
1 Hacking with the untyped call-by-value lambda calculus

Pierce explains Church encodings for booleans, numerals, and operations on them in (TAPL
book s. 5.2 p. 58). We would like to define some more advanced functions using only the
basic operations scc, plus, prd, times, iszro, test, fix and the constants. The complete list of
predefined operations can be found in the appendix, and only these operations can be used in
the exercise. Define the following operations on non-negative integers:

1. The greater equal operation geq (≥)

geq = λx. λy. iszro (x prd y)

2. The greater than operation gr (>)

gr = λx. λy. (iszro (y prd x)) fls tru

3. The modulo operation mod (e.g. mod c5 c3 = c2)

mod =

fix λme. λx. λy.
test (geq x y)

(λthen. (me (y prd x) y))

(λelse. x)

4. The Ackermann function ack using the basic operations and operations defined in this
exercise. The Ackermann function is defined as follows:

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

ack =

fix λme. λx. λy.
test (iszro x)

(λthen. (scc y))

(λelse.
test (iszro y)

(λthen. (me (prd x) c1))
(λelse. (me (prd x) (me x (prd y)))))



2 Uniqueness of terms after reductions

For this exercise assume we will be working with a simple language, defined by the following
abstract syntax of terms:

s, t, v, w ::= E | U t | B t t

If that helps, you can understand that as isomorphic to the following algebraic datatype in
Scala:

abstract class Base

case object Empty extends Base

case class Unary(i: Base) extends Base

case class Binary(i: Base, j: Base) extends Base

Let →β be a reduction relation defined by the following computation rules:

B E t2 →β t2 (β1)

B t1 t2 →β B t2 t1 (β2)

and congruence rules:

t1 →β t′1

U t1 →β U t′1
(β3)

t1 →β t′1

B t1 t2 →β B t′1 t2
(β4)

t2 →β t′2

B t1 t2 →β B t1 t
′
2

(β5)

Prove that for any terms s, t, v we have

s→β t ∧ s→β v ⇒ ∃w.(t→β∗ w ∧ v →β∗ w)

where →β∗ refers to zero or more →β reductions. Your solution has to have a clear explanation
for each step in your proof.

Hint: We suggest proving the above statement using induction on the structure of s.

Solution: We prove the thesis using induction on the structure of s, and case analysis on the
possible final rules of the derivations of s →β t and s →β v; we call those rules respectively βt
and βv.

To follow the solution, remember to try doing the proof yourself in detail, following the text
as hints, as most proofs are written to be read this way.

• Case s = E. No reduction rule applies so this case is impossible. Done.

• Case s = U s1. Hence, both βt = βv = β3. At a high level, in this case we have the same
subterm s1 reduces to two different terms t1 and v1, by IH they both reduce to w1, and
by congruence then t = U t1 and v = U v1 both reduce to w = U w1.

2



• Case s = B s1 s2. All reduction rules but β3 can apply to s, so we have in principle 16
cases to consider, but we can group them together. First, once we consider for instance
βt = β1 and βv = β2, we can use the same strategy but swapping t and v for βt = β2 and
βv = β1, because the problem statement is “symmetric”. Second, using other tricks, we
can group these cases in 6 groups of analogous ones.

You can draw a 4× 4 grid to check we cover all cases.

1. (2 cases) If βt = βv and both are β4 or β5, we proceed as in the s = U s1 case. Take
the β4 case: t and v are of form B t1 t2 and B v1 v2, s1 →β t1 and s1 →β v1. By IH,
there exists w1 such that t1 →β∗ w1 and v1 →β∗ w1, so we pick w = B w1 w2 and we
have t→β∗ w ∧ v →β∗ w.

2. (7 cases) If βt = β2 or βv = β2. Focus on βt = β2: then t = B t2 t1. We see that
t→β2 s→β v so t→β∗ v, while v →β∗ v in zero steps. So we pick w = v.

3. (1 case) If βt = βv = β1, then t = v = s2, and s2 →β∗ s2 in 0 steps. So we pick
w = s2.

4. (2 cases) If βt = β1 and βv = β4 (or symmetrically): here t = s2 and v = B s′1 s2
with E →β s′1 — but E does not reduce! So this case is impossible.

5. (2 cases) If βt = β1 and βv = β5 (or symmetrically): here t = s2 and v = B s1 s
′
2

with s2 →β s′2. Then v →β1 s′2, and we pick w = s′2.

6. (2 cases) If βt = β4 and βv = β5 (or symmetrically): here t = B s′1 s2 and v = B s1 s
′
2.

