
1 Hacking with the untyped call-by-value lambda calculus

In this exercise, you have to implement some operations for Church encoding of lists. There
are several ways to Church encode a list, among which Church encoding based on its right fold
function is more popular. As an example, an empty list (nil) and the cons construct are rep-
resented as follows in this encoding:

nil = λc. λn. n

cons = λh. λt. λc. λn. c h (t c n)

As another example, a list of 3 elements x, y, z is encoded as:

λc. λn. c x (c y (c z n))

The complete list of predefined operations can be found in the appendix, and only these
operations can be used in the exercise. Define the following operations on a list:

(For explanations of the solutions, see the subsection below the questions)

1. (2 points) The map function which applies the given function to each element of the given
list.

map = λ f. λ l. (λ h. λ r. cons (f h) r) nil

2. (2 points) The length function which returns the size of the given list. The result should
be in Church encoding.

length = λl. l (λa. λb. scc b) c0

3. (2 points) The sum function which returns the sum of all elements of the given list. As-
sume all elements and the result are Church encoded numbers.

sum = λl. l plus c0

4. (2 points) The concat function which concatenates two input lists.

concat = λl1. λl2. l1 cons l2

5. (2 points) The exists function which checks if there is any element satisfying the given
predicate. The given predicate and the result should be both in Church encoding.

exists = λl. λp. l (λa. λb. p a tru b) fls

1.1 Explanations

This task is much easier if you understand how the encoding works. We say it is the “right
fold” not without accident. Basically, lists in this encoding work like partial application of the
foldRight method – cons 1 (cons 2 nil) is like List(1,2).foldRight.

1

In Scala, function calls like List(1,2).foldRight(0)(+) are equivalent to 1 + (2 +

0) – notice how foldRight inserts the folding function between every element of the list, puts
0 at the end, and associates operations to the right. The same thing goes for this encoding.
If we have l = cons 1 (cons 2 nil), then l f z = f 1 (f 2 z) – observe how we basically
replaced cons with f and nil with z.

Get a feeling for how this encoding works! You might see something similar during the exam.

2

2 Simply typed SKI combinators

In this exercise we’re going to explore an alternative calculus called SKI that’s based on three
combinators: S, K and I instead of lambda abstraction. Those combinators can be translated
into STLC as derived forms:

I[T] = λx : T. x (D-I)

K[T,U] = λx : T. λy : U. x (D-K)

S[T,U,W] = λx : T → U →W. λy : T → U. λz : T. xz(yz) (D-S)

An interesting aspect of SKI is that those combinators are sufficient to exclude lambda ab-
straction from the language without loss of expressiveness. More concretely the system has the
following syntax:

t ::= terms :
| I[T] I combinator
| K[T,U] K combinator
| S[T,U,W] S combinator
| t t Application

u, v, w ::= values :
| I[T] I combinator
| K[T,U] K combinator (1)
| K[T,U] v K combinator (2)
| S[T,U,W] S combinator (1)
| S[T,U,W] v S combinator (2)
| S[T,U,W] v v S combinator (3)

T,U, V,W ::= types :
| T → T Function type

Values in this language are the aforementioned combinators as well as their partially applied
versions.

Questions:

• Provide small-step reduction rules assuming call-by-value evaluation semantics (4 points).

• Provide typing rules Γ ` t : T and prove the preservation property (6 points).

Note: There is no lambda abstraction in the language any longer. You may not use it as a
means to express typing or evaluation rules.

2.1 Solution

Small-step reduction rules:

I[T] v −→ v (R-I)

K[T,U] v1 v2 −→ v1 (R-K)

3

S[T,U,W] v1 v2 v3 −→ v1v3(v2v3) (R-S)

t1 −→ t′1

t1 t2 −→ t′1 t2
(R-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(R-App2)

Typing rules:

Γ ` I[T] : T → T (T-I)

Γ ` K[T,U] : T → U → T (T-K)

Γ ` S[T,U,W] : (T → U →W)→ (T → U)→ T →W (T-S)

Γ ` t1 : T2 → T Γ ` t2 : T2

Γ ` t1 t2 : T
(T-App)

Theorem 1 (Preservation). If Γ ` t : T and t −→ t′, then Γ ` t′ : T .

