Lionel Parreaux | Curriculum vitae

Route de Chavannes 68 - 1007 Lausanne - Switzerland

☐ +41 79 135 48 94 • ☑ lionel.parreaux@gmail.com ③ lptk.github.io/about • in lparreaux • ☐ LPTK

Education

EPFL (Swiss Federal Institute of Technology)

Ph.D. in Computer Science, to graduate in June 2020

2014–2020

NUS (National University of Singapore)

Academic exchange (1 semester)

Singapore Fall 2013

Lausanne

INSA Lyon (National Institute of Applied Science)

Engineering Degree (Master level) in Computer Science

Lyon 2009–2014

Languages: French (mother tongue) English (bilingual) Spanish (intermediate)

Research interests: Programming languages, type systems, compiler design, domain-specific languages, and database technology. I believe that improving the performance, safety, and usability of high-level programming is essential to the future of software engineering as a whole.

Publications

- Amir Shaikhha and Lionel Parreaux. (2019). Finally, a Polymorphic Linear Algebra Language. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019).
 DOI: https://doi.org/10.4230/LIPIcs.ECOOP.2019.25
- Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019. Towards improved GADT reasoning in Scala. In Proceedings of the Tenth ACM SIGPLAN Symposium on Scala (SCALA 2019). ACM, New York, NY, USA, 12-16.
 DOI: https://doi.org/10.1145/3337932.3338813
- Lionel Parreaux and Christoph E. Koch. 2018. Comprehending Monoids with Class (Extended Abstract). In Proceedings of Type-Driven Development (TyDe 2018). ACM, New York, NY. DOI: https://icfp18.sigplan.org/details/tyde-2018/12
- Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. 2018. Unifying Analytic and Statically-Typed Quasiquotes. Proc. ACM Program. Lang. 2, (POPL 2018), Article 13 (January 2018), 33 pages. DOI: https://doi.org/10.1145/3158101
- o Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Quoted staged rewriting: a practical approach to library-defined optimizations. In Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences (GPCE 2017). ACM, New York, NY, USA, 131-145.
 DOI: https://doi.org/10.1145/3136040.3136043
- o Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Squid: type-safe, hygienic, and reusable quasiquotes. In Proceedings of the 8th ACM SIGPLAN International Symposium on Scala (SCALA 2017). ACM, New York, NY, USA, 56-66.
 DOI: https://doi.org/10.1145/3136000.3136005
- o Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In Proceedings of the 2016 International Conference on Management of Data (SIGMOD 2016). ACM, New York, NY, USA, 1907-1922. DOI: https://doi.org/10.1145/2882903.2915244

Recognition

Awards.....

- o (2017) GPCE Best Paper Award (Quoted Staged Rewriting paper).
- o (2014) EPFL EDIC PhD program fellowship.

Presentations, Seminars, and Invitations.

- o (July 2019) Towards improved GADT reasoning in Scala. Conference talk, SCALA.
- o (June 2018) Fearless Metaprogramming with Squid. Invited talk, DIMA lab, TU Berlin.
- o (June 2018) Fearless Metaprogramming with Squid. Invited talk, Amazon Berlin.
- o (September 2018) Comprehending Monoids with Class. Type-Driven Development, St. Louis.
- o (January 2018) Unifying analytic and statically-typed quasiquotes. Conference talk, POPL.
- o (December 2017) Unifying analytic and statically-typed quasiquotes. Invited talk, EPFL LAMP.
- o (October 2017) Quoted Staged Rewriting: a Practical Approach to Library-Defined Optimizations. Conference talk, GPCE.
- o (October 2017) Squid: Type-Safe, Hygienic, and Reusable Quasiquotes. Conference talk, SCALA.
- o (September 2017) Quoted Staged Rewriting: a Practical Approach to Library-Defined Optimizations. Invited talk, EPFL LAMP.
- o (2017, 2018, 2019) Google Compiler and Programming Language Summit, Munich.
- o (2016) Google PhD Student Summit on Compiler & Programming Technology, Munich.

Open Source Contributions.

- o Squid (150 stars) ♠ https://github.com/epfldata/squid
- o dbStage (11 stars) https://github.com/epfldata/dbstage
- o Boilerless (35 stars) Thttps://github.com/lptk/boilerless

References.

