
Exercise 1 : Specify Subtyping Relationship (10 points)

In this exercise we consider the system STLC extended with subtyping and a set of base types A,
B, C, D, E, F , G. Subtyping between the base types is defined based on the following diagram:

A

B C

D E F

G

In the diagram, the nodes represent types, and the arrows represent subtyping relationships
between base types. For example, we have B <: A and E <: C. The types in the system are
defined as follows:

α ::= A | B | C | D | E | F | G base types
S, T, U, L ::= α | T → T types

The subtyping rules are summarized below, which is standard:

There is an arrow from S to T in the diagram

S <: T
(S-Base)

T <: T (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2
(S-Fun)

The least upper bound (LUB) and greatest lower bound (GLB) of types are specified as follows:

LUB(T1, T2) = U ⇐⇒ T1 <: U ∧ T2 <: U ∧ ∀U ′.(T1 <: U ′ ∧ T2 <: U ′)→ U <: U ′

GLB(T1, T2) = L ⇐⇒ L <: T1 ∧ L <: T2 ∧ ∀L′.(L′ <: T1 ∧ L′ <: T2)→ L′ <: L

Part 1 (8 points). For each of the following pairs of types, compute LUB and GLB. If LUB
or GLB does not exist, answer None.

1. B and C
Solution. LUB: A, GLB: G

2. A and A→ A
Solution. LUB: None, GLB: None

1

3. D → C and A→ A
Solution. LUB: D → A, GLB: A→ C

4. G→ A and (G→ A)→ B
Solution.LUB: None, GLB: None

5. G→ D → C and G→ B → A
Solution.LUB: G→ D → A, GLB: G→ B → C

Part 2 (2 points). Can we extend subtyping relationship to make LUBs and GLBs always
exist for given examples? What changes to types and subtyping rules are needed?

Solution. We need to extend our system top and bottom types:

(S-Bot) ⊥ <: T (S-Top) T <: >

2

Exercise 2 : Curry-Howard Correspondence (10 points)

The well-known Curry-Howard correspondence describes a mapping between type theory and
logic: propositions correspond to types and proofs correspond to programs. This correspondence
is usually formulated only for intuitionistic logics (IL), in which the law of excluded middle
(LEM) or equivalently the law of double negation (DNE) does not hold. Concretely, the following
propositions are not provable in IL, thus by the correspondence there exists no programs that
prove them:

• LEM: ∀P.P ∨ ¬P

• DNE: ∀P.¬¬P → P

This problem is about proving that intuitionistic logic with the law of excluded middle is
equivalent to intuitionistic logic with the law of double negation, that is IL+LEM = IL+DNE .

Curry-Howard: Negation. In intuitionistic logic, ¬P is the same as P → ⊥, where ⊥
means absurdity. So the type ¬¬P is interpreted as (P → ⊥) → ⊥. We assume absurdity ⊥
corresponds to the type ⊥ in types, which is not inhabited. The following program explode is
provided:

explode : ∀P.⊥ → P

The program explode has the type ∀P.⊥ → P . Logically, it says that from absurdity any
proposition can be derived, which corresponds to a well-known principle in logic.

Curry-Howard: Universal quantification and System F. A second-order proposition of
form ∀P.T corresponds to a type in System F and can be proved by a System F term. For
example, ∀P.P → P is proved by the program ΛP.λx : P.x.

Task. Please prove the following propositions. The last two prove that IL+LEM = IL+DNE :

(1) ∀P.P → ¬¬P

prog1 = ΛP.λx : Pλf : P → ⊥.fx

(2) ∀P.¬¬(P ∨ ¬P)

prog2 = ΛP.λf : (P + P → ⊥)→ ⊥.
let a : P → ⊥ = λx : P.f(inl x) in
let b : (P → ⊥)→ ⊥ = λx : P → ⊥.f(inr x) in
b a

(3) (∀P.P ∨ ¬P)→ (∀Q.¬¬Q→ Q)

prog3 = λx : ∀P.(P + P → ⊥).ΛQ.λf : (Q→ ⊥)→ ⊥.
case(x [Q]) of

inl q ⇒ q
inr nq ⇒ explode [Q](f nq)

3

(4) (∀P.¬¬P → P)→ (∀Q.Q ∨ ¬Q)

prog4 = λx : (∀P.((P → ⊥)→ ⊥)→ P).ΛQ.x [Q+Q→ ⊥](M [Q])
where M is the term in (2).

4

Exercise 3 : Transitivity of Algorithmic Subtyping in F<: (10 points)

In this problem, we study algorithmic subtyping in System F<:. System F<: is an extension of
System F with subtyping of types and bounds on type variables. The types in System F<: are
defined as follows:

T ::= Top | X | T → T | ∀X <: T.T

One approach to formulate subtyping in F<: is algorithmic subtyping. The subtyping rules
are given as follows:

Γ ` T <: Top (S-Top)

Γ ` X <: X (S-TVar-Refl)

X <: T ∈ Γ Γ ` T <: U

Γ ` X <: U
(S-TVar-Trans)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1 → S2 <: T1 → T2
(S-Fun)

Γ, X <: U ` S <: T

Γ ` ∀X <: U.S <: ∀X <: U.T
(S-All)

For this problem, we may assume the typing environment Γ to be just a list of type bounds:

Γ ::= ∅ | Γ, X <: T

The typing environment Γ is used in the rule S-TVar-Trans, and it is augmented in the
rule S-All. For simplicity, in the rule S-All, we require the bound of two universal types to
be the same type U .

Please prove the following theorem in the subtyping system.

Theorem 1 (Transitivity). If Γ ` S <: U and Γ ` U <: T , then Γ ` S <: T .

Proof. Induction on the type derivation Γ ` S <: U . There are five cases.

• S-Top. We have U = Top. Invert Γ ` Top <: T , we know T = Top. Apply S-Top.

• S-Tvar-Refl. We have S = U = X, trivial.

• T-Tvar-Trans. We have S = X, X <: Q ∈ Γ and Q <: U . By IH, we have Q <: T .
Now apply T-Tvar-Trans.

• T-Fun. We have S = S1 → S2, U = U1 → U2, U1 <: S1 and S2 <: U2.

Invert Γ ` U1 → U2 <: T , either T = Top, we apply S-Top. Or we have T = T1 → T2
and T1 <: U1, U2 <: T2. By IH, we have T1 <: S1 and S2 <: T2. By S-Fun, we have
Γ ` S <: T .

• T-All. We have U = ∀X <: Q.U1, S = ∀X <: Q.S1 and Γ, X <: Q ` S1 <: U1.

Invert Γ ` ∀X <: Q.U1 < T , either T = Top, we apply S-Top. Or we have T = ∀X.T1
and Γ, X <: Q ` U1 <: T1. By IH, we have S1 <: T1. Now apply S-All.

5

For reference: Simply Typed Lambda Calculus

The complete reference of the simply typed lambda calculus is:

t ::= terms :
| x variable
| λ x:T. t abstraction
| t t application

v ::= values :
| λ x:T. t abstraction− value

T ::= types :
| T→ T type of functions (right assoc.)

Evaluation rules:

t1 −→ t′1

t1 t2 −→ t′1 t2
(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t
′
2

(E-App2)

(λ x: T1. t1) v2 −→ [x→ v2] t1 (E-AppAbs)

Typing rules:

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` (λ x: T1. t2) : T1 → T2
(T-Abs)

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
(T-App)

6

