
Theory of Types
and Programming Languages

Lionel PARREAUX, HKUST

Slides in part adapted from:

University of Pennsylvania CIS 500: Software Foundations – Fall 2006

by Benjamin Pierce

EPFL CS-452: Foundations of software – Fall 2021

by Martin Odersky

1



Course Overview

2



What is “TTAPL”?

The theory of programming languages is the mathematical study of the

meaning of programs.

The goal is to describe program behaviors in ways that are both precise

and abstract.

� precise so that we can use mathematical tools to formalize and

check interesting properties

� abstract so that properties of interest can be discussed clearly,

without getting bogged down in low-level details

3



Why study the theory of programming languages?

� To prove specific properties of particular programs

(program verification)

. Important in some domains (safety-critical systems, hardware

design, security protocols, inner loops of key algorithms, ...),

but still quite difficult and expensive

� To develop intuitions for informal reasoning about programs

� To prove general facts about all the programs in a given

programming language (e.g., safety or isolation properties)

� To understand language features (and their interactions) deeply and

develop principles for better language design

(PL is the “materials science” of computer science...)

4



What you can expect to get out of the course

� A more sophisticated perspective on programs, programming

languages, and the activity of programming

. See programs and whole languages as formal, mathematical

objects

. Make and prove rigorous claims about them

. Have detailed knowledge of a variety of core language features

� Deep intuitions about key language properties such as type safety

� Powerful tools for language design, description, and analysis

Most software designers are language designers!

5



Greenspun’s Tenth Rule Of Programming

“Any sufficiently complicated C or Fortran program contains an

ad-hoc, informally-specified, bug-ridden, slow implementation of

half of Common Lisp.”

– Philip Greenspun

6



What this course is not

� An introduction to programming

� A course on functional programming (though we’ll be doing some

functional programming along the way)

� A course on compilers (you should already be comfortable with basic

concepts such as lexical analysis, parsing, abstract syntax, and

scope)

� A comparative survey of many different programming languages and

styles

7



Approaches to Program Meaning

� Denotational semantics and domain theory view programs as simple

mathematical objects, abstracting away their flow of control and

concentrating on their input-output behavior.

� Program logics such as Hoare logic and dependent type theories

focus on logical rules for reasoning about programs.

� Operational semantics describes program behaviors by means of

abstract machines. This approach is somewhat lower-level than the

others, but is extremely flexible.

� Process calculi focus on the communication and synchronization

behaviors of complex concurrent systems.

� Type systems describe approximations of program behaviors,

concentrating on the shapes of the values passed between different

parts of the program.

8



Overview (tentative)

This course will concentrate on operational techniques and type systems.

� Part I: Modeling programming languages

. Syntax and parsing

. Operational semantics

. Inductive proof techniques

. The lambda calculus

. Syntactic sugar; fully abstract translations

� Part II: Type systems

. Simple types

. Type safety

. Recursion, State, and Other Extensions

. Polymorphism and Type Reconstruction

. Subtyping

9



Overview

� Part III: Advanced Types

. Structural and Object-Oriented Features

. Dependent Types

. Curry-Howard Correspondence

. Foundations of Scala’s Type System

10



Organization of the Course

11



Staff

Instructor: Lionel

parreaux@cse.ust.hk

Teaching Assistant: Luyu Cheng

luyu.cheng@connect.ust.hk

12



Information

Textbook: Types and Programming Languages,

Benjamin C. Pierce, MIT Press, 2002

Webpage: https://canvas.ust.hk/courses/42319/

Other relevant resources (for deeper investigation):

• Advanced topics in types and programming languages. B. C. Pierce, MIT

press, 2005.

• Software foundations, B. C. Pierce, C. Casinghino, M. Gaboardi, M.

Greenberg, C. Hriţcu, V. Sjöberg, & B. Yorgey, 2010.

