
same size. While it means that the compiler must split up large objects into
multiple allocations, we argue that this approach is eminently practical in the
context of functional programming languages. Indeed, algebraic data type objects
tend to be on the smaller side, and we show that the performance hit associated
with splitting larger objects in this context varies from moderate to small or
insignificant.

Second, like most reference counting approaches, we do not handle cycles in
the reference graph. But we argue that in the context of functional programming,
where most data is immutable and tree-like, cycles can normally be avoided.
Depending on the compilation strategy and language features, cycles may still be
introduced in the presence of laziness, recursive closures, or OCaml-style cyclic
values. With a slight loss of expressiveness, it is possible to design pure functional
programming languages where cycles cannot be constructed, as exemplified by
Lean [21]. We argue that the loss of expressiveness is acceptable. On one hand,
while it is true that recursive closures are traditionally implemented through
cyclic values, other implementation strategies exist, used for example in languages
like Rust and Koka. On the other hand, while some languages use laziness to allow
conveniently constructing cyclic values, it is possible to design more restricted
languages where laziness is still supported but where cyclic values cannot be
constructed. Third, our approach is currently only applicable to sequential
mutators. Due to the lazy nature of our approach, it is impossible in general
to know the amount of memory actually in use by the program at any given
time. This makes some approaches to concurrent memory management with
thread-local free lists impractical.

In turn, our approach also has large advantages. While the uniform allocation
size does create internal fragmentation (which could lead to up to 2x memory
usage overhead in the worst case), it also means that we are effectively free from
external fragmentation, whose worst-case overhead can become vastly higher
than 2x, and which often cripples long-running systems in practice, leading to
degraded performance and even system failure [17].

We formalized our design, nicknamed CTRC (for constant-time reference
counting), and implemented it inside the Koka programming language, leveraging
its existing reference counting optimizations as well as its type-and-effect system.

4 Chun Kit Lam and Lionel Parreaux

The allocator adopts the approach of Leijen et al. [13] with page-local free lists
to improve memory locality.

Our experimental results show that this approach can achieve throughput
comparable with Koka using the state-of-the-art mimalloc allocator, while pro-
viding constant-time guarantees for both allocation and deallocation, even for
cases with larger objects that require splitting into several allocations. A major
advantage of our approach is that it is extremely simple to implement: the basic
runtime is about 160 lines of C code (the entirety of which fits into four pages of
Appendix B), and does not make use of any existing system allocator beyond
the operating system’s memory page allocation routines.

This could enable the implementation of efficient automatic memory recla-
mation for resource-constrained embedded systems, which could have future
applications in the domain of hard real-time systems.

Contributions

– Although similar solutions were proposed in the past in slightly different
contexts back in 1963 [24], we present a refreshed and practical solution
to constant-time memory management for functional programming, called
CTRC (Section 2). CTRC was implemented by adapting the existing Koka
runtime system and compiler. Our implementation is extremely simple, which
we consider to be a major selling point.

– We formalize this new approach and show that it is sound and prevents
memory leaks, in the sense that it does not increase the peak memory usage
of programs (Section 2.4 and Appendix A). We also show that CTRC can be
applied only locally, to those parts of a program that are latency-sensitive.

– We experimentally justify the practicality of CTRC, showing that on our
benchmark programs, its space and time overheads are small when compared
to Perceus, a state-of-the-art reference-counting implementation (Section 3).
We also discuss the source of the overhead, and suggest approaches for
programmers to reduce the overhead.

2 Presentation of Constant-Time Reference Counting

In this section, we present our basic idea of constant-time reference counting for
Functional Programming (CTRC).

2.1 Eager and Lazy Reference Counting

Reference counting is typically implemented by attaching an integer reference
count to each object, indicating the number of pointers pointing to the current
object. When pointers or variables are modified, the reference count of the
referred object is updated. As the reference count of an object becomes zero, it
is deleted and the reference counts of its fields are decremented. For example,
when deallocating a linked list, the reference count of the first node becomes

Being Lazy When it Counts 5

zero, which recursively decrements the subsequent nodes and deletes them. We
shall refer to this type of reference counting as eager reference counting.

Eager reference counting allows immediate garbage collection with low pause
times compared to tracing garbage collectors, as the tracing part is done incremen-
tally by tracking reference counts rather than a separate tracing phase. However,
reference counting can still have unbounded pause time as a deallocation event
can trigger a chain of deallocation.

By contrast, CTRC performs reference counting lazily. Instead of updating
reference counts for the fields of deallocated objects immediately, the updates are
postponed by storing the deallocated objects in a free list. When there is a new
allocation request, the fields of the object are freed as the object allocation is
being reused. This breaks the chain of deallocation mentioned previously, making
the allocation and deallocation of objects constant-time.

The use of constant-time reference counting mandates using only a single
allocation size, as using multiple allocation sizes may result in memory leaks,
which we discuss in Section 2.2. In general, large objects can always be split up
into smaller segments to fit the single allocation size requirement. Although using
a constant allocation size was traditionally considered impractical in previous
literature, our experiments show that by selecting a suitable size, the space and
performance penalty of splitting large objects is limited. While CTRC requires a
constant allocation size, there can be cases in which the program requires large
contiguous arrays, for example when interacting with graphics APIs. We show
that one can make use of an effect system to isolate the parts of a program
that need to perform variable-sized memory allocation, while maintaining the
constant-time guarantee for all other parts of the program.

2.2 Allocation Size

We now discuss why it is necessary to have a single allocation size for constant-
time memory management, overhead associated with this strategy, and criteria
for choosing allocation size.

A1 A2 AnRoot
· · · ⊥

B1B2B3
· · ·

Fig. 1: Linked List with 2 Size Classes.

In the case of having multiple constant allocation sizes, one either has to give
up constant time guarantee or potentially suffer from memory leaks [3]. Consider
the example shown in Figure 1, where there are two size classes, with small
and large objects denoted by white and pale blue boxes respectively. The last
element of the small-object linked list contains a unique reference to a linked
list with large objects. Assume that the program loses the unique reference
to A1 at some point, causing all the small objects Ai and large objects Bi to
become unreachable. For normal reference counting schemes, the entire linked
list together with the large-object linked list is deallocated. However, for constant

6 Chun Kit Lam and Lionel Parreaux

time memory management schemes, the collector can only visit and deallocate
a bounded number of objects per step. Hence, if the small-object linked list is
sufficiently long, the memory collector can only deallocate the small objects,
which cannot be used to fulfill allocation for large objects. The allocator has to
allocate additional memory to fulfill large object allocations, even though there
are unused large object allocations that could be reused, causing a memory leak.

To avoid such an issue, our implementation only allows a single allocation size,
and large objects are split into segments.1 For imperative programming languages,
this approach is considered infeasible as it is more common to have arrays and
objects with a large number of fields. However, for functional programming
languages, it is common to use data structures such as linked lists and other
tree-shaped linked data structures, whose nodes are usually small. This makes
our approach feasible, as shown by our experiments (Section 3).

There are multiple considerations when choosing the allocation size, including
memory overhead and architecture-specific details. If the allocation size is a lot
larger than the average object size, there will be severe internal fragmentation,
which wastes memory and memory bandwidth, which can cause performance
degradation. However, if the allocation size is too small, large objects are split into
multiple cells, and access to certain fields involves multiple pointer indirections,
making the access slow. In addition, each cell has to store metadata such as
reference counts, so the overhead increases when large objects are split into
multiple cells. One should also consider architecture-specific details, such as the
cache line size and alignment requirements when choosing the allocation size.
This is to make sure allocations satisfy alignment requirements when packed
together, and require minimal cache access when accessing an object.

In our experiments, we choose 32 bytes as the size of each allocation, with
a header occupying 8 bytes. The target CPU architecture includes x86-64 and
aarch64, which uses 64-byte cache lines. Our objects should align to cache line
boundaries to avoid false-sharing, so it is natural to choose 64 bytes as the
allocation size. However, our early experiments found that the typical object
sizes are small, so using an allocation size of 32 bytes can improve memory and
cache utilization, while still being aligned to cache line boundaries.

