1 Hacking with the untyped call-by-value lambda calculus

Pierce explains Church encodings for booleans, numerals, and operations on them in (TAPL
book s. 5.2 p. 58). We would like to define some more advanced functions using only the
basic operations scc, plus, prd, times, iszro,test, fiz and the constants. The complete list of
predefined operations can be found in the appendix, and only these operations can be used in
the exercise. Define the following operations on non-negative integers:

1. The greater equal operation geq (>)
2. The greater than operation gr (>)
3. The modulo operation mod (e.g. mod c5 c3 = ¢3)

4. The Ackermann function ack using the basic operations and operations defined in this
exercise. The Ackermann function is defined as follows:

n+1 ifm=20
A(m,n) =< A(m —1,1) ifm>0andn=0
Am—1,A(m,n—1)) ifm>0andn>0.

2 Uniqueness of terms after reductions

For this exercise assume we will be working with a simple language, defined by the following
abstract syntax of terms:

s,t,vywn=FE|Ut|Btt

If that helps, you can understand that as isomorphic to the following algebraic datatype in
Scala:

abstract class Base

case object Empty extends Base

case class Unary(i: Base) extends Base

case class Binary(i: Base, j: Base) extends Base

Let —# be a reduction relation defined by the following computation rules:

B FE to —>ﬂ to (51)
B t1 to —>B B to t1 (/62)
and congruence rules:
t) =8¢
T By (Bs)
t1 —)B t
- (Ba)

Btity =P Bt ty

ty =Pt
Btity =P Bty t)

Prove that for any terms s, ¢, v we have
st A s=Pu = Fwit = w A v=Pw)

where —#* refers to zero or more —? reductions. Your solution has to have a clear explanation
for each step in your proof.

Hint: We suggest proving the above statement using induction on the structure of s.

3 Closed terms

We recall that a term ¢ is closed if it contains no free variables. With that definition in mind
prove the following property for the call-by-value untyped lambda calculus (for reference pro-
vided in Appendix 1).

Theorem: If t is closed, and t — ¢/ then ¢’ is closed as well.

Note: Remember to state clearly all the steps of your proof, including proofs of any lemmas that
you use.

For reference: Untyped lambda calculus

The complete reference of the untyped lambda calculus with call-by-value semantics is:

t = terms :
| x variable
| Azt abstraction
| tt application (left assoc.)
voon= values :
| Azt abstraction
Small-step reduction rules:
t, — 1
_h—h (B-App1)
t1 to — tl to
ty — 1
bty (B-App2)
v1 ta — V1 t2
ANz. t1) vg — [z v ty (E-APPABS)

For reference: Predefined Lambda Terms

Predefined lambda terms that can be used as-is in the exam

unit = JAz. x

tru = At Af.t

fls = M. Af. f

iszro= Am.m (Az. fls) tru

test= Ab. At. Af. bt f unit

pair=Af. As. Ab. b f s

fst = Ap. p tru

snd = Ap. p fls

co = AS. Az, z

c| = AS. Az. 8 z

scc = An. As. Az. s (n s 2)

plus= Am. An. As. Az.m s (n s 2)
times = Am. An. m (plus n) ¢

zZz = pair ¢y ¢

ss = Ap. pair (snd p) (scc (snd p))
prd = Am. £fst (m ss zz)