Proof. The proof is by induction on reduction derivations and case analysis on typing derivations.

Case (R-I). We have t = I[V] v, t′ = v and Γ ` I[V] v : T .

The only typing rule that applies is (T-App), so we have Γ ` I[V] : V ′ → T and Γ ` v : V ′

for some V ′. By case-analysis on typing derivations, we find that the only rule that could
have been used to derive Γ ` I[V] : V ′ → T is (T-I), and hence V ′ = T . Therefore
Γ ` v : T , and we are done.

Case (R-K). We have t = K[V,W] v w, t′ = v and Γ ` K[V,W] v w : T .

This case is similar to that for (R-K): again, the only typing rule that applies is (T-App)
and by repeated case-analysis, we find

• from (T-App), that Γ ` K[V,W] v : W ′ → T and Γ ` w : W ′ for some W ′ ,

• from (T-App), that Γ ` K[V,W] : V ′ →W ′ → T and Γ ` v : V ′ for some V ′,

• from (T-K), that Γ ` K[V,W] : V →W → V , so V ′ = V = T and W ′ = W .

Hence Γ ` v : T , and we are done.

Case (R-S). We have t = S[U, V,W] u v w, t′ = u w (v w) and Γ ` S[U, V,W] u v w : T .

As for the cases of (R-I) and (R-K), we find, by repeated case-analysis on the typing
derivation of Γ ` S[U, V,W] u v w : T , that

• Γ ` S[U, V,W] : (U → V →W)→ (U → V)→ U →W with W = T ,

• Γ ` u : U → V →W ,

• Γ ` v : U → V , and

• Γ ` w : U .

By repeated application of (T-App), it follows that Γ ` u w (v w) : T .

4

Case (R-App1). We have t = t1 t2, t
′ = t′1 t2, t1 −→ t′1 and Γ ` t1 t2 : T .

Again, the only typing rule that applies is (T-App), so we have Γ ` t1 : U → T and
Γ ` t2 : U for some U . By the IH, Γ ` t′1 : U → T , and by (T-App), Γ ` t′1 t2 : T .

Case (R-App2). Similar to the previous case.

5

3 Checked Error Handling

In this exercise we use the Simply-Typed Lambda Calculus (STLC) extended with rules for error
handling. In this language, terms may reduce to a normal form error, which is not a value.
In addition, we add the new term form try t1 with t2, which allows handling errors that occur
while evaluating t1.

Here is a summary of the extensions to syntax and evaluation:

t ::= terms :
| . . .
| error run-time error
| try t with t trap errors

New evaluation rules:

(E-AppErr1) error t2 −→ error (E-AppErr2) v1 error −→ error

(E-TryValue) try v1 with t2 −→ v1 (E-TryError) try error with t2 −→ t2

(E-Try)
t1 −→ t′1

try t1 with t2 −→ try t′1 with t2

(Note that these extensions are exactly those summarized in Figures 14-1 and 14-2 on pages
172 and 174 of the TAPL book. However, also note that we will use different typing rules.)

The goal of this exercise is to define typing rules for STLC with the above extensions such
that the following progress theorem holds:

If ∅ ; false ` t : T , then either t is a value or else t −→ t′.

The above theorem uses a typing judgment extended with a Boolean value E, written
Γ ; E ` t : T where E ∈ {true, false}. The theorem says that a well-typed term that is closed
(that is, it does not have free variables, which is expressed using Γ = ∅) is either a value, or else
it can be reduced as long as E = false.

Your task is to find out how the value of E can be used to distinguish the terms that may
reduce to error from those terms that may never reduce to error. Note that error is a normal
form, but it is not a value.

1. Specify typing rules of the form Γ ; E ` t : T for all term forms of STLC with the above
extensions such that the above progress theorem holds.

2. Prove the above progress theorem using structural induction. (You can use the canonical
forms lemma for STLC as seen in the lecture without proof.)

3.1 Solution

Attention: Preservation doesn’t hold for this solution, unless we introduce effect annotation on
function types.