Let the object size be n bytes, it requires at most d n16e segment, where every
non-leaf segment contains a header and a pointer to the next segment. The
worst-case memory usage is four times the optimal memory usage when metadata
occupies 8 bytes. However, the actual worst-case memory usage is usually much
smaller. For example, if the smallest allocations are 32-bit integers which occupy
4 bytes each, the object size is 12 bytes together with the metadata, and the
memory overhead is 2.66 times the optimal memory usage. Note that this worst-
case memory usage is independent of the allocation and deallocation pattern,
which makes it simple to reason about statically with a tight upper bound.

1 Note that since object sizes are a constant of the program, field accesses still take
constant time, even for split objects.

Being Lazy When it Counts 7

2.3 Implementation in Koka

0 4

metadata

8

refcount

31

data

Fig. 2: Cell Data Layout.

Free List Head

0 2 0 0
⊥

Fig. 3: Free List Layout.

We implemented the CTRC memory management scheme by extending Koka’s
C runtime and modifying the Koka compiler to split large objects into constant-
size segments. In the following, we shall use cell to denote a fixed-size memory
allocation (32 bytes, including a header of 8 bytes) and drop to denote decreasing
the reference count of an object and deallocating it when the reference count is
0. Figure 2 shows a simplified view of the memory layout for each cell, which
consists of a 32-bit metadata, 32-bit reference count refcount, and 24 bytes of
actual storage which is capable of storing three 64-bit pointers or integers. The
metadata encodes information including object type for pattern matching, the
number of pointers in the current cell, and additional data for other extensions
such as the “eagerly-deallocating-allocation” effect referred to in Section 2.5.

The free list is maintained as an intrusive linked list where the 8-byte header
acts as the pointer to the next cell. As cells are aligned to 32 bytes boundary, the
5 least significant bits of the free list pointers can be used for storing some of the
metadata, which includes information such as the segment’s pointer count, that
has been replaced by the intrusive pointer and can no longer reside in the object.
Note that this does not apply to pointers pointing to live objects, i.e. the normal
pointers, as the reference count must be stored in the object and 5 bits are not
enough for other metadata. The linked list is maintained with a last-in-first-out
(LIFO) order. As the last deallocated cell is likely to reside in the cache, reusing
it first can increase the chance of getting a cache hit. Figure 3 shows an example
free list layout. The cells inside the red dashed rectangle are inside the free list,
note that their headers are different from those outside the free list. Pointers
pointing to other free list cells contain metadata, such as the next cell pointer
counts on top of the dashed arrows. Pointers pointing to live cells, denoted by
solid arrows, are dropped when the free list cell is being reused.

8 Chun Kit Lam and Lionel Parreaux

In case the object occupies more than 24 bytes, the compiler splits the
object into multiple segments. Each segment occupies a single cell, with pointers
pointing to other segments in a tree-like fashion. Note that in our prototype
implementation, the objects are split up in a linked-list-like fashion, i.e. each
segment can only point to one other segment, for simplicity. The runtime treats
each segment inside the free list as individual objects.

A1 A2 An

A′
1 A′

2 A′
n

· · · ⊥

Fig. 4: Linked List Example.

Consider a linked list example, where each node contains a pointer to the
next node and 3 64-bit integers. As each node is larger than 32 bytes, it is split
into 2 segments. The example memory layout is shown in Figure 4. The i-th
node is split into two segments Ai and A′i, where Ai contains pointer to A′i,
pointer to the next node Ai+1, and 1 64-bit integer. A′i contains the remaining 2
64-bit integers. When A1 is deallocated, it is put into the free list. When there is
another memory allocation and A1 is removed from the free list, the allocator
puts A′1 into the free list as A1 must contain the unique reference to A′1, A2 is
dropped at this point but not necessarily deallocated as there can still be other
references to A2.

2.4 Soundness and Garbage-Free Guarantee

Due to space limitation, we provide the details of our formalization in Appendix A.
We define the “baseline semantics” to be the typical operational semantics
for untyped lambda calculus with explicit binding, pattern matching, and an
interpretation of dup and drop as no-op instructions. The baseline semantics is
the observable behavior of the program and is independent of the underlying
memory management strategy. We refer to the semantics that manage the heap
and perform eager reference counting as the “eager semantics”. Similarly, we
define the semantics of CTRC that perform lazy reference counting as the “ lazy
semantics”. In addition to the heap, the lazy semantics also has the concept of a
free list, which is a list of dropped cells that can be reused. Instead of getting a
fresh memory location in the heap when performing allocation, the lazy semantics
attempts to get a cell from the free list and drop its fields when the free list is
non-empty. Also, instead of recursively dropping an object when the reference
count becomes zero, the lazy semantics keeps the object in the heap and adds it
to the free list.

Our formalization reasons about program traces in different semantics. We
show that:

1. The eager semantics and lazy semantics both simulate the baseline semantics.

Being Lazy When it Counts 9

This makes sure the behavior is correct when allocation does not return
memory that is still being referenced. Also, this provides the notion of time
for other parts of the formalization.

2. At any point in the execution, the reference count of an object in the eager
semantics xk is smaller than that in the lazy semantics xc, i.e. xk ≤ xc.
This makes sure we never put things that are still being referenced in the
free list, so allocation does not return memory that is still being referenced,
provided the eager semantics is sound.

3. When the points-to graph is acyclic and the free list is empty, we have xk = xc
for every object.
This means that when we require additional memory from the system to
fulfill allocation, the current heap is garbage-free, provided that the execution
under the eager semantics is garbage-free at this point.

Garbage-Free Heap CTRC Heap

Eager Free Lazy Free

Lazy Free

Empty Free List

Fig. 5: Relationship between Eager free and Lazy free.

The proof is based on simulation, which means that we do not have to prove
the soundness and garbage-free properties for program transformations under the
lazy semantics. If the program transformation preserves soundness and garbage-
free properties in the eager semantics, the same guarantees hold in the lazy
semantics. Figure 5 shows the relationship between the eager and lazy semantics.

2.5 Eagerly-Deallocating-Allocation Effect

While functional programming typically uses small objects, some data structures
require large contiguous memory allocation to be efficient, such as B-Trees [6]
which benefit from a larger branching factor, and hash tables, which benefit from
being able to perform random accesses in an array. However, increasing the fixed
allocation size to satisfy these use cases causes a large increase in memory usage,
and may impact performance due to worse cache utilization. Ideally, there should
be a way of using variable-sized memory together with fixed-size constant-time
memory management.

Eagerly-Deallocating-Allocation Effect (EDA), is an extension to CTRC that
allows users to use variable-sized memory, without sacrificing the constant-time
guarantee for the whole program. The idea is to utilize the effect system to mark
parts of the program that perform variable-sized memory allocations which take
non-constant time. Users can use the effect system to prohibit calling functions
that perform variable-sized memory allocations in timing-sensitive regions of
the program. Note that memory deallocation is still constant-time in all cases,
and users can still perform read and write operations on those variable-sized

10 Chun Kit Lam and Lionel Parreaux

allocations from all parts of the program. Only variable-sized allocations take
unbounded time, as they deallocate everything in the eager free list to recover
space.

The runtime segregates the free list into a lazy free list and an eager free list.
The eager free list contains all large allocations and objects that can transitively
reach objects in the eager free list. For implementation, one can use 1 bit in the
metadata to determine whether or not the object can transitively reach large
objects. Deallocation operations put the object into the corresponding free list
depending on this bit, and each operation still takes constant time. If there is
insufficient memory to satisfy a variable-sized allocation, the allocator first tries
to empty the eager free list, and then the lazy free list, to try to get enough space
to fulfill the allocation. When both free lists are empty, the system should be
garbage-free, so emptying the two free lists can make sure the system does not
use more memory than necessary. The eager free list is emptied first to free large
allocations, which are more likely to be able to satisfy the large allocation request.
For normal fixed-size allocation, the allocator tries to reuse cells in the lazy free
list. When the lazy free list is empty, the allocator uses cells in the eager free list,
splitting large allocations when necessary. The allocator avoids splitting large
allocations when possible, as splitting such allocation to fulfill small allocation
requests may cause fragmentation.

