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Type inference in the presence of first-class or “impredicative” second-order polymorphism à la System F has

been an active research area for several decades, with original works dating back to the end of the 80s. Yet, until

now many basic problems remain open, such as how to type check expressions like (𝜆𝑥 . (𝑥 123, 𝑥 True)) id
reliably. We show that a type inference approach based on multi-bounded polymorphism, a form of implicit

polymorphic subtyping with multiple lower and upper bounds, can help us resolve most of these problems in

a uniquely simple and regular way. We define F{≤} , a declarative type system derived from the existing theory

of implicit coercions by Cretin and Rémy, and we introduce SuperF, a novel algorithm to infer polymorphic

multi-bounded F{≤} types while checking user type annotations written in the syntax of System F. We use a

recursion-avoiding heuristic to guarantee termination of type inference at the cost of rejecting some valid

programs, which thankfully rarely triggers in practice. We show that SuperF is vastly more powerful than all

first-class-polymorphic type inference systems proposed so far, significantly advancing the state of the art in

type inference for general-purpose programming languages.

CCS Concepts: • Theory of computation → Type theory; • Software and its engineering → Functional
languages; Polymorphism.

Additional Key Words and Phrases: type inference, first-class polymorphism, subtyping, constraint solving

1 INTRODUCTION
Consider the function foo defined as: foo f = (f 123, f True).

For the past several decades, researchers have been unable to decide which type to infer for this

function, should one wish to go beyond the classical Hindley-Milner type inference discipline of

ML languages (which yields a unification error here), and should one want to support some form

of first-class polymorphism. In particular, no system was proposed where such a term could be

given a “satisfactory” type. A satisfactory type for foo should let us type check expressions like foo

(fun x → x) at type (Int, Bool) and foo (fun x → Some x) at type (Option Int, Option Bool).1

In this paper, we propose SuperF, a system which can infer the following type for foo:

foo : ∀ a b. ((Int → a) ∧ (Bool → b)) → (a, b)

which is really just syntax sugar for the following polymorphic type that incorporates several

bounds for its extra type parameter c:

foo : ∀ a b c {c ≤ Int → a, c ≤ Bool → b}. c → (a, b)

This type is satisfactory in that it lets us type check the function call examples above at the desired

respective types (Int, Bool) and (Option Int, Option Bool).

∗
The title of this paper took inspiration from that of a talk by Runar Bjarnason: Constraints Liberate, Liberties Constrain.
†
This is a technical report version of the conference paper that appeared in POPL 2024 [Parreaux et al. 2024].

1
MLsub, which uses Algebraic Subtyping [Dolan and Mycroft 2017], would infer types (Int ∨ Bool, Int ∨ Bool) and

(Option (Int∨ Bool), Option (Int∨ Bool)), which are imprecise and thus unsatisfactory.
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Our approach is reminiscent of bounded polymorphism, but our type system F{≤} diverges from
most research on this topic in the following crucial respects:

• We assume implicit, erased polymorphism, meaning that polymorphic types do not need to

be introduced and eliminated in terms and do not participate in the term’s runtime semantics.

Consequently, we can have subtyping relationships such as ∀𝛼. 𝛼 → 𝛼 ≤ Int → Int, so

that any term with the left-hand side type is known to also have the right-hand side type.

• We allow lower bounds as well as upper bounds, rather than only upper bounds (like

in System F<:) or only lower bounds (like in ML
F
), making our system symmetric, but

introducing possible inconsistencies between bounds, which need to be dealt with carefully.

• We allow associating an arbitrary number of bounds to the same type variable, instead of

just one,
2
reminiscent of the old idea of constrained types [Odersky et al. 1999], which was

previously studied mostly in the context of ML-style (i.e., not first-class) polymorphism.

Fortunately, this combination of type system features was already formally described as part of

System F𝑐𝑐 by Cretin and Rémy [2014] in their groundbreaking work laying the foundations for

general implicit polymorphism with subtyping. This allows us to define F{≤} by translation to F𝑐𝑐

and focus on the algorithmic aspects of the system in this paper, noting that Cretin and Rémy only

presented a declarative type system for System F𝑐𝑐 and did not investigate type inference.

While SuperF crucially relies on multi-bounded types internally, these types are non-denotable:

they are not accessible to users, who are limited to writing type annotations in the syntax of

System F, i.e., where polymorphic types cannot have bounds on their quantified type variables.

Indeed, to make subtype constraint solving tractable, SuperF internally follows a polarized type

syntax, whereby bounds are only allowed in positive polymorphic types. Annotated types cannot

use bounds because these types are both positive and negative, since they provide a type for the
annotated expression but also are checked against the expression’s inferred type This is an atypical

property of our system: it means that users cannot always provide explicit type signatures that

are as general as the types that are internally inferred by the system. Nevertheless, we argue that

in practice users rarely want to use bounds in their type signatures anyway, and that System F

types are sufficient for a large number of practical functional programming use cases, including a

majority of use cases studied in previous work.

Subtyping for System F types was historically realized in System F𝜂 , which relates polymorphic

types by subtyping based on their specificity. F𝜂 has an “𝜂 rule” to subtype function types covariantly

in their results and contravariantly in their arguments, which makes System F typing complete

with respect to 𝜂 conversion. Subtyping in F𝜂 is known to be undecidable [Chrząszcz 1998; Tiuryn

and Urzyczyn 1996], and F{≤} is a strict generalization of F𝜂 (i.e., all well-typed System F and F𝜂

terms are well-typed F{≤} terms, but the converse does not hold), so it is natural to conjecture that

F{≤} subtyping is also undecidable, making type inference necessarily incomplete.

SuperF is a terminating but incomplete type inference algorithm for F{≤} that relies on a simple

recursion-detection heuristic to raise errors in tricky recursive-looking cases. Without this check,

type inference would diverge on terms that exhibit indirectly-recursive structures, such as the

Ω combinator (fun x → x x) (fun x → x x). Thankfully, we find that this check rarely triggers in

practical, real-world examples. On the other hand, even when it succeeds, SuperF does not always

infer principal types. This is mainly because it always distributes polymorphic types over function

types even though that can sometimes lead to worse outcomes (an example is given as G14 in

2
Intuitively, this is equivalent in power to allowing at most one upper bound and at most one lower bound on each type

variable together with allowing intersection types in negative positions and union types in positive positions [Parreaux

2020], which is why we could represent the type of foo more concisely via an intersection in the example above.
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Section 5.5). Whether we always infer principal types in a restricted system without distributivity

is currently an open question.

From the programmer’s perspective, the main limitation of SuperF type inference can be un-

derstood as: SuperF never assumes parametrically-polymorphic types for function parameters. Type
annotations must be used when such polymorphic parameters are needed. Nevertheless, SuperF is

appreciably more powerful than all other existing systems; we show that it can seamlessly handle

most examples previously considered in the literature (a first), and that it does so without requiring
any annotations whatsoever. Indeed, multi-bounded polymorphic subtyping already covers a lot of

additional ground compared to existing unification-based approaches, allowing programs like the

one at the beginning of this introduction to type check without having to resort to higher-rank

parametric polymorphism where other systems would have to.

Our specific contributions are as follows:

• We describe the main problems of first-class-polymorphic type inference as well as our

main ideas to address these problems (Section 2). To the best of our knowledge, although

they are quite natural in retrospect, these ideas are novel and have not been developed

before.

• We formalize F{≤} , a lambda calculus with first-class, implicit, erased, and what we call

multi-bounded polymorphism (Section 3). We show that the soundness of this system can

be obtained by translation into the existing System F𝑐𝑐 , whose semantic soundness was

mechanically verified in Coq by Cretin [2014].

• We formalize our SuperF type inference system, emphasizing the novel and crucial concept

of subtype extrusion and avoidance (Section 4). We prove that this type inference system is

sound for F{≤} and terminating.

• We present a practical implementation of SuperF (Section 5), which can be tried in a web

demo available at https://hkust-taco.github.io/superf/. This implementation was evaluated

on all examples described in previous work as well as many new and less trivial ones,

demonstrating that our system is considerably more powerful than previously proposed

approaches. We also show that SuperF infers precise yet concise types for existing ML

programs by porting the List module from OCaml’s standard library to SuperF.

2 PRESENTATION
We first present our approach from a high-level point of view focused on intuition.

2.1 Motivation
Before we delve into technical details, it is worth considering why one might care about first-

class polymorphism and why impredicative polymorphic type inference is a useful addition to a

functional programming language’s type system.

Early on, Peyton Jones et al. [2007] presented many convincing use cases for higher-rank poly-
morphism, a restricted form of first-class polymorphism. These examples included data structure

fusion, encapsulation of state and other effects, existential type encodings, generic programming,

folding and mapping functions respecting data structure invariants, internal type class desugaring,

etc. Nowadays, higher-rank polymorphism is used pervasively throughout the Haskell ecosystem.

Peyton Jones et al. [2007, §3.4] also presented several use cases for impredicative polymorphic

type inference (i.e., unrestricted first-class polymorphism, as studied in this paper). Their examples

rely on the observation that without impredicative polymorphism, several abstractions that work

https://hkust-taco.github.io/superf/
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well in the monomorphic case start failing in the polymorphic case, requiring tedious manual

specialization. For instance, consider the following definitions:

revapp : ∀ a. a → (a → b) → b | poly : (∀ v. v → v) → (Int , Bool)

revapp x f = f x | poly f = (f 3, f True)

While both of these functions fit into classical higher-rank polymorphism, applying one to the

other, as in (revapp (fun x → x) poly), requires impredicatively instantiating the type variable a to

type ∀ v. v → v. A similar thing happens with the fix-point combinator, whose usual type, fix : (a

→ a) → a, cannot be applied to a polymorphic function without impredicative polymorphism.

As another example, recent versions of the Haskell language started supporting abstracting

over record fields through a special type class so that, for example, it became possible to write

functions working over any input type that contains a field named "size" of type a. Allowing this

useful abstraction infrastructure to extend to the setting of records with polymorphic fields requires
impredicative polymorphism, as it requires instantiating a in our example with a polymorphic type.

Altogether, supporting first-class polymorphism in its “full glory” has many important real-world

benefits, which also explains why the Haskell community has spent over a decade trying to add such

generalized support to the Glasgow Haskell Compiler (GHC) [Serrano et al. 2020, 2018; Vytiniotis

et al. 2006] and why even languages like Scala 3 are starting to add the feature.
3

The solution we propose in this paper is a general one: SuperF supports higher-rank polymor-

phism as a side effect of its support for unrestricted first-class polymorphism, and all classical

examples of predicative higher-rank polymorphism are still supported out of the box in SuperF.

2.2 Parametricity and Subtyping
Recall the definition of function foo shown in the introduction: foo f = (f 123, f True)

To be polymorphic or not to be. Clearly, function parameter f should be polymorphic one

way or another in order for foo to be well-typed, because f is applied to arguments of completely

different types Int and Bool. So an intuitive type for foo could have the following form:

foo : (∀ a. a → ?) → (?, ?)

This leads us to a first problem: what type should the parameter function f be expected to return?
The simplest answer that comes to mind would be to have it return the same type as its input:

foo : (∀ a. a → a) → (Int , Bool)

While this is possible, it is obviously not general enough — what if the caller wanted to pass to

foo the function fun x → Some x? So far, most previous state-of-the-art approaches to first-class

polymorphism already throw in the towel and ask the user to provide an explicit type annotation

for f. The user could annotate f as ∀ a. a → a or they could annotate it as ∀ a. a → Option a, or

as ∀ a. a → List a, etc., etc., depending on their intended use of foo. Moreover, these parametric

polymorphism considerations are not stable in the face of small changes. Consider:

foo1 f = (f E0, f E1)

where E0 and E1 are two arbitrary expressions. If E0 and E1 happen to be typeable at the same type T,

f no longer needs to be polymorphic, which allows calling foo1 with less powerful non-polymorphic

function arguments of type T → R for some R. This may in turn be needed later, depending on the

uses of foo1. For example, taking E0 = E1 = fun x → x, we have:

foo2 f = (f (fun x → x), f (fun x → x))

foo2 : ∀ a b. ((a → a) → b) → (b, b)

3
See polymorphic function types: https://docs.scala-lang.org/scala3/reference/new-types/polymorphic-function-types.html.

https://docs.scala-lang.org/scala3/reference/new-types/polymorphic-function-types.html
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This typing of foo2 would let us write expressions like foo2 (fun f → f 1 > 0), of type (Bool, Bool).

But the parameter-polymorphic type is still on the table, and is neither more nor less general:

foo2 : (∀ a. a → a) → ((∀ a. a → a), (∀ a. a → a))

which would allow us to type foo2 id as ((∀ a. a → a), (∀ a. a → a)). The fundamental instability
of this kind of reasoning gets even worse whenever we pass to f argument that may or may not be
typed identically depending on polymorphism decisions made earlier in type inference, as in:

foo3 f = (f (fun (x, y) → (y, x)), f (fun (x, y) → (x, y)))

Above, we could type both arguments to f at the same type ∀ a. (a, a) → (a, a), or we could type

them at unrelated types ∀ a b. (a, b) → (b, a) and ∀ a b. (a, b) → (a, b) respectively, and again

there is no most general choice. Many types seem possible, and there is no obvious way to proceed.

This leads us to formulate another major problem: when should inferred types be polymorphic and

when should they not be? In practice, these two problems make the job of a type inference engine

for System F unpleasantly cumbersome, and the need for a form of subtyping is felt [Rémy 2005].

Subtype polymorphism and intersection types. Our failure to find a most general type for

foo was due to a belief that f should be assigned a parametric polymorphic type. Parametric

polymorphism is a form of infinitary polymorphism [Aiken and Wimmers 1993; Leivant 1990]

— that is, a function f of type ∀ a. a → a can be seen as a function having at the same time all

the types f : Int → Int; f : Bool → Bool; f : Option Int → Option Int; etc. In type theory, we can

express such overloaded function types through intersection types (∧), as in:
f : (Int → Int) ∧ (Bool → Bool) ∧ (Option Int → Option Int) ∧ . . .

It should now become clear that assigning to the f parameter of foo an infinitary intersection

type is definitely “overkill”. After all, f is only applied to Int and Bool arguments, so a type such

as (Int → S) ∧ (Bool → T) should suffice. Since there are no constraints on S and T, these can be

taken to be type variables of foo, yielding the type:

foo : ∀ a b. ((Int → a) ∧ (Bool → b)) → (a, b)

This type (call it 𝜏0) happens to be a principal or most general type of foo,4 meaning that all other

types that can be assigned to foo can be obtained by widening 𝜏0 through subtyping.

Proof. Assume that foo has type 𝜏 . Since foo is a function, 𝜏 must be a supertype of 𝜏1 → 𝜏2 for

some 𝜏1, 𝜏2, i.e., 𝜏1 → 𝜏2 ≤ 𝜏 (𝜏 is not necessarily a function type; for instance, it could be ⊤). Since
foo returns a pair, we must have (𝜎1, 𝜎2) ≤ 𝜏2 for some 𝜎1, 𝜎2. Since f is applied to an argument of

type Int, resulting in type 𝜎1, we must have 𝜏1 ≤ Int → 𝜎1. Similarly, we must have 𝜏1 ≤ Bool → 𝜎2.

We need to show that 𝜏0 = ∀𝛼 𝛽. ((Int → 𝛼) ∧ (Bool → 𝛽)) → (𝛼, 𝛽) ≤ 𝜏 , a relationship which is

implied by 𝜏0 ≤ 𝜏1 → 𝜏2. To show the latter, instantiate the left-hand side by taking 𝛼 = 𝜎1 and

𝛽 = 𝜎2, resulting in ((Int → 𝜎1) ∧ (Bool → 𝜎2)) → (𝜎1, 𝜎2) ≤ 𝜏1 → 𝜏2, which works because that

is equivalent to: • 𝜏1 ≤ (Int → 𝜎1) ∧ (Bool → 𝜎2), i.e., 𝜏1 ≤ Int → 𝜎1 and 𝜏1 ≤ Bool → 𝜎2; and

• (𝜎1, 𝜎2) ≤ 𝜏2 = (𝜎1, 𝜎2). □

Notice that 𝜏0 does not even involve any higher-rank parametric polymorphism! (Instead, it has

a higher-rank intersection type.) Yet, a function of this type can be called with parametrically-

polymorphic arguments, such as functions of type 𝜏id = ∀ c. c → c which should not come as a

surprise, as we saw that 𝜏id stands for (Int → Int) ∧ (Bool → Bool) ∧ . . ., which is clearly a subtype

of (Int → Int) ∧ (Bool → Bool). Similarly, we can now also call foo with argument fun x → Some x,

of type ∀ c. c → Option c, which yields a result of type (Option Int, Option Bool). As a less semantic

and more syntactic way to see why the latter works, instantiate a to Option Int and b to Option Bool

4
SuperF does not always infer principal types when they exist, but it does so in many simple cases like this.
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in the type of foo, and notice that ∀ c. c → Option c is indeed a subtype of (Int → Option Int) ∧
(Bool → Option Bool) because that is the same as saying that ∀ c. c → Option c is a subtype of

Int → Option Int and also a subtype of Bool → Option Bool, which is true as in each cases we can

instantiate the polymorphic type by substituting c accordingly. Furthermore, a function of type

𝜏0 can also be called with monomorphic arguments, of types such as⊤ → Str (where Int ≤ ⊤ and

Bool ≤ ⊤). So it is more general than all System F types we have previously considered for it.

This idea generalizes smoothly to the abstracted example foo1 mentioned earlier:

foo1 f = (f E0, f E1) | foo1 : ((T0 → a) ∧ (T1 → b)) → (a, b)

where T0 and T1 are the inferred types of respectively E0 and E1. Thanks to subtyping, whether the

types chosen for E0 and E1 happen to be compatible or not has become irrelevant. This effectively

removes the “discontinuity” in reasoning between these two very similar cases: we no longer have

to reason about awkward cases where different, incomparable types suddenly become possible due

to small decisions made when inferring the types of subterms.

All in all, picking a parametrically-polymorphic type for f makes it more powerful than strictly

necessary, and this is a problem because that type occurs negatively (i.e., in input position), meaning

that its excessive power leads to a weaker overall type, preventing the discovery of a sufficiently

general one. All we had to do was to abandon the infinitary context of parametric polymorphism

and assume the finitary context of intersection-based subtype polymorphism instead.

Union types. A dual phenomenon happens with union types in positive positions. Unions give

us a natural least upper bound between arbitrary types, even when these types have very different

shapes and structures, while other approaches would have to approximate each type to a common

and often less precise super type, a process that may not always have good solutions. Consider:

bar x = if <condition > then x else id

where id has type ∀ a. a → a. Because x and id flow together into the result type, most previous

approaches would try to unify their respective types into a unique result type. But there is no best

way of performing such unification: we could make x have the same polymorphic type as id, but

this would prevent legitimate uses of bar such as bar succ 0 (where succ: Int → Int), which could

be typed at Int if we instantiated the type of id to Int → Int while typing bar. In SuperF, we have:

bar : ∀ a. a → (a ∨ ∀ b. b → b)

which our implementation automatically simplifies by distributing the inner quantifier out:

bar : ∀ a b. a → (a ∨ (b → b))

and which does not impose any premature decisions on the polymorphism of the x parameter and

on the instantiation of id’s type. SuperF correctly infers type ∀ b. (Int → Int) ∨ (b → b) for bar succ,

which our implementation simplifies to Int → Int (because ∀ b. b → b is a subtype of Int → Int).

Going beyond System F. System F only allows expressing the infinitary form of polymorphism

(i.e., parametric polymorphism). We prefer inferring types in a slightly more powerful language

which smoothes out the rugged edges and discontinuities of System F’s type language. The idea

is not new: it goes back at least to ML
F
, which used bounded quantification to allow a notion of

subsumption (referred to as generic instance) to be used in inferred types, so as to abstract over

the different possible generalization choices made by users of polymorphic functions. Yet, ML
F

still required type annotations in many places, notably for all parameters used polymorphically,

and it could not type check the foo function variations shown above (except for foo2) because it

only allowed one lower bound per type variable, instead of multiple lower and upper bounds. So we

argue that ML
F
did not go far enough, and that what we actually need is full-blown polymorphic

subtyping and full-blown multi-bounded polymorphism. Because it is a superset of System F, we

call the type inference system presented in this paper SuperF.
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On the fluidity of subtyping. Our declarative type system F{≤} allows specifying bounded

polymorphic types and unions in arbitrary positions, while the SuperF subset of F{≤} , used for type
inference, only allows such types in positive positions. Moreover, SuperF types themselves are a

superset of System F types. Here is an analogy to justify this design and to explain the ease of our

approach compared to the difficulty of inferring pure System F types: one can think of System F

types as integer numbers, SuperF types as real numbers, and F{≤} types as imaginary numbers. It

is much easier to find real solutions to polynomials than it is to find integer solutions to them, i.e.,

diophantine equations. Making an analogy between the problem of finding valid type assignments

and the problem of finding polynomial roots, the ruggedness of System F types (integer numbers)

forces one into making awkward discrete choices, whereas the fluidity of SuperF subtyping (real

numbers) smoothes over these choices, letting one pick most general solutions to sub-problem in a

way that composes well. But the best way of explaining how to find SuperF type solutions to type

inference problems is through the more general framework of F{≤} (imaginary numbers), which

generalizes the subtyping relation (numeric domain) further yet.

2.3 SuperF and Implicit Multi-Bounded Polymorphism
We saw that intersections were better at expressing requirements on the types of inputs, since
making these requirements as weak as possible conversely strengthens the overall type. On the

other hand, in this paper we are not interested in using intersections in positive (output) position,
although such intersections can be used to represent various features, such as ad-hoc function over-

loading. For example, in some programming languages like TypeScript and in semantic subtyping

approaches [Frisch et al. 2002], one can write a definition like dup x = (x, x) and assign it several
type signatures, such as Int → (Int, Int) and Bool → (Bool, Bool), with the effect of giving dup the

combined intersection type (Int → (Int, Int)) ∧ (Bool → (Bool, Bool)). By contrast, in SuperF, we

only assign dup the more general type ∀ a. a → (a, a), which is fine to do in output position as

this makes strictly more programs type check than picking a specific intersection.
5

Similarly, SuperF does not support unions in negative positions, though these can be used to

represent a structural form of algebraic data types [Castagna et al. 2016; Parreaux and Chau 2022].

Polarized unions & intersection desugaring. When unions are restricted to positive positions

and intersections to negative ones, subtype inference remains simple and tractable [Dolan and

Mycroft 2017]. In fact, this restricted use of unions and intersections turn out to be equivalent

[Parreaux 2020] to a form of bounded polymorphism with both upper and lower bounds on type

variables (multi-bounded polymorphism). Consider baz below and two equivalent types for it:
bar f x = if f x then f else fun x → x

-- using unions and intersections:

bar : ∀ a b. (a ∧ (b → Bool)) → b → (a ∨ ∀ d. d → d) -- (A)

-- using multi -bounded polymorphism:

bar : ∀ a b c {a ≤ b → Bool , c ≥ a, c ≥ ∀ d. d → d}. a → b → c -- (B)

Proof. To show that (A) and (B) are equivalent, we show subtyping in both directions. To

show subtyping between two polymorphic types, we: (1) assume the right-hand side type variable

bounds; (2) instantiate the type variables on the left-hand side type to types that satisfy the left-

hand side type variable bounds; and (3) show subtyping between the underlying bodies of the

two polymorphic types. In our case, to show (A) ≤ (B), we pick a = a and b = b and thus have to

show (a ∧ (b → Bool)) → b → (a ∨∀ d. d → d) ≤ a → b → c assuming a ≤ b → Bool, c ≥ a, and c ≥ ∀ d. d

→ d, which decomposes by function co- and contravariance to: • a ≤ a ∧ (b → Bool), i.e., ◦ a ≤ a

5
Note that not all intersection-overloaded function type signatures can be represented using pure parametric polymorphism.

For instance, in TypeScript it is possible to define functions with types such as (Int→ Bool)∧ (Bool→ Int).
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(immediate); and ◦ a ≤ b → Bool (by assumption); • b ≤ b (immediate) • a ∨ ∀ d. d → d ≤ c, i.e.,

◦ a ≤ c (by assumption); and ◦ ∀ d. d → d ≤ c (by assumption). To show the other direction (B) ≤
(A), we pick a = a ∧ (b → Bool), b = b, and c = a ∨ ∀ d. d → d, which satisfies all the left-hand side type

variable bounds and syntactically results in the desired type. □

Using bounds internally is more convenient than directly using unions and intersections because

(1) it facilitates both the implementation and formal specification of type inference; and (2) it

allows avoiding some repetition in inferred types, as identical requirements attached to different

occurrences of a type variables can be shared as part of a single bound. (For example, ∀ c {c ≤ ∀ a. a

→ a}. (c, c) → c is more concise than the equivalent ∀ c. (c ∧ (∀ a. a → a), c ∧ (∀ a. a → a)) → c.) So

in this paper we focus on pure multi-bounded polymorphism and regard unions and intersections

as syntactic sugar for the former. Nevertheless, it is often useful to think of and describe bounded
polymorphic types in terms of unions and intersections, which are often more intuitive.

Expressiveness. Extending System F with multi-bounded polymorphism is not insignificant and

does bring additional expressiveness to the language. Appendix A.2 presents an example program

which is not typeable in System F but is typeable in F𝜔 , and for which SuperF infers a principal type

without the help of any annotations. Note that SuperF is not limited in the ranks of the polymorphic

types it infers. For instance, Appendix A.3 exemplifies SuperF type inference for rank 3.

2.4 Type Inference Approach
We now describe type inference in SuperF.

Subtyping over unification. It was historically recognized that subtype inference is notoriously
harder than traditional unification-based type inference as in ML. Therefore, it was natural to

expect that the difficulty of subtype inference would compound with that of first-class-polymorphic

type inference, which is probably why the vast majority of previous work stuck with unification —

indeed, even the venerable ML
F
system, which features lower-bounded polymorphism and therefore

has a core notion of subtyping (based on generic instances), uses first-order unification as the

workhorse of its type inference engine. We believe that this is fundamentally a mistake, and that

subtype inference in fact alleviates most of the intricacies of unification-based approaches to

first-class-polymorphic type inference. Indeed, subtyping is better at tracking the flow of values
through a program, which becomes important in this context.

6
We argue that ML can get away

with approximating data flows in a way that creates undue relationships between unrelated types

because its core type system is truly simplistic (essentially simply-typed lambda calculus). But as

soon as we move to the first-class-polymorphic setting, such approximations induce all sorts of

problems and situations where one needs to make premature polymorphism choices.

Main ideas of SuperF type inference. Generally, our main ideas are as follows:

• Never infer parametrically-polymorphic types in negative position, since it is often enough

to infer intersection types there.
7

• Segregate the syntax of types between positive and negative types, similar to the approaches

of Dolan and Mycroft [2017]; Pottier [1998], among others.

• Let users provide type annotations that include System F-style polymorphic types, and

make sure we can check our inferred types against these types.

6
The usefulness of combining subtype-based flow analysis with polymorphism was already noticed by the turn of the

century in the context of control-flow analysis, e.g., by Faxén [1997]; Rehof and Fähndrich [2001]; Smith and Wang [2000].

7
This insight was also leveraged in earlier work by Jim [2000], in a different type inference setting.
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• Only infer polymorphic types for lambda abstractions, as we are mostly interested in

polymorphic functions, and subtyping with distributivity usually alleviates the need for

other forms of polymorphic values in a call-by-value system.
8
(This point is minor and could

easily be relaxed.)

• Offload generated subtyping constraints to a dedicated subtype constraint solver (described

in Section 2.5); solve these constraints down to type variable bounds upon generalizing the

types of lambda expressions.

The approach described above essentially allows us to infer types for many well-typed System F

terms commonly encountered in functional programs, as well as for some terms that are well-typed

in our system but ill-typed in System F.

Checking restricted user annotations. While SuperF internally supports multi-bounded poly-

morphism in positive positions, which allows type inference to use subtyping to delay polymor-

phism choices, we believe most programmers rarely think in terms of such bounded types. To make

checking programmer type annotations against inferred types practical, we restrict the language of
type annotations to System F types, meaning that users may specify type signatures containing

first-class-polymorphic types, but these may not specify bounds. Indeed, if we allowed bounds on

user-provided type signatures, we would encounter much more difficult constraints to solve — e.g.,

consider foo (add : (Int → Int) ∧ (Str → Str)) : 𝜏 = . . . where the type annotations are equivalent to

giving foo type ∀ a {a ≤ Int → Int, a ≤ Str → Str}. a → 𝜏 . While type checking the body of foo and

its uses of the add parameter, we would need to deal with constraints of the form a ≤ 𝜎 where a

is a rigid type variable with upper bounds; which is equally as hard as dealing with overloading

constrains like (Int → Int) ∧ (Str → Str) ≤𝜎 . We are not aware of any constraint-solving approaches

able to deal with such types without having to either approximate them
9
or rely on backtracking,

which we argue makes type inference impractical in a real-world context.

Subtype Extrusion. A major difficulty of inferring subtypes in the context of nested polymor-

phism — whether first-class or ML-style — is to avoid mixing up type variables coming from

different polymorphism levels. For example, consider typing an expression of the form fun x →
𝐸 (fun y → x (y, y)) or equivalently fun x → let f y = x (y, y) in 𝐸 f, where 𝐸 is some arbitrary

subexpression. The variable y introduced by the inner argument function will have type 𝛽 , for

some fresh type variable 𝛽 , which will be generalized locally as part of the overall type of the inner

function, yielding a type of the form ∀𝛽 . . . {. . .}. 𝛽 → 𝜏 , assuming x (y, y) returns type 𝜏 . Because

𝛽 is generalized in this nested local function, it is more polymorphic than the type of x (call it 𝛼), so

leaking 𝛽 into a bound of 𝛼 as in 𝛼 ≤ (𝛽, 𝛽) → 𝜏 would be unsound. To see why, consider that 𝛽

may later be instantiated into several unrelated types as part of its use in the body of 𝐸, by which

point we would lose the connection between these specific instances and 𝛼 .

We solve this problem by extruding types that are too polymorphic, like (𝛽, 𝛽), into some less

polymorphic types like (𝛽 ′, 𝛽 ′), where 𝛽 ′ is added to the same quantifier as 𝛼 . Crucially, the

extrusion is made to be an approximation of the original type by adding the bound 𝛽 ≤ 𝛽 ′ onto
the original 𝛽 .10 This way, whenever 𝛽 is later instantiated in 𝐸 — say, successively to Int and

Bool — then by transitivity we will get constraints Int ≤ 𝛽 ′ and Bool ≤ 𝛽 ′, which will ensure that

8
An example program that is rejected because we only generalize lambdas is given in a Section 2.7 footnote.

9
MLsub by Dolan and Mycroft [2017] achieves subsumption checking in the presence of such constraints by under-
approximating intersection types, so for example it treats (𝜏1 → 𝜏2 ) ∧ (𝜎1 → 𝜎2 ) as equivalent to (𝜏1 ∨ 𝜎1 ) → (𝜏2 ∧ 𝜎2 ) .
This simplifying assumption is unsound in the presence of first-class polymorphism, so their technique cannot be used in

SuperF. For instance, consider that id can be typed as ∀𝛼.𝛼 → 𝛼 , which is a subtype of (Int → Int) ∧ (Str → Str) , which
according to MLsub is a subtype of (Int ∨ Str) → (Int ∧ Str) – but this type is clearly not a valid type for id.
10
If 𝛽 also occurred negatively in the extruded type, we would also add a lower approximant 𝛽 ′′ where 𝛽 ′′ ≤ 𝛽 and 𝛽 ′′ ≤ 𝛽 ′ .
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the final type inferred for x will be essentially (Int ∨ Bool, Int ∨ Bool) → 𝜏 , the type of a function

that accounts for the fact that both integers and booleans may flow into its parameters.