6

Typing rules. Intuitively, the predicate E in the typing judgment Γ ; E ` t : T determines
whether the term t is in an impure position, i.e. whether it is allowed to reduce to error or not.
The typing rules for the error (handling) terms are as follows:

(T-Error) Γ ; true ` error : T (T-Try)
Γ ; true ` t1 : T Γ ; E ` t2 : T

Γ ; E ` try t1 with t2 : T

The remaining typing rules (those inherited from STLC), simply “push” the impurity predicate E
unchanged from the conclusion into the premises. Intuitively, if a term is allowed to produce an
error, all its sub-terms are also allowed to do so.

(T-Var)
x : T ∈ Γ

Γ ; E ` x : T
(T-Abs)

Γ x : T1 ; E ` t2 : T2
Γ ; E ` λx : T1.t2 : T1 → T2

(T-App)
Γ ; E ` t1 : T1 → T2 Γ ; E ` t2 : T1

Γ ; E ` t1 t2 : T2

Progress of pure terms. We need to prove a more general statement first, namely a modified
version of progress that states that closed, well-typed terms in normal form are either values
or errors.

Lemma 1. If ∅ ;E ` t : T , then either (a) t is a value, (b) t = error, or (c) t −→ t′.

Note that this lemma says nothing about the truth-value of the predicate E, it holds for
both E = true and E = true. In other words, the lemma should still hold for a simpler typing
judgment Γ ` t : T , where we simply ignore E. This is exactly the typing judgment shown in
Fig. 14-2 on p. 174 of TAPL, and the corresponding progress theorem carries over essentially
unchanged.

Proof. The proof is by induction on typing derivations and most cases are essentially identical
to those of the proof of Thm. 9.3.5, in TAPL (p. 105). We only show the cases for (T-App)
and (T-Try) here.

For (T-App), we have t = t1 t2, ∅ ;E ` t1 : T1 → T2 and ∅ ;E ` t2 : T1. By the IH,
either t1 is (a) a value, (b) an error, or (c) takes a step, and likewise for t2. If t1 can take a
step, then (E-App1) applies to t; if t1 is an error then (E-AppErr1) applies instead. If t1 is
a value, but t2 can take a step or is an error, then either (E-App2) or (E-AppErr2) applies,
respectively. Finally, if both t1 and t2 are values, then the canonical forms lemma tells us that
t1 = λx : T1.t3 for some t3, so that (E-AppAbs) applies to t.

For (T-Try), we have t = try t1 with t2, ∅ ; true ` t1 : T and ∅ ;E ` t2 : T , so by the
IH, t1 is either (a) a value, (b) an error, or (c) takes a step. In each case, we can take a step
using, respectively, the rules (E-TryValue), (E-TryError) or (E-Try).

With the above lemma, we can now proof the progress theorem for pure terms.

Proof. The proof is by induction on typing derivations and resembles again that of the progress
theorem for the STLC (see TAPL, Thm. 9.3.5, p. 105).

The cases (T-Var), (T-Abs) and (T-App) are again identical to those in the proof for
STLC (modulo the appearance of E = false in the context) since the corresponding rules push
the impurity predicate unchanged into the IH.

The case (T-Error) cannot occur since, by definition, its context is impure, i.e. E = true.
The only remaining case is (T-Try). We have t = try t1 with t2, ∅ ; true ` t1 : T and
∅ ; false ` t2 : T . By the above lemma, t1 is either (a) a value, (b) an error or (c) takes
a step. Again, we can take a step in each case, using, respectively, the rules (E-TryValue),
(E-TryError) or (E-Try).

7

4 The call-by-value simply typed lambda calculus with returns

Consider a variant of the call-by-value simply typed lambda calculus specified in the appendix
extended to support a new language construct: return t, which immediately returns a given
term t from an enclosing lambda, disregarding any potential further computation typically
needed for call-by-value evaluation rules.

