
Exercise 1 : Curry-Howard Isomorphism (8 points)

Give proofs of the following propositional formula using the Curry-Howard isomorphism between
constructive logic and typed λ-calculus with products and sums (see Appendix A for details).

1. (A ∧B)⇒ C ⇒ ((C ∧A) ∧B)

Solution: λx : A×B. λ y : C. {{y, x.1}, x.2}

2. (A⇒ C)⇒ (B ⇒ C)⇒ (A ∨B)⇒ C

Solution: λx : A→ C. λ y : B → C. λ z : A+B. case z of inl a⇒ x a | inr b⇒ y b

3. (A ∨B ⇒ C)⇒ ((A⇒ C) ∧ (B ⇒ C))

Solution: λ k : A+B → C. {λ a : A. k (inl a), λ b : B. k (inr b)}

4. ((A⇒ B ∨ C) ∧ (B ⇒ D) ∧ (C ⇒ D))⇒ (A⇒ D)

Solution:
λ p : (A→ B + C)× (B → D)× (C → D). λ x : A.

case p.1.1 x of inl b⇒ p.1.2 b | inr c⇒ p.2 c)

Exercise 2 : Type reconstruction for lists (10 points)

In this exercise, we consider the simply-typed lambda calculus (Appendix B) with booleans and
natural numbers (Appendix C) but with no other extensions (in particular, there’s no subtyping
or Bot type). We extend this calculus with primitives for lists and operations on lists with
operational semantics provided in Appendix D:

t ::= . . . Terms
| nil Empty list
| cons t t List constructor
| head t Head of a list
| tail t Tail of a list
| isnil t Test for empty list

v ::= . . . Values
| nil Empty list
| cons v v List constructor

T ::= . . . Types
| List T Type of a list with elements of type T

Now, your task is to extend the type system of the original calculus with rules for type
reconstruction that accommodate additional syntactic forms, without adding new terms or types
to the calculus. In order to fulfill the assignment, do one of the following for the new terms:

• Specify additional cases for the type reconstruction algorithm TP introduced at the lecture
of Week 9 of the course.

• Or provide additional constraint-based typing rules for the type reconstruction algorithm
explained in Chapter 22 of “Types and Programming Languages”.

A refresher: cons, head and tail work like in all functional languages. cons prepends an
element in its first argument to a list in its second argument. head cuts the 1st element from
a list and returns it. tail cuts the 1st element from a list and returns the remaining list.
Examples: head (cons x xs) == x, tail (cons x xs) == xs for all x and xs.

Solution:

Γ ` nil : List X | ∅, X fresh

Γ ` t1 : T1 | C1 Γ ` t2 : T2 | C2

Γ ` cons t1 t2 : T2 | C1 ∪ C2 ∪ {List T1 = T2}

Γ ` t : T | C
Γ ` head t : X | C ∪ {T = List X}, X fresh

Γ ` t : T | C
Γ ` tail t : T | C ∪ {T = List X}, X fresh

Γ ` t : T | C
Γ ` isnil t : Bool | C ∪ {T = List X}, X fresh

2

Exercise 3 : Subtyping for products (10 points)

The subtyping rule for products can be stated as:

S1 <: T1 S2 <: T2

S1 × S2 <: T1 × T2
(S-Prod)

In the course you were presented with the inversion lemma for subtyping with function types
i.e., S-Arrow. Your task for this exercise is to write a proof for the following theorem for STLC
with products and subtyping (see Appendices E and F).

Theorem 1. If S1 × S2 <: T , then either T = Top or else T = T1 × T2, with S1 <: T1 and
S2 <: T2.

Hint: proof the theorem by induction on the last used subtyping rule. State any lemmas that
you use (without proof).

Solution: the proof is by induction on subtyping derivations.

• Case (S-Refl): we have T = S1 × S2. Applying (S-Refl) twice, on S1 and S2, we are
done.

• Case (S-Trans): we have S1×S2 <: U and U <: T for some U . By the IH we know that
either U = Top or U = U1 × U2.

– Sub-case U = Top: we have Top <: T . Here we assume a lemma showing that, for
any type S such that Top <: S, we have S = Top. The result then follows by applying
that lemma.

– Sub-case U = U1 × U2: we have U1 × U2 <: T . Applying the IH once more, we know
that either T = Top or T = T1 × T2 and U1 <: T1 and U2 <: T2. In the first case,
we are done. In the second case, the result follows by applying (S-Trans) twice to
obtain S1 <: T1 and S2 <: T2.

• Case (S-Top): the result is immediate since T = Top.

• Case (S-Prod): the result is immediate since we have T = T1×T2, S1 <: T1 and S2 <: T2.

• Case (S-Arrow): impossible.

3

Appendix A: Curry-Howard Isomorphism

The Curry-Howard isomorphism or Curry-Howard correspondence establishes a connection
between type systems and logical calculi based on an observation that the ways we build types
are structurally similar to the ways we build formulae.