3 Preliminary Experiments

cf
ol
d

de
ri
v

la
m lif
e

nq
ue

en
s

po
w

rb
tr
ee

rb
tr
ee
-c
k

0
0
.5

1
1
.5

2

R
el
at
iv
e
ru
nn

in
g
ti
m
e

Unmodified
CTRC (32 Bytes Cells)
CTRC (64 Bytes Cells)

(a) With reuse

cf
ol
d

de
ri
v

la
m lif
e

nq
ue

en
s

po
w

rb
tr
ee

rb
tr
ee
-c
k

0
0
.5

1
1
.5

2

R
el
at
iv
e
ru
nn

in
g
ti
m
e

Unmodified
CTRC (32 Bytes Cells)
CTRC (64 Bytes Cells)

(b) Without reuse
Fig. 6: Relative Running Time

In this section, we discuss the initial benchmarks of CTRC, implemented
by modifying the compiler and runtime system of Koka, versus Koka with the
mimalloc [13] memory allocator.

3.1 Experimental Setup

Our CTRC implementation is extremely simple, the allocator runtime contains
about 150 lines of C code that does not depend on the system memory allocator.

Being Lazy When it Counts 11

cf
ol
d

de
ri
v

la
m lif
e

nq
ue

en
s

po
w

rb
tr
ee

rb
tr
ee
-c
k

0
1

2
3

R
el
at
iv
e
R
SS

Unmodified
CTRC (32 Bytes Cells)
CTRC (64 Bytes Cells)

101 102 103 104 105
101

104

107

Latency (ns)

C
ou

nt

Unmodified
CTRC (32 Bytes Cells)
CTRC (64 Bytes Cells)

Fig. 7: Relative RSS (lower is better). Fig. 8: Histogram of statement latencies
(Section 3.3).

We included the implementation of the allocator in Appendix B, which uses
mmap for allocating new pages but can be modified to use memory from a
static buffer, and is simple to port to embedded systems. We modified the Koka
compiler2 to limit the size of each allocation and split the object when necessary.
In the benchmark, we compare the performance of different cell sizes (32 bytes
and 64 bytes) as cell size impacts both the performance and memory usage of
the application.

Note that neither of the CTRC implementations used here supports hybrid
reference counting, which is the ability to mix different eager and lazy allocation
styles within the same program, as described in Section 2.5. We anticipate that
adding support for hybrid reference counting would be straightforward and would
not significantly alter these results.3

We run the benchmarks that were included in the work by Reinking et al.
[19], as well as a few benchmarks adapted from NoFib [16], a Haskell benchmark
suite, that stress memory allocation. Each benchmark is run in a loop 100 times
in Koka, to avoid measuring only the startup and termination overhead of the
runtime. All the benchmarks are run on a desktop computer with Intel i5-13600KF
with 32GiB of RAM, running NixOS 23.11 with Linux 6.5.12 Xanmod kernel.
The benchmarks are compiled with -O3 optimization using GCC 11.3.0. The
benchmark run is pinned on a performance core with taskset, with SMT and
turbo boost disabled to ensure all the code is run at the same CPU frequency. The
relative execution time and memory usages are given in Figure 6a, Figure 6b and
Figure 7. By default, Koka compiles with reuse optimization [19] enabled, which
reduces the number of deallocations by performing in-place updates when the
reference to the data structure is unique. Figure 6b shows the benchmark result

2 Commit hash: b167030
3 The only change needed for hybrid reference counting in the CTRC allocator imple-
mentation is the addition of a check for the dirty bit stored in object headers.

12 Chun Kit Lam and Lionel Parreaux

in which the reuse optimization is disabled, which demonstrates the performance
when such reuse optimization is inapplicable or not implemented, for example
when run in an interpreter.

3.2 Performance and Memory Usage

From Figure 6a, CTRC with a 32-byte cell size has similar performance compared
with Koka unmodified, except in the N-queens (nqueens) and red-black tree
(rbtree-ck) benchmarks. For nqueens, this is because it mostly uses integer cons
lists, where each node only occupies 16 bytes in the 32-byte cell. Every access
fetches some unused memory, which under-utilizes the memory bandwidth. This
behavior is also apparent in most benchmarks when increasing the cell size from
32 bytes to 64 bytes: these benchmarks run slower in addition to using more
memory. For rbtree-ck, the slowness is caused by the compiler splitting the
left-child and right-child pointers into two segments. Tree traversal requires one
additional pointer indirection, making the running time slower. Switching the
cell size to 64 bytes removes the need for pointer indirection, which makes the
running time faster in this case.

For the lambda evaluation (lam) and game of life (life) benchmarks, they
are significantly faster compared with Koka unmodified because they involve
deallocating large collections. For example, the life benchmark allocates and
deallocates a large grid, and the lazy deallocation approach used by CTRC
provides better temporal locality. CTRC with a 32-byte cell size has on average
8.8M L1 d-cache misses per iteration, while unmodified Koka has on average
26M L1 d-cache misses per iteration for the life benchmark. Similar behavior
occurs when the reuse optimization is disabled, because in-place updates become
deallocation and allocation of the same large collection, so CTRC becomes faster
than unmodified Koka in these cases.

CTRC generally uses more memory compared to the baseline. For some
benchmarks, 64-byte cell size can have a relatively high memory overhead because
the object size is small (e.g. 16 bytes), wasting the remaining 48 bytes. However,
the advantage of CTRC is that the maximal memory overhead can be determined
statically, and is independent from the allocation/deallocation pattern.

Programmers can reduce the performance and memory overhead of CTRC by
changing the datatypes to pack more data into each cell. For example, instead of
using the usual cons list definition, one can use the following:

alias i32 = int32
type i32 -list

Nil
Cons1{h1: i32; t: i32 -list}
Cons2{h1: i32; h2: i32; t: i32 -list}
Cons3{h1: i32; h2: i32; h3: i32; t: i32 -list}
Cons4{h1: i32; h2: i32; h3: i32; h4: i32; t: i32 -list}

When compiled, the pointer t uses 8 bytes in 64-bit systems, and the maximal
of 4 32-bit integer fields occupy 16 bytes in total. Together with the 8-byte

Being Lazy When it Counts 13

metadata per cell, this fully utilizes the 32-byte cell size. Note that these trans-
formations will make the code more complicated, which may cause additional
overhead if the program bottleneck is not caused by memory bandwidth limitation
or cache misses. For example instead of simply using cons cells to add an element
to the start of the list, the code now should check for the variant of the first
cell and change the cell type accordingly. Also, the code transformation requires
knowing the size of the fields, which may make it hard to apply the optimization
for polymorphic types. For example, we can only unroll two fields if the data
type used is a pointer instead of 32-bit integers.

There are also opportunities for data structure inlining [8], which is a well-
known approach to optimizing program performance and memory footprint.
Bruno et al. [4] uses value semantics to determine if data structures are eligible
for inlining, where data objects with value semantics are not used for reference
comparison and do not require atomic field access. In the context of functional
programming, objects automatically have value semantics, so inlining can be
applied to most objects except those behind reference cells. The problem is how
to pack the objects such that fields accessed together are placed in the same cell,
and how to maximize the utilization of cell size, which we leave as future work.

3.3 Latency Measurements

In the context of embedded programming, it is common to implement cooperative
scheduling by explicitly yielding program control. This does not require a compli-
cated program runtime and is more efficient, but requires careful coordination
to meet latency requirements. Unbounded latency caused by recursive drop is
particularly problematic in this scenario, because the programmer may think
that every statement in the source language corresponds to a bounded number
of steps in the machine execution. As the famous saying goes, “Any sufficiently
complicated C or Fortran program contains an [...] implementation of half of
Common Lisp”, we implemented a simple lambda calculus interpreter to simulate
the workload of complicated embedded programs and measured the latency per
statement, to simulate the latency of cooperative scheduling. The result is shown
in Figure 8, where “Count” is the number of statements that require a certain
amount of time to execute.

From the figure, although most statements have low latency, unmodified Koka
can occasionally get latency spikes of around 10 µs or higher, which are caused
by deallocating large data structures. The latencies of around 1µs for unmodified
Koka and CTRC are caused by page faults, and are unavoidable when running
with virtual memory. This shows that the unbounded latency for eager reference
counting can have a measurable impact, and is not only a theoretical problem,
while CTRC mitigates the issue of unbounded latency in both memory allocation
and deallocation.

4 Related Work and Conclusion

We now discuss related work and conclude.