The original idea of subtype extrusion is due to Parreaux [2020], who informally presented a

level-based algorithm for subtype inference with nested polymorphism. This approach was itself

inspired by the older level-based unification algorithm implemented for the Caml and later OCaml

compilers [Kiselyov 2013; Pottier and Rémy 2005], which finds its origin in the work of Rémy

[1992], who initially called these polymorphism levels ranks, or “degrés” in French [Rémy 1990]. In

this paper, we formalize a simplified version of Parreaux’s extrusion algorithm, which does not use

explicit levels but can be implemented with levels as an optimization (our SuperF implementation

does so).

2.5 Subtype Constraint Solving
The constraint-solving approach of SuperF is relatively straightforward, which we consider to be

one of the main contributions of this paper.

First, we decompose concrete type constraints following the structure of types, for example

decomposing (𝜏1, 𝜏2) ≤ (𝜎1, 𝜎2) into 𝜏1 ≤ 𝜎1 and 𝜏2 ≤ 𝜎2, and decomposing 𝜏1 → 𝜏2 ≤ 𝜎1 → 𝜎2,

by following function parameter contravariance and function result covariance, into 𝜎1 ≤ 𝜏1 and

𝜏2 ≤ 𝜎2. At the same time, we compute the transitive closure of type variable bounds, meaning

that when constraining 𝛼 ≤ 𝜏 we also constrain 𝜎 ≤ 𝜏 for each existing lower bound 𝜎 of 𝛼 , and

symmetrically for 𝜏 ′ ≤ 𝛼 and upper bounds. For polymorphic types appearing on the left, of the

form ‘∀𝛼{𝐵}. 𝜏 ≤ 𝜎 ’, all we need to do is (1) instantiate all quantified type variables 𝛼 to fresh type

variables 𝛼 ′
in 𝜏 and 𝐵; (2) solve the bounds [𝛼 ↦→ 𝛼 ′]𝐵 as constraints to make sure they hold; and

(3) continue by constraining [𝛼 ↦→ 𝛼 ′]𝜏 ≤ 𝜎 .

Type Avoidance. when polymorphic types are found on the right, as in 𝜏 ≤ ∀𝛼. 𝜎 , we need to

turn the 𝛼 type variable into a so-called skolem, i.e., a type variable on which no bounds can be added

(because we are not allowed to assume anything about this type). We continue by constraining

𝜏 ≤ 𝜎 , during which we may end up trying to add to existing (outer) type variables bounds that

refer to this 𝛼 skolem, which makes no sense outside of the corresponding polymorphic type.

Therefore, we need to approximate these bounds until they no longer refer to 𝛼 . A simple solution,

which we settle on in this paper, is to widen all positive occurrences of 𝛼 to ⊤ and to narrow all its

negative occurrences to ⊥. As a concrete example, consider passing some argument of type 𝛼 → 𝛽

to a function of type (∀𝛾 . 𝛾 → 𝛾) → 𝜏 , where 𝛼 and 𝛽 are some type variables coming from the

outside. This leads to 𝛼 → 𝛽 ≤ (∀𝛾 . 𝛾 → 𝛾) and to constraining 𝛾sk. ≤ 𝛼 and 𝛽 ≤ 𝛾sk. where 𝛾sk. is

the skolem, resulting in overall inferred bounds {⊤ ≤ 𝛼, 𝛽 ≤ ⊥}. The argument function, whose

type must subtype 𝛼 → 𝛽 , would thus essentially be restricted to non-terminating computations

(of type ⊥) or delayed non-terminating computations like fun _ → failwith "oops" (of type ⊤ → ⊥).
Delaying instantiation. Instantiating polymorphic types found on the left too early and those

found on the right too late may lead to unnecessary failures [Zhao et al. 2019]. For example, in

∀𝛼. 𝛼 → 𝛼 ≤ ∀𝛽. 𝛽 → 𝛽 , if we instantiate the left-hand-side first, we proceed to constraining

𝛼 → 𝛼 ≤ 𝛽sk. → 𝛽sk., which leads to bounds 𝛽sk. ≤ 𝛼 ≤ 𝛽sk., and we end up with type-avoided

bounds ⊤ ≤ 𝛼 ≤ ⊥ on 𝛼 , which are inconsistent (thus failing the process). But instantiating the

right-hand-side first works out because since 𝛼 is then a locally-instantiated variable, it is allowed
to refer to 𝛽sk., and we can forget about both 𝛼 and 𝛽sk. after the constraining is done — that is, in

general, unless 𝛼 leaked into an outer constraint while constraining, in which case we would have

to keep an extruded version of it around, which would fail for the same reason as above.

Distributivity. It is sometimes possible to either delay the instantiation or rush the skolemization

of polymorphic types by using the distributivity property, which states that ∀𝛼. 𝜏 → 𝜎 is equivalent
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by subtyping to 𝜏 → ∀𝛼. 𝜎 when 𝛼 does not occur in 𝜏 (this is called deep skolemization by

Peyton Jones et al. [2007]). For example, to successfully constrain ∀𝛼. Int → 𝛼 → 𝛼 ≤ Int →
∀𝛽. 𝛽 → 𝛽 , we can either distribute the left-hand side, resulting in the equivalent constraint

Int → ∀𝛼. 𝛼 → 𝛼 ≤ Int → ∀𝛽. 𝛽 → 𝛽 , which succeeds, or distribute the right-hand side, resulting

in ∀𝛼. Int → 𝛼 → 𝛼 ≤ ∀𝛽. Int → 𝛽 → 𝛽 , which also succeeds.
11
This is because in both cases, after

distributing, we are able to skolemize the right-hand side before instantiating the left-hand side.

Therefore, we try to make use of distributivity whenever possible in SuperF.

Cycle checking. Our implementation does not support recursive types, so it rejects cyclic

constraints such as 𝛼 ≤ Int → 𝛼 , using a form of subtyping-aware “occurs-check”. This check

prevents typing some programs that could have meaningful types even without recursive types,

such as let rec f a = f, which can be typed as ⊤ → ⊤, as well as ⊤ → ⊤ → ⊤, as well as
⊤ → ⊤ → ⊤ → ⊤, etc. and in general 𝜇𝛼. (⊤ → 𝛼) where 𝜇 is the recursive type binder. However,

the loss of expressiveness is not very significant; indeed, ML programmers are already used to

“ill-formed” recursive definitions like these being rejected, and their use is of limited interest when

more usual forms of type-level recursion can be achieved through standard data type definitions.

Unfortunately, even when we reject cyclic constraints, the subtype constraining process described

thus far may still not terminate on inputs involving indirect forms of recursion, such as the standard

Ω = (𝜆𝑥 . 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥) term and other recursion combinators like Y 𝑓 = (𝜆𝑥 . 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥)).
Therefore, we propose the use of a heuristic which we refer to as the “suspiciously recursive-looking
criterion” (SRLC). Constraints that fail the SRLC are simply rejected conservatively, terminating

type inference with a failure.

2.6 Suspiciously Recursive-Looking Criterion (SRLC)
The core challenge for ensuring the termination of type inference is that constraint solving may

end up comparing an infinite number of distinct types, which are generated by instantiating and

skolemizing universal types, as well as copying types during subtype extrusion.

Going back to the roots. Our idea is to assign what we call a “root” to each type and to make

sure that all types ever created during constraint solving only have a finite number of roots. We

abort constraint solving with an error upon comparing a pair of types with the same roots as

another pair of types currently being compared, which effectively bounds the depth of recursive

constraining calls. The root of a type variable 𝛼 is:

• 𝛼 itself if 𝛼 already existed at the start of the constraint-solving run;

• 𝛽 if 𝛼 was created by instantiating, skolemizing, or extruding a type variable with root 𝛽

during the current constraint-solving run.

The roots of other types are formed by substituting all type variables with their respective roots.

Termination argument. Because the only way to create new types during constraint solving is

to substitute the type variables of existing types with fresh type variables (which by construction

yields a type with the same root as the original) or with ⊤ and ⊥, it is clear that the number of

roots we will ever reach is finite, ensuring the termination of constraint solving.

Practicality. We found that in practice, the SLRC seldom gets in the way of typing correct terms,

the only exception being terms that make use of self-application (such as G9 in Table 3, presented in

Section 5.5). Crucially, we assume monomorphic recursion as a primitive of the language, meaning

that we type recursive definitions by first assigning them a type variable and then constraining

11
Note that we do not always have a choice about which side to distribute, unlike here.
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that type variable to be a supertype of the inferred result type.
12
In this context, the programs the

SRLC rules out are mostly ones that use indirect recursion (in the style of the Y combinator).

2.7 Expressiveness and Limitations
SuperF is uniquely expressive, but it does naturally have limitations.

Expressiveness. HML [Leijen 2009] is a restriction of ML
F
where type annotations are restricted

to System F types and where all polymorphic parameters must be annotated (even when not

used polymorphically within the function body). There are small differences between HML/ML
F

and SuperF in the places where generalization occurs,
13

which are usually smoothed over by

distributivity. Modulo these differences, we conjecture that SuperF subsumes HML, which in turn

subsumes ML type inference. So SuperF subsumes ML type inference as well, and type annotations

are not needed by SuperF in programs where ML type checking succeeds. While we have not yet

proved it, we experimentally verified this claim by porting OCaml’s List module to our SuperF

implementation, requiring no type annotations (see Section 5.3). ML
F
(even in its “shallow” variant

[Le Botlan and Rémy 2009]) allows unrestricted type annotations and can therefore accept programs

with annotated lower bounds that are not syntactically valid in SuperF. Conversely, SuperF accepts

programs that do not type check in ML
F
. Therefore, SuperF and ML

F
are technically incomparable

in terms of expressiveness. However, we conjecture that a syntactic restriction of ML
F
source

programs to using only System F type annotations would be subsumed by SuperF even without

the additional polymorphism restriction of HML. Since functional programmers do not normally

write type annotations with lower bounds (we are not aware of any functional programs using

such annotations in the wild), one could argue that SuperF is more expressive than ML
F
in practice.

Limitation: needed annotations. While it is enough to infer non-parametric intersection types

in negative positions in many cases, it is not enough when a parametrically-polymorphic input

type is needed. For instance, the following refactored version of foo no longer admits a precise type:

fooLet f = let g x = f x in (g 123, g True)

fooLet : ∀ a. ((Int ∨ Bool) → a) → (a, a)

This is because fooLet makes both arguments to f pass through the bottleneck of g’s x parameter,

thereby merging their originally-separate data flows. It is not possible to recover the precise type of

foo through type annotations, even in the declarative system.
14
On the other hand, type annotations

can be used if a different type is desired, for example annotating (f : ∀ a. a → a).

Limitation: restricted type syntax. As explained in the introduction, SuperF is atypical in that

it infers types that cannot always be written down (inferred types are generally non-denotable)
due to the polarity restriction of its internal type syntax. Users may only provide System F type

signatures, in which polymorphic types do not have bounds, so that for example the principal

type of foo cannot be used as an explicit type signature. However, any well-typed SuperF term

admits a number of possible System F types. These types are often less precise than the SuperF

type, and there is often not a best one to pick, but since it is the user who is providing the type

signature, this is not a problem in practice. It appears that users seldom want to use bounds in

their annotations anyway (indeed, much of the work following up on MLF was based on this

very assumption). Moreover, in a typical program, a large number of functions, if not most of

them, will not be associated with an explicit type signatures. For instance, even tough the standard

practice in Haskell is to annotate exported top-level definitions with type signatures, typical Haskell

12
Of course, we can also type check polymorphically-recursive functions as long as explicit type signatures are provided.

13
For instance, flip const 42 is generalized (to ∀ 'a . 'a→ 'a) in HML but not in SuperF, as it is not syntactically a function.

14
Note that we cannot type g at (Int → a)∧ (Bool → b), the type of f in the original foo, because F{≤} and a fortiori

SuperF deliberately lack an intersection-introduction typing rule (which would make type inference intractable).
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code contains many unannotated helper functions, notably in where clauses and in non-exported

definitions, as well as lambda expressions passed as arguments to other functions or stored in data

structures. When working with such local definitions, the full power of SuperF type inference is

available, and previously-untypeable functions like foo can now be used. Therefore, our restricted

type syntax should not be thought of chiefly as a limitation: the SuperF algorithm it enables is a strict

improvement over most existing approaches for inferring System F-style first-class polymorphism.

2.8 Practical Considerations: Stability and Error Messages
We now briefly explain why we think SuperF is a useful and practical type inference system.

Robustness and Stability. An important design consideration for first-class-polymorphic type

inference is robustness against innocuous changes to the program, i.e., type inference stability
[Le Botlan and Rémy 2009, §4.5]. Fragile type inference leads to suboptimal user experience as

it becomes harder for programmers to predict when type annotations will be needed. Thanks to

subtyping, which faithfully encodes program data flows without having to approximate types

through unification, SuperF achieves a high degree of stability. However, just like for expressiveness,

SuperF is neithermore nor less stable thanMLF in general. Table 1 summarizes some of the important

stability properties of ML
F
and SuperF. While inferring precise data flow types generally improves

stability, it also makes the system too expressive for supporting stability properties that more rigid

systems like ML
F
possess, as exemplified in M1. A counterexample showing that M1 does not hold

in SuperF is the fooLet function mentioned in Section 2.7, whose let-reduced form has the same

(more general) type as foo. The reason this is not a problem in ML
F
is that ML

F
is able to type check

neither foo nor fooLet, nor any similar functions where unannotated parameters are used at distinct

types in the function’s body. We conjecture that M1 holds in SuperF if we make it a side condition

that x be used linearly in a2, though proving this is quite challenging and we have not done so yet.

Note that the side condition of MS5 is crucial, as neither ML
F
nor SuperF are stable under general 𝜂

expansion. Here, “f has function type” should be understood in a restrictive, syntactic sense: for

instance, neither a type variable with function type bounds nor a polymorphic type with a function

type body is a function type as required by the condition. The side condition that x should not

appear under lambdas in S3 can be intuitively understood as follows: lambdas introduce nested

polymorphic scopes, so for x to interact with the corresponding nested polymorphic type variables

without leaking them and causing imprecision, x may need to be parametrically polymorphic, but

we do not infer parametrically polymorphic types for function parameters.

Table 1. Example typeability equivalences demonstrating some stability properties of ML
F
and SuperF. In

each case, the left-hand side is typeable if and only if the right-hand side is, with equivalent types. Rows

labeled with “MS∗” show properties shared by both systems while those labeled with “M∗” show properties

enjoyed by ML
F
but not SuperF and those labeled with “S∗” show properties enjoyed by SuperF but not ML

F
.

Metavariables 𝑠 , 𝑡 , 𝑓 , 𝑔 range over terms while 𝑥 , 𝑦 range over variables.

M1 Let conversion let 𝑥 = 𝑠 in 𝑡 [𝑥 ↦→ 𝑠 ]𝑡 𝑥 occurs in 𝑡

MS2 Redefine application 𝑠 𝑡 (fun 𝑓 𝑥 → 𝑓 𝑥) 𝑠 𝑡

MS3 Reorder arguments 𝑠 𝑡1 𝑡2 (fun 𝑥 𝑦 → 𝑠 𝑦 𝑥) 𝑡2 𝑡1

MS4 Curryfication 𝑠 (𝑡1, 𝑡2) (fun 𝑥 𝑦 → 𝑠 (𝑥, 𝑦)) 𝑡1 𝑡2

MS5 𝜂 conversion 𝑓 fun 𝑥 → 𝑓 𝑥 𝑓 has function type

S1 Tail conversion (if 𝑡 then 𝑓 else 𝑔) 𝑥 if 𝑡 then 𝑓 𝑥 else 𝑔 𝑥

S2 Head conversion 𝑥 (if 𝑠 then 𝑡1 else 𝑡2) if 𝑠 then 𝑥 𝑡1 else 𝑥 𝑡2

S3 Rename argument (fun 𝑥 → 𝑡) 𝑦 [𝑥 ↦→ 𝑦 ]𝑡 𝑥 does not occur

under lambdas in 𝑡
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Core syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntaxCore syntax

Type 𝜏, 𝜎 ::= 𝛼 | 𝜏 → 𝜏 | ∀𝑉 {Σ} . 𝜏 | ⟨𝜏 ⟩ | 𝜏
𝑥

| ⊤
Bound 𝐵 ::= 𝛼 ≤ 𝜏 | 𝜏 ≤ 𝛼

Term 𝑠, 𝑡 ::= 𝑥 | 𝜆𝑥. 𝑡 | 𝑡 𝑡 | ( ) | 𝑡 : 𝜏 | let 𝑥 = 𝑡 in 𝑡

ContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContextsContexts

Typing ctx. Γ ::= 𝜖 | Γ · (𝑥 : 𝜏 ) | Γ · 𝐵
Bounds ctx. Ξ, Σ ::= 𝜖 | Ξ · 𝐵
Variables 𝑉 ,𝑊 ,𝑋 ::= 𝜖 | 𝑉 · 𝛼

Fig. 1. Syntax of types, terms, and contexts.

User-friendly type error messages. A non-obvious advantage of type inference systems like

SuperF based on subtyping (in the school of algebraic subtyping [Dolan 2017]) rather than unification
is that they are easily adapted to track and propagate type provenance information relating all inferred
types to the relevant source code locations from which these types arose. This information can in

turn be used to produce precise and informative type error messages [Bhanuka et al. 2023]. In the

first-class polymorphism setting, one has to additionally take care of the interaction between rigid

variables and skolems, which can leak and cause problems down the line. SuperF is well-equipped

to deal with these problems thanks to its fine-grained tracking of data flows.

3 DECLARATIVE TYPE SYSTEM
We now present the declarative F{≤} type system formally.

The syntax of F{≤} is presented in Figure 1. The only non-standard syntax is that of polymorphic

types ∀𝑉 {Σ}. 𝜏 , which include a set of bounds Σ on the quantified variables𝑉 , and the box 𝜏
𝑥
and

unbox ⟨𝜏⟩ forms, which are explained next. For simplicity of presentation, we do not have special

forms for concrete features such as product and sum types, as their addition is straightforward; the

bare-bone features presented here are sufficient to demonstrate our main ideas.

Notations and Shorthands. Notation 𝐸𝑖
𝑖
denotes a repetition of 𝑖 = 0 to 𝑛 occurrences of 𝐸𝑖 ,

and we omit 𝑖 when it is unambiguous. We also make use of the following notations:

𝑉 ∉ 𝑋 ≜ 𝛼 ∉ 𝑋
𝛼 ∈𝑉

; B(Γ) ≜ 𝐵
𝐵 ∈ Γ

; ⊥ ≜ ∀𝛼. 𝛼 ; 𝜏1 ∨ 𝜏2 ≜
∨

{ 𝜏1, 𝜏2 } ;
∨

{ 𝜏𝑖 𝑖 } ≜

∀𝛼 {𝜏𝑖 ≤ 𝛼
𝑖 } . 𝛼 (𝛼 fresh)

3.1 Declarative Typing Rules
System F{≤} is amostly standard polymorphic type systemwhosemain distinctive features aremulti-
bounded polymorphic types and boxed types. The latter prevents unannotated function parameters

from being used polymorphically, which reflects the limitations of the SuperF algorithm.

The declarative typing rules of F{≤} are presented in Figure 2. Rules T-Unit, T-Var, T-App, T-Subs,

and T-Let are all standard. T-Abs extends the typing context with a boxed type 𝜏
𝑥
for its parameter

𝑥 , which prevents the parameter from being used polymorphically without an annotation, as we

shall see next. T-Unbox allows erasing leftover boxes whose variables are no longer in scope, using

the box erasure syntax 𝜏 \ 𝑥 formally defined and exemplified in Appendix B.1. T-Asc expects the

annotated expression to have type ⟨𝜏⟩, which is a type used to unbox polymorphic types, making

them available for use. Rule T-Forall allows generalizing the type 𝜏 of an arbitrary term 𝑡 .15 There

are two requirements for generalization: first, the free type variables of 𝜏 must not occur in Γ,
which is standard; second, we require that the quantification ∀𝑉 {Σ} be consistent in Γ, written
B(Γ) ⊢ ∀𝑉 {Σ} cons. and read “in context Γ, the quantification of variables 𝑉 with bounds Σ
is consistent”. We define consistency as the existence of a solution to Σ, i.e. a substitution of 𝑉

such that the variable bounds Σ hold in B(Γ). This makes sure no parts of a typing derivation

15
While SuperF only generalizes lambda expressions, it is simpler to present generalization as an orthogonal rule in F{≤} .
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Γ ⊢ 𝑡 : 𝜏
T-Unit

Γ ⊢ ( ) : ⊤

T-Var

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏

T-Abs

Γ ·
(
𝑥 : 𝜏1 𝑥

)
⊢ 𝑡 : 𝜏2

Γ ⊢ 𝜆𝑥. 𝑡 : 𝜏1 → 𝜏2

T-Unbox

Γ ⊢ 𝑡 : 𝜏 𝑥 ∉ dom(Γ)
Γ ⊢ 𝑡 : (𝜏 \ 𝑥)

T-App

Γ ⊢ 𝑡0 : 𝜏1 → 𝜏2 Γ ⊢ 𝑡1 : 𝜏1
Γ ⊢ 𝑡0 𝑡1 : 𝜏2

T-Asc

Γ ⊢ 𝑡 : ⟨𝜏⟩
Γ ⊢ (𝑡 : 𝜏) : 𝜏

T-Subs

Γ ⊢ 𝑡 : 𝜏1 B(Γ) ⊢ 𝜏1 ≤ 𝜏2

Γ ⊢ 𝑡 : 𝜏2

T-Forall

Γ·Σ ⊢ 𝑡 : 𝜏 𝑉 ∉ FV (Γ) B(Γ) ⊢ ∀𝑉 {Σ} cons.
Γ ⊢ 𝑡 : ∀𝑉 {Σ}. 𝜏

T-Let

Γ ⊢ 𝑡1 : 𝜏1 Γ · (𝑥 : 𝜏1) ⊢ 𝑡2 : 𝜏2
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝜏2

Fig. 2. Declarative typing rules.

Ξ ⊢ 𝜏 ≤ 𝜏

S-Top

Ξ ⊢ 𝜏 ≤ ⊤

S-VarRefl

Ξ ⊢ 𝛼 ≤ 𝛼

S-Hyp

𝐵 ∈ Ξ

Ξ ⊢ 𝐵

S-Unbox1

Ξ ⊢ 𝜏 ≤ 𝜎

Ξ ⊢ 𝜏
𝑥
≤ ⟨𝜎⟩

S-Unbox2

Ξ ⊢ 𝜏 ≤ ⟨𝜏⟩

S-CongBound

Ξ ⊢ 𝛼 ≤ 𝜏

Ξ ⊢ 𝛼
𝑥
≤ 𝜏

𝑥

S-Trans

Ξ ⊢ 𝜏0 ≤ 𝜏1
Ξ ⊢ 𝜏1 ≤ 𝜏2

Ξ ⊢ 𝜏0 ≤ 𝜏2

S-Fun

Ξ ⊢ 𝜏0 ≤ 𝜏1
Ξ ⊢ 𝜏2 ≤ 𝜏3

Ξ ⊢ 𝜏1 → 𝜏2 ≤ 𝜏0 → 𝜏3

S-CongFun

Ξ ⊢ 𝜏1 → 𝜏2 𝑥
≤ 𝜏1 → 𝜏2 𝑥

S-Forall-R

𝑉 ∉ FV (𝜏)
Ξ ⊢ ∀𝑉 {Σ} cons.
Ξ ⊢ 𝜏 ≤ ∀𝑉 {Σ}. 𝜏

S-Forall-Cov

Ξ ⊢ ∀𝑉 {Σ} cons.
Ξ · Σ ⊢ 𝜏 ≤ 𝜎

Ξ ⊢ ∀𝑉 {Σ}. 𝜏 ≤ ∀𝑉 {Σ}. 𝜎

S-Forall-L

Ξ ⊢ [𝛼𝑖 ↦→ 𝜏𝑖
𝑖 ]Σ

Ξ ⊢ ∀𝛼𝑖 𝑖 {Σ}. 𝜏 ≤ [𝛼𝑖 ↦→ 𝜏𝑖
𝑖 ]𝜏

S-Forall-Distr

Ξ ⊢ ∀𝑉 {Σ} cons. 𝑉 ∉ FV (𝜏1)
Ξ ⊢ ∀𝑉 {Σ}. 𝜏1 → 𝜏2 ≤ 𝜏1 → ∀𝑉 {Σ}. 𝜏2

Fig. 3. Declarative subtyping rules.

can rely on unsound assumptions. In particular, subtyping assumptions cannot be used to carry

subtyping proofs in the same way as dependent type systems and GADTs can be used to carry

type equality or subtyping proofs [Boruch-Gruszecki et al. 2022; Parreaux et al. 2019; Scherer and

Rémy 2015]. We disallow inconsistent constraints because these could be used to make the type

system accept obviously ill-typed terms. For example, ∀𝛼{Nat ≤ 𝛼 ≤ Int}. 𝛼 → 𝛼 (a shorthand

for ∀𝛼{Nat ≤ 𝛼, 𝛼 ≤ Int}. 𝛼 → 𝛼) is consistent because Nat ≤ Int. It defines an identity type that

works on any type between Nat and Int. On the other hand, ∀𝛼𝛽{⊤ ≤ 𝛼 ≤ 𝛽, 𝛽 ≤ Int}. 𝛼 → 𝛽 is

inconsistent because the (transitive) bounding on 𝛼 and 𝛽 , ⊤ ≤ Int, cannot be derived.

3.2 Declarative Subtyping Rules
The subtyping rules of F{≤} are presented in Figure 3. Rules S-Top, S-VarRefl, S-Trans, and S-Fun

are standard. S-Hyp is used to leverage any type variable bounds present in the typing context.

S-Forall-R introduces polymorphic types in the middle of subtyping. Its premise makes sure that

the added quantified type variables are not in the type being quantified — the idea is that these

type variables will appear later through the combined use of S-Forall-Cov,
16

to widen a type

under quantifiers, and S-Forall-L, to instantiate the type variables of a polymorphic type. This

way, we can use the subtyping rules to rearrange the quantifiers of a type — for example, we can

16
S-Forall-Cov should not be confused with “kernel” rules in the context of explicit polymorphism à la System F<:. Unlike

these systems, F{≤} allows polymorphic subtyping, so that relationships like ∀𝛼 {𝛼 ≤ Int} . 𝜏 ≤ ∀𝛼 {𝛼 ≤ Nat} . 𝜏 do hold.
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derive subtyping relationships such as ∀𝛼𝛾 .∀𝛽{𝛽 ≤ 𝛼}. 𝛼 → 𝛽 → 𝛾 ≤ ∀𝛽𝛼{𝛽 ≤ 𝛼}. 𝛼 → 𝛽 → ⊤.
S-Forall-Distr describes the distributivity of polymorphic types over arrow types; note that

the other direction is already admissible by covariance of function results and uses of S-Forall-

R/S-Forall-Cov/S-Forall-L. All these rules require that the corresponding quantifications be

consistent, to avoid introducing bad types during subtyping. Finally, S-Unbox1 and S-Unbox2 are

the rules that make type ascription work. The latter is used when the ascribed type needs not be

unboxed, and the former is used to open a boxed function parameter type. Note that boxes only

block polymorphic types and they congrue with type variables and functions:
17
S-CongBound

allows upcasting a boxed type variable to one of its bounds and S-CongFun allows pushing a box

into the result type.

Derived lattice types. As hinted previously, we can encode bottom and union types.

Theorem 3.1. ⊥ ≜ ∀𝛼. 𝛼 is the bottom of (≤), i.e., for all 𝜏 wf, we have ⊥ ≤ 𝜏 .

Theorem 3.2. For all 𝜏𝑖 wf
𝑖
where 𝛼 ∉ FV (𝜏𝑖 𝑖 ), the type defined as

∨{ 𝜏𝑖 𝑖 } ≜ ∀𝛼{𝜏𝑖 ≤ 𝛼
𝑖 }. 𝛼 is

the least upper bound of all 𝜏𝑖 𝑖 , i.e.,

• (A)
∨{ 𝜏𝑖 𝑖 } is an upper bound of 𝜏𝑖 𝑖 , meaning that for all 𝑗 we have 𝜏 𝑗 ≤

∨{ 𝜏𝑖 𝑖 }; and
• (B) for all 𝜎 wf such that 𝜎 is an upper bound of 𝜏𝑖 𝑖 , we have

∨{ 𝜏𝑖 𝑖 } ≤ 𝜎 .

Remark 1. By contrast, we cannot encode intersections in the same way as unions, because that

would require the use of existential quantification, which is not supported by F{≤} nor by the

underlying System F𝑐𝑐 . On the other hand, using universal quantification, we can still encode

intersections that occur negatively in some outer type, i.e., if 𝛼 occurs negatively in 𝜏 [𝛼], then
𝜏 [𝜎0 ∧ 𝜎1] can be encoded as ∀𝛼{𝛼 ≤ 𝜎0, 𝛼 ≤ 𝜎1}. 𝜏 [𝛼], where 𝛼 ∉ FV (𝜏) ∪ BV (𝜏 [·]).

Example 3.3. Consider term 𝑡 = 𝜆𝑥. let 𝑦 = (choose 𝑥 (𝜆𝑧. 𝑧) : ∀𝛼. 𝛼 → 𝛼) in (𝑦 0, 𝑦 True)
in context Ξ = (choose : ∀𝛽. 𝛽 → 𝛽 → 𝛽). As expected intuitively, 𝑡 can be typed in F{≤} at
type (∀𝛼. 𝛼 → 𝛼) → (Int, Bool). First note that 𝜆𝑧. 𝑧 can be typed at ∀𝛼. 𝛼 → 𝛼 . We can also

assign to parameter 𝑥 the type ∀𝛼. 𝛼 → 𝛼 , so 𝑥 in the lambda body is typed at ∀𝛼. 𝛼 → 𝛼
𝑥
. We

need to pass arguments of mismatched boxed and unboxed types to choose. This is no problem:

instantiate choose’s type variable 𝛽 to the union ∀𝛼. 𝛼 → 𝛼
𝑥
∨ (∀𝛼. 𝛼 → 𝛼), letting us type the call

choose 𝑥 (𝜆𝑧. 𝑧), which returns the same union type. We can then upcast the result by instantiating
the union type to ⟨∀𝛼. 𝛼 → 𝛼⟩ (since each side is a subtype of it) and use that type in T-Asc.

Example 3.4. Consider again the fooLet function from Section 2.7. Observe that we cannot type g

polymorphically enough because it lacks a type annotation on f to that effect.