According to the Curry-Howard isomorphism, proofs can be represented as programs and for-
mulae they prove can be represented as types of those programs. Here is a (non-comprehensive)
list of some examples of how concepts from constructive logic correspond to concepts from the
simply typed lambda calculus.

Constructive logic Simply typed lambda calculus

Formula Type
A⇒ B A→ B
A ∧B A×B
A ∨B A+B

Proof of a formula Term that inhabits a type

4

Appendix B: The simply-typed lambda calculus

t ::= terms:
| x variable
| λx : T . t abstraction
| t t application

v ::= values:
| λx : T . t abstraction-value

T ::= types:
| T → T type of functions

Evaluation rules:

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-App2)

(λ x : T1. t1) v2 −→ [x→ v2] t1 (E-AppAbs)

Typing rules:

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` (λx : T1. t2) : T1 → T2
(T-Abs)

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
(T-App)

5

Appendix C: Booleans, natural numbers and unit

t ::= terms : v ::= values :
| true constant true | true true value
| false constant false | false false value
| if t then t else t condition | unit unit value
| unit constant unit
| 0 constant zero | nv numeric value
| succ t successor nv ::= numeric values :
| pred t predecessor | 0 zero value
| iszero t zero test | succ nv successor value

Evaluation rules Typing rules

(E-PredZero) pred 0 −→ 0 (T-True) true : Bool

(E-PredSucc) pred (succ nv1) −→ nv1 (T-False) false : Bool

(E-Succ)
t1 −→ t′1

succ t1 −→ succ t′1
(T-If)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T

(E-Pred)
t1 −→ t′1

pred t1 −→ succ t′1
(T-Zero) 0 : Nat

(E-IsZeroZero) iszero 0 −→ true (T-Succ)
t1 : Nat

succ t1 : Nat

(E-IsZeroPred) iszero (succ nv1) −→ false (T-Pred)
t1 : Nat

pred t1 : Nat

(E-IsZero)
t1 −→ t′1

iszero t1 −→ iszero t′1
(T-IsZero)

t1 : Nat

iszero t1 : Bool

(E-If)
t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3
(T-Unit) unit : Unit

(E-IfTrue) if true then t2 else t3 −→ t2

(E-IfFalse) if false then t2 else t3 −→ t3

6

Appendix D: STLC with lists

t ::= Terms
| ... (STLC terms)
| nil Empty list
| cons t t List constructor
| head t Head of a list
| tail t Tail of a list
| isnil t Test for empty list

v ::= Values
| ... (STLC values)
| nil Empty list
| cons v v List constructor

T ::= Types
| ... (STLC types)
| List T Type of a list with elements of type T

Evaluation rules (omitted STLC rules):

t1 −→ t′1

cons t1 t2 −→ cons t′1 t2
(E-Cons1)

t2 −→ t′2

cons v1 t2 −→ cons v1 t
′
2

(E-Cons2)

isnil (nil) −→ true (E-IsNilNil)

isnil (cons v1 v2) −→ false (E-IsNilCons)

t1 −→ t′1

isnil t1 −→ isnil t′1
(E-IsNil)

head (cons v1 v2) −→ v1 (E-HeadCons)

t1 −→ t′1

head t1 −→ head t′1
(E-Head)

tail (cons v1 v2) −→ v2 (E-TailCons)

t1 −→ t′1

tail t1 −→ tail t′1
(E-Tail)

Typing rules (omitted STLC rules):

Typing rules for this calculus constitute the problem statement of exercise 2.

7

Appendix E: Subtyping extension to STLC

(S-Refl) S <: S (S-Trans)
S <: U U <: T

S <: T

(S-Top) S <: Top (S-Arrow)
T1 <: S1 S2 <: T2
S1 → S2 <: T1 → T2

8

Appendix F: Product extension to STLC

t ::= . . . terms:
| {t, t} pair
| t.1 first projection
| t.2 second projection

v ::= . . . values:
| {v, v} pair value

T ::= . . . types:
| T1 × T2 product type

Typing rules:

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1, t2} : T1 × T2
(T-Pair)

Γ ` t : T1 × T2
Γ ` t.1 : T1

(T-Proj1)

Γ ` t : T1 × T2
Γ ` t.2 : T2

(T-Proj2)

New evaluation rules:

{v1, v2}.1 −→ v1 (E-PairBeta1)

{v1, v2}.2 −→ v2 (E-PairBeta2)

t −→ t′

t.1 −→ t′.1
(E-Proj1)

t −→ t′

t.2 −→ t′.2
(E-Proj2)

t1 −→ t′1

{t1, t2} −→ {t′1, t2}
(E-Pair1)

t2 −→ t′2

{v1, t2} −→ {v1, t′2}
(E-Pair2)

9