14 Chun Kit Lam and Lionel Parreaux

4.1 Related Work

Reinking et al. [19] introduced a new algorithm for optimizing reference counting
with memory reuse and specialization. Their work showed that reference counting
can achieve comparable performance with state-of-the-art memory management
systems, and sometimes even out-performing in terms of efficiency, while main-
taining low memory usage and reasonable pause time. Our implementation is
based on their work on the Koka compiler, which benefits from their reference
counting optimization. Some of the optimization, such as reuse analysis, becomes
more efficient in CTRC due to the constant allocation size guarantee.

Leijen et al. [13] implemented mimalloc, a fast memory allocator developed for
Koka and Lean. Their implementation uses free list sharding to increase locality
and reduce fragmentation. Free list sharding can be implemented in constant time
for our approach, but experiments showed no consistent performance improvement
due to worse temporal locality compared with a stack-like approach (LIFO). Our
implementation achieves competitive performance when compared with Koka
together with mimalloc, and the latter was already shown to be competitive
with existing functional programming language implementations like GHC and
OCamlc, which uses traditional tracing GC, as well as Swift, which uses reference
counting. But while mimalloc is implemented in about 8k lines of code, our
prototype implementation just takes around 150 lines of C code due to having
fewer features and supporting Unix only.

Lazy reference counting is not a new concept. Back in 1963, Weizenbaum [24]
introduced a list processing system that used lazy reference counting, and provided
a simple implementation of the processing system in FORTRAN. However, due
to various limitations of reference counting, such as the performance impact
caused by frequent reference count updates and the inability to deal with cycles,
tracing garbage collection is still the preferred way for performing automatic
memory management in most high-level languages. Joisha [11, 12] used the idea
of lazy reference counting to bound pause time in garbage collection. Instead of
immediately collecting all the garbage, the deallocator maintains a list of zombie
objects that have a reference count of zero but are yet to be reclaimed. This
avoids triggering unbounded pause time when deallocating linked lists. However,
as the system uses variable allocation size, the runtime may need to eagerly
process all the zombie objects when there is insufficient space to serve certain
allocation requests.

Boehm [3] analyzed the upper bound on the memory usage of lazy reference
counting when multiple size classes are used. When the maximum and minimum
cell size are smax and smin respectively and the number of live object is N , the
space bound is smax

smin
N . This upper bound is not better than using only one size

class and promoting all small objects to the largest size class.
Puaut [18] evaluated the performance of various dynamic memory allocation

approaches, comparing their analytical worst-case allocation time with their
actual observed worst-case allocation time. Those algorithms tend to work well
in practice and the observed worst-case allocation time is not too large compared
with the average allocation time. However, their analytical worst-case time can

Being Lazy When it Counts 15

be very large due to the variable allocation sizes they support, and are unsuitable
for hard real-time applications. On the other hand, our work allows for simple
implementation, high throughput, and low analytical worst-case allocation time
in the portions of the program that are statically proven by the type system not
to have large allocation effects.

Bruno et al. [4] showed that object inlining can provide large improvements to
throughput and reduce memory footprint. It may be possible to perform similar
object inlining in CTRC to reduce the memory overhead of constant allocation
size, and potentially improve performance by improving cache utilization.

Blelloch and Wei [2] gave a wait-free implementation for fixed-size allocation
and free that is linearizable. This can potentially be used to implement the
concurrency extension of CTRC, which requires balancing the global and thread-
local heaps.

Blackburn and McKinley [1] introduced a hybrid garbage collector that
combined both generational collector and reference-counting collector for high
throughput and low maximum pause time. Their implementation divided the
heap into an immortal part, a reference counted space for mature objects and
a nursery space for short-lived objects with a high mutation rate. By deferring
reference count updates for short-lived objects, the system’s throughput can be
improved. While they added a time cap parameter to limit the time spent on each
garbage collection phase, our approach is inherently lazy and does not require
tuning such ad hoc parameters. In addition, as shown in Reinking et al. [19], the
throughput of reference counting with compile-time optimization is on par with
or even better than state-of-the-art garbage collectors, without the complexity of
a hybrid garbage collector.

Wan et al. [23] designed a statically-typed language called Real-Time FRP,
that statically bounds the time and space cost of each execution step, which avoids
unbounded allocation size and infinite recursion in the computation. However, in
their formalism, the time cost of allocation and deallocation are not considered,
as they only bound the term size. But allocation times can be significant in
practice and could make their approach not truly real-time.

4.2 Conclusion

In this paper, we presented CTRC, a lazy reference counting system that provides
a constant-time guarantee for memory allocation and deallocation operations.
We also presented extensions for supporting a hybrid memory management
strategy by utilizing a type-and-effect system, and discussed challenges and
potential solutions for handling multithreaded allocation with memory sharing.
While extremely concise, our implementation in Koka is competitive with the
Koka runtime using mimalloc, a state-of-the-art memory allocator optimized for
functional programming languages, which shows that our approach is practical
and does not suffer from any significant performance penalty. We would like
to experiment with other optimization techniques, such as object inlining [4]
and profile-guided optimizations, to further reduce the performance and memory
overhead of splitting objects. We leave as future work how to handle multithreaded
allocation efficiently.

16 Chun Kit Lam and Lionel Parreaux

References

[1] Blackburn, S.M., McKinley, K.S.: Ulterior reference counting: fast garbage
collection without a long wait. In: Crocker, R., Jr., G.L.S. (eds.) Proceedings
of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2003, October 26-30, 2003,
Anaheim, CA, USA, pp. 344–358, ACM (2003), https://doi.org/10.1145/
949305.949336, URL https://doi.org/10.1145/949305.949336

[2] Blelloch, G.E., Wei, Y.: Concurrent fixed-size allocation and free in constant
time (2020), https://doi.org/10.48550/ARXIV.2008.04296, URL https://
arxiv.org/abs/2008.04296

[3] Boehm, H.J.: The space cost of lazy reference counting. In: Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, p. 210–219, POPL ’04, Association for Computing Machinery,
New York, NY, USA (2004), ISBN 158113729X, https://doi.org/10.1145/
964001.964019, URL https://doi.org/10.1145/964001.964019

[4] Bruno, R., Jovanovic, V., Wimmer, C., Alonso, G.: Compiler-assisted object
inlining with value fields. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
pp. 128–141, ACM (2021), https://doi.org/10.1145/3453483.3454034, URL
https://doi.org/10.1145/3453483.3454034

[5] Collins, G.E.: A method for overlapping and erasure of lists. Commun. ACM
3(12), 655–657 (dec 1960), ISSN 0001-0782, https://doi.org/10.1145/367487.
367501, URL https://doi.org/10.1145/367487.367501

[6] Comer, D.: Ubiquitous b-tree. ACM Computing Surveys (CSUR) 11(2),
121–137 (1979)

[7] Czaplicki, E., Chong, S.: Asynchronous functional reactive programming
for guis. In: Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, pp. 411–422, ACM (2013), https://doi.org/10.
1145/2491956.2462161, URL https://doi.org/10.1145/2491956.2462161

[8] Dolby, J.: Automatic inline allocation of objects. In: Chen, M.C., Cytron,
R.K., Berman, A.M. (eds.) Proceedings of the ACM SIGPLAN ’97 Confer-
ence on Programming Language Design and Implementation (PLDI), Las
Vegas, Nevada, USA, June 15-18, 1997, pp. 7–17, ACM (1997), https://doi.
org/10.1145/258915.258918, URL https://doi.org/10.1145/258915.258918

[9] Doligez, D., Leroy, X.: A concurrent, generational garbage collector for a
multithreaded implementation of ML. In: Deusen, M.S.V., Lang, B. (eds.)
Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Charleston, South
Carolina, USA, January 1993, pp. 113–123, ACM Press (1993), https://doi.
org/10.1145/158511.158611, URL https://doi.org/10.1145/158511.158611

[10] Elliott, C., Hudak, P.: Functional reactive animation. In: International Con-
ference on Functional Programming (1997), URL http://conal.net/papers/
icfp97/

https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/949305.949336
https://doi.org/10.48550/ARXIV.2008.04296
https://doi.org/10.48550/ARXIV.2008.04296
https://arxiv.org/abs/2008.04296
https://arxiv.org/abs/2008.04296
https://doi.org/10.1145/964001.964019
https://doi.org/10.1145/964001.964019
https://doi.org/10.1145/964001.964019
https://doi.org/10.1145/964001.964019
https://doi.org/10.1145/964001.964019
https://doi.org/10.1145/3453483.3454034
https://doi.org/10.1145/3453483.3454034
https://doi.org/10.1145/3453483.3454034
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/258915.258918
https://doi.org/10.1145/258915.258918
https://doi.org/10.1145/258915.258918
https://doi.org/10.1145/258915.258918
https://doi.org/10.1145/258915.258918
https://doi.org/10.1145/158511.158611
https://doi.org/10.1145/158511.158611
https://doi.org/10.1145/158511.158611
https://doi.org/10.1145/158511.158611
https://doi.org/10.1145/158511.158611
http://conal.net/papers/icfp97/
http://conal.net/papers/icfp97/