3.3 Metatheory
To ensure the soundness of F{≤} , we translate our terms into valid System F𝑐𝑐 terms. System F𝑐𝑐

is a very general declarative type system of so-called implicit coercions (which are essentially

polymorphic subtyping assumptions parameterized with a context), designed by Cretin [2014];

Cretin and Rémy [2012, 2014]. The soundness of our translation is stated in the following theorem:

Theorem 3.5. If ⊢ 𝑡 : 𝜏 , then ⊢𝐹𝑐𝑐 𝑡 : ⟦𝜏⟧ for some System F𝑐𝑐 term 𝑡 .

The definition of type translation ⟦𝜏⟧ and the proof of the above theorem are enclosed in Appendix C.

While the theorem only allows translating terms well-typed in the empty context, a term well-typed

in an arbitrary Γ can be translated after wrapping it in abstractions to capture its free variables.

17
In an extended system with sum and product types, we would define similar rules for pushing boxes inside them.
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Positive type 𝜏+ ::= 𝑎 | 𝜏− → 𝜏+ | ∀𝛼 {Σ} . 𝜏+ | ⊤
Negative type 𝜏− ::= 𝑎 | 𝜏+ → 𝜏− | ∀𝛼. 𝜏− | ⊤

Polarity ± ::= + | −

Bound 𝐵 ::= 𝑎 ≤ 𝜏− | 𝜏+ ≤ 𝑎

Type variable 𝑎,𝑏 ::= 𝛼 | 𝛼𝛼
Constraint 𝐶 ::= 𝜏+ ≤𝜙 𝜏−

Contexts Γ ::= 𝜖 | Γ · (𝑥 : 𝜏+ ) 𝜙 ::= Ξ | Ξ · � 𝜙 Ξ?
::= Ξ | err Δ ::= 𝜖 | Δ · 𝐶

Fig. 4. Polarized syntax of SuperF. Notation: we write 𝜏+ ≤ 𝜏− as a shorthand for 𝜏+ ≤𝜖 𝜏− .

4 TYPE INFERENCE
We now formally describe the SuperF type inference algorithm.

4.1 Restricted Polar Syntax
The syntax of types used by SuperF is presented in Figure 4. We now separate positive types 𝜏+ from
negative types 𝜏− . This is reminiscent of the way that Le Botlan and Rémy disallow polymorphic

types with non-trivial bounds “below arrows” in Shallow ML
F
[Le Botlan and Rémy 2009].

18
We

require that all type variables quantified in negative positions be boundless.

Type variables 𝑎, 𝑏 include rooted variables 𝛼𝛽 . Each 𝛼𝛽 is a distinct, standalone variable with

two components: a name 𝛼 and a root 𝛽 . We have FV (𝛼𝛽 ) = { 𝛼𝛽 }. We use the root as metadata to

ensure type inference terminates (see Section 4.3). As a shorthand, we define 𝛼𝛽𝛾 ≜ 𝛼𝛾 .
19

4.2 Type Inference Rules
The type inference rules of SuperF are presented in Figure 5. Judgment Γ ⊢ 𝑡 : 𝜏+ ⇒ Δ is read

“under context Γ, term 𝑡 can be typed at 𝜏+ by generating constraints Δ”. The constraints in the

output context Δ are not resolved yet and may thus be inconsistent. The subtype constraining
judgment 𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ Σ?

, read “under rigid variables 𝑉 , skolems𝑊 , and assumptions Ξ, the
constraints Δ produce a set of bounds or an error Σ?

” and presented in the next section, is used

to ensure that they are not. Type inference derivations make use of freshness premises. We only

consider well-formed derivations, which are those where ‘𝛼 fresh’ occurs at most once for each 𝛼 .

We write 𝑆1 # 𝑆2 to denote that the sets 𝑆1 and 𝑆2 are disjoint.

Rules I-Top, I-Var, I-Asc and I-Let are straightforward. Importantly, note that the (𝑡 : 𝜏−) term
in rule I-Asc only permits 𝜏− which are syntactically both positive and negative types (i.e., System

F types), since 𝜏− also occurs where the judgment syntactically requires a positive type. Rule I-App

infers the types of both parts 𝑡1 and 𝑡2 of an application 𝑡1 𝑡2, assumes some function type 𝜏+
2
→ 𝛼

for the former (where 𝛼 is a fresh type variable), and finally returns 𝛼 as a result along with the

constraint that the type inferred for 𝑡1 indeed is a subtype of 𝜏+
2
→ 𝛼 . Rule I-Abs is the most

interesting. It type checks the body of a lambda in a context Γ extended by (𝑥 : 𝛼) where 𝛼 is fresh,

which so far is standard. Then, it resolves the inferred constraints Δ, reducing them down to some

bounds Ξ. These comprise bounds on the type variable 𝛼 and on type variables created during

lambda body typing or while resolving the constraints, as well as bounds on outer type variables
(bound by other lambdas). The goal is to generalize the resulting polymorphic type “as much as

possible” without leaking references to locally-quantified type variables into the outer polymorphic

context, as we explained in Section 2.4. The rigid variable set 𝑉 contains all variables which should

18
Since Shallow ML

F
only supports type variable lower bounds (no upper bounds) and since lower bounds are positive

positions, this syntactic restriction is similar to having a polarized type syntax similar to ours.

19
The core syntax only supports type variables 𝑎 of the forms 𝛼 and 𝛼𝛽 . This shorthand defines the meaning of syntax 𝛼𝑎 .

It reflects the fact that the root of the variable stays the same even as a fresh type variable is duplicated into a new type

variable. Without the shorthand, we would need to explicitly destructure 𝑎, which quickly becomes too verbose.
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Γ ⊢ 𝑡 : 𝜏+ ⇒ Δ
I-Top

Γ ⊢ ( ) : ⊤ ⇒ 𝜖

I-Var

Γ (𝑥 ) = 𝜏+

Γ ⊢ 𝑥 : 𝜏+ ⇒ 𝜖

I-Asc

Γ ⊢ 𝑡 : 𝜏+ ⇒ Δ

Γ ⊢ (𝑡 : 𝜏− ) : 𝜏− ⇒ Δ · (𝜏+ ≤ 𝜏− )

I-Let

Γ ⊢ 𝑡1 : 𝜏+1 ⇒ Δ0 Γ · (𝑥 : 𝜏+
1
) ⊢ 𝑡2 : 𝜏+2 ⇒ Δ1

Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝜏
+
2
⇒ Δ0 · Δ1

I-App

𝛼 fresh Γ ⊢ 𝑡1 : 𝜏+1 ⇒ Δ1 Γ ⊢ 𝑡2 : 𝜏+2 ⇒ Δ2

Γ ⊢ 𝑡1 𝑡2 : 𝛼 ⇒ Δ1 · Δ2 · (𝜏+1 ≤ 𝜏+
2
→ 𝛼 )

I-Abs

𝛼 fresh 𝑉 ⊇ FV (Γ) 𝑉 # FV (Δ) \ FV (Γ)
Γ · (𝑥 : 𝛼 ) ⊢ 𝑡 : 𝜏+ ⇒ Δ 𝑉 , 𝜖 ⊢ 𝜖 ≫ Δ ≫ Ξ split𝑉 (uproot (Ξ) ) = (Ξ0, 𝛾, Ξ1 )

Γ ⊢ 𝜆𝑥. 𝑡 : ∀𝛼𝛾 {Ξ1} . 𝛼 → 𝜏+ ⇒ Ξ0

Fig. 5. Type inference rules of SuperF.

not be bound in the abstraction’s type, and which will be bound in some outer context. This includes

all type variables already in Γ, as well as additional fresh variables which are used by extrusion as

approximants (see Section 4.3). To ensure constraining terminates, some type variables in Ξ may

have been ascribed with roots; these ascriptions are unnecessary after subtype constraining is done,

so they can be removed by uproot.

Definition 4.1 (Uprooting). Let uproot (𝛼𝛽 ) ≜ 𝛼 , which naturally extends to 𝜏 and Ξ by congruence.

Definition 4.2 (Context splitting). Let us generalize the set difference operator ‘\’ to contexts. We

split a context between outer bounds (those that mention only outer variables) and the rest using:

split𝑉 (Ξ) ≜ (outer𝑉 (Ξ), FV (Ξ) \𝑉 , inner𝑉 (Ξ))

outer𝑉 (Ξ) ≜ 𝜏+ ≤ 𝜎− (𝜏+≤𝜎− ) ∈Ξ, FV (𝜏+≤𝜎− )⊆𝑉
inner𝑉 (Ξ) ≜ Ξ \ outer𝑉 (Ξ)

4.3 Subtype Constraining
The subtype constraining rules are defined in Figure 6.

Constraining algorithm. We first describe how to interpret the subtype constraining rules as

an algorithm. Our algorithm uses the first variable context both as an input and an output: we input

rigid variables from the context (𝑉 ) and get back approximants from extrusion (𝑉 ′
), combining

both in the judgment as a single context (𝑉 ·𝑉 ′
). The former is an immutable set of rigid variables

while the latter is a supply of rigid variables to be used as approximants in extrusion, formally

represented by the subset premises in I-Abs and C-Forall-R. In an implementation of constraining,

𝑉 ′
would be a mutable set. In a constraining derivation (𝑉 ·𝑉 ′),𝑊 ⊢ Ξ ≫ Δ ≫ Ξ?

, 𝑉 ′
and Ξ?

are

the only output; everything else is an input. The order in which the constraining rules are applied

does not affect the correctness of the corresponding constraining judgments, but our algorithm

always applies the rules in the order given in the figure. (Crucially, C-Forall-R should be applied

before C-Forall-L when possible, as explained in Section 2.5.) In order to algorithmically construct

a derivation of constraining given the inputs (𝑉 ,𝑊 ,Ξ,Δ), we begin by attempting to use the first

rule whose conclusion shape matches the inputs. If the matching rule has constraining premises,

we recurse on them. If deriving any of them results in err, the algorithm backtracks and uses C-Fail

to construct the derivation. Otherwise, we construct a successful derivation. In particular, if the

SRLC (premise of C-Flex-L/C-Flex-R) fails, the output is err.
Acyclicity. For type inference to be sound, the constructed bounds graphs must remain acyclic,

because F𝑐𝑐 does not support “full” recursive types (i.e., ones where recursive occurrences may

appear in bounds). We define the semantic acyclic check for this purpose in Appendix B.2. That

definition does not count two kinds of “harmless” cycles:
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𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ Ξ?
Given rigid variables𝑉 , skolems𝑊 , and assuming bounds Ξ,
the constraints in Δ can be solved by introducing new bounds Ξ? (if Ξ? ≠ err)

C-Empty

𝑉 ,𝑊 ⊢ Ξ ≫ 𝜖 ≫ 𝜖

C-Top

𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝜏 ≤𝜙 ⊤) ≫ Ξ′

C-VarRefl

𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝑎 ≤𝜙 𝑎) ≫ Ξ′

C-Fun

𝑉 ,𝑊 ⊢ Ξ1 ≫ Δ · (𝜏+
3
≤�𝜙 𝜏−

1
) · (𝜏+

2
≤�𝜙 𝜏−

4
) ≫ Ξ2

𝑉 ,𝑊 ⊢ Ξ1 ≫ Δ · (𝜏−
1
→ 𝜏+

2
≤𝜙 𝜏+

3
→ 𝜏−

4
) ≫ Ξ2

C-Skip

(𝜏+ ≤ 𝜏− ) ∈ 𝜙 𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝜏+ ≤𝜙 𝜏− ) ≫ Ξ′

C-Flex-L

𝐵 = (𝑎 ≤ 𝜏− ) root (𝐵) ∉ roots (𝜙 ) acyclic (Ξ·𝐵)

𝑎∉𝑉 ·𝑊 𝑉,𝑊 ⊢ Ξ·𝐵 ≫ Δ · (𝜏+ ≤𝐵 ·𝜙 𝜏− )
(𝜏+≤𝑎) ∈ Ξ

≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝑎 ≤𝜙 𝜏− ) ≫ Ξ′ · 𝐵

C-Flex-R

𝐵 = (𝜏+ ≤ 𝑎) root (𝐵) ∉ roots (𝜙 ) acyclic (Ξ·𝐵)
𝑎∉𝑉 ·𝑊 𝑉,𝑊 ⊢ Ξ·𝐵 ≫ Δ · (𝜏+ ≤𝐵 ·𝜙 𝜏− )

(𝑎≤𝜏− ) ∈ Ξ
≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝜏+ ≤𝜙 𝑎) ≫ Ξ′ · 𝐵

C-Rigid-L

𝑎 ∈ 𝑉 𝑉 ,𝑊 ⊢ 𝜏− ⇝ (Σ, 𝜎− ) 𝑉 ,𝑊 ⊢ Ξ ≫ Δ·Σ ≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝑎 ≤𝜙 𝜏− ) ≫ Ξ′ · (𝑎 ≤ 𝜎− )

C-Rigid-R

𝑎 ∈ 𝑉 𝑉 ,𝑊 ⊢ 𝜏+ ⇝ (Σ, 𝜎+ ) 𝑉 ,𝑊 ⊢ Ξ ≫ Δ·Σ ≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝜏+ ≤𝜙 𝑎) ≫ Ξ′ · (𝜎+ ≤ 𝑎)

C-Forall-R

𝛽 fresh 𝜎− = [𝛼 ↦→ 𝛽𝛼 ]𝜏− 𝑉 ′ ⊇ FV (𝜏+ ≤ 𝜏− ) \𝑊 𝑉 ′
#𝑊 ·𝛽𝛼

𝑉 ′,𝑊 ·𝛽𝛼 ⊢ 𝜖 ≫ 𝜏+ ≤�𝜙 𝜎− ≫ Ξ 𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ · outer𝑉 ′ (Ξ)𝜙 ≫ Ξ1

𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ · (𝜏+ ≤𝜙 ∀𝛼. 𝜏− ) ≫ Ξ1

C-Forall-L

𝛽𝛼 fresh 𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ · ( [𝛼 ↦→ 𝛽𝛼 ]𝐵)𝜙 · ( [𝛼 ↦→ 𝛽𝛼 ]𝜏+ ≤𝜙 𝜏− ) ≫ Ξ1

𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ · (∀𝛼 {𝐵} . 𝜏+ ≤𝜙 𝜏− ) ≫ Ξ1

C-Fail

𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ err

𝑉 ,𝑊 ⊢ 𝜏± ⇝ (Σ, 𝜎± ) Given rigid variables𝑉 and skolems𝑊 , the extrusion of 𝜏± is 𝜎± in Σ.

X-1

FV (𝜏± ) ⊆ 𝑉

𝑉 ,𝑊 ⊢ 𝜏± ⇝ (𝜖, 𝜏± )

X-2

𝐹 = FV (𝜏± ) \ (𝑉 ·𝑊 ) (𝛽𝑎, 𝑎,𝛾𝑎 ) X-fresh {𝛽𝑎, 𝛾𝑎 } ⊆ 𝑉
𝑎∈𝐹

𝜌 = [𝑎− ↦→ 𝛽𝑎, 𝑎+ ↦→ 𝛾𝑎
𝑎∈𝐹

, 𝑏− ↦→ ⊥, 𝑏+ ↦→ ⊤𝑏∈𝑊 ] 𝑊 ⊢ 𝜏± X-ok

𝑉 ,𝑊 ⊢ 𝜏± ⇝ ( (𝛽𝑎 ≤ 𝑎) · (𝑎 ≤ 𝛾𝑎 )
𝑎∈𝐹

, 𝜌±𝜏± )

Fig. 6. Subtype constraining and extrusion rules of SuperF.

• Immediate type variable bound cycles. Indeed, the variables involved in an immediate

cycle are simply equivalent (and could be unified). For instance, the judgment acyclic((𝛼 ≤
𝛽) · (𝛽 ≤ 𝛼)) holds. A type like ∀𝛼𝛽{𝛼 ≤ 𝛽, 𝛽 ≤ 𝛼}. (𝛼 → 𝛽) → (𝛼 → 𝛽) is equivalent to
∀𝛼. (𝛼 → 𝛼) → (𝛼 → 𝛼) and does not contain a ‘real’ or semantic cycle.

• Contravariant cycles like in type ∀𝛼𝛽{𝛼 ≤ 𝛼 → 𝛽}. 𝛼 → 𝛽 , which would be inferred for

term 𝜆𝑥. 𝑥 𝑥 , or equivalently ∀𝛼𝛽. ((𝛼 → 𝛽) ∧ 𝛼) → 𝛽 , which is equivalent and also

syntactically cyclic. Such syntactically cyclic bounds do not actually lead to cyclic reasoning

because they do not induce cycles in the polar traversal of types. To understand this, the

reader will want to refer to the definition of polar traversal in Appendix B.2 as the reach±

dual functions.

Constraint annotations. Constraints have the form 𝜏+ ≤𝜙 𝜏− , where 𝜙 is a set of subtyping

relationships, some possibly guarded by �, which are currently in the process of being constrained.
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This annotation has two uses: First, it allows catching, in C-Skip, constraints that go through

immediate type variable cycles (consider what happens with, e.g., Δ = (𝛼 ≤ 𝛽) · (𝛽 ≤ 𝛼) · (𝛼 ≤ ⊥)).
Note that ∈ does not look past� in 𝜙 , so that C-Skip is prevented from triggering on previously seen

constraints after going through a type constructor (see how C-Fun adds � in its sub-constraints).

Indeed, we do not wish the constraining algorithm to admit recursive types because our declarative

system F{≤} does not support them, but this would happen if we did not guard the constraints in �
while going into type constructors. The effect of� is to prevent C-Skip from picking up constraints

that are being solved at an outer constructor level. Second, it allows the SRLC to catch constraints

applying on roots currently being constrained (as an example, see Appendix A.5). The reason

why 𝜙 cannot be a simple context in the constraining judgment is that constraining is specified

as a “tail-recursive” worklist algorithm, where subderivations do not necessarily correspond to

implied constraints, since they also concern “sibling” constraints in Δ. We also write (𝜏+ ≤ 𝜎−)𝜙 as

a shorthand for 𝜏+ ≤𝜙 𝜎−
.

Constraining rules. Rules C-Empty, C-Top, C-VarRefl, and C-Fun are straightforward. There

are four nontrivial rules for type variables. C-Flex-L and C-Flex-R register new bounds on locally-

flexible type variables and traverse the transitive consequences of these bounds. They perform a

cyclicity check to ensure that cyclic bounds such as 𝛼 ≤ 𝜏 → 𝛼 are rejected and a roots-check to

guarantee termination. Moreover, they augment the sub-constraint annotations with the bound 𝐵

currently being propagated. Finally, they output 𝐵 as part of the result. C-Rigid-L and C-Rigid-R

register extruded bounds on locally-rigid variables. Locally-rigid variables are those bound by outer

lambdas as well as those currently rigidified by an outer application of C-Forall-R; extrusion

ensures that inner variables do not leak through the bounds of outer ones. C-Forall-L instantiates
the type variables and bounds of a polymorphic type found on the left. C-Forall-R skolemizes

a quantified variable found on the right-hand side, as described in Section 2.5. We first compute

the set of free variables 𝑉 ′
involved in the subsequent 𝜏+ ≤ 𝜏− comparison in order to locally

rigidify them. We recurse on that comparison, which gives us the intermediate result Ξ. Finally,
we continue constraining, adding the delayed rigid variable bounds outer𝑉 ′ (Ξ) as new constraints

to solve. We can discard inner𝑉 ′ (Ξ) because these bounds only concern purely local variables

that were created while constraining the skolemized right-hand-side type. For instance, when

constraining ∀𝛼. 𝛼 → 𝛼 ≤ ∀𝛽. 𝛽 → 𝛽 , these inner bounds will contain 𝛼 ′
𝛼 ≤ 𝛽 ′

𝛽
and 𝛽 ′

𝛽
≤ 𝛼 ′

𝛼 , which

are irrelevant outside the subderivation. Note that there is no need to relate 𝑉 ′
and 𝑉 : it is enough

to only have all free type variables in 𝜏+ ≤ 𝜏− . We suspend the constraining of any type variables

other than those that are locally introduced while instantiating nested polymorphic types. In the

second subderivation, we resume constraining the delayed bounds on 𝑉 ′
induced by 𝜏+ ≤ 𝜎−

.

Polar substitutions. Notation 𝜌 = [𝑎− ↦→ 𝜏−, 𝑎+ ↦→ 𝜏+] denotes a polar substitution 𝜌 , which

is a substitution that maps the positive occurrences of a type variable 𝑎 to some negative type 𝜏−

and the negative occurrences of 𝑎 to a possibly different positive type 𝜏+. A polar substitution 𝜌 is

applied as either 𝜌+ (𝜎+) or 𝜌− (𝜎−) depending on the assumed polarity of 𝜎±
. (Since the syntaxes of

positive and negative types overlap, it is not always possible to tell their polarity without context.)

Extrusion. Extrusion is a critical part of polymorphic type inference. Its task is to avoid adding

to a type variable bounds that are “more polymorphic” than the type variable itself. We distinguish

between locally-rigid type variables 𝑉 and skolems𝑊 : the former are less polymorphic than the

current polymorphism level, while the latter are more polymorphic. Skolems are introduced by

C-Forall-R and represent arbitrary future instantiations; less polymorphic types should thus not

be allowed to mention them. Rules C-Rigid-L and C-Rigid-R use extrusion to ensure that the

bounds added to rigid type variables mention neither flexible variables nor skolems. Extrusion
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itself is defined with two rules: X-1 and X-2. The first one simply filters out types that already only

mention rigid variables. In X-2, set 𝐹 is the list of flexible variables to extrude. Flexible variables are

“more polymorphic” than rigid variables, thus flexible variables should not appear in the bounds of

rigid variables. Thankfully, we are allowed to add new bounds to flexible variables, so that we can

create less polymorphic approximants for them to replace their uses in the bounds of rigid variables.

An approximant is related to the original polymorphic type variable through the latter’s bounds.

Concretely, each 𝑎 ∈ 𝐹 is extruded into a lower approximant 𝛽𝑎 (for the negative occurrences of 𝑎)

and an upper approximant 𝛾𝑎 (for the positive occurrences of 𝑎), and we register the bounds 𝛽𝑎 ≤ 𝑎,

𝑎 ≤ 𝛾𝑎 as constraints — these should be viewed as bounds registered on 𝑎, as the approximants

cannot themselves refer to the more polymorphic 𝑎 in their own bounds. [𝑎− ↦→ 𝛽𝑎, 𝑎+ ↦→ 𝛾𝑎]
denotes the corresponding polar substitution. The X-fresh premise denotes that each 𝑎 is always

approximated into the same approximants in the whole constraining derivation and that each

approximant is an otherwise fresh rigid variable. We also use an X-ok premise to ensure that the

bounds of universal types remain consistent after extrusion.
20

In contrast to flexible variables,

skolems are “too polymorphic” and their occurrences can only be approximated to either ⊤ or ⊥,
depending on each occurrence’s polarity. We cannot register approximants for skolems because we

are not allowed to add bounds to skolems, which denote unknown, arbitrary types. Both skolems

and flexible variables are approximated by extrusion such that the rigid variable bound resulting

from C-Rigid-L and C-Rigid-R is at least as constraining as the corresponding type from the

original constraint. For instance, if 𝛼 is rigid and 𝛽 is flexible, then the constraint 𝛼 ≤ ⊤ → 𝛽

results in a bound 𝛼 ≤ ⊤ → 𝛾𝛽 such that 𝛾𝛽 ≤ 𝛽 , where 𝛾𝛽 is the lower approximant of 𝛽 , a special
locally-rigid variable. The approximant is bound at the same polymorphism level as 𝛼 , making it

equally polymorphic as 𝛼 and generalized alongside it, for example in I-Abs (see the description of

I-Abs in Section 4.2). Approximants always end up being bounded by the opposite bounds of their

root variable: the lower approximant of 𝛽 inherits 𝛽’s upper bounds, and the upper approximant of

𝛽 inherits 𝛽’s lower bounds, which results from adding the approximant bounds as constraints to be
solved later (rather than as solved bounds). This ensures that bounding a flexible variable with its

approximants yields consistent bounds, correctly making constraints like 𝛼 → 𝛼 ≤ ∀𝛽. 𝛽 → 𝛽 fail.

Example 4.3. Assuming 𝑓 : (∀𝛼. 𝛼 → 𝛼) → 𝛽 , notice that let 𝑥 = 𝜆𝑦. 𝑦 in 𝑓 (𝜆𝑧. 𝑥 𝑧) can be

typed in SuperF because ∀𝛾 . 𝛾 → 𝛾 is inferred as the type of 𝑥 and subsequently used parametrically

in 𝑥 𝑧. On the other hand, (𝜆𝑥. 𝑓 (𝜆𝑧. 𝑥 𝑧)) (𝜆𝑦. 𝑦) cannot be typed by SuperF because we never

assume parametrically-polymorphic types for parameters. In this case, the type variable 𝛼 assigned

to 𝑧 and the type variable 𝛾 assumed for the result of the 𝑥 𝑧 application are leaked outside the

scope of the 𝜆𝑧 abstraction because they are involved in constraint 𝛽 ≤ 𝛼 → 𝛾 , where 𝛽 is the type

variable assigned to 𝑥 . Because of this constraint, both 𝛼 and 𝛾 need to be extruded to the lower

polymorphic level of 𝛽 . Therefore, 𝜆𝑧. 𝑥 𝑧, whose inferred type is, 𝛼 → 𝛾 , cannot be assigned the

polymorphic type required by 𝑓 . Note also that after 𝜂-contracting 𝜆𝑧. 𝑥 𝑧 to 𝑥 , (𝜆𝑥 . 𝑓 𝑥) (𝜆𝑦. 𝑦)
become typeable in SuperF, which shows that SuperF, like F{≤} , is not stable under 𝜂 expansion.

Termination and the SRLC. The Suspiciously Recursive-Looking Criterion (SRLC) is formally

represented as the two roots premises in C-Flex-L and C-Flex-R. As explained in Section 2.5, the

goal of the SRLC is to ensure that for all inputs, deriving subtype constraining always terminates.

We provide an intuitive proof sketch for the termination theorem in Appendix D.1.

20
This is currently implemented as a rather ad-hoc and incomplete check, given by Definition B.8 in Appendix B.3,which

crudely ensures that polymorphic types will not get inconsistent bounds after extrusion by checking that the skolems being

extruded are not reachable from both the upper bounds and lower bounds of the same type variable. If this check fails, type

inference conservatively fails.



48:22 Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau

Definition 4.4 (Roots). Define root (𝛼𝛽 ) ≜ 𝛽 , root (𝛼) ≜ 𝛼 and, when 𝜏 is not a type variable,

root (𝜏) ≜ [𝑎 ↦→ root (𝑎)𝑎∈FV (𝜏 ) ]𝜏 . In addition, define root (𝜏 ≤ 𝜎) = root (𝜏) ≤ root (𝜎), roots(Ξ) ≜
{root (𝜏 ≤ 𝜎) | (𝜏 ≤ 𝜎) ∈ Ξ}, and roots(Ξ · � 𝜙) ≜ roots(Ξ) ∪ roots(𝜙).

Order of constraining type variables. The fact that C-Flex-L and C-Flex-R are tried before

C-Rigid-L and C-Rigid-R is important to avoid non-termination of the constraining algorithm. In

a previous version of this paper [Parreaux et al. 2024], we mistakenly had the rules in the opposite

order (contrary to what our implementation actually does), which is fixed in this version.

4.4 Distributivity
Distributivity, which is supported by F{≤} , adds flexibility to the type inference system. The basic

idea of using distributivity in type inference is described in the two following rules:

C-Forall-Distr-R

𝛼 ∉ FV (𝜏+
1
)

Ξ1 ≫ Δ · (𝜏+
1
≤𝜙 ∀𝛼. 𝜏+

1
→ 𝜏−

2
) ≫ Ξ2

Ξ1 ≫ Δ · (𝜏+
1
≤𝜙 𝜏+

1
→ ∀𝛼. 𝜏−

2
) ≫ Ξ2

C-Forall-Distr-L

splitFV (𝜏−
1
) (Σ) = (Σ0, _ , Σ1 ) 𝑉0 = 𝑉 ∩ FV (Σ0 ) 𝑉1 = 𝑉 \𝑉0

Ξ1 ≫ Δ · (∀𝑉0{Σ0} . 𝜏−1 → ∀𝑉1{Σ1} . 𝜏+2 ≤𝜙 𝜏−
3
) ≫ Ξ2

Ξ1 ≫ Δ · (∀𝑉 {Σ} . 𝜏−
1
→ 𝜏+

2
≤𝜙 𝜏−

3
) ≫ Ξ2

C-Forall-Distr-R is straightforward: it simply pushes quantifiers out of arrow-type right-hand

sides so as to make skolemization happen as early as possible. C-Forall-Distr-L does the reverse,

pushing quantifiers into arrow-type right-hand sides to delay their instantiation. The latter is more

complicated to specify because it has to deal with splitting multi-bound quantifiers, filtering out

those type variables whose bounds transitively refer to the arrow type’s left-hand side and which

can therefore not be distributed. These rules are straightforwardly generalized to look deeply inside

arrow types, so that they can push quantifiers across multiple nested arrow types; while this is

implemented in our prototype, we omit the formal details here for the sake of brevity.

Limitations. Distributivity reasoning in SuperF is unlike the rest of the type inference system,

which is why we describe it in its own subsection. The application of all other type inference rules

is “uncontroversial”, in the sense that there is no obvious better thing to do in the context where

each rule applies. On the other hand, whether to apply distributivity is a choice, and the choice

is non-obvious: while applying it is usually beneficial (so in practice, we always apply it eagerly

whenever possible), it can occasionally lead to worse type inference outcomes, yielding errors when

a type inference run without distributivity would have succeeded.

For example, consider the following program, which contains a type ascription on subterm a:

test f = let a () = f () in a : ⊤ → (∀ b. b → b)

When typing f (), SuperF creates a fresh type variable 𝛼 and constrains the type of f to be a subtype

of ⊤ → 𝛼 . But because the type variable of f is less polymorphic, that type is extruded into ⊤ → 𝛽𝛼
where 𝛼 ≥ 𝛽𝛼 and 𝛽𝛼 is a fresh type variable at the same (outer) polymorphism level as f. Binding

a is then assigned the generalized function type 𝜏 = ∀𝛼{𝛽𝛼 ≤ 𝛼}.⊤ → 𝛼 . Then, when typing the

ascription in the body of the let binding, a constraint of the form 𝜏 ≤ ⊤ → 𝜎id is generated. SuperF

finds that the left-hand side is a polymorphic type and the right-hand side is an arrow whose

right-hand side is polymorphic, so it has two choices:

• Distribute the latter out (i.e., what the implementation does), resulting in 𝜏 ≤ ∀𝛾 .⊤ → 𝛾 →
𝛾 , which can be skolemized to 𝜏 ≤ ⊤ → 𝛾 sk. → 𝛾 sk., after which the left-hand side is finally

instantiated to ⊤ → 𝛼 ′
where 𝛼 ′ ≥ 𝛽𝛼 . So the constraint results in adding upper bound

⊤ → 𝛾 sk. → 𝛾 sk. to the local flexible variable 𝛼 ′
and propagating that bound to 𝛽𝛼 . But 𝛽𝛼

is a less polymorphic (rigid) type variable, so the bound is extruded to ⊤ → ⊤ → ⊥, an
approximation that may later lead to type errors.
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• Refrain from distributing and instead instantiate the LHS, resulting in ⊤ → 𝛼 ′ ≤ ⊤ → 𝜎id
where 𝛼 ′ ≥ 𝛽𝛼 , which decomposes to 𝛼 ′ ≤ 𝜎id. This results in adding bound 𝜎id to 𝛼

′
and

propagating that bound to 𝛽𝛼 . Notice that this time, no extrusion/avoidance is performed,

because we kept the right-hand side nested polymorphic type intact.