- o Christoph E. Koch, EPFL, Lausanne. christoph.koch@epfl.ch https://people.epfl.ch/christoph.koch
- Simon Peyton Jones, Microsoft Research, Cambridge. simonpj@microsoft.com https://www.microsoft.com/en-us/research/people/simonpj/
- Martin Odersky, EPFL, Lausanne. martin.odersky@epfl.ch https://lampwww.epfl.ch/~odersky/
- Viktor Kuncak, EPFL, Lausanne. viktor.kuncak@epfl.ch http://lara.epfl.ch/~kuncak/

Experience

Research

Research Intern, Optimization and Spreadsheets

EPFL, Lausanne

Microsoft Research, Cambridge

Summer 2018 (3 months)

- Started the design and implementation of a novel intermediate representation (IR) for optimizing pure functional languages, based on a graph representation with incremental substitution constructs.
- O Designed a domain-specific language (DSL) for dynamic programming, as a way to capture common patterns of spreadsheet formulae, and worked on using the graph IR to optimize that DSL.

PhD Semester Project, Metaprogramming Tools

EPFL, Lausanne

Data Analysis Theory and Applications Laboratory (DATA Lab)

Spring 2015

- o Implemented a quasiquotation engine for SC (Systems/Compiler co-design framework written in *Scala*), making use of advanced macros and type introspection.
- Benchmarked the macro implementation to optimize hot spots and enhance the user experience.
 Report available on this link.

PhD Semester Project, Type Systems

EPFL, Lausanne

Lab for Automated Reasoning and Analysis (LARA Lab)

Fall 2014

- o Formalized a novel Type and Effect System based on regular-expression regions.
- o Proved its safety regarding memory management (no dangling pointers; no memory leaks). Report available on this link.

Research Intern, Type Systems

EPFL, Lausanne

Lab for Automated Reasoning and Analysis (LARA)

Summer 2014 (5 months)

• Explored the design and implementation of *Seagl*, a programming language I designed allowing safe memory management without garbage collection, thanks to an effect system. The report is available on this link.

Industry.....

R&D Intern, C++ Research Engineering

Palaiseau

Thales Research & Technology

Summer 2013 (3 months)

- o Refactored and improved the usability of the open source C++ library paradiseo.¹
- o Implemented/tested new simulated annealing algorithm from a research paper; it was added to paradiseo.

Developer Intern, Build Systems and Testing

Boulogne Billancourt

DxO Labs (Image processing software)

Summer 2012 (3 months)

- Set up a regression testing framework in *Python*, generating results in *HTML5*.
- o Coded a build system using CMake and Python.
- o Integrated these critical tools, significantly increasing the productivity of core developers (8 to 10 persons).

Teaching Assistantship.

CS-452: Foundations of Software (2019)

CS-449: Systems for Data Science (2018, 2019)

CS-210: Functional Programming (2018)

CS-251: Theory of Computation (2017)

CS-422: Database Systems (2016)

CS-110: Information, Computation, Communication (2016)

CS-111: Programming I (2015, 2017)

MATH-186: Mathematics II (2015)

Paradiseo: O https://github.com/nojhan/paradiseo

Notable projects.....

- o (2017–Present) Implementing **dbStage**,² a **staged database compilation framework** based on Squid. The goal of dbStage is to allow programmers to embed low-footprint database systems right inside their applications, with no impedance mismatch, all the while benefitting from the usual advanced database optimization techniques.
- (2016—Present) Developed the Squid³ type-safe metaprogramming framework for Scala, which
 extends the state of the art in multi-stage programming in several directions: it allows for pattern
 matching and rewriting existing code; it guarantees type- and scope-safety of metaprograms;
 it adds support for manipulating not only expressions but also definitions like classes and methods.
- (2018) As part of the Microsoft Hackathon 2018, created a language called MLScript which implemented MLsub type inference, compiled to Javascript, and could extract type information from TypeScript libraries for interoperability.
- o (2016) Developed **Boilerless**, ⁴ a macro annotation that makes defining Scala class hierarchies more concise, and which influenced the design of the later enum syntax in Scala 3.
- o (2014) **Led development** of the final subject of the *Cod'INSA 2014* **programming contest** a real-time multiplayer game interacting with *Java*, *Python* and *C++* artificial intelligences written by the candidates, using *Apache Thrift*, *Swing*, and a web-based interface. ⁵
 The project was a success and allowed ranking the different teams according to their results.

References

Available on page 2.

dbStage: https://github.com/epfldata/dbstage

³ Squid: ♠ https://github.com/epfldata/squid

⁴ Boilerless: Ohttps://github.com/LPTK/Boilerless

⁵ Cod'INSA final 2014: Ohttps://github.com/cod-insa/cod-insa-2014