Being Lazy When it Counts 17

[11] Joisha, P.G.: Compiler optimizations for nondeferred reference: Counting
garbage collection. In: Proceedings of the 5th International Symposium on
Memory Management, p. 150–161, ISMM ’06, Association for Computing
Machinery, New York, NY, USA (2006), ISBN 1595932216, https://doi.org/
10.1145/1133956.1133976, URL https://doi.org/10.1145/1133956.1133976

[12] Joisha, P.G.: Overlooking roots: A framework for making nondeferred
reference-counting garbage collection fast. In: Proceedings of the 6th
International Symposium on Memory Management, p. 141–158, ISMM
’07, Association for Computing Machinery, New York, NY, USA (2007),
ISBN 9781595938930, https://doi.org/10.1145/1296907.1296926, URL https:
//doi.org/10.1145/1296907.1296926

[13] Leijen, D., Zorn, B., de Moura, L.: Mimalloc: Free list sharding in action.
In: Lin, A.W. (ed.) Programming Languages and Systems - 17th Asian
Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019,
Proceedings, Lecture Notes in Computer Science, vol. 11893, pp. 244–265,
Springer (2019), https://doi.org/10.1007/978-3-030-34175-6_13, URL https:
//doi.org/10.1007/978-3-030-34175-6_13

[14] McBeth, J.H.: Letters to the editor: On the reference counter method.
Commun. ACM 6(9), 575 (sep 1963), ISSN 0001-0782, https://doi.org/10.
1145/367593.367649, URL https://doi.org/10.1145/367593.367649

[15] Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming,
continued. In: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell,
p. 51–64, Haskell ’02, Association for Computing Machinery, New York,
NY, USA (2002), ISBN 1581136056, https://doi.org/10.1145/581690.581695,
URL https://doi.org/10.1145/581690.581695

[16] Partain, W.: The nofib benchmark suite of haskell programs. In: Launchbury,
J., Sansom, P.M. (eds.) Functional Programming, Glasgow 1992, Proceedings
of the 1992 Glasgow Workshop on Functional Programming, Ayr, Scotland,
UK, 6-8 July 1992, pp. 195–202, Workshops in Computing, Springer (1992),
https://doi.org/10.1007/978-1-4471-3215-8_17, URL https://doi.org/10.
1007/978-1-4471-3215-8_17

[17] Powers, B., Tench, D., Berger, E.D., McGregor, A.: Mesh: Compacting
memory management for c/c++ applications. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, p. 333–346, PLDI 2019, Association for Computing Machinery,
New York, NY, USA (2019), ISBN 9781450367127, https://doi.org/10.1145/
3314221.3314582, URL https://doi.org/10.1145/3314221.3314582

[18] Puaut, I.: Real-time performance of dynamic memory allocation algorithms.
In: 14th Euromicro Conference on Real-Time Systems (ECRTS 2002), 19-
21 June 2002, Vienna, Austria, Proceedings, pp. 41–49, IEEE Computer
Society (2002), https://doi.org/10.1109/EMRTS.2002.1019184, URL https:
//doi.org/10.1109/EMRTS.2002.1019184

[19] Reinking, A., Xie, N., de Moura, L., Leijen, D.: Perceus: garbage free
reference counting with reuse. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021,

https://doi.org/10.1145/1133956.1133976
https://doi.org/10.1145/1133956.1133976
https://doi.org/10.1145/1133956.1133976
https://doi.org/10.1145/1133956.1133976
https://doi.org/10.1145/1133956.1133976
https://doi.org/10.1145/1296907.1296926
https://doi.org/10.1145/1296907.1296926
https://doi.org/10.1145/1296907.1296926
https://doi.org/10.1145/1296907.1296926
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/367593.367649
https://doi.org/10.1145/581690.581695
https://doi.org/10.1145/581690.581695
https://doi.org/10.1145/581690.581695
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1109/EMRTS.2002.1019184
https://doi.org/10.1109/EMRTS.2002.1019184
https://doi.org/10.1109/EMRTS.2002.1019184
https://doi.org/10.1109/EMRTS.2002.1019184

18 Chun Kit Lam and Lionel Parreaux

pp. 96–111, ACM (2021), https://doi.org/10.1145/3453483.3454032, URL
https://doi.org/10.1145/3453483.3454032

[20] Shahriyar, R., Blackburn, S.M., Frampton, D.: Down for the count? getting
reference counting back in the ring. In: Proceedings of the 2012 International
Symposium on Memory Management, p. 73–84, ISMM ’12, Association for
Computing Machinery, New York, NY, USA (2012), ISBN 9781450313506,
https://doi.org/10.1145/2258996.2259008, URL https://doi.org/10.1145/
2258996.2259008

[21] Ullrich, S., de Moura, L.: Counting immutable beans: Reference counting
optimized for purely functional programming. In: Proceedings of the 31st
Symposium on Implementation and Application of Functional Languages,
IFL ’19, Association for Computing Machinery, New York, NY, USA (2021),
ISBN 9781450375627, https://doi.org/10.1145/3412932.3412935, URL https:
//doi.org/10.1145/3412932.3412935

[22] Wan, Z., Hudak, P.: Functional reactive programming from first princi-
ples. In: Proceedings of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation, p. 242–252, PLDI ’00, As-
sociation for Computing Machinery, New York, NY, USA (2000), ISBN
1581131992, https://doi.org/10.1145/349299.349331, URL https://doi.org/
10.1145/349299.349331

[23] Wan, Z., Taha, W., Hudak, P.: Real-time FRP. In: Pierce, B.C. (ed.) Proceed-
ings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001,
pp. 146–156, ACM (2001), https://doi.org/10.1145/507635.507654, URL
https://doi.org/10.1145/507635.507654

[24] Weizenbaum, J.: Symmetric list processor. Commun. ACM 6(9), 524–536
(sep 1963), ISSN 0001-0782, https://doi.org/10.1145/367593.367617, URL
https://doi.org/10.1145/367593.367617

https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/2258996.2259008
https://doi.org/10.1145/2258996.2259008
https://doi.org/10.1145/2258996.2259008
https://doi.org/10.1145/2258996.2259008
https://doi.org/10.1145/3412932.3412935
https://doi.org/10.1145/3412932.3412935
https://doi.org/10.1145/3412932.3412935
https://doi.org/10.1145/3412932.3412935
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/507635.507654
https://doi.org/10.1145/507635.507654
https://doi.org/10.1145/507635.507654
https://doi.org/10.1145/367593.367617
https://doi.org/10.1145/367593.367617
https://doi.org/10.1145/367593.367617

Being Lazy When it Counts 19

A Formalization

In this section, we present the formal operational semantics of CTRC, prove its
soundness, and show that it is garbage-free when the free list is empty (and the
free list is always used for new allocations when non-empty).

Expressions

e ::= x
∣∣ v ∣∣ e e (variable, value, application)∣∣ val x = e; e (bind)∣∣ dup x; e (duplicate)∣∣ drop x; e (drop)∣∣ match x { pi → ei

n } (match expr)

v ::= λyi
n

x. e (function capturing yin)

| C vi
n (constructor of arity n)

p ::= C bi
n

(pattern)

b ::= x
∣∣ _ (binder or wildcard)

Syntactic Shorthands

e1; e2 ::= val x = e1; e2 x /∈ fv(e2)

λx. e ::= λyi
n

x. e yi
n = fv(e)

dropf λyi
n

x. e ::= drop yi
n

dropf C xi
n ::= drop xi

n

Evaluation Judgments

e −→ e′ Baseline Semantics

H
∣∣ e −→k H ′ ∣∣ e′ Reference Koka Semantics

H;F
∣∣ e −→c H

′;F ′ ∣∣ e′ New CTRC Semantics

Heap and Free List

(Heap) H : x→ (N+, v)

(Free List) F ::= ∅
∣∣ F, x

Fig. 9: Syntax of λ1.