So while distributive reasoning is often useful, there are cases where it is in fact counter-productive.

The “dummy” LHS polymorphic type 𝜏 , which just wraps a plain type variable with a single lower

bound, leads SuperF to distribute the RHS although that is not necessary to solve the constraint

successfully, which in turn leads to type extrusion. To remain predictable, SuperF does not perform

any non-local reasoning on whether performing distributivity is likely to be beneficial or not, and

so it fails in this example. It is an open question whether we can determine when distributivity is

unnecessary, or at least whether we can design a heuristic to avoid with high accuracy the cases

when it is likely harmful.

4.5 Metatheory
The following theorem captures the main correctness criterion for type inference:

Theorem 4.5 (Soundness of Type Inference). If ⊢ 𝑡 : 𝜏+ ⇒ Δ and ⊢ 𝜖 ≫ Δ ≫ Ξ′, then we
have ⊢ 𝑡 : ∀𝑉 {Ξ}. 𝜏+, where Ξ = uproot (Ξ′), and 𝑉 = FV (Ξ).

If type inference infers a type for a closed term, we obtain a typing that can be translated to

System F𝑐𝑐 . We state the accompanying correctness theorem of constraining as follows:

Definition 4.6 (Constraint entailment). With Ξ ⊢ Δ we denote that Ξ ⊢ 𝜏 ≤ 𝜎
(𝜏≤𝜎 ) ∈Δ

.

Theorem 4.7 (Soundness of Constraining). Let 𝑉 , 𝛼 ⊢ 𝜖 ≫ Δ ≫ Σ′ and Σ = uproot (Σ′). Then
for all 𝜏 where FV (𝜏) # 𝛽 and 𝛽 = FV (Σ) \ {𝑉 ·𝛼 } we have

• outer𝑉 (Σ) · inner𝑉 ( [𝛼 ↦→ 𝜏]Σ) ⊢ [𝛼 ↦→ 𝜏]Δ and

• outer𝑉 (Σ) ⊢ ∀𝛽{inner𝑉 ( [𝛼 ↦→ 𝜏]Σ)} cons..

This theorem is only stated for derivations whose assumptions are empty 𝜖 ; this matches how

constraining is used in I-Abs and C-Forall-R. Intuitively, the results Σ of such derivations satisfy

two properties: they entail (or resolve) the input constraints Δ, and their inner flexible variable

bounds inner𝑉 (Σ) are consistent if we assume the outer rigid variable bounds outer𝑉 (Σ). These
properties hold for all skolem replacement [𝛼 ↦→ 𝜏], which is crucially important for C-Forall-R.

We prove Theorems 4.5 and 4.7 in Appendix D.

5 PRACTICAL IMPLEMENTATION OF SUPERF
In this section, we describe MLscriptF, our implementation of SuperF in the existing MLscript

language, and empirically evaluate it on existing test suites and examples from previous work

literature. There are a few inessential differences between MLscriptF and SuperF as formalized in

Section 4, the main ones being that MLscriptF:

• supports type checking recursive definitions, which is not shown in Section 4 but is straight-

forward: we bind the definition’s name to a fresh type variable while typing the definition’s

body and then constrain that type variable to be a supertype of the inferred body type.

We also refrain from generalizing the functions constituting the bodies of these recursive

definitions, as that would lead to polymorphism extrusion and unnecessary failures.
21

21
Another way of understanding this is that we do not support type inference for polymorphically-recursive functions.
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• does not generalize lambdas nested under other lambdas (as in curried functions); doing

so is redundant since distributivity can always be used to push polymorphic types back

inside arrow types when needed. More subtly, we also do not want to incur too much
polymorphism in the presence of recursive terms, as that would degrade the type checker’s

performance.

• uses explicit polymorphism levels to track extrusion and type avoidance, as described in

Section 2.4. This can be seen as an optimization (to minimize the number of type traversals)

that does not affect the functional properties of the system.

• has top-level def bindings with call-by-name semantics which are always generalized.

5.1 Implementation and Validation on MLscript Test Suite
We have implemented our approach in MLscript, a new ML-family language currently in active

development. The MLscript codebase already had a significant amount of regression tests written

for it, amounting to about 8000 lines of test code (not counting comments nor blank lines), which

runs (in parallel) in about 7 seconds on a recent x86 MacBook laptop.
22
Many of these tests produce

statistics, such as the number of calls to the subtype constraining method, to check that the amount

of work remains reasonable. About 70% of these tests were written before implementing first-class

polymorphism (FCP); they test various aspects of the language through small functions constructed

in it. This makes us confident that the addition of our FCP technique to an existing language is

practical and does not introduce performance problems in the form of, for example, pathological

cases that would blow up the time spent type checking a given file.

5.2 Validation on MLF Test Suite
The test suite of ML

F
was graciously provided to us by its authors Le Botlan and Rémy [2009]. It

provided us with a lot of interesting and tricky examples, which SuperF all managed to type check.

Because ML
F
is the previously-unbeaten champion in FCP type inference expressiveness, we are

quite satisfied that we could handle its test suite better than ML
F
itself, which required manual

type annotations in more places.

5.3 Validation on Existing OCaml Code
We have experimentally evaluated our claim that SuperF subsumes ML type inference by porting

the List module implementation from OCaml’s standard library (list.ml), which is about 500 lines

of non-empty, non-comment lines of ML code. Our implementation

• did not require any type annotations;

• inferred relatively concise/compact and readable types;

• inferred types that were often more precise than the OCaml ones, thanks to subtyping; and

• inferred types which were successfully checked against the explicit type signatures provided
in the OCaml standard library’s list.mli interface file.

These claims are substantiated in supplementary material (see the file OCamlList.md).

5.4 Evaluation on Examples from The Literature
Table 2 presents all the examples that we could gather from previous work on FCP. (Most of them

were already summarized by Emrich et al. [2020] for their paper on FreezeML.) We observe that

22
All running times in this section include the time to actually run the tests (which is done via JavaScript code generation

and executed through nodejs), as MLscript is a real programming language and not just a type checker.
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Table 2. Typeability comparisons in different systems. ‘ ’ means the term type checks; ‘ *’ means its inferred

type is not as general as it could be (assuming SuperF subtyping); ‘G#’ means the term type checks only after

adding some type-free polymorphism annotations (e.g., FreezeML’s freezing annotations); ‘#’ means a type

error is raised. SuperF−D is SuperF without distributivity, while SuperF has distributivity.
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A. Polymorphic instantiation

A1 𝜆x. 𝜆y. y       *   
A2 choose id   *  *    *   
A3 choose nil ids         
A4 𝜆x. x x # # # # # #   
A5 id auto         
A6 id auto'       *   
A7 choose id auto  #       
A8 choose id auto' # # # # # #   
A9 f (choose id) ids   #  # G#   

where 𝑓 : ∀𝛼.(𝛼 → 𝛼 ) → List 𝛼 → 𝛼

A10 poly id      G#   
A11 poly (𝜆x. x)      G#   
A12 id poly (𝜆x. x)      G#   
B. Inference with polymorphic arguments

B1 𝜆f. (f 1, f True) # # # # # #   
B2 𝜆xs. poly (head xs)  # # # # #   
C. Functions on polymorphic lists

C1 length ids         
C2 tail ids         
C3 head ids         
C4 single id    *    *   
C5 cons id ids      G#   
C6 cons (𝜆x. x) ids      G#   
C7 append (single inc) (single id)         
C8 g (single id) ids   #  # G#   

where 𝑔 : ∀𝛼.List 𝛼 → List 𝛼 → 𝛼

C9 map poly (single id)   #  # G#   
C10 map head (single ids)         
D. Application functions

D1 app poly id      G#   
D2 revapp id poly      G#   
D3 runST argST      G#   
D4 app runST argST      G#   
D5 revapp argST runST      G#   
E. 𝜂-expansion

E1 k h l  # # # # #   
E2 k (𝜆x. h x) l      G#   

where 𝑘 : ∀𝛼.𝛼 → List 𝛼 → 𝛼

ℎ : Int → ∀𝛼.𝛼 → 𝛼

𝑙 : List (∀𝛼.Int → 𝛼 → 𝛼 )
E3 r (𝜆x. 𝜆y. y)  # #  # G#   

where 𝑟 : (∀𝛼.𝛼 → ∀𝛽.𝛽 → 𝛽 ) → Int

F. FreezeML paper additions

F5 auto id      G#   
F6 cons (head ids) ids  #       
F7 head ids 3      G#   
F8 choose (head ids)         
F9 let f = revapp id in f poly  # #  # G#   
F10 choose id (𝜆x. auto' x)  # # # # #   

SuperF seamlessly handles all these previous examples without the need for any type or other

polymorphism/freezing annotations, with or without distributivity.
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head : ∀𝛼. List 𝛼 → 𝛼 id : ∀𝛼. 𝛼 → 𝛼 map : ∀𝛼 𝛽. (𝛼 → 𝛽 ) → List 𝛼 → List 𝛽

tail : ∀𝛼. List 𝛼 → List 𝛼 ids : List (∀𝛼. 𝛼 → 𝛼 ) app : ∀𝛼 𝛽. (𝛼 → 𝛽 ) → 𝛼 → 𝛽

nil : ∀𝛼. List 𝛼 inc : Int → Int revapp : ∀𝛼 𝛽. 𝛼 → (𝛼 → 𝛽 ) → 𝛽

cons : ∀𝛼. 𝛼 → List 𝛼 → List 𝛼 choose : ∀𝛼. 𝛼 → 𝛼 → 𝛼 runST : ∀𝛼. (∀𝑠. ST 𝑠 𝛼 ) → 𝛼

single : ∀𝛼. 𝛼 → List 𝛼 poly : (∀𝛼. 𝛼 → 𝛼 ) → (Int, Bool) argST : ∀𝑠. ST 𝑠 Int
append : ∀𝛼. List 𝛼 → List 𝛼 → List 𝛼 fst : ∀𝛼 𝛽. (𝛼, 𝛽 ) → 𝛼 zero : ChurchInt

length : ∀𝛼. List 𝛼 → Int auto : (∀𝛼. 𝛼 → 𝛼 ) → (∀𝛼. 𝛼 → 𝛼 ) succ : ChurchInt → ChurchInt

const : ∀𝛼 𝛽. 𝛼 → 𝛽 → 𝛼 auto
′
: ∀𝛽.(∀𝛼. 𝛼 → 𝛼 ) → (𝛽 → 𝛽 ) ChurchInt = ∀𝛼. (𝛼 → 𝛼 ) → (𝛼 → 𝛼 )

z = 𝜆𝑓 . 𝜆𝑥 . 𝑥 s = 𝜆𝑛. 𝜆𝑓 . 𝜆𝑥 . 𝑓 (𝑛 𝑓 𝑥 ) n3 = s (s (s z) )

Fig. 7. Type signatures and definitions for terms used in Table 2 and Table 3.

Table 3. Typeability comparisons (continued). Legends are in Table 2; ‘×’ means non-termination or crash.
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G. SuperF additions (this paper)

G1A z : ChurchInt         
G2 s  *  *  *  *  *   *  
G2A s : ChurchInt → ChurchInt # # # # #  #  
G3A n3 : ChurchInt     #    
G4A (fun () → n3 n3) : () → ChurchInt   #  # # #  
G5 fst (fst (fst (n3 (𝜆x. (x, 0)) 1))) # # # # # #   
G6 (succ (succ zero)) (succ (succ zero))     #    
G7 (s (s z)) (s (s z))     #    
G8 let rec to_church n = if n == 0 then z else else s (to_church (n - 1))  *  *  *  * #   *  
G8A to_church : Int → ChurchInt # # # # #  #  
G9 let rec i x = if True then x else i i x # # # # × # # #
G10 (𝜆x. x x) (𝜆x. x x) # # # # # # # #
G11 auto (auto' id)      # #  
G12 (𝜆y. let tmp = y id in y const) (𝜆x. x x) # # # × # #   
G13 (𝜆k. (k (𝜆x. x), k (𝜆x. single x))) (𝜆f. (f 1, f True)) # # # # # #   
G14 (𝜆f. let a() = f id in (a() : Int → (∀'b. 'b → 'b))) (const (const id))  # # # # #  #

5.5 New Examples
Because the examples presented in previous work were too simple to truly test the limits of SuperF,

we created a number of more intricate expressions in Table 3, several of which come directly

from the test suite of ML
F
. Note that SuperF does not use bidirectional type checking, so for an

annotated term t : T to type check, t itself must type check. Therefore, the annotation in, e.g., s :

ChurchInt → ChurchInt does not help type inference — it only checks that the type inferred for s can

be instantiated to the less precise type ChurchInt → ChurchInt.

SuperF cannot type check examples G2A, G4A, G8A, and G11 without distributivity. For example,

in G11, distributivity pushes a quantifier into the result type of auto', making it polymorphic, so

it can be passed to auto. G4A is interesting because it is type checked successfully by MLF, FPH,

and HML but not by SuperF without distributivity. This is due to SuperF only generalizing lambda

abstractions, whereas these other systems generalize even applications (see also Section 2.7).

G14 is a contrived examplemanually constructed to demonstrate that distributivity in conjunction

with subtype extrusion and type annotations sometimes leads to worse outcomes: SuperF distributes

Int → (∀'b. 'b → 'b) into ∀'b. Int → ( 'b → 'b), leading to the premature skolemization of 'b and to

more extrusion than without distributing.

The definition in G9 uses itself recursively at different types and therefore needs polymorphic

recursion, for which SuperF would require a type annotation — adding the explicit type signature
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‘i : ∀ a. a → a’ makes it type check. Interestingly, it is alternatively possible to type check this

example using recursive types, which our implementation also supports (behind a feature flag).

6 RELATEDWORK
We now discuss some related work.

6.1 First-Class Polymorphism in ML-style languages
First-class polymorphism has been studied extensively in the setting of ML-style languages, where

polymorphism is normally implicit.

Boxed polymorphism and related systems. Poly-ML [Garrigue and Rémy 1997] and its prede-

cessors [Läufer and Odersky 1994; O’Toole and Gifford 1989; Rémy 1994] augment ML type schemes

with boxed polytypes. In Poly-ML, boxed polytypes wrap type schemes into simple ML types using

the syntax [𝜎], preventing implicit instantiation. The introduction form of boxed polytypes requires

explicit annotation of the type scheme ([𝑡 : 𝜎]). Boxed polytypes must be eliminated explicitly at

the use site with the syntax ⟨𝑡⟩ to instantiate the type scheme. The approach never infers first-

class-polymorphic types, but only propagate the polytypes provided by the user. However, this

juxtaposition of ML-style type inference and System F-style type checking means that the order of

the terms being processed can affect the result of type inference, since extra type information may

be obtained from type inference. When a let-binding or an application is typed, it is possible that

one of the two subterms must be typed before the other for the other to be typeable. Since there is

no way to tell in advance if a type inference path would succeed, the algorithm must backtrack

and explore the other paths when it fails. The number of such paths is usually exponential in the

size of the program, leading to combinatorial explosion. For example, while typing 𝜆𝑓 . ⟨𝑓 ⟩ (𝑔 𝑓 ),
where 𝑔 = 𝜆𝑓 : [∀𝛼. 𝛼 → 𝛼] . ⟨𝑓 ⟩ 𝑓 , typing the former ⟨𝑓 ⟩ would fail since the type of 𝑓 is a type

variable, not a boxed polytype. However, typing the argument (𝑔 𝑓 ) first would force the type

of 𝑓 to be [∀𝛼. 𝛼 → 𝛼], which then allows ⟨𝑓 ⟩ to be typed. To address this, the authors chose to
reject programs where any of the paths may fail. This rejects a wide range of otherwise typeable

programs and requires explicit type annotations on lambda parameters. The authors claim to have

achieved complete type inference by incorporating the notion of “labels” into the declarative system,

where each boxed polytype is associated with a label. A user-provided type annotation implicitly

quantifies over all labels. A boxed polytype can only be opened when its label does not occur

anywhere else, which implies that it must originate from an annotation. In SuperF, the unannotated

version of 𝑔 can be typed as 𝜆𝑓 . 𝑓 𝑓 : ∀𝛼𝛽{𝛼 ≤ 𝛼 → 𝛽}. 𝛼 → 𝛽 , and the unannotated version of

the problematic term above as 𝜆𝑓 . 𝑓 (𝑔 𝑓 ) : ∀𝛼𝛽𝛾{𝛼 ≤ 𝛼 → 𝛽, 𝛼 ≤ 𝛽 → 𝛾}. 𝛼 → 𝛾 , which is a

subtype of the only annotated version typeable in Poly-ML, 𝜆𝑓 : [∀𝛼. 𝛼 → 𝛼] . ⟨𝑓 ⟩ (𝑔 𝑓 ), with type

[∀𝛼. 𝛼 → 𝛼] → [∀𝛼. 𝛼 → 𝛼].

MLF. Le Botlan and Rémy [2003] introduced ML
F
, which has been the “undefeated champion”

of type inference for first-class polymorphism until now. ML
F
uses a more flexible type language

than System F in that it includes bounded quantification, whereby types are ordered based on

their polymorphism “power”, akin to our subtyping relation. ML
F
takes inspiration from boxed

polymorphism and attempts to alleviate the verbose introduction and elimination of boxes. This

is achieved by introducing two forms of type variable bindings, namely rigid bindings (𝛼 ⇒ 𝜎)

and flexible bindings (𝛼 ≥ 𝜎), which can appear in a context called the “prefix” and in binders for

bounded polymorphism. The usual subsumption relation is split into an abstraction relation <− and

an instance relation ⊑. The <− relation is used to implicitly abstract polytypes as type variables

with a rigid binding in the prefix, which allows the polymorphism to propagate by preventing

implicit instantiation (cf. boxed polymorphism in Poly-ML). For example, consider the function
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𝑎 = 𝜆𝑧. 𝜔† 𝑧, where 𝜔† = 𝜆(𝑥 : 𝜎id) 𝑥 𝑥 . It is clear that 𝑧 must have a polymorphic type, but it is

not used polymorphically in 𝑎, its polymorphism is merely passed to 𝜔†
. Abstracting 𝜎id as 𝛼 in

the prefix allows the body of 𝑎 to be typed by (𝛼 ⇒ 𝜎id) 𝑧 : 𝛼 ⊢ 𝜔† 𝑧 : 𝛼 without ever guessing

polymorphism. Then 𝑎 can be typed as ∀(𝛼 ⇒ 𝜎id) 𝛼 → 𝛼 . Moreover, as seen in the type of 𝑎,

rigid bindings keep track of sharing, which is crucial to type inference as it allows instantiation

to be delayed. To reveal and instantiate an abstraction, the programmer must explicitly provide a

type annotation that corresponds to the rigid binding. Contrary to the reversible <− abstraction,

the instance relation ⊑ is used to irreversibly instantiate a type scheme, subject to the flexible

bindings. Intuitively, rigid bindings represent the types of terms that must be polymorphic, while

flexible bindings represent the types that may be instantiated. For example, the principal type of

𝜔†
is ∀(𝛼 ⇒ 𝜎id, 𝛼

′ ≥ 𝜎id) 𝛼 → 𝛼 ′
, where the parameter type 𝛼 must be polymorphic since it

is used polymorphically in the body, but the result type 𝛼 ′
may be instantiated to any instance

of 𝜎id. In ML
F
, lambda parameters that are used polymorphically require annotations, since type

inference does not guess second-order types. SuperF does not guess second-order polymorphic

types either, but uses multiple bounds (which can be represented as intersections) to accommodate

for finitarily-polymorphic uses of unannotated parameters.

Le Botlan and Rémy note that ML
F
infers principal types for types which are typeable in

their system, but that typing some terms may require type annotations — and in fact, different

annotations may lead to incomparable principal types. For example, they remark that 𝜆𝑥. 𝑥 𝑥 is

not typeable in ML
F
while both 𝜆(𝑥 : ∀𝛼.𝛼) 𝑥 𝑥 and 𝜆(𝑥 : ∀𝛼.𝛼 → 𝛼) 𝑥 𝑥 are, but neither has a

more general type (their types are unrelated). On the other hand, 𝜆𝑥. 𝑥 𝑥 is typeable in SuperF,

inferring type ∀𝛼𝛽. ((𝛼 → 𝛽) ∧ 𝛼) → 𝛽 (i.e., ∀𝛼𝛽𝛾{𝛾 ≤ 𝛼 → 𝛽, 𝛾 ≤ 𝛼}. 𝛾 → 𝛽 or equivalently

∀𝛼𝛽{𝛼 ≤ 𝛼 → 𝛽}. 𝛼 → 𝛽), which is a subtype of both ML
F
types mentioned above.

The bindings in prefixes and quantifiers in ML
F
resemble constrained types in SuperF. However, a

few distinctive features in SuperF contribute to its greater expressiveness over ML
F
. Firstly, function

types are contravariant in their parameter types in SuperF, whereas they are invariant in their

parameter types in ML
F
. Contravariance in the subtyping relation is crucial to type inference. For

example, consider the two terms 𝑓 = 𝜆(𝑥 : 𝜎id → 𝜎auto). 𝑥 and 𝑔 = 𝜆(𝑥 : 𝜎auto). 𝑖𝑑 , where 𝑖𝑑 = 𝜆𝑥 . 𝑥 ,

𝜎id = ∀𝛼. 𝛼 → 𝛼 and 𝜎auto = 𝜎id → 𝜎id. The application 𝑓 𝑔 is typeable in a straightforward manner

in SuperF thanks to subtyping. The same term is, however, not typeable in ML
F
. Secondly, as a

result of the restriction to monotypes under type constructors, ML
F
requires the introduction

of “administrative” type variable bindings even when these bindings are used once and do not

represent any shared information. Let us consider the following example. The inferred type of

𝑖𝑑 is the expected 𝜎id = ∀𝛼. 𝛼 → 𝛼 in both SuperF and ML
F
. One may wish to instantiate 𝛼 to

some concrete type, say 𝜎id. In SuperF, 𝑖𝑑 can be typed as 𝜎id → 𝜎id, which is 𝛼 → 𝛼 with 𝜎id
substituted for 𝛼 . However, in ML

F
, since only monotypes are allowed under an arrow, the type

scheme 𝜎id must be abstracted in a binding as ∀(𝛼 ⇒ 𝜎id) 𝛼 → 𝛼 . One may expect 𝑖𝑑 to also

be typeable as ∀(𝛼 ⇒ 𝜎id) ∀(𝛽 ⇒ 𝜎id) 𝛼 → 𝛽 , or even the more general 𝜎id → 𝜎id, which is a

shorthand for ∀(𝛼 ⇒ 𝜎id) ∀(𝛼 ′ ≥ 𝜎id) 𝛼 → 𝛼 ′
. This is, however, not the case as ML

F
keeps track

of sharing even after the 𝛼 ≥ ⊥ binding has been instantiated and rigidified to 𝛼 ⇒ 𝜎id. The

arguably counterintuitive pseudo-subtyping relation in ML
F
imposes some burden on users, and

may catch them by surprise. Finally, SuperF allows multiple bounds on the same variable, including

multiple upper bounds and multiple lower bounds, whereas ML
F
only allows one lower or rigid

bound on a variable. Supporting multiple bounds for each type variable allows us to effectively

infer intersection types in negative positions (such as function parameters) and union types in

positive positions (such as function results).
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Variations on MLF. Rémy and Yakobowski [2007] proposed a graphical representation of ML
F

types that allows for an efficient unification algorithm. Le Botlan and Rémy further investigated

a “shallow” version of ML
F
where type annotations and rigid bounds are restricted to System F

types [Le Botlan and Rémy 2009] which, while less expressive, still has interesting properties, and

more importantly admits simpler semantics and metatheory. Finally, Rémy and Yakobowski [2012]

designed xML
F
, a “Church-style” intermediate language for MLF which would be amenable to

intrinsically-typed compilation as in compilers like the Glasgow Haskell Compiler (GHC).

Restrictions on MLF. HML [Leijen 2009] is a simplification of ML
F
restricting type variable

bindings to flexible bounds (discarding rigid bounds). HML retains the expressiveness of by requiring

annotations on polymorphic function arguments, which is marginally higher than the requirement

in ML
F
. The author believes that this requirement to programmers is justified by the simpler

types they work with. Like ML
F
, HML is robust against most program transformations, including

abstracting and inlining let-bindings, and abstraction with higher-order functions (most notably

with app and revapp). An exception to this is 𝜂-expansion, which may require a type annotation on

a polymorphic parameter type. The author believes that robustness is an important property as it

forms the basis of equational reasoning. SuperF enjoys even more robustness thanks to there being

no requirement to annotate polymorphic parameters, thanks to constrained types, which makes

𝜂-expansion robust as well as the other transformations.

HMF [Leijen 2008] is another, more drastic restriction of ML
F
discarding flexible bindings,

i.e., a simple extension of the Hindley-Milner type system with System F types, supporting type

inference through a straightforward extension of algorithm W. The author believes that a simple

type system is beneficial in that it eases the burden on programmers in understanding the types,

and in simplifying the metatheory and the implementation of type inference. To achieve this, HMF

always predicatively instantiates ambiguous applications eagerly. Annotations are thus required

when impredicative instantiation is needed, in addition to the usual annotation requirement on

function parameters that are used polymorphically. This has the adverse effect of introducing a

dependency of typability on the order of parameter, which is alleviated in some cases by considering

application chains all at once, instead of treating each of their constituent applications individually.

This system has the major drawbacks that type inference is less stable than in ML
F
-style systems.

FPH [Vytiniotis et al. 2008] is yet another proposed type inference system which uses System

F types but can still be understood as a restriction of ML
F
. QML [Russo and Vytiniotis 2009]

extends ML types with universal and existential quantified types, which co-exist with type schemes.

While type schemes are implicitly introduced by let-bindings and eliminated when applications

happen, quantified types are explicitly introduced and eliminated by type annotations. For example,

let 𝑖𝑑 = 𝜆𝑥 . 𝑥 in 𝑖𝑑 will be typed as a type scheme Π(𝛼) (𝛼 → 𝛼). To have a first-class-polymorphic

type, an explicit type annotation is necessary as let pid = {∀𝛼. 𝛼 → 𝛼} 𝑖𝑑 in pid, here pid has

the type Π(𝜖) (∀𝛼. 𝛼 → 𝛼). On the other hand, it is also necessary to provide an explicit type

annotation to eliminate this quantified type as (pid {∀𝛼. 𝛼 → 𝛼}) 3. Like many systems, QML also

does not guess polymorphic types for function parameters. Parameters can only be polymorphic

when they are annotated with quantified types. As an example, let poly = 𝜆𝑓 . let 𝑦 = 𝑓 {∀𝛼. 𝛼 →
𝛼} in (𝑦 1, 𝑦 true) in poly has the type (∀𝛼. 𝛼 → 𝛼) → (𝐼𝑛𝑡, 𝐵𝑜𝑜𝑙). The treatment of existentially-

quantified types is similar, requiring explicit type annotations to introduce and eliminate these

types.

FreezeML. FreezeML [Emrich et al. 2020, 2022] introduces a “freeze” operator to explicitly disable

instantiation. Otherwise, like in ML, polymorphic types are implicitly instantiated. For example,

single 𝑖𝑑 where single : ∀𝑎. 𝑎 → List 𝑎 and 𝑖𝑑 : ∀𝑎. 𝑎 → 𝑎 is typed as List (𝑎 → 𝑎) since 𝑖𝑑’s type
is implicitly instantiated. In contrast, with 𝑖𝑑 frozen using syntax ⌈𝑖𝑑⌉, then single ⌈𝑖𝑑⌉ is typed
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as List (∀𝑎. 𝑎 → 𝑎). With the frozen operator and some macro expansions, users may explicitly

control whether the types of terms are generalized or instantiated. FreezeML’s type inference

algorithm extends the traditional algorithm W and achieves principal type inference of first-class

polymorphism. However, it requires a significant number of annotations for polymorphic code: users

need to manually control the explicit freezing, instantiation, and generalization of polymorphic

types, in addition to the need of annotating the full type of polymorphic function parameters, which

altogether amounts to a significant burden for programmers. It seems SuperF is more general than

FreezeML — indeed, we conjecture thatmost (if not all) FreezeML programs can be typed by SuperF

even after stripping all their freezing and instantiation annotations. For example, in FreezeML,

the example E2 can only be typed with two explicit operators (as 𝑘 $(𝜆𝑥 .(ℎ 𝑥))@ 𝑙) while SuperF

requires no annotations at all. Table 2 in appendix shows that such annotations are required for

the majority of examples from the existing literature, although these examples are all quite simple.

FreezeML annotations, while more concise than having to specify full types, are arguably not very

intuitive. The E2 annotations above are needed to explicitly adapt the quantification of ℎ from

𝐼𝑛𝑡 → ∀𝑎. 𝑎 → 𝑎 to ∀𝑎. 𝐼𝑛𝑡 → 𝑎 → 𝑎, so it becomes compatible with a type that only happens to

flow into the same result variable. Users are effectively reduced to retyping by 𝜂 expansion and

adding freezing/instantiation in a way that may seem quite obscure to whoever reads the code

afterward. Furthermore, FreezeML does not support reordering quantifiers implicitly. For example,

∀𝛼 𝛽. 𝛼 → 𝛽 and ∀𝛼 𝛽 𝛾 . 𝛼 → 𝛽 and ∀𝛽 𝛼. 𝛼 → 𝛽 are all considered distinct, incompatible types

[Emrich et al. 2022]. One may use explicit generalization to restore a canonical order of quantifiers,

but this still results in a quite inflexible system where many valid programs fail due to syntactic

details, rather than semantic ones. While FreezeML can type the foo examples from the introduction

using various sets of annotations, it cannot assign a principal type to it, so there is no best set of

annotations to use for that example. In particular, no set of annotations can let one type check both

foo (fun x → x) and foo (fun x → Some x) with the expected result types, whereas our system type

checks both “out of the box”, without any annotations.

First-class polymorphism for Haskell. Boxy types [Vytiniotis et al. 2006] were used to im-

plement GHC’s original ImpredicativeTypes extension. The system incorporates bidirectional type

inference by distinguishing types to be inferred and types to be checked using boxes. Boxy-types

retains the idea of not guessing polymorphic types, but refines it by inferring polytypes for function

arguments with locally known type information. The system as presented was very fragile against

local transformations and thus difficult to use in practice, which is why it was eventually replaced

by the more predictable Quick Look. For example, typability is not preserved under 𝜂-expansion.

Guarded instantiation (GI) [Serrano et al. 2018] focuses on simplicity and tries to balance between

complexity, expressiveness, and annotation burden. In GI, polymorphic instantiation only happens

on guarded type variables. The guardedness is decided in function applications by examining

whether the type variable is guarded by type constructors in any parameter types, for example

both type variables in ∀𝑎 𝑏. (𝑎 → 𝑏) → List 𝑎 → List 𝑏 are guarded but neither in ∀𝑎 𝑏. 𝑎 → 𝑏 is.