Then w = B s′1 s
′
2, t→β5 w and v →β4 w.

q.e.d

3



3 Closed terms

We recall that a term t is closed if it contains no free variables. With that definition in mind
prove the following property for the call-by-value untyped lambda calculus (for reference pro-
vided in Appendix 1).

Theorem: If t is closed, and t −→ t′ then t′ is closed as well.

Note: Remember to state clearly all the steps of your proof, including proofs of any lemmas that
you use.

Solution:
We prove the Theorem by induction on the structure of t.

1. Let t be a variable t. The solution is immediate since t is closed and the case cannot occur.

2. Let t be an abstraction λx.t1. Since λx.t1 6−→, the solution is immediate.

3. Let t be an application t1 t2. Then we can have three different cases, based on the used
reduction rule for t −→ t′:

(a) E-APP1 - then t1 −→ t′1. As t is closed, then both t1 and t2 are closed as well. By
induction t′1 is closed as well. Therefore t′1t2 is closed as well.

(b) E-APP2 - then t2 −→ t′2. As t is closed, then both v1 and t2 are closed as well. By
induction t′2 is closed as well. Therefore v1t

′
2 is closed as well.

(c) E-APPABS - then (λ x.t12) v2 −→ [x → v2] t12. As t is closed, then both λx.t12
and v2 are closed as well. From FV (λx.t12) = ∅, we know FV (t12) ⊆ {x}, otherwise
it’s easy to prove FV (λx.t12) 6= ∅ by the definition of FV , a contradiction. Now, we
need another lemma which says that substitution with a closed term removes a free
variable. Thus, FV ([x → v2]t12) = FV (t12) \ x = ∅. Done.

Lemma: If t2 is a closed term, FV ([x→ t2]t1) = FV (t1) \ x.
Proof by induction on the structure of the lambda term t1.

1. Case t1 = y.
If x = y, we have FV ([x → t2]t1) = FV ([x → t2]y) = FV ([x → t2]x) = FV (t2) = ∅ =
FV (x) \ x = FV (y) \ x = FV (t1) \ x.

If x 6= y, we have FV (t1) \ x = FV (y) \ x = {y}, and substitution results in y.

2. Case t1 = λy.t′1.
If x = y, then the result is immediate, since x is bound in the abstraction, i.e. x /∈ FV (t1)
and [x→ t2]t1 = t1, we have FV ([x→ t2]t1) = FV (t1) = FV (t1) \ x.

If x 6= y, then by induction hypothesis FV ([x→ t2]t
′
1) = FV (t′2) \ x. Formally, FV ([x→

t2]t1) = FV (λy.[x → t2]t
′
1) = FV ([x → t2]t

′
1) \ y = FV (t′1) \ x \ y = FV (t′1) \ y \ x =

FV (λy.t′1) \ x = FV (t1) \ x.

3. Case t1 = t′1 t
′
2.

By induction hypothesis, FV ([x→ t2]t
′
1) = FV (t′1) \ x and FV ([x→ t2]t

′
2) = FV (t′2) \ x.

Therefore FV ([x → t2](t
′
1 t
′
2)) = FV ([x → t2]t

′
1) ∪ FV ([x → t2]t

′
2) = (FV (t′1) \ x) ∪

(FV (t′2) \ x) = FV (t′1) ∪ FV (t′2) \ x = FV (t′1 t
′
2) \ x = FV (t1) \ x.

4



For reference: Untyped lambda calculus

The complete reference of the untyped lambda calculus with call-by-value semantics is:

t ::= terms :
| x variable
| λx. t abstraction
| t t application (left assoc.)

v ::= values :
| λx. t abstraction

Small-step reduction rules:

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-App2)

(λ x. t1) v2 −→ [x 7→ v2] t1 (E-AppAbs)

5



For reference: Predefined Lambda Terms

Predefined lambda terms that can be used as-is in the exam

unit = λx. x

tru = λt. λf. t
fls = λt. λf. f
iszro = λm. m (λx. fls) tru
test = λb. λt. λf. b t f unit

pair = λf. λs. λb. b f s
fst = λp. p tru

snd = λp. p fls

c0 = λs. λz. z
c1 = λs. λz. s z
scc = λn. λs. λz. s (n s z)
plus = λm. λn. λs. λz. m s (n s z)
times = λm. λn. m (plus n) c0

zz = pair c0 c0
ss = λp. pair (snd p) (scc (snd p))
prd = λm. fst (m ss zz)

6