20 Chun Kit Lam and Lionel Parreaux

A.1 Syntax

Figure 9 shows the syntax of λ1 which is the same presented by Reinking et al.
[19]. It is an untyped lambda calculus extended with explicit binding, pattern
matching, as well as duplicate and drop instructions. Note that the duplicate
and drop instructions are added by the compiler into the compiled program and
are not written by the user. Constructors with fields x1, x2, . . . , xn are denoted
as C xi

n. Functions with parameter x, body e, free variables y1, y2, . . . , yn are
denoted as λyi

n

x. e.

E ::= �
∣∣ E e

∣∣ x E ∣∣ val x = E; e

| C x1 . . . xi E vj . . . vn

e −→ e′

E[e] −→ E[e′]
[eval]

(app) (λx. e) v −→ e[x := v]

(bind) val x = v; e −→ e[x := v]

(match) match (C vi
n){pj → ej

m} −→ ej [xi := vi
n] with pj = C xi

n

(no-op-1) drop x; e −→ e

(no-op-2) dup x; e −→ e

Fig. 10: Baseline Semantics.

We also define a few syntactic shorthands to simplify the presentation. We
define sequence e1; e2 as binding e1 to an unused variable x, functions are written
as λx. e when the free variables are not important, and define dropf v for functions
and constructors. dropf is used for dropping the fields of constructors and free
variables of functions. It is a syntactic shorthand because it can be expanded
into a fixed number of drops.

There are three different evaluation judgments, corresponding to different
operational semantics.

Baseline Semantics The baseline semantics is the typical operational semantics
that does not model memory management. Note that the syntax for match
expression is modified to match e {pi → ei

n}, as the variable being matched
is replaced with a value. The evaluation rules for the baseline semantics are
shown in Figure 10, where the app rule is function application, the bind rule
is variable binding, and the match rule is pattern matching. drop and dup
instructions are ignored, as the baseline semantics does not model memory
management and these two instructions are only for reference counting. In
this paper, the baseline semantics serves as the baseline for program behavior,
where the other two operational semantics should simulate. The simulation
relation is shown with the simplified program trace defined below.

Reference Koka Semantics The reference Koka semantics, which we shall
later refer to as the eager semantics, models memory management with

Being Lazy When it Counts 21

reference counting. The heap H is a mapping from variable to reference count
and value. The evaluation judgment H

∣∣ e −→k H
′
∣∣ e′ reads as follows: given

a heap H, the expression e is evaluated to e′ with the heap updated to H ′.
This semantics is discussed in detail below.

New CTRC Semantics The new CTRC semantics, which can also be called
the lazy semantics, models memory management with lazy reference counting.
Instead of just a heap, the semantics also includes a free list F which stores
reusable allocations. The evaluation judgment H;F

∣∣ e −→c H
′;F ′

∣∣ e′ reads
as follows: given a heap H and free list F , the expression e is evaluated to e′,
with the heap updated to H ′ and the free list updated to F ′.

A.2 Reference Koka Semantics

E ::= �
∣∣ E e

∣∣ x E ∣∣ val x = E; e

| C x1 . . . xi E vj . . . vn

H
∣∣ e −→k H

′ ∣∣ e′
H

∣∣ E[e] −→k H
′ ∣∣ E[e

′
]
[eval]

(newk) H
∣∣ v −→k H, z 7→1 v

∣∣ z fresh z

(appk) H
∣∣ f z −→k H

∣∣ dup yi;
n

drop f ; e[x := z]

with (f 7→m λyi
n
x. e) ∈ H

(matchk) H
∣∣ match x {pi → ei

n} −→k H
∣∣ dup yj ;

m
drop x; e[xj := yj

n]

with pi = C xi
n ∧ (x 7→n C yj

n) ∈ H

(bindk) H
∣∣ val x = y; e −→k H

∣∣ e[x := y]

(dupk) H, x 7→n v
∣∣ dup x; e −→k H, x 7→n+1 v

∣∣ e
(dropk) H, x 7→n+1 v

∣∣ drop x; e −→k H, x 7→n v
∣∣ e if n ≥ 1

(freek) H, x 7→1 v
∣∣ drop x; e −→k H

∣∣ dropf v; e

Fig. 11: Reference Koka semantics for λ1.

Figure 11 shows the original4 Koka reference-counted heap semantics. The
evaluation context E uniquely determines where to apply an evaluation step. The
boxes are tools we introduced to facilitate the proofs below. When the boxed
instructions are removed, the semantics become the baseline semantics without
reference counting, so the boxed instructions can be viewed as internal routines
of the memory management scheme. Note that drop and dup instructions may
be added by the compiler, i.e. they exist statically in the program, and are not
boxed. They can also be internal routines of the memory management scheme,
which are introduced on the right-hand side of evaluation rules and are boxed.
We use a dashed box to denote instructions that can either be normal or boxed.

Values are allocated in the heap with rule newk and evaluated to the variable
pointing to the allocation. The freshly allocated variable has a reference count of 1.
4 slightly modified to merge rules related to lambda and constructor for cleaner
presentation

22 Chun Kit Lam and Lionel Parreaux

Function application with rule appk duplicates the captured values of the function,
drop the function allocation itself, and then perform the actual application via
substitution. Similarly, for pattern matching, rule matchk duplicates the fields of
the constructor, drop the constructor object itself, and substitute the fields to the
pattern in the matched case. The dropk and dupk rules update the reference count
of the target variable. When the reference count reaches 1, the drop instruction
instead is evaluated according to freek, which drops the fields of the value and
deallocates the allocation.

We define simplified program trace as the sequence of program states when
executed according to some operational semantics, excluding the heap, free
list and all steps that have boxed instructions. The simplified program trace
corresponds to the execution trace of the baseline semantics, and should be the
same for both the reference Koka semantics and the CTRC semantics.

For example, the full program-trace of val x = C1; dup x; val y =
λxz. x; drop x; drop y; λx. x according to the reference Koka semantics is

1. ∅
∣∣ val x = C1; dup x; val y = λxz. x; drop x; drop y; λx. x

2. (newk) u 7→1 C1

∣∣ val x = u; dup x; val y = λxz. x; drop x; drop y; λx. x

3. (bindk) u 7→1 C1

∣∣ dup u; val y = λuz. u; drop u; drop y; λx. x

4. (dupk) u 7→2 C1

∣∣ val y = λuz. u; drop u; drop y; λx. x

5. (newk) u 7→2 C1, w 7→1 λuz. u
∣∣ val y = w; drop u; drop y; λx. x

6. (bindk) u 7→2 C1, w 7→1 λuz. u
∣∣ drop u; drop w; λx. x

7. (dropk) u 7→1 C1, w 7→1 λuz. u
∣∣ drop w; λx. x

8. (freek) u 7→1 C1

∣∣ drop u; λx. x

9. (freek) ∅
∣∣ λx. x

10. (newk) y 7→1 λx. x
∣∣ y

Each row above shows the rule used to arrive at the current state, current
heap and the resulting expression. The simplified program trace contains states
1 − 7, 9 − 10. State 8 is excluded from the simplified trace because it contains
boxed instructions.

A.3 New CTRC Semantics

We define the operational semantics for constant-time reference-counted heap
in Figure 12, i.e. the lazy semantics. The reference count in the heap can now
be zero, indicating the value is no longer reachable and is added to the free list.
The free list, which is denoted by F , contains a list of memory locations that the
program can reuse.

The major differences between the reference Koka semantics and the CTRC
semantics are the allocation and deallocation rules. When the free list is empty,
allocation requests are met by requesting more memory from the system according
to rule newc, which is the same as the rule newk in the reference Koka semantics.
When the free list is non-empty, however, the first entry in the free list is used to
meet the request, and the fields in the original value of the entry are dropped
according to the rule newrc, where the r suffix stands for reuse.

