
1 Hacking with the untyped call-by-value lambda calculus

In this exercise, you have to implement some operations for Church encoding of lists. There
are several ways to Church encode a list, among which Church encoding based on its right fold
function is more popular. As an example, an empty list (nil) and the cons construct are rep-
resented as follows in this encoding:

nil = λc. λn. n

cons = λh. λt. λc. λn. c h (t c n)

As another example, a list of 3 elements x, y, z is encoded as:

λc. λn. c x (c y (c z n))

The complete list of predefined operations can be found in the appendix, and only these
operations can be used in the exercise. Define the following operations on a list:

1. (2 points) The map function which applies the given function to each element of the given
list.

2. (2 points) The length function which returns the size of the given list. The result should
be in Church encoding.

3. (2 points) The sum function which returns the sum of all elements of the given list. As-
sume all elements and the result are Church encoded numbers.

4. (2 points) The concat function which concatenates two input lists.

5. (2 points) The exists function which checks if there is any element satisfying the given
predicate. The given predicate and the result should be both in Church encoding.

1

2 Simply typed SKI combinators

In this exercise we’re going to explore an alternative calculus called SKI that’s based on three
combinators: S, K and I instead of lambda abstraction. Those combinators can be translated
into STLC as derived forms:

I[T] = λx : T. x (D-I)

K[T,U] = λx : T. λy : U. x (D-K)

S[T,U,W] = λx : T → U →W. λy : T → U. λz : T. xz(yz) (D-S)

An interesting aspect of SKI is that those combinators are sufficient to exclude lambda ab-
straction from the language without loss of expressiveness. More concretely the system has the
following syntax:

t ::= terms :
| I[T] I combinator
| K[T,U] K combinator
| S[T,U,W] S combinator
| t t Application

u, v, w ::= values :
| I[T] I combinator
| K[T,U] K combinator (1)
| K[T,U] v K combinator (2)
| S[T,U,W] S combinator (1)
| S[T,U,W] v S combinator (2)
| S[T,U,W] v v S combinator (3)

T,U, V,W ::= types :
| T → T Function type

Values in this language are the aforementioned combinators as well as their partially applied
versions.

Questions:

• Provide small-step reduction rules assuming call-by-value evaluation semantics (4 points).

• Provide typing rules Γ ` t : T and prove the preservation property (6 points).

Note: There is no lambda abstraction in the language any longer. You may not use it as a
means to express typing or evaluation rules.

2

3 Checked Error Handling

In this exercise we use the Simply-Typed Lambda Calculus (STLC) extended with rules for error
handling. In this language, terms may reduce to a normal form error, which is not a value.
In addition, we add the new term form try t1 with t2, which allows handling errors that occur
while evaluating t1.

Here is a summary of the extensions to syntax and evaluation:

t ::= terms :
| . . .
| error run-time error
| try t with t trap errors

New evaluation rules:

(E-AppErr1) error t2 −→ error (E-AppErr2) v1 error −→ error

(E-TryValue) try v1 with t2 −→ v1 (E-TryError) try error with t2 −→ t2

(E-Try)
t1 −→ t′1

try t1 with t2 −→ try t′1 with t2

(Note that these extensions are exactly those summarized in Figures 14-1 and 14-2 on pages
172 and 174 of the TAPL book. However, also note that we will use different typing rules.)

The goal of this exercise is to define typing rules for STLC with the above extensions such
that the following progress theorem holds:

If ∅ ; false ` t : T , then either t is a value or else t −→ t′.

The above theorem uses a typing judgment extended with a Boolean value E, written
Γ ; E ` t : T where E ∈ {true, false}. The theorem says that a well-typed term that is closed
(that is, it does not have free variables, which is expressed using Γ = ∅) is either a value, or else
it can be reduced as long as E = false.

Your task is to find out how the value of E can be used to distinguish the terms that may
reduce to error from those terms that may never reduce to error. Note that error is a normal
form, but it is not a value.

1. Specify typing rules of the form Γ ; E ` t : T for all term forms of STLC with the above
extensions such that the above progress theorem holds.

2. Prove the above progress theorem using structural induction. (You can use the canonical
forms lemma for STLC as seen in the lecture without proof.)

3

4 The call-by-value simply typed lambda calculus with returns

Consider a variant of the call-by-value simply typed lambda calculus specified in the appendix
extended to support a new language construct: return t, which immediately returns a given
term t from an enclosing lambda, disregarding any potential further computation typically
needed for call-by-value evaluation rules.

The grammar of the extension is defined as follows. We distinguish top-level terms (tt) and
nested terms (nt) to make sure that return t can only appear inside lambdas:

v ::= λx : T . nt | bv (values)
bv ::= true | false (boolean values)
nt ::= x | v | nt nt | return nt (nested terms)
tt ::= x | v | tt tt (top− level terms)
t ::= nt | tt (terms)
p ::= tt (programs)
T ::= Bool | T→ T (types)

In this exercise, you are to adjust the existing evaluation and typing rules, so that they
correctly and comprehensively describe the semantics of the extension. More precisely, your
task is two-fold:

1. Extend the evaluation rules (by adding new rules and/or changing existing ones) to express
the early return semantics provided by return. Identify the evaluation strategy used by
the specification and make sure that your extension adheres to it.

2. Extend the typing rules (by adding new rules and/or changing existing ones) to guarantee
that types of values returned via return and via normal means are coherent. Make sure
that progress and preservation conditions hold for your extension (you don’t have to prove
that formally, but your grade will be reduced if your extension ends up being unsafe).

Hint: In addition to the immediate type of a term, you also need to keep track of the types
of returned terms inside that term. For example, instead of the regular typing judgment
Γ ` t : T, you can use the Γ ` t : T | R, where R is a set of types of terms, i.e. {T1, ...Tn},
that can be returned from t.

Before you begin, think carefully about the following simple term: λx : Bool. (return true) x.
Intuitively, it makes sense. Once this lambda is applied, it is going to evaluate to true, regard-
less of the input. Now, which typing rules would be used to type this term, so that it is accepted
by our language? In particular, what type or types need to be assigned to return true?

4

5 Appendix

5.1 The call-by-value simply typed lambda calculus

The complete reference of the variant of simply typed lambda calculus (with Bool ground type
representing the type of values true and false) used in “The call-by-value simply typed lambda
calculus with returns” is as follows:

v ::= λx : T. t | bv (values)
bv ::= true | false (boolean values)
t ::= x | v | t t (terms)
p ::= t (programs)
T ::= Bool | T → T (types)

Evaluation rules:

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-App2)

(λx : T1. t1) v2 −→ [x 7→ v2]t1 (E-AppAbs)

Typing rules:

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` (λx : T1. t2) : T1 → T2
(T-Abs)

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
(T-App)

Γ ` true : Bool
(T-False)

Γ ` false : Bool
(T-True)

5