Unguarded type variables may only be instantiated by monomorphic types or polymorphic types

without top-level quantifiers, such as Int → ∀𝑎.𝑎. Note that only the types of those parameters that

are given corresponding arguments are considered. As an example, in append 𝑖𝑑 where append :

∀𝑎. 𝑎 → List 𝑎 → List 𝑎, though 𝑎 is guarded in the second parameter type, in this partial application

only the first parameter type is considered for the guardedness, so 𝑎 cannot be polymorphicly

instantiated. In append 𝑖𝑑 𝑖𝑑𝑠 , the second argument is now given so 𝑎 is considered guarded and

therefore may be instantiated polymorphicly. Type instantiation in GI takes no account of the

context of the call and each argument in a call is treated independently between different function
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applications. As usual, for lambdas, GI will not guess polymorphic parameters. Parameters may

only be polymorphic when annotated.

Quick Look [Serrano et al. 2020] is a type inference system for Haskell that further simplifies the

first-class-polymorphic type system. The authors claim that it is eminently practical for Haskell

programming. However, it is quite inexpressive when compared to most systems mentioned

previously, and in particulat it removes all forms of subtyping (so-called “deep subsumption”) from

Haskell, needing manual 𝜂 expansions instead even to just reorder or distribute quantifiers. Since

the official support of Quick Look in GHC around 2021, users of GHC have already complained

about its inflexibility, as it makes them manually eta-expand code in many places where they did

not need to before and where it appears “clear” that the compiler should be able to figure things

out.
23

Predicative higher-rank polymorphic type inference. Type inference can become much easier

if one is to abandon the impredicative setting of first-class polymorphic type inference, i.e., if one

separates the syntax of types between polymorphic and monomorphic types, only allowing the

latter to be substituted for type variables. Odersky and Läufer [1996] demonstrated an example of

this approach in their seminal work on type inference for higher-rank polymorphism. Many works

have followed up on the idea, bringing various improvements [Dunfield and Krishnaswami 2013,

2019; Peyton Jones et al. 2007; Vytiniotis et al. 2006; Xie 2021; Xie and Oliveira 2018; Xue and Oliveira

2021] many of which relying on the idea of bidirectional typing [Dunfield and Krishnaswami 2021;

Dunfield and Pfenning 2004].

Stability considerations. Le Botlan and Rémy [2009] originally investigated the stability of

first-class polymorphic type inference in the context of ML
F
. As Table 1 shows, we support most of

their stability guarantees and some more. Bottu and Eisenberg [2021] recently tried to characterize

such a notion of stability for Haskell. They developed 6 “similarity” properties and showed that

in the context of GHC, all combinations of shallow or deep and eager or lazy instantiation break

some of these similarities, though the lazy and shallow combination breaks the least. Of these

similarities, one does not hold in SuperF due to the restricted language of annotations (similarity 2,

about inferred types being usable as type signatures). The rest of these similarities trivially pass

the stability criterion in SuperF, although SuperF is deep (and not shallow) as well as being lazy.
24

6.2 Type Inference for System F
Boehm [1985] and Pfenning [1988] proposed partial type inference procedures based on second-

order unification which is undecidable but has a practical semi-algorithm due to Huet [1975]. Their

systems required placeholder annotations (without type information) for all type abstractions and

type applications, which they called a partial type inference approach. Mitchell [1988] introduced the

now-usual notion of type containment for System F, a notion of subtyping involving polymorphic

types (what was known as subtyping at the time did not include polymorphic subtyping). He

showed how to make System F complete with respect to 𝜂 expansion in System F𝜂 , meaning all

terms that System F can type after 𝜂 expanding some of their subterms are typeable in System

F𝜂 through subsumption. Type inference for System F𝜂 was later shown undecidable, due to an

undecidable type containment relation Wells [1996]. Rémy [2005] proposed a simpler partial type

inference system for System F based on a similar notion of type containment, but the approach

was not very satisfactory, pushing Rémy to investigate the more promising appraoch of ML
F
.

23
For example, see the following highly-upvoted reddit comment thread entitled “Was simplified subsumption worth it for

industry Haskell programmers?” (accessed June 2022): https://redd.it/ujpzx3.

24
The reason Bottu and Eisenberg feel the need to be shallow in their approach rather than deep can be attributed to the

presence of Haskell-specific features in their system, such as explicit type applications, and to their lack of subtyping.

https://redd.it/ujpzx3
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In parallel, there has been much work on systems like F<: which combined first-class polymor-

phism, type variable bounds, and subtyping, and even also sometimes included intersections [Pierce

1997]. However, these systems usually assume explicit polymorphism, whereby polymorphic types

have to be introduced and eliminated in terms, and where subtyping between them is “structural,”

i.e., there are no relationships between types such as ∀ a. a → a and Int → Int. This is by contrast

to the traditional ML approach to polymorphism, which is implicit.

In this paper, we follow the ML tradition of implicit polymorphism, which is more appropriate

as a foundation for generalizing the ML type system to first-class polymorphism. More specifically,

we follow an approach closely inspired by algebraic subtyping [Dolan 2017], and its reformulation

as Simple-sub [Parreaux 2020], including its novel approach to nested polymorphism with extrusion

in the presence of subtyping.

6.3 Polyvariant Flow Analysis
Palsberg and Pavlopoulou [1998] showed that polyvariant analysis (also known as context-sensitive
analysis) can be related formally to a subtyping system with union, intersection, and recursive

types. Unions model sets of abstract values and intersections model each usage of an abstract value.

Their system conspicuously does not feature polymorphism.

Faxén [1997]; Smith and Wang [2000] propose inferring polymorphic types rather than intersec-

tions for function definitions, which is more flexible and composable as it can process unrelated

definitions separately, whereas the approach based solely on intersections is a global process.

Smith and Wang develop a polymorphic system with subtype constraint solving designed for

flow analysis. Their constraint closure rules are evocative of our C-Flex-L/C-Flex-R, C-Fun, and

C-Forall-L. However, they have no rule analogous to C-Forall-R, nor do they need any notions

of type avoidance and extrusion, which are proper to a type inference view of constraint solving

(as opposed to the restrictive view of flow analysis). They give functions polymorphic types that

contain all locally-inferred unsolved subtyping constraints.25 The fact they do not solve constraints

locally means they do not check for the consistency of inferred types (so they may fail to report

type errors at definition sites) and it means their constraints are resolved over and over again every

time the polymorphic types that capture them are instantiated. Similarly to us, their basic system

is non-terminating and they introduce a termination condition which “detects a certain kind of

self-referential flow in the constraints”. They show that termination can be guaranteed by merging

some instantiations in this case. Wang and Smith [2001] adapt this approach to object-oriented

programming but abandon the first-class polymorphism part.

Rehof and Fähndrich [2001] also rely on polymorphic subtyping; they design a control-flow

analysis that can be reduced to the problem of context-free language reachability. They represent

constraint sets as substitutions to avoid copying constraints around and obtain better scalability.

Whether this insight can be applied to SuperF remains to be determined.

6.4 Intersection and mixed type systems
Jim’s polarized type system called “P” [Jim 2000] mixes universal quantification with intersection

types in a way that strongly resembles ours, restricting the former to positive type positions and

the latter to negative type positions. However, to retain decidability, the types of P are much more

restricted syntactically. For example, they do not admit universal quantifiers nor intersections on

the right of arrow types. P has special typing rules for variable and lambda applications. The former

uses in its premise a rewritten lambda term (not a subterm of the term being typed), which makes

25
Faxén proposes simplifying these constraints incrementally, but this does not change the problem fundamentally.
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is difficult to explain and characterize well-typed terms on an intuitive level.
26
Moreover, since the

syntax of negative types does not include polymorphic types, users cannot check their programs

against provided System F type signatures.

6.5 Implicit Coercion Constraints
Motivated by the goal of designing a type system that could generalize all previous bounded

quantification approaches (mainly ML-style constrained types [Odersky et al. 1999], System F<:

[Pierce 1991], and ML
F
[Le Botlan and Rémy 2003]), Cretin and Rémy [2014] developed a calculus

of implicit coercions called System F𝑐𝑐 . Coercion constraints are very expressive and designed in a

way that is more general than bounded quantification — notably, they do not require the use of a

dedicated typing rule for generalization, lifting generalization to the coercion relation (which is

a form of generalized subtyping). Thankfully, it is straightforward to encode our multi-bounded
polymorphism type system into F𝑐𝑐 , as we demonstrate in Appendix C. Scherer and Rémy [2015]

later investigated versions of coercion constraints allowing abstracting over possibly-inconsistent

coercions, to support applications like GADTs [Xi et al. 2003].

7 CONCLUSION AND FUTUREWORK
We presented SuperF, a novel type inference algorithm for first-class polymorphism based on

multi-bounded polymorphism. SuperF is uniquely expressive, stable under small program changes,

and allows for understandable error messages to be reported. We also presented F{≤} , a simple type

system that serves as the declarative basis of SuperF and that is founded on the theory of implicit

coercions from the existing F𝑐𝑐 . SuperF was implemented as part of a real-world programming

language and evaluated on previous test suites as well as examples from the literature.

SuperF could serve as a starting point for more advanced type systems features, such as higher-

order subtyping, existentials and generalized algebraic data types (GADTs), as well as dependent

types. For example, SuperF could provide an adequate algorithmic basis to the cDOT calculus

of Boruch-Gruszecki et al. [2022] and to the 𝜆∀
𝐼
calculus of Xue and Oliveira [2021], who left

algorithmic formulations of their systems for future work. Unlike SuperF, 𝜆∀
𝐼
uses predicative

polymorphism. Restricting SuperF to predicative type instantiation should be straightforward and

may allow dropping the SRLC. We would also like to support unrestricted type annotations in the

future, which may be helped by integrating some form of bidirectional typing.
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A ADDITIONAL SUPERF EXAMPLES
In this appendix, we provide some additional examples related to SuperF type inference.

A.1 Concrete Example of Need for Annotations
Consider a function mapExprs: (∀ a. Expr a → Expr a) → Program → Program, which presumably trans-

forms the typed subexpressions of a program by applying an argument function at an arbitrary

number of different expression types that are not known statically (Expr could be, for instance, the

usual typed expression GADT [Xi et al. 2003] or an expression data type with type-level de Bruijn

indices [Bird and Paterson 1999; Peyton Jones et al. 2007]). The following SuperF definition fails to

infer a sufficiently polymorphic type in this case:

mapAndPrintSize f = mapExprs (fun e → print_int (size e) ; f e)

Indeed, in this case, parameter f is assigned a type variable and the local type variable assigned to e

is extruded through it. So calling mapAndPrintSize id yields an error, as the local a skolem in Expr a

(from the definition of mapExprs) flows out to the extruded type variable where it undergoes type

avoidance, resulting in Expr ⊥ and Expr ⊤ before flowing back into Expr a, which fails because ⊥ and

⊤ do not match a. In cases like this, a simple type annotation resolves the problem:

mapAndPrintSize (f: ∀ a. Expr a → Expr a) =

mapExprs (fun e → print_int (size e); f e)

mapAndPrintSize id -- ok

Stronger forms of this restriction are present in all previous first-class and higher-rank poly-

morphism type inference approaches we are aware of, including ML
F
. The latter requires that all

parameters used polymorphically must be annotated, whereas we only require annotations for pa-

rameters used parametrically-polymorphically (i.e., non-parametric — or finitary — polymorphism

can be left unannotated thanks to intersection type inference). Other approaches generally require

annotations for parameters that are to be assigned a polymorphic type at all, which is even more

restrictive. For instance, consider that in both SuperF and ML
F
, the following definition is accepted:

mapAndPrintHello f = print_string "Hello!" ; mapExprs f

mapAndPrintHello : (∀ a. Expr a → Expr a) → Program → Program

A.2 Expressiveness of SuperF
Consider the following monster term along with some helper definitions:

I x = x

K x y = x

auto x = x x

monster = (fun y → (let tmp = y I in y K)) auto

which is not typeable in System F (though it is typeable in F𝜔 ) [Giannini and Della Rocca 1988],

leading Le Botlan and Rémy [2003] to conjecture that it is not typeable in their ML
F
type system

either.

But there is nothing fundamentally hard to type about this example. System F can in fact type

monster after it is made to take just one step of reduction (leading to let tmp = self I in self K). The

reason System F cannot type the original term is that System F lacks the expressiveness needed to

accurately describe a set of constraints inferred from the program’s data flow.

SuperF infers the following types for this program, without the help of any type annotations:

I : ∀ a. a → a

K : ∀ a. a → ⊤ → a
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auto : ∀ a b. ((a → b) ∧ a) → b

monster : ⊤ → ∀ a. a → ⊤ → a

To understand how this works, note that the fun y → (let tmp = y I in y K) subterm of monster is

given inferred type ∀ r. ((∀ a. a → ⊤ → a) → r) ∧ ((∀ a. a → a) → ⊤) → r, which clearly shows

that parameter y is inferred to be a function expected to yield some type rwhen applied to K, of type

KT = ∀ a. a → ⊤ → a, and to yield any type⊤when applied to I (since the result of that application

is discarded), with the overall result type being r. Then, applying that subterm to auto is simply

a matter of checking that auto can receive both K and I as individual arguments while yielding

r as a result of the former, which is expressed as the subtyping constraint ∀ a. ((a → b) ∧ a) →
b ≤ KT → r, which decomposes into b ≤ r and KT ≤ (a0 → b) ∧ a0, into a1 → ⊤ → a1 ≤ a0 → b

(i.e., a0 ≤ a1 and⊤ → a1 ≤ b) and KT ≤ a0, which after simplification yields r = ⊤ → KT, the monster

type shown above. We describe the general idea of how such subtyping constraints are solved in

Section 2.5 and rigorously formalize the process in Section 4.3.

It is easy to show that these types are principal using the same approach as in Section 2.2 —

intuitively, all the constraints we solved above are indeed necessary consequences of the term

being well-typed, and thus the constrained types we infer are essentially representations of every

constraint any valid type must satisfy.

A.3 Unlimited-rank Type Inference
SuperF is not limited in the rank of the polymorphic types it infers. In practice, it always infers

parametrically-polymorphic types for odd ranks and intersection types for even ranks.

Consider the following elaboration on our introduction example:

foo f = (f 123, f True)

bar f = (f (fun x → x), f (fun x → Some x))

test = bar foo

SuperF successfully infers the following types:

foo : ∀ a b. ((Int → a) ∧ (Bool → b)) → (a, b)

bar : ∀ a b. (((∀ c. c → c) → a) ∧ (∀ d. d → Some[d]) → b) → (a, b)

test : ((Int , Bool), (Option Int , Option Bool))

Notice that the type inferred for bar has rank 3, as it contains ∀ types behind two arrow type

left-hand sides [Peyton Jones et al. 2007, §3.1].

A.4 Type Error Messages
Assuming k : (∀ a. a → a) → int, the expression k (fun x → x + 1) results in the following error

message in SuperF, where the flow of rigid type variable a into parameter x is clear:

[ERROR] Type mismatch in application:

l.8: k (fun x -> x + 1)

------ type `a` is not an instance of type `int`
l.5: let k: (forall a. a -> a) -> int

------ Note: constraint arises from reference:

l.8: k (fun x -> x + 1)

By contrast, here is the error generated by GHC, an industry-strength compiler that has supported

bidirectionally-typed higher-rank polymorphism (a strictly easier feature to implement, which is

sufficient for this example) for many years:
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• Couldn 't match expected type ‘Int’ with actual type ‘a’

‘a’ is a rigid type variable bound by

a type expected by the context:

forall a. a -> a

at <interactive >:4:3 -20

• In the first argument of ‘(+)’, namely ‘(x :: Int)’

In the expression: (x :: Int) + 1

In the first argument of ‘k’, namely ‘(\ x -> (x :: Int) + 1)’

• Relevant bindings include x :: a (bound at <interactive >:4:5)

The more tricky case to handle is when a type variable leaks out of its scope. SuperF keeps track

of where leaks happen (which correspond to type extrusions) and reports them in the resulting error

messages as possible locations where type annotations may be needed. For instance, assuming the

same type for k as above, the term (fun f → k (fun x → f x)) id yields the following error:

[ERROR] Type error in application

l.233: (fun f -> k (fun x -> f x)) id

------ type variable `a` leaks out of its scope

l.229: def k: (forall a. a -> a) -> int

------ back into type variable `a`
l.229: def k: (forall a. a -> a) -> int

------ Adding a type annotation to any of the following terms

may help resolve the problem

------ • this application:

l.233: (fun f -> k (fun x -> f x)) id

While the suggested annotation location does not refer specifically to parameter f, which is the

most natural place to add a type annotation, it does refer to the relevant application where the leak

takes place. Here is the rather verbose and unhelpful error produced by GHC:

• Couldn 't match type ‘a0’ with ‘a’

Expected: a -> a

Actual: a0 -> a0

because type variable ‘a’ would escape its scope

This (rigid , skolem) type variable is bound by

a type expected by the context:

forall a. a -> a

at <interactive >:5:11 -22

• In the expression: f x

In the first argument of ‘k’, namely ‘(\ x -> f x)’

In the expression: k (\ x -> f x)

• Relevant bindings include

x :: a (bound at <interactive >:5:14)

f :: a0 -> a0 (bound at <interactive >:5:4)

A.5 Ω and the SRLC
Here we give an example constraint-solving run which involves the suspiciously recursive-looking

criterion (SRLC).

Consider the problem of type checking term Ω, i.e., (fun x → x x) (fun x → x x).

At some point in the main constraint-solving run, we get the constraint 𝜏 ≤ 𝛽 , where 𝜏 = ∀𝛼{𝛼 ≤
𝛼 → 𝛼}. 𝛼 → 𝛼 and 𝛽 ≤ 𝛽 → 𝛽
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This leads to:

• add lower bound 𝜏 to 𝛽

• constrain 𝜏 ≤ 𝛽 → 𝛽 (UB of 𝛽)

• instantiate 𝜏 to 𝛾𝛼 → 𝛾𝛼 where 𝛾𝛼 ≤ 𝛾𝛼 → 𝛾𝛼 (we write 𝛾𝛼 to show that 𝛾 ’s shadow is 𝛼)

• constrain 𝛾𝛼 → 𝛾𝛼 ≤ 𝛽 → 𝛽

• constrain 𝛽 ≤ 𝛾𝛼 (LHS of function types)

• constrain 𝛽 ≤ 𝛾𝛼 → 𝛾𝛼 (UB of 𝛾𝛼 )

• constrain 𝜏 ≤ 𝛾𝛼 → 𝛾𝛼 (LB of 𝛽)

In turn, this leads to another round of exactly the same constraints until we reach:

• constrain 𝜏 ≤ 𝛿𝛼 → 𝛿𝛼

But both pairs of types (𝜏, 𝛿𝛼 → 𝛿𝛼 ) and (𝜏, 𝛾𝛼 → 𝛾𝛼 ) have the same root (𝜏, 𝛼 → 𝛼), so the SRLC
kicks in and aborts the constraint-solving run.

B EXTRA FORMAL DEFINITIONS AND EXAMPLES
We report on extra formal definitions as well as examples of the formal definitions here.

B.1 Box Erasure
Definition B.1. Box erasure, written 𝜏 \𝑥 , is defined inductively on the syntax of types and bounds

contexts as follows:

⊤ \ 𝑥 ≜ ⊤
𝛼 \ 𝑥 ≜ 𝛼

(𝜏1 → 𝜏2) \ 𝑥 ≜ (𝜏1 \ 𝑥) → (𝜏2 \ 𝑥)
∀𝑉 {Ξ}. 𝜏 \ 𝑥 ≜ ∀𝑉 {(Ξ \ 𝑥)}. (𝜏 \ 𝑥)

⟨𝜏⟩ \ 𝑥 ≜ ⟨𝜏 \ 𝑥⟩

𝜏
𝑥
\ 𝑥 ≜ 𝜏 \ 𝑥

𝜏
𝑦
\ 𝑥 ≜ 𝜏 \ 𝑥

𝑦
(𝑥 ≠ 𝑦)

𝜖 \ 𝑥 ≜ 𝜖

Ξ · (𝜏 ≤ 𝜎) \ 𝑥 ≜ (Ξ \ 𝑥) · ((𝜏 \ 𝑥) ≤ (𝜎 \ 𝑥))

Example B.2. Consider the following program:

test = fun f → fun x → f x

test (fun res → res) id

Note that to type the body of test, we need to wrap the type 𝜏 its parameter x into a box 𝜏
𝑥
,

which means that parameter f must be a function that accepts such boxed arguments. Therefore,

taking (arbitrarily, for the example) 𝜏 = ∀𝛾 .𝛾 → 𝛾 , the type of test could be, for instance, 𝜎 =

∀𝛼. ( 𝜏
𝑥
→ 𝛼) → 𝛼 , or it could be 𝜎 ′ = ∀𝛼𝛽{𝛽 ≤ 𝜏

𝑥
}. (𝛽 → 𝛼) → 𝛼 . In both cases, all the

𝑥-branded boxes of this type can be removed at the use site of test, as in 𝜎 \ 𝑥 = ∀𝛼. (𝜏 → 𝛼) → 𝛼

and 𝜎 ′ \𝑥 = ∀𝛼𝛽{𝛽 ≤ 𝜏}. (𝛽 → 𝛼) → 𝛼 , which allows passing in the polymorphic identity function

id for x and using the box-free result polymorphically.

Remark 2. Naturally, in all developments, we use Barendregt’s convention and assume all variables

in the program are distinct.
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B.2 Syntactic and Semantic Acyclicity
A context is syntactically acyclic when its bounds graph is acyclic. By contrast, a context is se-
mantically acyclic (or just acyclic) when all its bounds graph cycles (if it has any) are “harmless”,

meaning that traversing the bounds graph while following polarities will not lead to a cyclic path.

The simplest example of that would be ∀𝛼{𝛼 ≤ ⊤ → 𝛼}. 𝛼 — here, the upper bound of 𝛼 , which is

⊤ → 𝛼 , is not reachable from traversing the bounds graph starting from 𝛼 at a positive polarity

(which is the body of the positive polymorphic type, always considered positive), so it is irrelevant

and the bounds graph of this type is semantically acyclic despite being syntactically cyclic.

In general, we require all inferred types to be acyclic because supporting cyclic contexts would

require support for full-fledged recursive types, which System F𝑐𝑐 does not yet possess.
27

Definition B.3 (Acyclicity). Acyclicity is defined through the reach judgment, which is the smallest

relation satisfying the following rules (where equality is taken to mean mutual set inclusion):

acyclic(Ξ) ≜ for all 𝑎, {𝑎+, 𝑎−} # reach+ (𝑎, Ξ, 0) and 𝑎− ∉ reach− (𝑎, Ξ, 0) reach± (⊤, Ξ, 𝑛) = ∅

reach± (𝜏 → 𝜎, Ξ, 𝑛) = reach∓ (𝜏, Ξ, 1) ∪ reach± (𝜎, Ξ, 1) reach± (∀𝑉 {Σ}. 𝜏, Ξ, 𝑛) = reach± (𝜏, Ξ · Σ, 𝑛)

𝑎± ∈ reach± (𝑎, Ξ, 1)
(𝜏 ≤ 𝑎) ∈ Ξ 𝑏 ∈ reach+ (𝜏, Ξ, 𝑛)

𝑏 ∈ reach+ (𝑎, Ξ, 𝑛)
(𝑎 ≤ 𝜏) ∈ Ξ 𝑏 ∈ reach− (𝜏, Ξ, 𝑛)

𝑏 ∈ reach− (𝑎, Ξ, 𝑛)

Where we use ∓ as a shorthand for + when ± is − and − when ± is +.
The “flag” parameter 𝑛 can be 0 or 1 and indicates whether we have traversed at least one type

constructor (if not, any cycle is a spurious “immediate” cycle).

Example B.4. Context Ξ = (𝛼 → 𝛽) → 𝛾 ≤ 𝛼 is not acyclic because we have:

reach+ (𝛼, Ξ, 0) = reach+ ((𝛼 → 𝛽) → 𝛾, Ξ, 0)
= reach− (𝛼 → 𝛽, Ξ, 1) ∪ reach+ (𝛾, Ξ, 1)
= reach+ (𝛼, Ξ, 1) ∪ {𝛾+ }
= { 𝛼+, 𝛾+ }
∋ 𝛼+

Example B.5. Context Ξ = 𝛼 ≤ ⊤ → 𝛼 is not acyclic because we have:

reach− (𝛼, Ξ, 0) = reach− (⊤ → 𝛼, Ξ, 0)
= reach+ (⊤, Ξ, 1) ∪ reach− (𝛼, Ξ, 1)
= { 𝛼− }
∋ 𝛼−

Definition B.6 (Syntactic acyclicity).

synacyc(Ξ) ≜ for all 𝑎, {𝑎+, 𝑎−} # reach+ (𝑎, Ξ, 0) ∪ reach− (𝑎, Ξ, 0)

Example B.7. Context Ξ = 𝛼 ≤ 𝛼 → ⊤ is semantically acyclic because reach+ (𝛼, Ξ, 0) = ∅ and

reach− (𝛼, Ξ, 0) = 𝛼+
. It can be rewritten into the equivalent Ξ′ = 𝛼 ≤ 𝛼 ′ ∧ (𝛼 ′ → ⊤) (𝛼 ′

fresh),

syntax sugar for Ξ′ = 𝛼 ≤ 𝛽 ′, 𝛽 ′ ≤ 𝛼 ′, 𝛽 ′ ≤ 𝛼 ′ → ⊤ (𝛼 ′, 𝛽 ′ fresh), which is more obviously

semantically acyclic — but is still syntactically cyclic, as reach− (𝛼, Ξ′, 0) = 𝛼+
.

27
We conjecture that it would not be hard to extend F𝑐𝑐 with full recursive types, but we have not yet tried doing so.
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B.3 Extrusion Safety Check
We first define collect that returns all the bounds nesting in the input type:

collect (⊤) = 𝜖

collect (𝛼) = 𝜖

collect (∀𝛼. 𝜏−) = collect (𝜏−)
collect (𝜏∓ → 𝜏±) = collect (𝜏∓) · collect (𝜏±)

collect (∀𝑉 {Σ}. 𝜏+) = 𝑉 · collect (𝜏+) · collect (𝜎+) (𝜎
+≤𝛼 ) ∈Σ · collect (𝜎−) (𝛼≤𝜎

− ) ∈Σ · Σ

We say 𝜏± is safe to extrude with the skolem set𝑊 if the type satisfies the following X-ok check:

Definition B.8. 𝑊 ⊢ 𝜏± X-ok ≜ for all 𝛼 ∈ 𝑆, 𝑊 # reach+ (𝛼, B(𝑆), 1) or𝑊 # reach− (𝛼, B(𝑆), 1)
where 𝑆 = collect (𝜏±). We ignore polarities on type variables returned by reach±.

C TRANSLATION TO 𝐹𝑐𝑐

In this appendix we present the translation from our system to System 𝐹𝑐𝑐 . We will make two small

adjustments to our system. First: we define the translation for an “erased” version of the system

which doesn’t allow either the 𝜏
𝑥
or the ⟨𝜏⟩ type form, doesn’t allow the (𝑥 : 𝜏) term form, doesn’t

have the following rules: T-Unbox, T-Asc, S-Unbox1, S-Unbox2, S-CongBound, S-CongFun, and

has the following version of T-Abs:

T-Abs

Γ · (𝑥 : 𝜏1) ⊢ 𝑡 : 𝜏2
Γ ⊢ 𝜆𝑥 . 𝑡 : 𝜏1 → 𝜏2

Clearly a valid derivation in the normal system is also valid in the erased system, after we erase

𝜏
𝑥
and ⟨𝜏⟩ to 𝜏 and (𝑥 : 𝜏) to 𝑥 .

Second, we will need to add type well-formedness to our system, since System 𝐹𝑐𝑐 requires type

variables to be bound in context.

We extend contexts Γ and Ξ with type bindings: Γ may have the form Γ · 𝛼 , likewise for Ξ.

Definition C.1. Quantifier consistencyΞ ⊢ ∀𝛼𝑖 𝑖 {𝐵 𝑗

𝑗 } cons. is defined as bothΞ ⊢ ∀𝛼𝑖 𝑖 {𝐵 𝑗

𝑗 }.⊤ wf

and Ξ ⊢ 𝜃𝐵 𝑗

𝑗
, where 𝜃 = [𝛼𝑖 ↦→ 𝜏𝑖 ]

𝑖
for some 𝜏𝑖

𝑖
.

Figure 8 shows rules of type well-formedness Γ ⊢ 𝜏 wf. As every bounds context Ξ is also

grammatically a typing context Γ, we will also write Ξ ⊢ 𝜏 wf.

Γ ⊢ 𝜏 wf

W-Top

Γ ⊢ ⊤ wf

W-Var

𝛼 ∈ Γ

Γ ⊢ 𝛼 wf

W-Fun

Γ ⊢ 𝜏1 wf Γ ⊢ 𝜏2 wf

Γ ⊢ 𝜏1 → 𝜏2 wf

W-Forall

Γ · 𝛼𝑖 𝑖 ⊢ 𝜎1 wf Γ · 𝛼𝑖 𝑖 ⊢ 𝜎2 wf

(𝜎1≤𝜎2 ) ∈𝐵
Γ · 𝛼𝑖 𝑖 · 𝐵 𝑗

𝑗 ⊢ 𝜏 wf

Γ ⊢ ∀𝛼𝑖 𝑖 {𝐵 𝑗

𝑗 }. 𝜏 wf

Fig. 8. Type well-formedness.
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Since we now desire types to be well-formed, we need to make small changes to the typing and

subtyping rules: variables need to be bound in contexts as appropriate and well-formedness needs

to be required at certain points. Figures 9 and 10 show these changes.

Γ ⊢ 𝑡 : 𝜏

T-Abs

Γ · (𝑥 : 𝜏1) ⊢ 𝑡 : 𝜏2 Γ ⊢ 𝜏1 wf

Γ ⊢ 𝜆𝑥 . 𝑡 : 𝜏1 → 𝜏2

T-Forall

Γ·𝑉 ·Σ ⊢ 𝑡 : 𝜏 𝑉 ∉ FV (Γ) B(Γ) ⊢ ∀𝑉 {Σ} cons.
Γ ⊢ 𝑡 : ∀𝑉 {Σ}. 𝜏

Fig. 9. Adjustments to typing rules.

Ξ ⊢ 𝜏 ≤ 𝜏

S-Top

Ξ ⊢ 𝜏 wf

Ξ ⊢ 𝜏 ≤ ⊤

S-VarRefl

𝛼 ∈ Ξ

Ξ ⊢ 𝛼 ≤ 𝛼

S-Forall-Cov

Ξ ⊢ ∀𝑉 {Σ} cons. Ξ·𝑉 ·Σ ⊢ 𝜏 ≤ 𝜎

Ξ ⊢ ∀𝑉 {Σ}. 𝜏 ≤ ∀𝑉 {Σ}. 𝜎

S-Forall-L

Ξ ⊢ ∀𝑉 {Σ} cons. Ξ ⊢ 𝜏𝑖 wf

𝑖
Ξ ⊢ [𝛼𝑖 ↦→ 𝜏𝑖

𝑖 ]Σ
Ξ ⊢ ∀𝛼𝑖 𝑖 {Σ}. 𝜏 ≤ [𝛼𝑖 ↦→ 𝜏𝑖

𝑖 ]𝜏

Fig. 10. Adjustments to subtyping rules.