Being Lazy When it Counts 23

For the previous example, the program trace is

1. ∅ ;∅
∣∣ val x = C1; dup x; val y = λxz. x; drop x; drop y; λx. x

2. (newc) u 7→1 C1 ;∅
∣∣ val x = u; dup x; val y = λxz. x; drop x; drop y; λx. x

3. (bindc) u 7→1 C1 ;∅
∣∣ dup u; val y = λuz. u; drop u; drop y; λx. x

4. (dupc) u 7→2 C1 ;∅
∣∣ val y = λuz. u; drop u; drop y; λx. x

5. (newc) u 7→2 C1, w 7→1 λuz. u ;∅
∣∣ val y = w; drop u; drop y; λx. x

6. (bindc) u 7→2 C1, w 7→1 λuz. u ;∅
∣∣ drop u; drop w; λx. x

7. (dropc) u 7→1 C1, w 7→1 λuz. u ;∅
∣∣ drop w; λx. x

8. (freec) u 7→1 C1, w 7→0 λuz. u ;w
∣∣ λx. x

9. (newrc) u 7→1 C1, w 7→1 λx. x ;∅
∣∣ drop u; w

10. (freec) u 7→
0 C1, w 7→1 λx. x ;u

∣∣ w
Each row above shows the rule used to arrive at the current state, current

heap, current free list, and the expression being evaluated. The simplified program
trace is the above trace excluding step 9. Note that the full trace for both the
eager semantics and the lazy semantics are very similar, except in the last few
steps where they treat free and allocation differently. For the eager semantics,
step 8 recursively drops the field of w, while the lazy semantics just put w into
the free list. The field of w is dropped when there are new allocation requests,
which happens in step 9 above. When the states involving boxed instructions are
removed, the simplified traces for both semantics are the same and correspond
to the baseline semantics.

E ::= �
∣∣ E e

∣∣ v E ∣∣ val x = E; e

| C x1 . . . xi E vj . . . vn

H;F
∣∣ e −→c H

′
;F
′ ∣∣ e′

H;F
∣∣ E[e] −→c H

′
;F
′ ∣∣ E[e

′
]
[eval]

(newc) H;∅
∣∣ v −→c H, z 7→1 v;∅

∣∣ z fresh z

(newrc) H, x 7→0 v;F, x
∣∣ v′ −→c H, x 7→1 v′;F

∣∣ dropf v; x

(appc) H;F
∣∣ f z −→c H;F

∣∣ dup yi;
m
drop f ; e[x := z]

with (f 7→n λyi
n
x. e) ∈ H

(matchc) H;F
∣∣ match x {pi→ei

m} −→c H;F
∣∣ dup yj ;

n
drop x; e[xj := yj

n]

with pi = C xi
n ∧ (x 7→n C yj

n) ∈ H

(bindc) H;F
∣∣ val x = y; e −→c H;F

∣∣ e[x := y]

(dupc) H, x 7→n v;F
∣∣ dup x; e −→c H, x 7→n+1 v;F

∣∣ e
(dropc) H, x 7→n+1 v;F

∣∣ drop x; e −→c H, x 7→n v;F
∣∣ e if n ≥ 1

(freec) H, x 7→1 v;F
∣∣ drop x; e −→c H, x 7→0 v;F, x

∣∣ e
Fig. 12: Constant-time heap semantics for λ1

A.4 Metatheory

In this section, we prove the correctness of the CTRC semantics. We show that
the simplified program trace for the reference Koka semantics and the CTRC

24 Chun Kit Lam and Lionel Parreaux

semantics are equal. From this, we derive that the CTRC semantics never reuse
memory before the reference Koka semantics drop them. By the soundness of
the reference Koka semantics, the CTRC is also sound because it cannot cause
memory corruption. We then prove that the system is garbage-free when the free
list is empty. As CTRC would not request memory from the system when the free
list is non-empty, it would not allocate more memory than needed. This property
is also one that enables the eager-deallocating-allocation effect extension to work
(see Section 2.5). At last, we show that each memory instructions of CTRC only
perform a statically-bounded number of steps, which provides the constant-time
guarantee as promised.

Lemma 1. The eager semantics and lazy semantics simulate the baseline se-
mantics.

Proof. Boxed instructions do not add any non-boxed instructions when evaluated,
so for the simplified program trace, we can safely remove them from the rules.
The resulting rules are the same for both semantics, so their simplified program
traces are the same.

With the simulation relation, we can define time in program execution by
the position in the simplified trace, i.e. according to the baseline semantics. We
denote the reference count of variable x at a certain time when executed according
to the eager semantics and the lazy semantics by xk and xc respectively.

Lemma 2. At any point in the program execution, we have xk ≤ xc − xf , where
xf is the number of times x occurs as a field of variables that are freed in the
eager semantics but not reused in the lazy semantics.

Proof. First, notice that if the proposition holds, the lazy execution never reuses
memory before the eager execution deallocates the variable. This is because in
order for the lazy execution to reuse memory, it has to execute the newc rule,
whereas the newk rule of the eager semantics does not deallocate anything. Let
x′k and x′c be the reference count after this step, we know that x′c = 0 because
we deallocate in this step, and xk = x′k as the eager semantics do not deallocate
in this step, we have xk = x′k ≤ x′c = 0 so x is already deallocated in the eager
execution.

Now we prove the proposition by induction on the evaluation rules.

Case H = ∅. Initially, the free list and heap are empty, so the proposition holds
trivially.

Case new. For allocation expressions, the newk and newc/newrc rules are ex-
ecuted. In both semantics, the newly allocated value has xk = xc = 1 and
is not freed in the eager semantics, so the proposition holds for the newly
allocated value.
We now prove that the proposition still holds for all the original fields of the
value being reused. Notice that for the original eager semantics, it cannot
perform deallocation when evaluating allocation, so fk is not changed. For
newrc, the fields of the old deallocated value old are dropped, so reference

Being Lazy When it Counts 25

count fc for the field f is decremented n times, where n is the number of
occurrences of the variable in the fields of the deallocated object. ff is also
decremented by n, because old is now reused in the lazy semantics, and its
fields no longer contribute to ff , so the inequality still holds for f .
For other objects y, as the lazy semantics does not perform recursive drop,
the reference counts are not being changed. Also, as the eager semantics does
not perform reference count update in the case of allocation, except for the
newly allocated value, yf will not change, and the inequality still holds.

Case free For freek and freec rules, it is easy to see that freek decrements the
reference count xk of every field x of the deallocated value by n, while freec
causes xf to increase by n and no change in xc. So the proposition still holds
for all fields of the deallocated value.

Other cases For other rules, both semantics have the same behavior so they
do not affect the invariant.

Corollary 1. The lazy semantics is sound, i.e. it only reuses garbage that would
have been deallocated in the eager semantics.

We now prove the garbage-free property for this lazy semantics, and the proof
also shows that one can perform garbage collection and get to the same state as
in the eager semantics.

Lemma 3. When the points-to graph is acyclic and the free list is empty, vk = vc.

Proof. Note that we only have to count the number of drop calls because dups
are treated the same in both semantics, and drops are commutative so order does
not matter.

By induction on the longest distance from the root set in the points-to graph.
If the longest distance is zero, this holds because the reference count can only be
n, where n is the number of dup and drop calls, as there are no references to the
variable. For the induction case, note that every pointer pointing to the current
object has a strictly smaller longest distance, and the induction hypothesis holds
for them. If the pointer is from some garbage, by the induction hypothesis the
reference count of the garbage is the same as in the eager semantics. Because
the eager semantics is garbage-free, the reference count of the garbage has 0
reference count, which should already be dropped and added to the free list. As
the free list is empty, the memory is already being reused by the (newrc) rule
and the fields are dropped. Hence, the reference count of the current object is
equal to the number of live objects pointing to it, which is the same as in the
eager semantics.

Note that the proof requires an acyclic heap, which is also a property required
for reference counting to work. For functional programming languages without
mutation, with suitable compilation strategy, programs can guarantee to have no
reference cycles.

Corollary 2. Acyclic heaps are garbage-free when the free list is empty.

26 Chun Kit Lam and Lionel Parreaux

The relationship between eager reference counting and lazy reference counting
is shown in Figure 5. The heap is originally garbage-free as there is no allocation.
When users perform deallocation, eager deallocation removes all garbage asso-
ciated with the object, while lazy deallocation turns the heap into the CTRC
heap. When the user empties the free list of the CTRC heap, the heap becomes
garbage-free again.

Theorem 1 (Constant-time memory management). Each memory man-
agement instruction takes constant time with the CTRC semantics.