The grammar of the extension is defined as follows. We distinguish top-level terms (tt) and
nested terms (nt) to make sure that return t can only appear inside lambdas:

v ::= λx : T . nt | bv (values)
bv ::= true | false (boolean values)
nt ::= x | v | nt nt | return nt (nested terms)
tt ::= x | v | tt tt (top− level terms)
t ::= nt | tt (terms)
p ::= tt (programs)
T ::= Bool | T→ T (types)

In this exercise, you are to adjust the existing evaluation and typing rules, so that they
correctly and comprehensively describe the semantics of the extension. More precisely, your
task is two-fold:

1. Extend the evaluation rules (by adding new rules and/or changing existing ones) to express
the early return semantics provided by return. Identify the evaluation strategy used by
the specification and make sure that your extension adheres to it.

2. Extend the typing rules (by adding new rules and/or changing existing ones) to guarantee
that types of values returned via return and via normal means are coherent. Make sure
that progress and preservation conditions hold for your extension (you don’t have to prove
that formally, but your grade will be reduced if your extension ends up being unsafe).

Hint: In addition to the immediate type of a term, you also need to keep track of the types
of returned terms inside that term. For example, instead of the regular typing judgment
Γ ` t : T, you can use the Γ ` t : T | R, where R is a set of types of terms, i.e. {T1, ...Tn},
that can be returned from t.

Before you begin, think carefully about the following simple term: λx : Bool. (return true) x.
Intuitively, it makes sense. Once this lambda is applied, it is going to evaluate to true, regard-
less of the input. Now, which typing rules would be used to type this term, so that it is accepted
by our language? In particular, what type or types need to be assigned to return true?

4.1 Solution

Evaluation rules:

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-App2)

[x→ v2]t1 −→∗ return v3
(λx : T. t1) v2 −→ v3

(E-AppAbs1)

8

[x→ v2]t1 −→∗ v3
(λx : T. t1) v2 −→ v3

(E-AppAbs2)

t −→ t′

return t −→ return t′
(E-Ret)

(return v1) t2 −→ return v1 (E-AppRet1)

t1 (return v2) −→ return v2 (E-AppRet2)

return (return v) −→ return v (E-RetRet)

Typing rules:

x : T ∈ Γ

Γ ` x : T | ∅
(T-Var)

Γ ` t : T | R
Γ ` return t : T ′ | {T} ∪R

(T-Ret)

Γ, x : T1 ` t2 : T2 | ∅
Γ ` (λx : T1. t2) : T1 → T2 | ∅

(T-Abs1)

Γ, x : T1 ` t2 : T2 | {T2}
Γ ` (λx : T1. t2) : T1 → T2 | ∅

(T-Abs2)

Γ ` t1 : T2 → T1 | R1 Γ ` t2 : T2 | R2

Γ ` t1 t2 : T1 | R1 ∪R2
(T-App)

Γ ` true : Bool | ∅ (T-False)

Γ ` false : Bool | ∅ (T-True)

4.1.1 Commentary

This is, of course, not the only possible solution. The typing rules presented treat R like their
output, something that we can determine from the environment, term and the premise.

In (T-Var), the return set is always empty, because there’s nothing else we can reasonably
put there. In (T-Ret), we extend the current returns with the type of the value we’re currently
trying to return. In (T-App), we just take the union of the return sets of the two terms we
have. This slightly comes back to bite us with the rule for typing abstractions, since we need
two variants of the typing rule.

So do we need R to be a set in this task? We want R to sometimes be empty (because some
expressions never explicitly return), and we want a convenient notion of “extending” R with
another type. A set works quite well here. Try to think how you’d reformulate rules such as
(T-App) without using sets.

9

5 Appendix

5.1 The call-by-value simply typed lambda calculus

The complete reference of the variant of simply typed lambda calculus (with Bool ground type
representing the type of values true and false) used in “The call-by-value simply typed lambda
calculus with returns” is as follows:

v ::= λx : T. t | bv (values)
bv ::= true | false (boolean values)
t ::= x | v | t t (terms)
p ::= t (programs)
T ::= Bool | T → T (types)

Evaluation rules:

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-App2)

(λx : T1. t1) v2 −→ [x 7→ v2]t1 (E-AppAbs)

Typing rules:

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` (λx : T1. t2) : T1 → T2
(T-Abs)

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
(T-App)

Γ ` true : Bool
(T-False)

Γ ` false : Bool
(T-True)

10