The intent behind these changes is to allow the following regularity lemmas to hold.

Lemma C.2. Let Γ wf. Then Γ ⊢ 𝑡 : 𝜏 implies that Γ ⊢ 𝜏 wf.

Lemma C.3. Let Γ wf. Then Γ ⊢ 𝜏 ≤ 𝜎 implies that Γ ⊢ 𝜏 wf and Γ ⊢ 𝜎 wf.

In the following sections, we implicitly assume that all contexts are well-formed.

C.1 Translation
In this subsection, we show the exact translation to F𝑐𝑐 . We write variables standing for F𝑐𝑐 objects

with a tilde: 𝛼, Γ̃. We try keep the metavariables uniform, e.g. the metavariable for F𝑐𝑐 terms is 𝑡 ,

not 𝑎; the only exception is when we reference variables used to instantiate F𝑐𝑐 rules, where we

use the F𝑐𝑐 metavariable with a tilde (e.g. “Use CoerWeak with Σ̃ = . . .”).

Where useful, we write F𝑐𝑐 judgments with a clarification on the turnstile : Γ̃ ⊢𝐹𝑐𝑐 𝑡 : 𝜏 .
F𝑐𝑐 includes a notion of type (kind, proposition) equality 𝜏 =𝐹𝑐𝑐 �̃� , which should not be confused

with the two types being the same. For instance, we have 𝜋1 ⟨𝜏, �̃�⟩ =𝐹𝑐𝑐 𝜏 , but the two types are

distinct objects. (This equality must be explicitly used by appropriate F𝑐𝑐 rules.) To avoid confusion,

we add a clarification on the equality sign when using this form of equality.

We use Θ as a metavariable for mappings from our type variables to F𝑐𝑐 types.

We use ⟦·⟧ to denote the translation function. Where useful, we add a metavariable in bold font in

a superscript to clarify what sort of object is produced by the translation. We define the translation

function as follows:

⟦∀𝑉 {Σ}⟧Θ ≜ {𝛼 : ⟦𝑉⟧𝜿 | ⟦Σ⟧Θ◦⟦𝑉 ;�̃�⟧𝚯 }
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⟦𝛼 ·𝑉 ;𝜏⟧𝚯 ≜ ⟦𝛼 ;𝜏⟧𝚯 ◦ ⟦𝑉 ;𝜋2 𝜏⟧𝚯

⟦𝛼 ;𝜏⟧𝚯 ≜ [𝛼 ↦→ 𝜋1 𝜏]

⟦𝛼 ·𝑉⟧𝜿 ≜ ★× ⟦𝑉⟧𝜿

⟦𝛼⟧𝜿 ≜ ★× 1

⟦(𝜏 ≤ 𝜎) · Σ⟧Θ ≜ ⟦𝜏 ≤ 𝜎⟧Θ ∧ ⟦Σ⟧Θ
⟦𝜖⟧Θ ≜ ⊤

⟦𝜏 ≤ 𝜎⟧Θ ≜ [⟦𝜏⟧Θ ⊲ ⟦𝜎⟧Θ]

⟦𝜏 → 𝜎⟧Θ ≜ ⟦𝜏⟧Θ → ⟦𝜎⟧Θ
⟦∀𝑉 {Σ}. 𝜏⟧Θ ≜ ∀(𝛼 : ⟦∀𝑉 {Σ}⟧Θ) ⟦𝜏⟧Θ◦⟦𝑉 ;�̃�⟧𝚯

⟦𝛼⟧Θ ≜ Θ(𝛼)

⟦⊤⟧Θ ≜ ⊤

(𝜖 ;Θ) ∼ (∅;Θ)

(Γ;Θ′
1
) ∼ (Γ̃;Θ2)

((𝑥 : 𝜏) · Γ;Θ1) ∼ (𝑥 : ⟦𝜏⟧Θ, Γ̃;Θ2)
(Γ;Θ′

1
) ∼ (Γ̃;Θ2)

(𝑉 · Σ · Γ;Θ1) ∼ (𝛼 : ⟦∀𝑉 {Σ}⟧Θ1
, Γ̃;Θ2)

Γ ∼ (Γ̃;Θ) ≜ (Γ; id) ∼ (Γ̃;Θ)

C.2 Core theorem
In this subsection we show the core translation theorem. While we restrict our derivations to only

use type variables bound in the context, this is not a significant loss of expressiveness: any derivation

using the original rules can easily be transformed into a derivation obeying the well-formedness

restriction by simply binding the type variables in the outermost context.

Theorem C.4. If ⊢ 𝑡 : 𝜏 , then ⊢𝐹𝑐𝑐 𝑡 : ⟦𝜏⟧ for some F𝑐𝑐 term 𝑡 .

Proof. A special case of Lemma C.5. □

Lemma C.5. Let Γ ∼ (Γ̃;Θ). Then Γ ⊢ 𝑡 : 𝜏 implies that Γ̃ ⊢𝐹𝑐𝑐 𝑡 : ⟦𝜏⟧Θ for some F𝑐𝑐 term 𝑡 .

Proof. By induction on the typing derivation.

Case T-Unit. Holds if () is translated to an arbitrary well-typed closed F𝑐𝑐 term, for instance the

identity function, or a pair of identity functions.

Case T-Var, T-Abs, T-App. Trivial.

Case T-Subs. By TermCoer with empty Σ̃. Coercion can be shown with Lemma C.11.

Case T-Forall. By TermCoerwith Σ̃ = 𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ. Typing can be shown by the IH. Coercion
can be shown by CoerGen and by Lemma C.12. □
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C.3 Coercion lemmas
The propositions below follow from a simple inspection of the appropriate definitions.

Proposition C.6. If Γ ⊢ 𝜏 wf, then FV (𝜏) ⊆ FV (Γ).
Proposition C.7. Let Γ ∼ (Γ̃;Θ). Then 𝛼 ∈ FV (Γ) implies that Γ̃ ⊢ Θ(𝛼) : ★.
Proposition C.8. Let Γ ∼ (Γ̃;Θ). Then Γ ⊢ 𝜏 wf implies that Γ̃ ⊢ ⟦𝜏⟧Θ : ★.

We define an auxiliary translation which maps sequences of types to tuples of F𝑐𝑐 types.

⟦𝜏 · 𝜎⟧(𝝉 × 𝝉 )
Θ ≜ ⟨⟦𝜏⟧Θ, ⟦𝜎⟧(𝝉 × 𝝉 )

Θ ⟩
⟦𝜏⟧(𝝉 × 𝝉 )

Θ ≜ ⟨⟦𝜏⟧Θ, ⟨⟩⟩

Proposition C.9. Let Γ ∼ (Γ̃;Θ). Then Γ ⊢ ∀𝑉 {𝐵𝑖
𝑖 }. 𝜏 wf and Γ ⊢ 𝜃𝐵𝑖

𝑖
(where dom(𝜃 ) = {𝑉 })

implies that Γ̃ ⊢𝐹𝑐𝑐 ⟦𝜃𝑉⟧(𝝉 × 𝝉 )
Θ : ⟦𝑉⟧𝜿 .

Lemma C.10. Let Γ ∼ (Γ̃;Θ). Then (𝜏 ≤ 𝜎) ∈ Γ implies that Γ̃ ⊢𝐹𝑐𝑐 ⟦𝜏⟧Θ ⊲ ⟦𝜎⟧Θ.
Proof. By structural induction on Γ.

Case Γ = Γ′ · (𝑥 : 𝜏 ′). Then (𝜏 ≤ 𝜎) ∈ Γ′ and we conclude by the IH and F𝑐𝑐 weakening.

Case Γ = Γ′ ·𝑉 · Σ s.t. (𝜏 ≤ 𝜎) ∈ Γ′. Likewise.
Case Γ = Γ′ ·𝑉 · Σ s.t. (𝜏 ≤ 𝜎) ∈ Σ. Then Γ̃ = Γ̃′, 𝛼 : ⟦∀𝑉 {Σ}⟧Θ0

and Θ = Θ0 ◦ ⟦𝑉 ;𝛼⟧𝚯. Since
(𝜏 ≤ 𝜎) ∈ Σ, we have

⟦∀𝑉 {Σ}⟧Θ0
= { ˜𝛽 : ⟦𝑉⟧𝜿 | · · · ∧ [⟦𝜏⟧Θ′

0

⊲ ⟦𝜎⟧Θ′
0

] ∧ · · ·}

such that
˜𝛽 is not free in any type in the image of Θ0 and Θ′

0
= Θ0 ◦ ⟦𝑉 ;

˜𝛽⟧𝚯. Note that by
TypeUnpack and TypeVar, we have Γ̃ ⊢ 𝛼 : ⟦𝑉⟧𝜿 . By PropRes and PropAndProj, we then

have Γ̃ ⊢𝐹𝑐𝑐 [ ˜𝛽 ↦→ 𝛼] ( [⟦𝜏⟧Θ′ ⊲ ⟦𝜎⟧Θ′ ]). We observe that [ ˜𝛽 ↦→ 𝛼] ( [⟦𝜏⟧Θ′
0

⊲ ⟦𝜎⟧Θ′
0

]) is the
same as [⟦𝜏⟧Θ ⊲ ⟦𝜎⟧Θ] and we conclude with CoerProp. □

Lemma C.11. Let Γ ∼ (Γ̃;Θ). Then Γ ⊢ 𝜏 ≤ 𝜎 implies that Γ̃ ⊢𝐹𝑐𝑐 ⟦𝜏⟧Θ ⊲ ⟦𝜎⟧Θ.
Proof. By induction on the subtyping derivation.

Case S-Top, S-VarRefl. By CoerTop and CoerRefl respectively.

Case S-Trans, S-Fun. By the IH and respectively either CoerTrans or CoerArr.

Case S-Hyp. By Lemma C.10.

Case S-Forall-R. By CoerWeak with Σ̃ = 𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ and CoerGen with �̃� = 𝛼 .

Case S-Forall-Cov. Then 𝜏 = ∀𝑉 {Σ}. 𝜏 ′ and 𝜎 = ∀𝑉 {Σ}. 𝜎 ′
. By CoerWeak with Σ̃ = 𝛼 :

⟦∀𝑉 {Σ}⟧𝜿Θ and CoerTrans, it suffices to show that both Γ̃, 𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ ⊢𝐹𝑐𝑐 ⟦𝜏⟧Θ ⊲⟦𝜎 ′⟧Θ
and Γ̃ ⊢𝐹𝑐𝑐 (𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ ⊢ ⟦𝜎 ′⟧Θ) ⊲ ⟦𝜎⟧Θ. The former can be shown by the IH. The latter

can be shown by CoerGen as long as we have Γ̃ ⊢ ⟦∀𝑉 {Σ}⟧𝜿Θ. As a premise of S-Forall-

Cov, we have Γ ⊢ ∀𝑉 {Σ}, which means we can conclude by the same argument as in

Lemma C.12. (Note that in this argument we use the IH rather than the entire Lemma C.11).

Case S-Forall-L. Similarly to the previous case: by CoerGen, using Lemma C.12 and the consis-

tency premise of S-Forall-L.

Case S-Forall-Distr. Then 𝜏 = ∀𝑉 {Σ}. 𝜏1 → 𝜏2 and 𝜎 = 𝜏1 → ∀𝑉 {Σ}. 𝜏2.
By CoerWeak with Σ̃ = 𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ and CoerTrans, it suffices to show both of:

Γ̃, 𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ ⊢𝐹𝑐𝑐 ⟦∀𝑉 {Σ}. 𝜏1 → 𝜏2⟧Θ ⊲ ⟦𝜏1 → 𝜏2⟧Θ
Γ̃ ⊢𝐹𝑐𝑐 (𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ ⊢ ⟦𝜏1 → 𝜏2⟧Θ) ⊲ ⟦𝜏1 → ∀𝑉 {Σ}. 𝜏2⟧Θ
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The former can be derived via CoerInst with �̃� = 𝛼 . The latter simplifies by CoerArr to:

Γ̃, 𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ ⊢𝐹𝑐𝑐 𝜏1 ⊲ 𝜏1
Γ̃ ⊢𝐹𝑐𝑐 (𝛼 : ⟦∀𝑉 {Σ}⟧𝜿Θ ⊢ 𝜏2) ⊲ ⟦∀𝑉 {Σ}. 𝜏2⟧

Which hold respectively by reflexivity (CoerRefl) and CoerGen. Similarly to previous

cases, the premise of CoerGen can be shown using Lemma C.12 and the consistency premise

of S-Forall-Distr. □

Lemma C.12. Let Γ ∼ (Γ̃;Θ). Then Γ ⊢ ∀𝑉 {Σ} cons. implies that Γ̃ ⊢𝐹𝑐𝑐 ⟦∀𝑉 {Σ}⟧𝜿Θ.

Proof. Let ⟦∀𝑉 {Σ}⟧𝜿Θ = {𝛼 : ⟦𝑉⟧𝜿 | ⟦Σ⟧Θ′ }. Our goal is, by definition, the same as Γ̃ ⊢𝐹𝑐𝑐
∃ ⟦∀𝑉 {Σ}⟧𝜿Θ. By PropExi and TypePack, it suffices to show that we have 𝜏 such that Γ̃ ⊢𝐹𝑐𝑐 𝜏 : ⟦𝑉⟧
and Γ̃ ⊢𝐹𝑐𝑐 [𝛼 ↦→ 𝜏] (⟦Σ⟧Θ′ ). Let 𝜃 be the substitution from Γ ⊢ ∀𝑉 {Σ} and let 𝜏 be its image. We

pick 𝜏 = ⟦𝜏⟧(𝝉 × 𝝉 )
Θ . Note that 𝜏 is a tuple of F𝑐𝑐 types.

We evidently have Γ̃ ⊢𝐹𝑐𝑐 𝜏 : ⟦𝑉⟧, since every type in 𝜏 is encoded into a type of F𝑐𝑐 kind ★ and

𝜏 = ⟦𝜏⟧(𝝉 × 𝝉 )
Θ′ is a type tuple of same size as 𝑉 , meaning its F𝑐𝑐 kind is ⟦𝑉⟧.

The remaining goal is Γ̃ ⊢𝐹𝑐𝑐 [𝛼 ↦→ 𝜏] (⟦Σ⟧Θ′ ). We have [𝛼 ↦→ 𝜏] (⟦Σ⟧Θ′ ) =𝐹𝑐𝑐 ⟦𝜃Σ⟧Θ by F𝑐𝑐 type

equality and by the definition of our translation: projections of 𝛼 occur in ⟦Σ⟧Θ′ where variables

from 𝑉 occur in Σ. Since 𝜏 = ⟦𝜏⟧(𝝉 × 𝝉 )
Θ = ⟦𝜃𝑉⟧(𝝉 × 𝝉 )

Θ , we have the desired F𝑐𝑐 type equality.

Therefore by PropEq and (repeated) PropAndPair, it suffices to show that Γ̃ ⊢𝐹𝑐𝑐 ⟦𝜃𝜎1 ≤ 𝜃𝜎2⟧Θ
for every (𝜎1 ≤ 𝜎2) ∈ Σ. As we have Γ ⊢ ∀𝑉 {Σ}, for each such (𝜎1 ≤ 𝜎2) we have Γ ⊢ 𝜃𝜎1 ≤ 𝜃𝜎2,

and we can conclude by (repeated) Lemma C.11. □

D TYPE INFERENCE CORRECTNESS PROOFS
In this section, we sketch the proof of the core correctness theorem for type inference. First, we

need to slightly modify I-Abs to account for the well-formedness requirement that our System F𝑐𝑐

translation introduced. Concretely, we add the binding for 𝛼 in the premise:

I-Abs

𝛼 fresh Γ · 𝛼 · (𝑥 : 𝛼) ⊢ 𝑡 : 𝜏+ ⇒ Δ 𝑉 ⊇ FV (Γ) 𝑉 # FV (Δ)
𝑉 , 𝜖 ⊢ 𝜖 ≫ Δ ≫ Ξ split𝑉 (uproot (Ξ)) = (Ξ0, 𝛾, Ξ1)

Γ ⊢ 𝜆𝑥 . 𝑡 : ∀𝛾{Ξ1}. 𝛼 → 𝜏+ ⇒ Ξ0

We also need standard weakening and permutation lemmas.

Lemma D.1 (Weakening). Let Γ, Γ′ be well-formed contexts such that Γ = Γ1·Γ2 and Γ′ = Γ1·Γ0·Γ2.
Then:

• Γ ⊢ 𝑡 : 𝜏 implies that Γ′ ⊢ 𝑡 : 𝜏
• Γ ⊢ 𝜏 ≤ 𝜎 implies that Γ′ ⊢ 𝜏 ≤ 𝜎

• Γ ⊢ ∀𝑉 {Σ} cons. implies that Γ′ ⊢ ∀𝑉 {Σ} cons.
• Γ ⊢ 𝜏 wf implies that Γ′ ⊢ 𝜏 wf

Proof. By mechanical inspection of the definition of typing, subtyping, quantifier consistency,

type well-formedness. No judgment inspects the number of bindings in the context. □

Lemma D.2 (Permutation). Let Γ, Γ′ be well-formed contexts such that Γ′ is a permutation of Γ.
Then:

• Γ ⊢ 𝑡 : 𝜏 implies that Γ′ ⊢ 𝑡 : 𝜏
• Γ ⊢ 𝜏 ≤ 𝜎 implies that Γ′ ⊢ 𝜏 ≤ 𝜎
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• Γ ⊢ ∀𝑉 {Σ} cons. implies that Γ′ ⊢ ∀𝑉 {Σ} cons.
• Γ ⊢ 𝜏 wf implies that Γ′ ⊢ 𝜏 wf

Proof. By mechanical inspection of the definition of typing, subtyping, quantifier consistency,

type well-formedness. No judgment inspects the order of bindings in the context. □

We can now restate and prove Theorem 4.5:

Theorem (Soundness of Type Inference). If ⊢ 𝑡 : 𝜏+ ⇒ Δ and ⊢ 𝜖 ≫ Δ ≫ Ξ′, then we have
⊢ 𝑡 : ∀𝑉 {Ξ}. 𝜏+, where Ξ = uproot (Ξ′), and 𝑉 = FV (Ξ).

Proof. By Lemma D.3 we have 𝑉 · Ξ ⊢ 𝑡 : 𝜏+. By the second conclusion of Theorem 4.7 we have

⊢ ∀𝑉 {Ξ} cons.. (The constraining premise we have has empty skolems, so the skolem replacement

is the identity.) We can then conclude by T-Forall. □

Lemma D.3. Let Γ ⊢ 𝑡 : 𝜏+ ⇒ Δ. Then 𝑉 , 𝜖 ⊢ 𝜖 ≫ Δ ≫ Ξ′ implies that Γ · 𝛾 · Ξ ⊢ 𝑡 : 𝜏+, where
Ξ = uproot (Ξ′) and 𝛾 = FV (Ξ) \𝑉 .

Proof. By induction on the type inference derivation. All cases but I-Abs are trivial, as Ξ ⊢ Δ by

the first conclusion of Theorem 4.7. (Again, the constraining premise on which we use the theorem

has empty skolems.)

In I-Abs, we have:

𝑡 = 𝜆𝑥. 𝑡0 𝜏+ = ∀𝛾{Ξ1}. 𝛼 → 𝜏+
0

Δ = Ξ0

Γ · 𝛼 · (𝑥 : 𝛼) ⊢ 𝑡0 : 𝜏+0 ⇒ Δ′ 𝑉 ′, 𝜖 ⊢ 𝜖 ≫ Δ′ ≫ Ξ′

where 𝑉 ′ ⊇ FV (Γ) 𝑉 ′
# FV (Δ) split𝑉 ′ (Ξ′) = (Ξ0, 𝛾,Ξ1)

We desire Γ · Ξ0 ⊢ 𝜆𝑥. 𝑡0 : ∀𝛾{Ξ1}. 𝛼 → 𝜏+
0
, which by T-Forall and T-Abs reduces to

ΞΓ · Ξ0 ⊢ ∀𝛾{Ξ1} cons.
Γ · Ξ0 · 𝛾 · Ξ1 · (𝑥 : 𝛼) ⊢ 𝑡0 : 𝜏+0

The former holds by weakening the second conclusion of Theorem 4.7. The latter holds by permu-

tating the conclusion of the IH. □

We now turn to prove the correctness of the subtype constraint solving, which is by far the most

interesting and tricky part of the type inference algorithm.

D.1 Termination of constraining
We now justify the termination of subtype constraint solving. This property trivially implies the

termination of type inference as a whole since the type inference rules are defined by structural

induction on program terms. We only provide a sketch of the proof.

We need auxiliary definitions. The following definition states an invariant maintained by normal

constraining derivations.

Definition D.4. 𝑉 ,𝑊 ,Ξ is a coherent constraining context triple if 𝑉 is disjoint from𝑊 and for

all 𝐵 ∈ Ξ, at least one hand of 𝐵 is a type variable 𝑎 such that 𝑎 ∉ 𝑉 ·𝑊 .

We say such a triple is rooted in 𝛼 if 𝛼 ⊆ {roots(𝑎) | 𝑎 ∈ FV (𝑉 ·𝑊 ) ∪ FV (Ξ0)}.

Definition D.5. Constraints Δ are simplifiable (denoted ≫ Δ ≫) in roots 𝛼 if for all coherent

constraining context triples 𝑉 ,𝑊 ,Ξ rooted in 𝛼 there is a finite derivation of 𝑉 ,𝑊 ⊢ Ξ ≫ Δ ≫ Σ?

for some Σ?
.
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Lemma D.6 (Worklist extension). Let 𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ2 ≫ Σ?

2
. Then ≫ Δ1 ≫ in roots

{roots(𝑎) | 𝑎 ∈ FV (𝑉 ·𝑊 ) ∪ FV (Ξ0)} implies that 𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ1 · Δ2 ≫ Σ?

3
for some Σ?

3
.

Proof. Follows from the definitions. □

As a terminology note, we say a constraining derivation “solves” a constraint 𝐶 if it has a

subderivation such that its goals Δ end in 𝐶 .

Theorem (Termination of Constraining). For all Δ and all coherent constraining context triples
𝑉 ,𝑊 , 𝜖 , there is a finite derivation of 𝑉 ,𝑊 ⊢ 𝜖 ≫ Δ ≫ Ξ? for some Ξ?.

Proof Sketch. The intuition behind the sketch is that constraining, if viewed as an algorithm,

always terminates (i.e., there is a finite constraining derivation), since it either reduces the con-

straints it still has to traverse or it reduces the number of roots in Δ which still can be visited.

Concretely, we sketch how to show that the premises of each rule are smaller according to some

measure.

The measure that we use is an ordered pair: its first element is the amount of roots in Δ which

still can be visited according to their corresponding 𝜙 , and its second element is the size of Δ.
The proof is by induction on the size of Δ, calculated using our measure. The proof’s cases are

organized according to which constraining rule applies first. Note that in all cases, if the derivation

of any premise outputs err, we use C-Fail instead of the rule from the current case.

Rule C-Empty trivially terminates, while rules C-Top, C-Skip, C-Fun and C-Forall-L all have a

premise with a strictly smaller Δ.
Rules C-Rigid-L and C-Rigid-R add the result of extrusion Σ to the constraints. By the IH, we

have ≫ Δ ≫ in current roots. We sketch how to show that we also have ≫ 𝐵 ≫ in current roots

for all 𝐵 ∈ Σ.
For all 𝐵 ∈ Σ, one hand of 𝐵 is a rigid variable, and another is a flexible variable. This means that

only C-Skip, C-Flex-L and C-Flex-R can apply. If 𝐵 is not skipped and C-Rigid-L or C-Rigid-R

applies, then 𝐵 is added to 𝜙 and all the constraints added to Δ have a rigid variable on at least one

hand. The latter means that either a basic rule (C-Top, C-VarRefl or C-Skip) or one of the variable

rules (C-Flex-L, C-Flex-R, C-Rigid-L, C-Rigid-R) applies to each such new constraint. The variable

rules cannot apply endlessly, since every constraint they add to Δ is also added to 𝜙 (indirectly in

the case of C-Rigid-L and C-Rigid-R). Then, we have ≫ 𝐵 ≫ in current roots as desired.

Hence, by Lemma D.6 we have ≫ Σ ≫ and ≫ Δ·Σ ≫, which lets us conclude the case.

Rules C-Flex-L and C-Flex-R include the SRLC premise. By the IH we have ≫ Δ ≫. The SRLC

ensures that each of the constraints added in the premise of C-Flex-L and C-Flex-R is smaller

according to our measure. Hence, for each such constraint 𝐶 we also have ≫ 𝐶 ≫, letting us

conclude the case by Lemma D.6.

Finally, we consider rule C-Forall-R. Constraint 𝜏+ ≤𝜙 𝜎−
is smaller than Δ · (𝜏+ ≤𝜙 ∀𝛼.𝜏−), so

by the IH there is a finite derivation of 𝑉 ′,𝑊 ·𝛽𝛼 ⊢ 𝜖 ≫ 𝜏+ ≤𝜙 𝜎− ≫ Ξ?
for some Ξ?

. If Ξ? = err
then we use C-Fail, otherwise Ξ? = Ξ.
Now we focus on the second constraining premise. By the IH, there is a finite derivation of

𝑉 ,𝑊 ·𝛽𝛼 ⊢ Ξ0 ≫ 𝜏+ ≤𝜙 𝜎− ≫ . . . (the result is not relevant except that we may need to propagate

err with C-Fail). We will refer to this derivation as 𝔍2 and to first premise’s derivation as 𝔍1. We

will sketch how to show there is a finite derivation of 𝑉 ,𝑊 ·𝛽𝛼 ⊢ Ξ0 ≫ outer𝑉 ′ (Ξ) ≫ . . ., which

can be constructed from 𝔍1 and 𝔍2. The intuition is that temporarily freezing some type variables,

like in the first premise’s derivation 𝔍1, delays solving constraints which can be solved on the spot,

like in 𝔍2. In a sense, 𝔍2 merely solves more constraints than 𝔍1. In particular, all flexible variables

appearing in 𝔍1 can be treated as also appearing in 𝔍2 (we can act as though both derivations

always pick the same variable names). Additionally, note that the only constraints solved in 𝔍1
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which are not solved in 𝔍2 are constraints on rigid variables in 𝑉 ′ \ 𝑉 solved by C-Rigid-L or

C-Rigid-R.

We sketch how to construct the desired derivation. Every 𝐵 ∈ outer𝑉 ′ (Ξ) was added by a

subderivation of 𝔍1 ending in C-Rigid-L or C-Rigid-R. WLOG assume the former for a particular

𝐵 = 𝑎 ≤ 𝜏𝑎 . Then that subderivation of 𝔍1 solves some 𝐵1 = 𝑎 ≤ 𝜏𝑎,1.

If 𝑎 ∈ 𝑉 , then 𝔍2 also solves 𝐵1 via C-Rigid-L. Otherwise, if 𝑎 is an approximant for 𝑏 in 𝔍1,

then (and only then) 𝐵1 was added to the constraints in 𝔍1 by C-Rigid-L or C-Rigid-R and no

subderivation in 𝔍2 solves the exact same goal. We proceed by distinguishing two cases based on

how the constraints added by C-Rigid-L and C-Rigid-R must be solved.

If 𝜏𝑎,1 is also an approximant 𝑎′ in 𝔍1, then 𝑎 and 𝑎′ are the lower and upper approximants

for 𝑏. The desired subderivation of 𝑎 ≤ 𝑎′ can be constructed because all constraints on 𝑎 and 𝑎′

solved in 𝔍1 are instead constraints on 𝑏, a flexible variable, in 𝔍2. Hence, 𝔍2 solves the constraints

arising from the desired derivation needing to solve 𝑎 ≤ 𝑎′.
Otherwise, if 𝜏𝑎,1 is not an approximant in 𝔍1, then it is an upper bound of 𝑏 and 𝔍2 solves

𝑏 ≤ 𝜏𝑎,1.

Finally, if 𝑎 is not an approximant in 𝔍1, then 𝔍2 has a subderivation which solves 𝑎 ≤ 𝜏𝑎,1 via

C-Flex-L.

In all these cases, in the desired derivation we need to construct a (sub)derivation solving 𝑎 ≤ 𝜏𝑎 .

Compared to 𝜏𝑎,1 in 𝔍2, some type variables 𝑎𝑎 may have been replaced by approximants when 𝐵1

was extruded in 𝔍1. If such type variables are flexible in the desired derivation, i.e., absent from

𝑉 , then they approximate temporarily frozen variables (ones in 𝑉 ′ \𝑉 ). Hence, all constraints on
these approximants extruded by 𝔍1 corresponds to constraints on their underlying type variable

solved by 𝔍2. While the constraints may not necessarily be solved in the same order in 𝔍2 and in

the desired derivation, the order of constraints does not truly matter. As Appendix ?? explains, if we

reorder some goals then the derivation as a whole still traverses and solves the same constraints.

Hence, there is a finite derivation of 𝑉 ,𝑊 ·𝛽𝛼 ⊢ Ξ0 ≫ outer𝑉 ′ (Ξ) ≫ . . ., which can also be

derived in𝑊 because 𝛽𝛼 ∉ FV (Ξ) . Therefore, by Lemma D.6 there is also a finite derivation of

𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ · outer𝑉 ′ (Ξ) ≫ Σ?
for some Σ?

. If Σ? = err then we use C-Fail, otherwise we can

conclude with C-Forall-R. □

D.2 Soundness of constraining
We now justify that subtype constraining, when it succeeds, leads to valid and consistent subtyping,

which allows us to use it in the proof of type inference soundness.

D.2.1 Full propagation. To prove type inference soundness, we define a new inductive relation on

bounds context, called full propagation, which is a restricted form of subtyping without a transitivity

rule and which corresponds closely with what a constraint closure and resolution algorithm should

compute as its output context. We show that our subtype constraining algorithm implies full

propagation in its output context and then we show that full propagation itself implies that the

context’s subtyping relationships can be derived and that they are consistent. We show consistency

by exhibiting a solution to the bounds in the form of the lower-bounds union (LBU).

Definition D.7 (Full propagation). We say 𝑉 , Σ is fully-propagated if 𝑉 ,𝑊 , 𝜖 ⊢ Σ ⊣ Σ, where the
judgment is defined in Figure 11. We only consider well-formed full propagation derivations where

𝑉 #𝑊 .