Proof. There are three cases to consider:

Case dup This instruction is evaluated according to dupc in 1 step.
Case drop This instruction can be evaluated according to dropc or freec, where

both of them can be evaluated in 1 step. freec requires appending a variable
to the free list, which can be implemented in constant time with a linked list.

Case Allocation There are two cases for allocation, depending on whether the
free list is empty.
Subcase Empty free list Allocation is evaluated according to rule newc,

which requests memory from the system in 1 step.
Subcase Non-empty free list Allocation reuses an allocation from the

free list and drops all its fields according to rule newrc. As we assume the
number of fields is statically bounded, and each drop instruction takes a
statically-bounded amount of CPU operations, the whole operation takes
a statically-bounded amount of CPU operations.

Note that the formalization is different from the actual implementation, we
do not distinguish between objects and segments. The compiler is responsible
for splitting objects into segments, satisfying the constant size requirement. We
do not model this compiler transformation because there can be many different
implementations, and our operational semantics do not depend on such details.
As the size is bounded, the number of fields of each object is also bounded.

B CTRC Allocator Source Code

In this appendix, we present our implementation of basic CTRC (without the
locality optimization).

The defer_drop function is used for deallocating objects, and the get_block
function is used for allocating new objects.

Header initialization and reference-count updates are handled in the Koka
runtime.

1 #include "kklib.h"
2 #include <sys/mman.h>
3
4 #define STACK_NODE_PAGES 1ull
5 #define NUM_CELLS_PER_PAGE ((4096 * STACK_NODE_PAGES /

SMALL_BLOCK) - 1)

Being Lazy When it Counts 27

6 #define MAGIC_BITS 0xCA
7 #define SPLIT_BIT 0x8
8
9 typedef union ctrc_cell_s {
10 struct {
11 kk_header_t header;
12 uint8_t data[SMALL_BLOCK - 8];
13 };
14 struct {
15 union ctrc_cell_s *next;
16 };
17 } ctrc_cell_t;
18 _Static_assert(sizeof(ctrc_cell_t) == SMALL_BLOCK , "

ctrc_cell_t ???");
19
20 typedef struct ctrc_page_s {
21 ctrc_cell_t *free_ptr;
22 ctrc_cell_t *drop_ptr;
23 struct ctrc_page_s *next_page;
24 uint64_t free_counter;
25 ctrc_cell_t cells[NUM_CELLS_PER_PAGE];
26 } ctrc_page_t;
27 _Static_assert(sizeof(ctrc_page_t) == 4096 * STACK_NODE_PAGES

,
28 "ctrc_page_t ???");
29
30 static ctrc_page_t *last_page = NULL;
31
32 static inline void drop_cell(ctrc_cell_t *cell) {
33 // find page
34 size_t page_addr = (size_t)cell & ~(((size_t)

STACK_NODE_PAGES * 4096) - 1);
35 ctrc_page_t *page = (ctrc_page_t *) page_addr;
36 __builtin_prefetch(page , 1);
37
38 if (kk_unlikely(cell ->header._field_idx != MAGIC_BITS))
39 return;
40 kk_ssize_t scan_fsize = cell ->header.scan_fsize;
41 // avoid corrupting the pointer part
42 scan_fsize &= (SMALL_BLOCK - 1);
43 bool new_page = page ->drop_ptr == NULL && page ->free_ptr ==

NULL &&
44 page ->free_counter == 0;
45 if (new_page) {
46 page ->next_page = last_page;
47 last_page = page;
48 }
49 if (scan_fsize == 0) {
50 cell ->next = page ->free_ptr;
51 page ->free_ptr = cell;

28 Chun Kit Lam and Lionel Parreaux

52 } else {
53 cell ->next = (ctrc_cell_t *)((size_t)page ->drop_ptr |

scan_fsize);
54 page ->drop_ptr = cell;
55 }
56 }
57
58 void force_free(kk_block_t *block) {
59 // ignore
60 if (kk_unlikely(block ->header._field_idx != MAGIC_BITS))
61 return;
62 if (block ->header.scan_fsize & SPLIT_BIT) {
63 // splitted object
64 kk_box_t box = kk_block_field(block , 0);
65 kk_assert(kk_box_is_ptr(box));
66 kk_block_t *next_block = kk_ptr_unbox(box);
67 // ignore other ptrs ...
68 next_block ->header.scan_fsize &= SPLIT_BIT;
69 drop_cell ((ctrc_cell_t *) next_block);
70 }
71 block ->header.scan_fsize = 0;
72 drop_cell ((ctrc_cell_t *) block);
73 }
74
75 static void drop_fields(kk_block_t *block) {
76 kk_ssize_t scan_fsize = block ->header.scan_fsize & (

SMALL_BLOCK - 1);
77 if (scan_fsize & SPLIT_BIT) {
78 scan_fsize = (scan_fsize & (~ SPLIT_BIT)) + 1;
79 if (scan_fsize == 1) {
80 force_free(kk_ptr_unbox(kk_block_field(block , 0)));
81 return;
82 }
83 }
84 kk_context_t *context = kk_get_context ();
85 for (kk_ssize_t i = 0; i < scan_fsize; i++) {
86 kk_box_drop(kk_block_field(block , i), context);
87 }
88 }
89
90 static ctrc_page_t *mmap_cache;
91 static size_t mmap_cache_count = 0;
92 static bool use_htlb = true;
93
94 static ctrc_page_t *alloc_blocks () {
95 if (kk_unlikely(mmap_cache_count -- == 0)) {
96 unsigned long long size =
97 use_htlb ? (32 ull * 1024 ull * 1024 ull) : (64 ull *

1024 ull);
98 mmap_cache =

Being Lazy When it Counts 29

99 mmap(NULL , size , PROT_WRITE | PROT_READ ,
100 MAP_PRIVATE | MAP_ANONYMOUS | (use_htlb ?

MAP_HUGETLB : 0), -1, 0);
101 if (kk_unlikely(mmap_cache == MAP_FAILED)) {
102 if (use_htlb) {
103 use_htlb = false;
104 mmap_cache_count ++;
105 return alloc_blocks ();
106 }
107 fprintf(stderr , "allocation␣error:␣%s\n", strerror(

errno));
108 exit (1);
109 }
110 madvise(mmap_cache , size , MADV_POPULATE_WRITE |

MADV_WILLNEED);
111 mmap_cache_count = size / sizeof(ctrc_page_t) - 1;
112 }
113 ctrc_page_t *page = mmap_cache ++;
114 page ->drop_ptr = NULL;
115 page ->free_ptr = NULL;
116 page ->free_counter = NUM_CELLS_PER_PAGE;
117 return page;
118 }
119
120 static ctrc_cell_t *pop_free () {
121 if (kk_unlikely(last_page == NULL)) {
122 ctrc_page_t *page = alloc_blocks ();
123 page ->next_page = last_page;
124 last_page = page;
125 }
126 ctrc_cell_t *result = last_page ->free_ptr;
127 __builtin_prefetch(result , 1);
128 bool need_drop = false;
129 if (result == NULL) {
130 if (last_page ->free_counter > 0) {
131 result = &last_page ->cells[--last_page ->free_counter];
132 } else {
133 result = last_page ->drop_ptr;
134 size_t next_ptr = (size_t)result ->next;
135 result ->header.scan_fsize = next_ptr & (SMALL_BLOCK -

1);
136 last_page ->drop_ptr = (ctrc_cell_t *)(next_ptr & ~(

SMALL_BLOCK - 1));
137 need_drop = true;
138 }
139 } else {
140 last_page ->free_ptr = result ->next;
141 }
142 if (kk_unlikely(last_page ->drop_ptr == NULL && last_page ->

free_ptr == NULL &&

30 Chun Kit Lam and Lionel Parreaux

143 last_page ->free_counter == 0)) {
144 last_page = last_page ->next_page;
145 __builtin_prefetch(last_page , 0);
146 }
147 if (need_drop)
148 drop_fields ((kk_block_t *) result);
149 return result;
150 }
151
152 void defer_drop(kk_block_t *block) { drop_cell ((ctrc_cell_t

*)block); }
153
154 kk_block_t *get_block () {
155 kk_block_t *block = (kk_block_t *) pop_free ();
156 block ->header._field_idx = MAGIC_BITS;
157 return block;
158 }

	Being Lazy When it Counts