D.2.2 Concrete types.
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𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜏− ⊣ Σ′ We define 𝑉 ,𝑊 , Σ ⊢ 𝐵 ⊣ Σ′ ≜ 𝑉 ,𝑊 , Σ ⊢ 𝐵 ⊣ Σ′

P-Top

𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ ⊤ ⊣ Σ′

P-VarRefl

𝑉 ,𝑊 , Σ ⊢ 𝛼 ≤ 𝛼 ⊣ Σ′

P-Fun

𝑉 ,𝑊 , Σ ⊢ 𝜎+ ≤ 𝜏− ⊣ Σ′

𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜎− ⊣ Σ′

𝑉 ,𝑊 , Σ ⊢ 𝜏− → 𝜏+ ≤ 𝜎+ → 𝜎− ⊣ Σ′

P-Rigid-L

𝛼 ∈ 𝑉 𝜌 = [𝛽− ↦→ 𝜎−, 𝛽+ ↦→ 𝜎+
𝛽∈FV (𝜏− )\𝑉 ] (𝛼 ≤ 𝜌𝜏−) ∈ Σ′

𝑊 ⊢ 𝜏− X-ok FV (𝜌𝜏−) ⊆ 𝑉 𝑉 ,𝑊 , Σ ⊢ (𝜎− ≤ 𝛽) · (𝛽 ≤ 𝜎+) ⊣ Σ′
𝛽∈FV (𝜏− )\𝑉

𝑉 ,𝑊 , Σ ⊢ 𝛼 ≤ 𝜏− ⊣ Σ′

P-Rigid-R

𝛼 ∈ 𝑉 𝜌 = [𝛽− ↦→ 𝜎−, 𝛽+ ↦→ 𝜎+
𝛽∈FV (𝜏+ )\𝑉 ] (𝜌𝜏+ ≤ 𝛼) ∈ Σ′

𝑊 ⊢ 𝜏+ X-ok FV (𝜌𝜏+) ⊆ 𝑉 𝑉 ,𝑊 , Σ ⊢ (𝜎− ≤ 𝛽) · (𝛽 ≤ 𝜎+) ⊣ Σ′
𝛽∈FV (𝜏+ )\𝑉

𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝛼 ⊣ Σ′

P-Skip

𝛼 ∉ 𝑉 ·𝑊 (𝜏+ ≤ 𝜎−) ∈ {(𝛼 ≤ 𝜎−), (𝜏+ ≤ 𝛼)}
(𝜏+ ≤ 𝜎−) ∉ Σ′ (𝜏+ ≤ 𝜎−) ∈ Σ

𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜎− ⊣ Σ′

P-Flex

𝛼 ∉ 𝑉 ·𝑊 (𝜏+ ≤ 𝜎−) ∈ Σ′

(𝜏+ ≤ 𝜎−) ∈ {(𝛼 ≤ 𝜎−), (𝜏+ ≤ 𝛼)}
𝑉 ,𝑊 , Σ ⊢ CLB𝑉 (𝜏+, Σ′) ≤ 𝜎−′ ⊣ Σ′

𝜎−′∈CUB𝑉 (𝜎−, Σ′ )

𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜎− ⊣ Σ′

P-Forall-L

𝑉 ,𝑊 , Σ ⊢ [ 𝛼 ↦→ 𝜋 ]Ξ ⊣ Σ′

𝑉 ,𝑊 , Σ ⊢ [ 𝛼 ↦→ 𝜋 ]𝜏+ ≤ 𝜎− ⊣ Σ′

𝑉 ,𝑊 , Σ ⊢ ∀𝛼{Ξ}. 𝜏+ ≤ 𝜎− ⊣ Σ′

P-Forall-R

𝛽 fresh 𝑉 ′ ⊇ FV (𝜏+ ≤ 𝜎−) \𝑊 𝑉 ′
#𝑊 · 𝛽

acyclic(Ξ) 𝑉 ′,𝑊 · 𝛽, 𝜖 ⊢ 𝜏+ ≤ [𝛼 ↦→ 𝛽]𝜎− ⊣ Ξ
𝑉 ′,𝑊 · 𝛽, 𝜖 ⊢ Ξ ⊣ Ξ 𝑉 ,𝑊 , Σ ⊢ outer𝑉 ′ (Ξ) ⊣ Σ′

𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ ∀𝛼. 𝜎− ⊣ Σ′

Fig. 11. The polarized full-propagation rules. Note that in P-Rigid-L and P-Rigid-R, 𝜎−
and 𝜎+ are both

positive and negative, i.e. System F types. In P-Forall-L, 𝜋 can be either positive or negative as long as 𝜏+

remains a valid positive type after substitutions.

Definition D.8 (Left-Concrete Types). A left-concrete type is not a flexible type variable (that may

be under universal quantifiers).

⊤ concrete+𝑉 𝜏1 → 𝜏2 concrete+𝑉
𝑎 ∈ 𝑉

𝑎 concrete+𝑉

𝜏+ concrete+𝑉
∀𝛼{Σ}. 𝜏+ concrete+𝑉

Definition D.9 (Right-Concrete Types). A right-concrete type is not a flexible type variable (that
may be under spurious universal quantifiers such as ∀𝛼.𝛽 where 𝛽 is flexible).

⊤ concrete−𝑉 𝜏1 → 𝜏2 concrete−𝑉
𝑎 ∈ 𝑉

𝑎 concrete−𝑉

𝛼 ∈ FV (𝜏−)
∀𝛼. 𝜏− concrete−𝑉

𝜏− concrete−𝑉
∀𝛼. 𝜏− concrete−𝑉

Definition D.10 (Concrete Lower Bounds (CLB)). Assume universal types are well-formed and

no name collision of universal quantifiers. CLB𝑉 (𝜏, Ξ) = go+
𝑉
(𝜏, Ξ, 𝜖). go+ returns 𝜏 itself if 𝜏 is
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left-concrete or the union of left-concrete lower bounds of 𝜏 in Ξ that can be transitively reached.

go+𝑉 (𝜏+, Ξ, 𝑊 ) = 𝜏+ if 𝜏+ concrete+𝑉

go+𝑉 (𝑎, Ξ, 𝑊 ) =
∨

go+
𝑉
(𝜏+, Ξ, 𝑊 · 𝑎)

(𝜏+≤𝑎) ∈ Ξ, 𝜏+∉(𝑊 · 𝑎)
otherwise

go+𝑉 (∀𝛼{Σ}. 𝜏+, Ξ, 𝑊 ) = ∀𝛼{Σ}. go+𝑉 (𝜏+, Σ · Ξ, 𝑊 ) otherwise

Example D.11. CLB𝜖 (𝑎, (∀𝛼𝛽𝛾{𝛼 → 𝛽 ≤ 𝛾, 𝛽 → 𝛼 ≤ 𝛾, 𝛼 ≤ 𝛽}. 𝛾 ≤ 𝑎)) = ∀𝛼𝛽𝛾{𝛼 → 𝛽 ≤
𝛾, 𝛽 → 𝛼 ≤ 𝛾, 𝛼 ≤ 𝛽}. (𝛼 → 𝛽) ∨ (𝛽 → 𝛼).

Example D.12. Let Ξ = (∀𝛽{Ξ′}. 𝛽 ≤ 𝛼) · (𝜏 ≤ 𝛼) · (𝜎 ′ ≤ 𝛾) and Ξ′ = (𝛼 ≤ 𝛽) · (𝜎 ≤ 𝛽) · (𝛾 ≤ 𝛽)
where 𝜏, 𝜎, 𝜎 ′

are left-concrete. Then CLB𝜖 (𝛼, Ξ) = 𝜏 ∨ ∀𝛽{Ξ′}. (𝜎 ∨ 𝜎 ′).
Definition D.13 (Concrete Upper Bounds (CUB)). CUB𝑉 (𝑎, Ξ) = go−

𝑉
(𝑎, Ξ, 𝜖). go− calculates a set

of all right-concrete upper bounds of 𝑎 in Ξ that can be transitively reached.

go−𝑉 (𝜏−, Ξ, 𝑊 ) = 𝜏− if 𝜏− concrete−𝑉

go−𝑉 (𝑎, Ξ, 𝑊 ) = go−
𝑉
(𝜏−, Ξ, 𝑊 · 𝑎) (𝑎≤𝜏

− ) ∈ Ξ, 𝜏−∉(𝑊 · 𝑎)
otherwise

go−𝑉 (∀𝛼. 𝜏−, Ξ, 𝑊 ) = go−𝑉 (𝜏−, Ξ, 𝑊 ) otherwise

The following properties of CLB and CUB are obvious:

Proposition D.14. CLB𝑉 (𝜏, Ξ) is always defined.

Proposition D.15. CUB𝑉 (𝜏, Ξ) is always defined.

Proposition D.16. CLB𝑉 (𝜏, Ξ) = CLB𝑉 (𝜏, Ξ·(𝜏 ≤ 𝜎))

Proposition D.17. CUB𝑉 (𝜏, Ξ) = CUB𝑉 (𝜏, Ξ·(𝜎 ≤ 𝜏))

D.2.3 Lower Bound Union (LBU).

Definition D.18 (Declarative Lower Bound Union). For all Ξ and 𝑉 and set of proper substitutions

𝜌 , if every substitution (𝛼 ↦→ 𝜏) ∈ 𝜌 satisfies 𝜏 = 𝜌CLB𝑉 (𝛼, Ξ), then 𝜌 ∈ isLBUΞ
𝑉
.

Definition D.19 (Algorithmic Lower Bound Union). We obtain the algorithmic lower bound union

by mkLBU (Ξ,𝑉 , 𝜖) which is a function call that returns a list of substitutions:

mkLBU (Ξ,𝑉 ,𝑊 ) = 𝛼 ↦→ [mkLBU (Ξ,𝑉 ,𝑊 · 𝛼)]CLB𝑉 (𝛼, Ξ)𝛼∈FV (Ξ)\(𝑉 ·𝑊 )

Proposition D.20. If acyclic(Ξ), then:
(1) mkLBU (Ξ,𝑉 , 𝜖) ∈ isLBUΞ

𝑉

(2) mkLBU (Ξ,𝑉 , 𝜖) is always defined.

Proof sketch. For each type variable 𝑎 ∈ FV (Ξ) \𝑉 , its CLB can always be calculated because

each type variable is only accessed at most once in the bounds graph. Due to the acyclicity condition

of Ξ, there are no cyclic occurrences of 𝛼 transitively reachable in the concrete lower bounds of 𝛼 ,

so no infinite substitution of LBU would happen when recursively substituting occurrences of other

type variables in the concrete lower bounds, and we can disregard 𝛼 in the recursive computation

of lower bound union of other type variables. □

Proposition D.21. If acyclic(Ξ), then there always exists a proper substitution 𝜌 in isLBUΞ
𝑉
.

Proof. We provide mkLBU (Ξ,𝑉 , 𝜖) as the witness. □

Notation: we write LBUΞ
𝑉
as an arbitrary instance in isLBUΞ

𝑉
.
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D.2.4 Transitive reachability of bounds.

Definition D.22 (Transitively reachable bounds). Given a rigid type variable set 𝑉 , we denote a

flexible type variable 𝛼 transitively reaches a lower bound 𝜏+ in context Σ through a set of flexible

type variables 𝛽 as 𝜏+ ≤∗
𝑉
𝛼 ∈ Σ ∼ 𝛽 .

𝜏+ ≤ 𝛼 ∈ Σ 𝛼 ∉ 𝑉

𝜏+ ≤∗
𝑉 𝛼 ∈ Σ ∼ 𝛼

𝜏+ ≤∗
𝑉 𝛽 ∈ Σ ∼ 𝛾 𝛽 ≤ 𝛼 ∈ Σ 𝛼, 𝛽 ∉ 𝑉

𝜏+ ≤∗
𝑉 𝛼 ∈ Σ ∼ 𝛾 · 𝛽

Similarly, we denote an upper bound that is transitively reachable as 𝛼 ≤∗
𝑉
𝜏− ∈ Σ ∼ 𝛽 .

D.2.5 Propagation context adjustment.

LemmaD.23. If for all𝑎 ∉ 𝑉 ,𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′), we have𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣
Ξ′ and acyclic(Ξ · Ξ′·(𝑎 ≤ 𝜏−)), then 𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′·(𝑎 ≤ 𝜏−).

LemmaD.24. If for all𝑎 ∉ 𝑉 , 𝜏−𝑖 ∈ CUB𝑉 (𝑎, Ξ′), we have𝑉 ,𝑊 ,Ξ·(𝜏+ ≤ 𝑎) ⊢ CLB𝑉 (𝜏+, Ξ′) ≤ 𝜏−𝑖 ⊣
Ξ′ and acyclic(Ξ · Ξ′·(𝜏+ ≤ 𝑎)), then 𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝜏+, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′·(𝜏+ ≤ 𝑎).

Proof sketch of D.23. Essentially, the types on both sides of the propagation relationship to

prove are all concrete. The typical case is when two function types, say 𝑙1 → 𝑙2 and 𝑟1 → 𝑟2, are on

both sides. Due to the acyclicity condition, 𝑎 would never appear (or be transitively reached) in

the positive/negative positions of 𝑙2/𝑟2 and negative/positive positions of 𝑙1/𝑟1. For the positions

otherwise, it is possible that 𝑎 appears due to syntactically cyclic upper bounds, e.g. 𝑙1 → 𝑙2 ≤
𝑎 ≤ 𝜏− = 𝑎 → ⊤, we need to propagate 𝑎 ≤ 𝑙1 in Ξ′·(𝑎 ≤ 𝜏−), while 𝑎 ≤ 𝜏− does not create any

new concrete lower bound for 𝑎 so it is equivalent to propagating it in Ξ′
, which is already known.

Note that it is impossible that 𝑎 ≤ 𝑙1 is propagated by P-Skip when 𝑙1 = 𝜏− = 𝑎 → ⊤ because this

violates the acyclicity condition. So generally, we can inductively reconstruct the whole derivation

of the assumed propagation relations with the contexts adjusted as that of the goals. For D.24, the

proof idea is the same, while there is no syntactic cyclicity in lower bounds. □

Lemma D.25. If for all 𝜏+ and 𝑎 ∉ 𝑉 :
(1) 𝑉 ,𝑊 ,Ξ·(𝜏+ ≤ 𝑎) ⊢ Ξ′ ⊣ Ξ′

(2) 𝑉 ,𝑊 ,Ξ·(𝜏+ ≤ 𝑎) ⊢ 𝜎+ ≤ 𝜎− ⊣ Ξ′

(3) acyclic(Ξ · Ξ′·(𝜏+ ≤ 𝑎))
(4) For all 𝜏−𝑖 ∈ CUB𝑉 (𝑎, Ξ′), we have 𝑉 ,𝑊 ,Ξ·(𝜏+ ≤ 𝑎) ⊢ CLB𝑉 (𝜏+, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′

then 𝑉 ,𝑊 ,Ξ ⊢ 𝜎+ ≤ 𝜎− ⊣ Ξ′·(𝜏+ ≤ 𝑎).

Lemma D.26. If for all 𝜏− and 𝑎 ∉ 𝑉 :
(1) 𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ Ξ′ ⊣ Ξ′

(2) 𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ 𝜎+ ≤ 𝜎− ⊣ Ξ′

(3) acyclic(Ξ · Ξ′·(𝑎 ≤ 𝜏−))
(4) For all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′), we have 𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′

then 𝑉 ,𝑊 ,Ξ ⊢ 𝜎+ ≤ 𝜎− ⊣ Ξ′·(𝑎 ≤ 𝜏−).

Proof sketch of D.26 (D.25 is symmetric). By induction on the full propagation derivation

from (2). Intuitively, this lemma means bounds are still consistent even with a new upper bound to

propagate after checking that the new bound is consistent and propagated to the original bounds.

Cases P-Top, P-VarRefl, P-Fun Immediate.

Cases P-Rigid-L/P-Rigid-R WLOG we consider P-Rigid-L. We are to prove𝑉 ,𝑊 ,Ξ ⊢ 𝑏 ≤ 𝜎− ⊣
Ξ′·(𝑎 ≤ 𝜏−). Since 𝑎 ∉ 𝑉 and 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏. We conclude with IH.
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Case P-Skip By assumption, we have (𝜎+ ≤ 𝜎−) ∈ (Ξ·(𝑎 ≤ 𝜏−)) and (𝜎+ ≤ 𝜎−) ∉ Ξ′
. Then the

only case we need to consider is when (𝜎+ ≤ 𝜎−) = (𝑎 ≤ 𝜏−), otherwise we conclude with
P-Skip since (𝜎+ ≤ 𝜎−) ∈ Ξ.
By P-Flex, we need to prove for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′·(𝑎 ≤ 𝜏−)), we have
𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′·(𝑎 ≤ 𝜏−)) ≤ 𝜏−𝑖 ⊣ Ξ′·(𝑎 ≤ 𝜏−).
It is immediate to see that CLB𝑉 (𝑎, Ξ′·(𝑎 ≤ 𝜏−)) = CLB𝑉 (𝑎, Ξ′) since 𝑎 ≤ 𝜏− does not

introduce new lower bounds for 𝑎.

Consider 𝜏− . If 𝜏− is right-concrete, then CUB𝑉 (𝜏−, Ξ′·(𝑎 ≤ 𝜏−)) = CUB𝑉 (𝜏−, Ξ′) = 𝜏− .
Otherwise, we still have CUB𝑉 (𝜏−, Ξ′·(𝑎 ≤ 𝜏−)) = CUB𝑉 (𝜏−, Ξ′) because 𝜏− , as a flexible
type variable (possibly under spurious universal quantifiers), could only be visited once.

Now, the goal is to prove for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′), 𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣
Ξ′·(𝑎 ≤ 𝜏−).
By assumption, we have for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′), 𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ CLB𝑉 (𝑎, Ξ′) ≤
𝜏−𝑖 ⊣ Ξ′

. We conclude with D.23.

Case P-Flex

For this case we have:

𝑏 ∉ 𝑉 (𝜎+ ≤ 𝜎−) ∈ {(𝑏 ≤ 𝜎−), (𝜎+ ≤ 𝑏)} (𝜎+ ≤ 𝜎−) ∈ Ξ′

𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ CLB𝑉 (𝜎+, Ξ′) ≤ 𝜎−
𝑖
⊣ Ξ′𝜎

−
𝑖 ∈CUB𝑉 (𝜎−,Ξ′ )

𝑉 ,𝑊 ,Ξ·(𝑎 ≤ 𝜏−) ⊢ 𝜎+ ≤ 𝜎− ⊣ Ξ′

We denote CLB types CLB𝑉 (𝜎+, Ξ′) as 𝐶𝑙 , CUB𝑉 (𝜎−, Ξ′) as 𝐶𝑟 ,

CLB𝑉 (𝜎+, Ξ′·(𝑎 ≤ 𝜏−)) as 𝐶′
𝑙
, and CUB𝑉 (𝜎−, Ξ′·(𝑎 ≤ 𝜏−)) as 𝐶′

𝑟 .

By P-Flex, the goal is to prove for all 𝜎−
𝑖 ∈ 𝐶′

𝑟 , we have 𝑉 ,𝑊 ,Ξ ⊢ 𝐶′
𝑙
≤ 𝜎−

𝑖 ⊣ Ξ′·(𝑎 ≤ 𝜏−).
We discuss the concreteness of 𝜏− and 𝜎+/𝜎−

to discover how the new bound 𝑎 ≤ 𝜏−

influences the relationships between 𝐶𝑟/𝐶′
𝑟 and 𝐶𝑙/𝐶′

𝑙
. We use the notation ≡ to describe

the equivalency between CLB types, i.e. a CLB type can be replaced by an equivalent one in

propagation judgments.

Consider the following cases:

• (𝜎+ ≤ 𝜎−) = (𝑏 ≤ 𝜎−).
By IH, for all 𝜎−

𝑖 ∈ 𝐶𝑟 , we have 𝑉 ,𝑊 ,Ξ ⊢ 𝐶𝑙 ≤ 𝜎−
𝑖 ⊣ Ξ′·(𝑎 ≤ 𝜏−).

ByD.23, for all𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′), we have𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′·(𝑎 ≤ 𝜏−) (∗).
Consider the concreteness of 𝜏− and 𝜎−

:

◦ 𝜏− concrete−
𝑉
and 𝜎− concrete−

𝑉
. We conclude with the IH since𝐶𝑙 = 𝐶′

𝑙
,𝐶𝑟 = 𝐶′

𝑟 .

◦ 𝜏− concrete−
𝑉
and ¬(𝜎− concrete−

𝑉
). We have 𝐶𝑙 = 𝐶′

𝑙
. If 𝜎−

cannot transitively

reach 𝑎 as an upper bound in Ξ′·(𝑎 ≤ 𝜏−), then we conclude with IH since 𝜎−

does not introduce new upper bounds to propagate, i.e. 𝐶𝑟 = 𝐶′
𝑟 . Otherwise, 𝜎

−

transitively reaches 𝑎, i.e. in the bounds graph (with the new bound (𝑎 ≤ 𝜏−)
marked red):

𝑏 ≤ 𝜎− ≤∗ 𝑎 ≤ 𝜏−

then 𝐶′
𝑟 = 𝐶𝑟 ∪ {𝜏−} since CUB𝑉 (𝜏−, Ξ′·(𝑎 ≤ 𝜏−)) = {𝜏−}. For all type in𝐶𝑟 , we

conclude with IH. We want 𝑉 ,𝑊 ,Ξ ⊢ 𝐶𝑙 ≤ 𝜏− ⊣ Ξ′·(𝑎 ≤ 𝜏−), which is implied

by (∗) since 𝑎 transitively has the lower bound 𝑏.

◦ ¬(𝜏− concrete−
𝑉
) and 𝜎− concrete−

𝑉
. We have 𝐶𝑟 = 𝐶′

𝑟 = {𝜎−}. If 𝑏 cannot

transitively reach 𝜏− , then we conclude with IH since (𝑎 ≤ 𝜏−) does not introduce
new lower bounds to propagate, i.e.𝐶𝑙 = 𝐶′

𝑙
. Otherwise, 𝑏 transitively reaches 𝜏−

, i.e.:

𝑎 ≤ 𝜏− ≤∗ 𝑏 ≤ 𝜎−



When Subtyping Constraints Liberate 48:55

then 𝐶′
𝑙
≡ 𝐶𝑙 ∨ CLB𝑉 (𝑎, Ξ′). The bounds 𝐶𝑙 being less than each type in 𝐶𝑟 are

already propagated by IH. We want 𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜎− ⊣ Ξ′·(𝑎 ≤ 𝜏−),
which is implied by (∗) since 𝜏− transitively has the upper bound 𝜎−

.

◦ ¬(𝜏− concrete−
𝑉
) and ¬(𝜎− concrete−

𝑉
). For the cases when (1) both 𝜏−/𝜎−

could

not transitively reach 𝑏/𝑎, (2) only one of 𝜏−/𝜎−
transitively reaches 𝑏/𝑎, we

apply the same reasoning in the former cases. When both 𝜏−/𝜎−
transitively

reaches 𝑏/𝑎,
𝑎 ≤ 𝜏−

≤∗
≤
∗

𝜎− ≥ 𝑏

𝐶′
𝑟 = 𝐶𝑟 · CUB𝑉 (𝜏−, Ξ′) and 𝐶′

𝑙
≡ 𝐶𝑙 ∨ CLB𝑉 (𝑎, Ξ′). By (∗), those relationships

are propagated since adding 𝑎 ≤ 𝜏− would unify 𝑎, 𝜏− , 𝑏, and 𝜎−
.

• (𝜎+ ≤ 𝜎−) = (𝜎+ ≤ 𝑏). We apply analogous reasoning to the case above. We discuss

the concreteness of 𝜏− and 𝜎+/𝜎−
and whether 𝑏/𝜎−

can transitively reach 𝑎/𝜏− to

discover how the new bound 𝑎 ≤ 𝜏− influences the relationships between 𝐶𝑟/𝐶′
𝑟 and

𝐶𝑙/𝐶′
𝑙
.

Case P-Forall-L By IH.

Case P-Forall-R By the IH on the third constraining premise; other premises are unchanged. □

Lemma D.27. If for all 𝜏− and FV (𝜏− ≤ 𝜏+) ⊆ 𝑉 and 𝑉 ,𝑊 ,Ξ ⊢ 𝜎+ ≤ 𝜎− ⊣ Ξ′ then 𝑉 ,𝑊 ,Ξ ⊢
𝜎+ ≤ 𝜎− ⊣ Ξ′·(𝜏+ ≤ 𝜏−).
D.2.6 Correctness of CLB and CUB.

Lemma D.28. For all 𝜏− and 𝑎 ∉ 𝑉 and Σ and Σ′, if
(1) for all 𝜎+ ≤ 𝑏 ∈ Σ and 𝑏 ≤ 𝜎− ∈ Σ′, we have 𝑉 ,𝑊 , Σ ⊢ 𝜎+ ≤ 𝜎− ⊣ Σ′; and
(2) for all 𝜏+ ≤ 𝑎 ∈ Σ′, we have 𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜏− ⊣ Σ′

then for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Σ′), we have 𝑉 ,𝑊 , Σ ⊢ CLB𝑉 (𝑎, Σ′) ≤ 𝜏−𝑖 ⊣ Σ′.

Lemma D.29. For all 𝜏+ and 𝑎 ∉ 𝑉 and Σ and Σ′, if
(1) for all 𝑏 ≤ 𝜎− ∈ Σ and 𝜎+ ≤ 𝑏 ∈ Σ′, we have 𝑉 ,𝑊 , Σ ⊢ 𝜎+ ≤ 𝜎− ⊣ Σ′; and
(2) for all 𝑎 ≤ 𝜏− ∈ Σ′, we have 𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜏− ⊣ Σ′

then for all 𝜏−𝑖 ∈ CUB𝑉 (𝑎, Σ′), we have 𝑉 ,𝑊 , Σ ⊢ CLB𝑉 (𝜏+, Σ′) ≤ 𝜏−𝑖 ⊣ Σ′.

Proof sketch of D.28 (D.29 is similar). By the definition of CLB,

CLB𝑉 (𝑎, Σ′) = go+𝑉 (𝑎, Σ′, 𝜖)

=
∨

go+
𝑉
(𝜏+, Σ′, {𝑎})

(𝜏+≤𝑎) ∈ Σ′, 𝜏+∉{𝑎}

By P-Forall-L, for each (𝜏+ ≤ 𝑎) ∈ Σ′
and 𝜏+ ∉ {𝑎}, we need to prove for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Σ′),

we have 𝑉 ,𝑊 , Σ ⊢ go+
𝑉
(𝜏+, Σ′, {𝑎}) ≤ 𝜏−𝑖 ⊣ Σ′

. We conclude by invoking Lemma D.30 with the

assumption that CLB and CUB always terminate and the following properties: for all 𝑏 ≤ 𝑎 ∈ Ξ′

where 𝑎, 𝑏 ∉ 𝑉 , if 𝜏+ ≤∗
𝑉
𝑏 ∈ Ξ′ ∼ 𝛽 then 𝑉 ,𝑊 ,Ξ ⊢ 𝜏+ ≤ 𝑎 ⊣ Ξ′

. □

Lemma D.30. For all 𝜏− , 𝜏+
0
, 𝛼 , 𝑎 ∉ 𝑉 , Σ, and Σ′, if

(1) 𝜏+
0
≤∗
𝑉
𝑎 ∈ Σ′ ∼ 𝛼 ; and

(2) for all 𝜎+ ≤ 𝑏 ∈ Σ and 𝑏 ≤ 𝜎− ∈ Σ′, we have 𝑉 ,𝑊 , Σ ⊢ 𝜎+ ≤ 𝜎− ⊣ Σ′; and
(3) for all 𝜏+ such that 𝜏+ ≤∗

𝑉
𝑎 ∈ Σ′ ∼ 𝛽 , we have 𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜏− ⊣ Σ′
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then for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Σ′), if there exists 𝑘 and 𝑙 such that the recursion depth of the CUB call is 𝑘
and the recursion depth of the following go+ call is 𝑙 , then we have𝑉 ,𝑊 , Σ ⊢ go+

𝑉
(𝜏+

0
, Σ′, 𝛼) ≤ 𝜏−𝑖 ⊣ Σ′.

Proof sketch of D.30. We prove by induction on 𝑙 and case analysis on the concreteness of

each 𝜏+ (IH1):

• 𝑙 = 0 and 𝜏+ concrete+
𝑉
.

Then go+
𝑉
(𝜏+, Σ′, {𝑎}) = 𝜏+. By assumption, we have 𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜏− ⊣ Σ′

(∗). We now

perform induction on 𝑘 (IH2).

◦ 𝑘 = 0, i.e. 𝜏− = 𝜏−𝑖 and 𝜏− concrete−
𝑉
, we conclude immediately.

◦ 𝑘 > 0, i.e. ¬(𝜏− concrete−
𝑉
) and 𝜏− transitively has the concrete upper bound 𝜏−𝑖 . We

then perform induction on the propagation assumption (∗) (IH3).
Case P-Top Impossible as ⊤ is concrete.

Cases P-VarRefl, P-Fun, P-Rigid-R Impossible since 𝜏− is not concrete.

Case P-Rigid-L 𝜏+ = 𝑏, 𝑏 ∈ 𝑉 , (𝑏 ≤ 𝜏 ′) ∈ Σ′
, FV (𝜏 ′) ∈ 𝑉 , and 𝑉 ,𝑊 , Σ ⊢ 𝜏 ′ ≤ 𝜏− ⊣

Σ′
. By FV (𝜏 ′) ∈ 𝑉 , 𝜏 ′concrete+

𝑉
. By IH3, for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Σ′), we have

𝑉 ,𝑊 , Σ ⊢ 𝜏 ′ ≤ 𝜏−𝑖 ⊣ Σ′
. We conclude with P-Rigid-L.

Case P-Skip Since 𝜏+ concrete+
𝑉
, we can only have 𝜏− = 𝑏, 𝑏 ∉ 𝑉 , (𝜏+ ≤ 𝑏) ∉ Σ′

,

and (𝜏+ ≤ 𝑏) ∈ Σ. There is a 𝜏 ′ that is non-right-concrete and transitively

has the concrete upper bound 𝜏−𝑖 and (𝑏 ≤ 𝜏 ′) ∈ Σ′
. By assumption (1), we

have 𝑉 ,𝑊 , Σ ⊢ 𝜏+ ≤ 𝜏 ′ ⊣ Σ′
. We conclude with IH2 since 𝜏 ′ goes through 𝑘 − 1

non-right-concrete types to reach 𝜏−𝑖 .

Case P-Flex Immediate.

Case P-Forall-L By IH3.

Case P-Forall-R 𝜏− = ∀𝑏.𝜎−
and 𝑏 ∉ FV (𝜎−) and ∀𝑏. 𝜎−

is not concrete. Notice

that ∀𝑏. 𝜎−
is essentially a flexible type variable (𝑏′) under spurious universal

quantifiers, we have (𝜏+ ≤ 𝑏′) ∈ Ξ and also (𝜏+ ≤ 𝑏′) ∈ outer𝑉 ′ (Ξ) since
𝑉 ′ ⊇ FV (𝜏+ ≤ 𝑏′). We conclude with IH3.

• 𝑙 > 0 and 𝜏+ = ∀𝛼{Ξ}. 𝜏 ′ and ¬(𝜏 ′ concrete+
𝑉
).

Then go+
𝑉
(∀𝛼{Ξ}. 𝜏 ′, Σ′, {𝑎}) = ∀𝛼{Ξ}. go+

𝑉
(𝜏 ′, Σ′ · Ξ, {𝑎}).

By assumption, 𝑉 ,𝑊 , Σ ⊢ ∀𝛼{Ξ}. 𝜏 ′ ≤ 𝜏− ⊣ Σ′
.

We apply similar reasoning as the former case (𝑙 = 0) by induction on the number of non-

right-concrete types that CUB traverses and the propagation derivation. In case P-Forall-L,

we have Ξ propagated after substitution. We use this and P-Forall-L to conclude.

• 𝑙 > 0 and 𝜏+ = 𝑏 and ¬(𝑏 concrete+
𝑉
).

Then go+
𝑉
(𝑏, Σ′, {𝑎}) = ∨

go+
𝑉
(𝜏 ′, Σ′, {𝑎, 𝑏})

(𝜏 ′≤𝑏 ) ∈ Σ′, 𝜏 ′∉{𝑎,𝑏}
. We conclude with P-Forall-

L and IH1 since each 𝜏 ′ traverses 𝑙 − 1 non-left-concrete types to reach a left-concrete

type. □

Definition D.31. 𝜙 ⊆ Ξ ≜ 𝐵 ∈ Ξ
𝐵∈𝜙

. Note that ∈ does not look past � in 𝜙 .

D.2.7 Constraining implies full propagation.

Lemma D.32. If 𝑉 ,𝑊 ⊢ Ξ0 ≫ Δ ≫ Ξ′
0
and 𝜙 ⊆ Ξ0

(𝜏+≤𝜙𝜏− ) ∈ Δ
and acyclic(Ξ · Ξ′) and 𝑉 #𝑊 ,

then:
(1) for all 𝜏+ ≤𝜙 𝜏− ∈ Δ, we have 𝑉 ,𝑊 ,Ξ ⊢ uproot (𝜏+ ≤ 𝜏−) ⊣ Ξ′.
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(2) (a) for all 𝜏+ ≤ 𝑎 ∈ Ξ and 𝑎 ≤ 𝜏− ∈ Ξ′ where 𝑎 ∉ 𝑉 , we have 𝑉 ,𝑊 ,Ξ ⊢ 𝜏+ ≤ 𝜏− ⊣ Ξ′; and
(b) for all 𝑎 ≤ 𝜏− ∈ Ξ and 𝜏+ ≤ 𝑎 ∈ Ξ′ where 𝑎 ∉ 𝑉 , we have 𝑉 ,𝑊 ,Ξ ⊢ 𝜏+ ≤ 𝜏− ⊣ Ξ′.

(3) 𝑉 ,𝑊 ,Ξ ⊢ Ξ′ ⊣ Ξ′

where uproot (Ξ0) = Ξ and uproot (Ξ′
0
) = Ξ′.

Proof. By induction on the constraining derivation. The cases where the proof is sketched are

clearly marked. We implicitly uproot types with roots when they are used in propagation judgments.

Cases C-Empty, C-Top, C-VarRefl, C-Fun, C-Fail Immediate.

Case C-Skip (2) and (3) holds by the IH. For (1), WLOG we consider Δ = Δ′ · (𝑎 ≤ 𝜏−). If (𝑎 ≤
𝜏−) ∈ Ξ′

then we conclude with the IH’s (3). Otherwise, we conclude with P-Skip since

(𝑎 ≤ 𝜏−) ∈ 𝜙 and 𝜙 ⊆ Ξ.
Case C-Flex-L/C-Flex-R WLOG we consider C-Flex-L.

𝐵 = (𝑎 ≤ 𝜏−) root (𝐵) ∉ roots(𝜙) acyclic(Ξ·𝐵)
𝑎∉𝑉 ·𝑊 𝑉,𝑊 ⊢ Ξ·𝐵 ≫ Δ · (𝜏+ ≤𝐵 ·𝜙 𝜏−)

(𝜏+≤𝑎) ∈ Ξ
≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝑎 ≤𝜙 𝜏−) ≫ Ξ′ · 𝐵

(1) The goal is 𝑉 ,𝑊 ,Ξ ⊢ Δ · (𝑎 ≤ 𝜏−) ⊣ Ξ′ · (𝑎 ≤ 𝜏−).
To propagate (𝑎 ≤ 𝜏−), since (𝑎 ≤ 𝜏−) ∈ (Ξ′ · (𝑎 ≤ 𝜏−)) and 𝑎 ∉ 𝑉 , by P-Flex, we

want:

for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′·(𝑎 ≤ 𝜏−)), we have

𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′·(𝑎 ≤ 𝜏−)) ≤ 𝜏−𝑖 ⊣ Ξ′·(𝑎 ≤ 𝜏−).

By the IH’s (2) (b), we have 𝑉 ,𝑊 ,Ξ · (𝑎 ≤ 𝜏−) ⊢ 𝜏+ ≤ 𝜏− ⊣ Ξ′ (𝜏
+≤𝑎) ∈Ξ′

.

By D.28, using the above as the second premise and the IH’s (2) (a) as the first premise,

we have for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′), we have

𝑉 ,𝑊 ,Ξ · (𝑎 ≤ 𝜏−) ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′
(∗∗).

By D.26 and the IH’s (3), we adjust the context Ξ′
such that for all 𝜏−𝑖 ∈ CUB𝑉 (𝜏−, Ξ′),

we have 𝑉 ,𝑊 ,Ξ ⊢ CLB𝑉 (𝑎, Ξ′) ≤ 𝜏−𝑖 ⊣ Ξ′ · (𝑎 ≤ 𝜏−) (∗).
Since𝜏− would only be accessed once byCUBnomatter its concreteness,CUB𝑉 (𝜏−, Ξ′·(𝑎 ≤ 𝜏−)) =
CUB𝑉 (𝜏−, Ξ′). Since 𝑎 would only be accessed once by CLB, CLB𝑉 (𝑎, Ξ′·(𝑎 ≤ 𝜏−)) =
CLB𝑉 (𝑎, Ξ′). We conclude that (𝑎 ≤ 𝜏−) is propagated with (∗) by the two equations

above.

To propagate Δ, we conclude with the IH and (∗∗) and D.26 that adjusts the context.

(2) By the IH and D.26, we have the property for Ξ, (𝑎 ≤ 𝜏−) and Ξ′
, and we want the

same for Ξ and Ξ′, (𝑎 ≤ 𝜏−). This requires𝑉 ,𝑊 ,Ξ ⊢ 𝜏+ ≤ 𝜏− ⊣ Ξ′ · (𝑎 ≤ 𝜏−) (𝜏
+≤𝑎) ∈Ξ

.

By the IH’s (1), we have 𝑉 ,𝑊 ,Ξ · (𝑎 ≤ 𝜏−) ⊢ 𝜏+ ≤ 𝜏− ⊣ Ξ′ (𝜏
+≤𝑎) ∈Ξ

.

Then by D.26 (using (∗∗) and the IH for the premises),

we have 𝑉 ,𝑊 ,Ξ ⊢ 𝜏+ ≤ 𝜏− ⊣ Ξ′ · (𝑎 ≤ 𝜏−) (𝜏
+≤𝑎) ∈Ξ

, which concludes.

(3) The goal is 𝑉 ,𝑊 ,Ξ ⊢ Ξ′ · (𝑎 ≤ 𝜏−) ⊣ Ξ′ · (𝑎 ≤ 𝜏−), which requires propagating Ξ′
and

(𝑎 ≤ 𝜏−) under adjusted contexts. We start from the IH’s (3) and reason like in (1).

Case C-Rigid-L/C-Rigid-R WLOG we consider C-Rigid-L.

C-Rigid-L

𝑎 ∈ 𝑉 𝑉 ,𝑊 ⊢ 𝜏− ⇝ (Σ, 𝜎−) 𝑉 ,𝑊 ⊢ Ξ ≫ Δ·Σ ≫ Ξ′

𝑉 ,𝑊 ⊢ Ξ ≫ Δ · (𝑎 ≤𝜙 𝜏−) ≫ Ξ′·(𝑎 ≤ 𝜎−)
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(1) The goal is to show 𝑉 ,𝑊 ,Ξ ⊢ Δ · (𝑎 ≤ 𝜏−) ⊣ Ξ′·(𝑎 ≤ 𝜎−).
The first subgoal is to show that Δ is propagated.

By IH’s (1), we have 𝑉 ,𝑊 ,Ξ ⊢ Δ · Σ ⊣ Ξ′
where Σ is the output bounds of extrusion.

Since 𝜎−
is the output of extrusion, FV (𝜎−) ⊆ 𝑉 . Thus we can adjust the output

context and obtain 𝑉 ,𝑊 ,Ξ ⊢ Δ · Σ ⊣ Ξ′·(𝑎 ≤ 𝜎−) since (𝑎 ≤ 𝜎−) creates no new type

to propagate by D.27, which concludes this subgoal.

The second subgoal is to show that 𝑉 ,𝑊 ,Ξ ⊢ 𝑎 ≤ 𝜏− ⊣ Ξ′·(𝑎 ≤ 𝜎−).
We invert the extrusion derivation. For case X-1, the goal is trivial since 𝜎− = 𝜏− and

FV (𝜏−) ⊆ 𝑉 which allows us to conclude with P-Rigid-L by picking 𝜌 as empty. For

case X-2, 𝜎− = 𝜌−𝜏− where 𝜌 is the polarized substitution that extrude all free types

variables in FV (𝜏−) \𝑉 . We conclude with P-Rigid-L by using 𝜌 as the substitution

and 𝑉 ,𝑊 ,Ξ ⊢ Σ ⊣ Ξ′·(𝑎 ≤ 𝜎−). We can reuse the X-ok premise of X-2. Note that

since 𝑉 #𝑊 , we have𝑊 ∩ FV (𝜏−) =𝑊 ∩ (FV (𝜏−) \𝑉 ). For all 𝑏 ∈𝑊 ∩ FV (𝜏−) we
trivially have 𝑉 ,𝑊 ,Ξ ⊢ (⊥ ≤ 𝑏) · (𝑏 ≤ ⊤) ⊣ Ξ′·(𝑎 ≤ 𝜎−) for the positive and negative

approximants of the skolem 𝑏.

(2) We conclude with the IH’s (2) since 𝑎 ∈ 𝑉 .

(3) The goal is to show 𝑉 ,𝑊 ,Ξ ⊢ Ξ′·(𝑎 ≤ 𝜎−) ⊣ Ξ′·(𝑎 ≤ 𝜎−).
By IH’s (3), we have 𝑉 ,𝑊 ,Ξ ⊢ Ξ′ ⊣ Ξ′

. As in (1), FV (𝜎−) ⊆ 𝑉 and we can adjust the

output context to obtain 𝑉 ,𝑊 ,Ξ ⊢ Ξ′ ⊣ Ξ′·(𝑎 ≤ 𝜎−).
By P-Rigid-L, we have 𝑉 ,𝑊 ,Ξ ⊢ 𝑎 ≤ 𝜎− ⊣ Ξ′·(𝑎 ≤ 𝜎−) by picking empty 𝜌 .

Case C-Forall-L/C-Forall-R All properties hold by the IH. Note that in the first premise of

C-Forall-R, the cache is locked so the free part of the cache is empty, which is a subset of

the empty input context, i.e. �𝜙 ⊆ 𝜖 . This allows us to invoke the IH on that premise. □

Corollary D.33. If 𝑉 ,𝑊 ⊢ 𝜖 ≫ Δ ≫ Ξ′
0
, then 𝑉 ,𝑊 , 𝜖 ⊢ Ξ′ ⊣ Ξ′ where uproot (Ξ′

0
) = Ξ′.

Proof. Corollary of D.32. □
D.2.8 Full propagation implies subtyping and consistent bounds.

Notation: we write 𝑉 ,𝑊 ⊢ 𝜎 ≤ 𝜏 ⊣ Σ as a shorthand for 𝑉 ,𝑊 , 𝜖 ⊢ 𝜎 ≤ 𝜏 ⊣ Σ.

Lemma D.34. If 𝑉 , 𝛼 ⊢ 𝜏 ≤ 𝜎 ⊣ Σ and 𝑉 , 𝛼 ⊢ Σ ⊣ Σ and acyclic(Σ), then we have

outer𝑉 (Σ) ⊢ LBU inner𝑉 (Σ)
𝑉 · 𝛼 (𝜏 ≤ 𝜎).

Proof sketch. By induction on the full propagation derivation. Let 𝜌 = LBU inner𝑉 (Σ)
𝑉 · 𝛼 .

Case P-Top. By S-Top.

Case P-VarRefl. By reflexivity of subtyping.

Case P-Fun. By IH and S-Fun.

Case P-Rigid-L.

𝑎 ∈ 𝑉 𝜃 = [𝑏− ↦→ 𝜎−, 𝑏+ ↦→ 𝜎+𝑏∈FV (𝜏− )\𝑉 ] (𝑎 ≤ 𝜃𝜏−) ∈ Σ

𝑊 ⊢ 𝜏− X-ok FV (𝜃𝜏−) ⊆ 𝑉 𝑉 , 𝛼 ⊢ (𝜎− ≤ 𝑏) · (𝑏 ≤ 𝜎+) ⊣ Σ
𝑏∈FV (𝜏− )\𝑉

𝑉 , 𝛼 ⊢ 𝑎 ≤ 𝜏− ⊣ Σ

Since we have both FV (𝜃𝜏−) ⊆ 𝑉 and 𝑎 ∈ 𝑉 , it is the case that (𝑎 ≤ 𝜃𝜏−) ∈ outer𝑉 (Σ) and
also that 𝜌 (𝑎 ≤ 𝜃𝜏−) = 𝑎 ≤ 𝜃𝜏− .
By S-Hyp, we have outer𝑉 (Σ) ⊢ 𝜌 (𝑎 ≤ 𝜃𝜏−). Then by the IH, we have the following.

outer𝑉 (Σ) ⊢ 𝜌 (𝜎− ≤ 𝑏) · 𝜌 (𝑏 ≤ 𝜎+)𝑏∈FV (𝜏− )\𝑉
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With the polarized substitutions 𝜃 and the subtyping derivations above,

we can have outer𝑉 (Σ) ⊢ 𝜌 (𝜃𝜏− ≤ 𝜏−) by D.38, which allows us to conclude with S-Trans.

Case P-Rigid-R. Symmetric to the former case.

Case P-Skip Impossible.

Case P-Flex.

𝑎 ∉ 𝑉 (𝜏 ≤ 𝜎) ∈ {(𝑎 ≤ 𝜎), (𝜏 ≤ 𝑎)} (𝜏 ≤ 𝜎) ∈ Σ

𝑉 , 𝛼 ⊢ CLB𝑉 (𝜏, Σ) ≤ 𝜎 ′ ⊣ Σ
𝜎 ′∈CUB𝑉 (𝜎, Σ)

𝑉 , 𝛼 ⊢ 𝜏 ≤ 𝜎 ⊣ Σ

• (𝜏 ≤ 𝜎) = (𝑎 ≤ 𝜎). We want outer𝑉 (Σ) ⊢ 𝜌 (𝑎 ≤ 𝜎).
After expanding 𝜌𝑎, we want:

outer𝑉 (Σ) ⊢ 𝜌CLB𝑉 (𝑎, inner𝑉 (Σ)) ≤ 𝜌𝜎

By the IH, we have (∗):

outer𝑉 (Σ) ⊢ 𝜌CLB𝑉 (𝑎, Σ) ≤ 𝜌𝜎 ′𝜎
′∈CUB𝑉 (𝜎, Σ′ )

At this point we can conclude with the following auxilliary lemma.

LemmaD.35. Let outer𝑉 (Σ) ⊢ 𝜌CLB𝑉 (𝑎, Σ) ≤ 𝜌𝜎 ′𝜎
′∈CUB𝑉 (𝜎, Σ′ )

, where 𝜌 = LBU inner𝑉 (Σ)
𝑉 · 𝛼 .

Then outer𝑉 (Ξ) ⊢ 𝜌 (𝑎 ≤ 𝜎).

Proof. By induction on 𝜎 . We inspect its concreteness at the same time.

◦ 𝜎 concrete− . Then CUB𝑉 (𝜎, Σ′) = 𝜎 . The lemma’s premise is sufficient to con-

clude, since FV (outer𝑉 (Σ)) ⊆ 𝑉 and CLB never traverses rigid type variables,

i.e., CLB𝑉 (𝑎, Σ) = CLB𝑉 (𝑎, inner𝑉 (Σ)).
◦ ¬(𝜎 concrete−) and 𝜎 = 𝑏 and 𝑎 ∉ 𝑉 . Then 𝜌𝜎 = 𝜌CLB𝑉 (𝑏, inner𝑉 (Σ)). It is
intuitive to see that outer𝑉 (Σ) ⊢ 𝜌CLB𝑉 (𝑎, inner𝑉 (Σ)) ≤ 𝜌CLB𝑉 (𝑏, inner𝑉 (Σ))
when (𝑎 ≤ 𝑏) ∈ Σ′

because 𝑎 is 𝑏’s immediate lower bound, any concrete lower

bound of the former is included in the union of concrete lower bounds of the

latter.

◦ ¬(𝜎 concrete−) and 𝜎 = ∀𝛼. 𝜎0 and 𝛼 ∉ FV (𝜎0). We conclude by the IH on 𝜎 and

𝛼 ∉ FV (𝜎 ′), as CUB𝑉 (𝜎, Σ′) = CUB𝑉 (𝜎0, Σ′). □

• (𝜏 ≤ 𝜎) = (𝜏 ≤ 𝑎). The intuition is similar to the second bullet point above: as a direct

subtype of 𝑎, the concrete lower bounds of 𝜏 must be included by that of 𝑎.

Case P-Forall-L.

𝑉 , 𝛼 ⊢ [ 𝛽 ↦→ 𝜋 ′ ]Ξ ⊣ Σ 𝑉 , 𝛼 ⊢ [ 𝛽 ↦→ 𝜋 ′ ]𝜏 ≤ 𝜎 ⊣ Σ

𝑉 , 𝛼 ⊢ ∀𝛽{Ξ}. 𝜏 ≤ 𝜎 ⊣ Σ

We want outer𝑉 (Σ) ⊢ 𝜌 (∀𝛽{Ξ}. 𝜏 ≤ 𝜎), or equivalently outer𝑉 (Σ) ⊢ (∀𝛽{𝜌Ξ}. 𝜌𝜏 ≤ 𝜌𝜎).
By the IH, we have outer𝑉 (Σ) ⊢ 𝜌 [ 𝛽 ↦→ 𝜋 ′ ]Ξ, or equivalently outer𝑉 (Σ) ⊢ 𝜌 [ 𝛽 ↦→ 𝜌𝜋 ′ ]Ξ .

Then by S-Forall-L, we have outer𝑉 (Σ) ⊢ ∀𝛽{𝜌Ξ}. 𝜌𝜏 ≤ [ 𝛽 ↦→ 𝜌𝜋 ′ ]𝜌𝜏 (∗∗).
Further, by the IH we have outer𝑉 (Σ) ⊢ 𝜌 ( [ 𝛽 ↦→ 𝜋 ′ ]𝜏 ≤ 𝜎), or equivalently outer𝑉 (Σ) ⊢
𝜌 ( [ 𝛽 ↦→ 𝜌𝜋 ′ ]𝜏 ≤ 𝜎). Since 𝛽 is locally bound, we have 𝜌 [ 𝛽 ↦→ 𝜌𝜋 ′ ]𝜏 = [ 𝛽 ↦→ 𝜌𝜋 ′ ]𝜌𝜏 .
Then we can conclude by S-Trans.



48:60 Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau

Case P-Forall-R.

𝑏 fresh 𝑉 ′ ⊇ FV (𝜏 ≤ 𝜎) 𝑉 ′
# 𝛼 · 𝑏

acyclic(Ξ) 𝑉 ′, 𝛼 · 𝑏 ⊢ 𝜏 ≤ [𝑎 ↦→ 𝑏]𝜎 ⊣ Ξ
𝑉 ′, 𝛼 · 𝑏 ⊢ Ξ ⊣ Ξ 𝑉 , 𝛼 ⊢ outer𝑉 ′ (Ξ) ⊣ Σ

𝑉 , 𝛼 ⊢ 𝜏 ≤ ∀𝑎. 𝜎 ⊣ Σ

The goal is to show outer𝑉 (Σ) ⊢ 𝜌𝜏 ≤ ∀𝑎. 𝜌𝜎 .
By the IH, we have

outer𝑉 ′ (Ξ) ⊢ 𝜌 ′𝜏 ≤ 𝜌 ′ [𝑎 ↦→ 𝑏]𝜎,
where 𝜌 ′ = LBU inner𝑉 ′ (Ξ)

𝑉 ′ · 𝛼 · 𝑏 .

Since the domain of 𝜌 ′ is FV (inner𝑉 ′ (Ξ)) \ (𝑉 ′ · 𝛼 · 𝑏), which is disjoint with FV (𝜏 ≤ [𝑎 ↦→
𝜋 ′]𝜎), we then equivalently have that:

outer𝑉 ′ (Ξ) ⊢ 𝜏 ≤ [𝑎 ↦→ 𝑏]𝜎 (I).

By the IH, we have

outer𝑉 (Σ) ⊢ 𝜌 (outer𝑉 ′ (Ξ)) (II).

Given (I) and (II), by subtyping entailment under substitutions (D.39) we have:

outer𝑉 (Σ) ⊢ 𝜌𝜏 ≤ 𝜌 [𝑎 ↦→ 𝑏]𝜎 (III).

We now show a chain of subtyping relationships and connect them by S-Trans to conclude:

outer𝑉 (Σ) ⊢ 𝜌𝜏 ≤ ∀𝑏. 𝜌𝜏 (by S-Forall-R and 𝑏 is fresh)
≤ ∀𝑏. 𝜌 [𝑎 ↦→ 𝑏]𝜎 (by S-Forall-Cov and III)
= ∀𝑎. 𝜌𝜎 (by 𝛼-equivalency) □

Lemma D.36. If 𝑉 , 𝛼 ⊢ 𝜏 ≤ 𝜎 ⊣ Σ and acyclic(Σ), then we have

outer𝑉 (Σ) · inner𝑉 (Σ) ⊢ 𝜏 ≤ 𝜎.

Proof. By induction on the full propagation derivation.

Case P-VarRefl By S-VarRefl.

Case P-Fun By the IH and S-Fun.

Case P-Rigid-L, P-Rigid-R By S-Hyp & S-Trans & D.38.

Case P-Flex By S-Hyp. Note that (𝜏 ≤ 𝜎) ∉ outer𝑉 (Σ).
Case P-Forall-L By the IH, S-Forall-L & S-Trans.

Case P-Forall-R

𝑏 fresh 𝑉 ′ ⊇ FV (𝜏 ≤ 𝜎) 𝑉 ′
# 𝛼 · 𝑏

acyclic(Ξ) 𝑉 ′, 𝛼 · 𝑏 ⊢ 𝜏 ≤ [𝑎 ↦→ 𝑏]𝜎 ⊣ Ξ
𝑉 ′, 𝛼 · 𝑏 ⊢ Ξ ⊣ Ξ (I) 𝑉 , 𝛼 ⊢ outer𝑉 ′ (Ξ) ⊣ Σ

𝑉 , 𝛼 ⊢ 𝜏 ≤ ∀𝑎. 𝜎 ⊣ Σ

The goal is to show outer𝑉 (Σ) · inner𝑉 (Σ) ⊢ 𝜏 ≤ ∀𝑎. 𝜎 . Note that Ξmay contain new flexible

variables “created” while deriving (I); we define those variables as 𝑋 ≡ FV (Ξ) \ {𝑉 ′ · 𝛼 · 𝑏 }.
Note that FV (Ξ) \ {𝑉 ′ · 𝛼 · 𝑏 } = FV (inner𝑉 ′ (Ξ)) \ {𝑉 ′ · 𝛼 · 𝑏 }.
By the IH, we have:

outer𝑉 ′ (Ξ) · inner𝑉 ′ (Ξ) ⊢ 𝜏 ≤ [𝑎 ↦→ 𝑏]𝜎 (IV).

By the IH, we have:

outer𝑉 (Σ) · inner𝑉 (Σ) ⊢ outer𝑉 ′ (Ξ) (II).
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By D.34 (reusing premise (I)), we have outer𝑉 ′ (Ξ) ⊢ LBU inner𝑉 ′ (Ξ)
𝑉 · 𝛼 · 𝑏 (inner𝑉 ′ (Ξ)), which, if

we use LBU inner𝑉 ′ (Ξ)
𝑉 · 𝛼 · 𝑏 as the substitution, gives us

outer𝑉 ′ (Ξ) ⊢ ∀𝑋 {inner𝑉 ′ (Ξ)} cons. (III).

We next show several subtyping relationships. By S-Forall-R and (III), we have outer𝑉 ′ (Ξ) ⊢
𝜏 ≤ ∀𝑋 {inner𝑉 ′ (Ξ)}.∀𝑏. 𝜏 where 𝑏 is a fresh type variable. Note that FV (𝜏) ⊆ 𝑉 ′

#𝑋 · 𝑏, as
𝑋 are fresh flexible variables from (I) and 𝑏 itself is fresh. Then by S-Forall-Cov, we have

outer𝑉 ′ (Ξ) ⊢ ∀𝑋 {inner𝑉 ′ (Ξ)}.∀𝑏. 𝜏 ≤ ∀𝑋 {inner𝑉 ′ (Ξ)}.∀𝑏. [𝑎 ↦→ 𝑏]𝜎.

By S-Forall-L, we have

outer𝑉 ′ (Ξ) ⊢ ∀𝑋 {inner𝑉 ′ (Ξ)}.∀𝑏. [𝑎 ↦→ 𝑏]𝜎 ≤ ∀𝑏. [𝑎 ↦→ 𝑏]𝜎.

Note that FV (𝜎) ⊆ 𝑉 ′
# 𝑋 and the range of 𝜔 avoids 𝑋 and 𝑏.

Finally, we chain the above relationships with S-Trans and rename 𝑏 to 𝑎 by 𝛼-equivalency

to have outer𝑉 ′ (Ξ) ⊢ 𝜏 ≤ ∀𝑎. 𝜎 . We conclude with (II) and subtyping entailment (D.37). □

D.2.9 Auxiliary subtyping lemmas.

Lemma D.37 (Subtyping entailment). If Ξ ⊢ 𝜏 ≤ 𝜎 and Σ ⊢ Ξ, then Σ ⊢ 𝜏 ≤ 𝜎 .

Proof. By Σ ⊢ Ξ, we have Σ ⊢ ∀𝜖{Ξ} cons. (I). By weakening, we have Σ · Ξ ⊢ 𝜏 ≤ 𝜎 (II). We

show a chain of subtyping relationships and connect them by S-Trans to conclude:

Σ ⊢ 𝜏 ≤ ∀𝜖{Ξ}. 𝜏 (by S-Forall-R and (I))
≤ ∀𝜖{Ξ}. 𝜎 (by S-Forall-Cov and (II))
≤ 𝜎 (by S-Forall-L) □

Lemma D.38 (Polarized type substitution). If 𝜃 = [𝛼− ↦→ 𝜎−, 𝛼+ ↦→ 𝜎+] where for each 𝛽 ∈ 𝛽 ,
𝛽− is substituted as ⊥ and 𝛽+ is substituted as ⊤ in 𝜃 , and Σ ⊢ 𝜌 (𝜎− ≤ 𝛼)·𝜌 (𝛼 ≤ 𝜎+), then:

(1) if 𝛽 ⊢ 𝜏+ X-ok and Ξ ⊢ 𝜌𝜏+ ≤ 𝜌𝜏+, then Σ ⊢ 𝜌 (𝜏+ ≤ 𝜃+𝜏+).
(2) if 𝛽 ⊢ 𝜏− X-ok and Ξ ⊢ 𝜌𝜏− ≤ 𝜌𝜏− , then Σ ⊢ 𝜌 (𝜃−𝜏− ≤ 𝜏−)

Proof sketch. By induction on the polarized type 𝜏+ for (1) (𝜏− for (2)). Polarized substitutions

replace a type variable at the negative position by its subtype (i.e. 𝜎−
), and symmetrically for

the positive position. Ξ ⊢ 𝜌𝜏± ≤ 𝜌𝜏± makes sure 𝜏± itself has consistent bounds under some

substitution 𝜌 , and 𝜏± X-ok guarantees that polarized substitutions do not introduce inconsistent

polymorphic types. □

Lemma D.39 (Subtyping entailment under substitutions). If Ξ ⊢ 𝜏 ≤ 𝜎 and Σ ⊢ 𝜌Ξ and
dom(𝜌) ⊆ FV (𝜏 ≤ 𝜎) and 𝜌 avoids capturing and 𝜌 is idempotent, then Σ ⊢ 𝜌 (𝜏 ≤ 𝜎).

Proof. By induction on the subtyping judgment. For cases S-Forall-R, S-Forall-Cov, and S-

Forall-Distr, we expand the bound consistency premiseΞ ⊢ ∀𝑉 {Σ′} cons. to subtyping judgments

Ξ ⊢ 𝜌 ′Σ′
where dom(𝜌 ′) = 𝑉 according to the definition of consistency. We invoke the IH on those

subtyping judgments and have Σ ⊢ 𝜌𝜌 ′Σ′
. To prove the goal, we need Σ ⊢ ∀𝑉 {𝜌Σ′} cons.. We use

𝜌𝜌 ′ as the substitutions of𝑉 , and Σ ⊢ 𝜌𝜌 ′𝜌Σ′
is implied by Σ ⊢ 𝜌𝜌 ′Σ′

because 𝜌 is capture-avoiding

and idempotent. □
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D.2.10 Soundness of constraining.

Theorem D.40 (Soundness of Constraining). Let 𝑉 , 𝛼 ⊢ 𝜖 ≫ Δ ≫ Σ′ and Σ = uproot (Σ′).
Then for all 𝜏 where FV (𝜏) # 𝛽 and 𝛽 = FV (Σ) \ {𝑉 ·𝛼 } we have

• outer𝑉 (Σ) · inner𝑉 ( [𝛼 ↦→ 𝜏]Σ) ⊢ [𝛼 ↦→ 𝜏]Δ and

• outer𝑉 (Σ) ⊢ ∀𝛽{inner𝑉 ( [𝛼 ↦→ 𝜏]Σ)} cons..

Proof. By Lemmas D.32 and D.36, we have outer𝑉 (Σ) · inner𝑉 (Σ) ⊢ Δ. By Lemma D.39, we

have outer𝑉 (Σ) · inner𝑉 ( [𝛼 ↦→ 𝜏]Σ) ⊢ [𝛼 ↦→ 𝜏]Δ. Notice that [𝛼 ↦→ 𝜏]outer𝑉 (Σ) = outer𝑉 (Σ). By
Lemmas D.32 and D.34, we have outer𝑉 (Σ) ⊢ LBU inner𝑉 (Σ)

𝑉 · 𝛼 inner𝑉 (Σ). By Lemma D.39, we have

outer𝑉 (Σ) ⊢ [𝛼 ↦→ 𝜏]LBU inner𝑉 (Σ)
𝑉 · 𝛼 inner𝑉 (Σ). Given the fact that Σ contains no bounds on skolems

and skolems in the bounds of rigid type variables are extruded , we equivalently have:

outer𝑉 (Σ) ⊢ [𝛼 ↦→ 𝜏]LBU inner𝑉 (Σ)
𝑉 · 𝛼 inner𝑉 ( [𝛼 ↦→ 𝜏]Σ).

This allows us to conclude that outer𝑉 (Σ) ⊢ ∀𝛽{inner𝑉 ( [𝛼 ↦→ 𝜏]Σ)} cons.. □
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