13



Elements of the Course

� The TTAPL course consists of

. lectures (Wed 16:30-17:50, on Zoom)

. exercises and project work (Fri 16:30-17:50, on Zoom)

(real-time online mode until end of add-drop period)

� The lecture will follow in part the textbook.

� For lack of time, we cannot treat all essential parts of the book in

the lectures. That’s why the textbook is required reading for

participants of the course.

14



Homework and Projects

You will be asked to

� solve and hand in some written exercise sheets,

� do a number of programming assignments, including

. interpreters and reduction engines

. type checkers

for a variety of small languages.

� The recommended implementation language for these assignments is

Scala.

15



Scala

� Scala is a functional and object-oriented language that is closely

interoperable with Java.

� It is very well suited as an implementation language for

type-checkers, in particular because it supports:

. pattern matching,

. higher-order functions,

. an expressive object system.

16



Learning Scala

If you don’t know Scala yet, there’s help:

� The Scala web site:

www.scala-lang.org

� On this site, the documents:

. A Brief Scala Tutorial - an introduction to Scala for Java

programmers. (short and basic).

. An Introduction to Scala (longer and more comprehensive).

. An Overview of the Scala Programming Language (high-level).

. Scala By Example (long, comprehensive, tutorial style).

� The assistants.

17



Grading and Exams

Final course grades will be computed as follows:

� Homework and project: 30%

� Mid-term exam: 30%

� Final exam: 40%

18



Collaboration

� Collaboration on homework is strongly encouraged.

� Studying with other people is the best way to internalize the material

� Form study groups!

“You never really misunderstand something

until you try to teach it...

” – Anon.

19



Plagiarism

While collaboration on exercise homework is encouraged,

the projects and exams are individual.

Plagiarizing code written by other people as part of a project is unethical

and will not be tolerated, whatever the source.

20



Part I

Modelling programming languages

21



Syntax and Parsing

� The first-level of modeling a programming language concerns its

context-free syntax.

� Context free syntax determines a set of legal phrases and determines

the (tree-)structure of each of them.

� It is often given on two levels:

. concrete: determines the exact (character-by-character) set of

legal phrases

. abstract: concentrates on the tree-structure of legal phrases.

� We will be mostly concerned with abstract syntax in this course.

� But to be able to write complete programming tools, we need a

convenient way to map character sequences to trees.

22



Approaches to Parsing

There are two ways to construct a parser:

� By hand Derive a parser program from a grammar.

� Automatic Submit a grammar to a tool which generates the parser

program.

In the second approach, one uses a special grammar description language

to describe the input grammar.

23



Domain-Specific Languages

� The grammar description language is an example of a

domain-specific language (DSL).

� The parser generator acts as a processor (“compiler”) for this

language — that’s why it’s sometimes called grandly a

“compiler-compiler”.

� Example of a “program” in the grammar description DSL:

(Grammar A)

Expr ::= Term {’+’ Term | ’−’ Term}.
Term ::= Factor {’∗’ Factor | ’/’ Factor}.
Factor ::= Number | ’(’ Expr ’)’.

24



Embedded Domain Specific Languages

� An alternative to a stand-alone DSL is an Embedded DSL.

� Here, the DSL does not exist as a separate language but as an API

in a host language.

� The host language is usually a general purpose programming

language.

In this course, we use a Scala Embedded DSL to do the parsing.

25



An EDSL for Parsing in Scala

Here is what it looks like:

(Grammar B)

def expr : Parser[Any] = term ˜ rep(”+” ˜ term | ”−” ˜ term)
def term : Parser[Any] = factor ˜ rep(”∗” ˜ factor | ”/” ˜ factor)
def factor : Parser[Any] = ”(” ˜ expr ˜ ”)” | numericLit

This course is not about parsing.

We will provide the parser implementations to you.

26



Parser Combinators

� The differences between Grammar A and Grammar B are fairly

minor.

(Note in particular that existing DSLs for grammar

descriptions also tend to add syntactic complications to the

idealized Grammar A we have seen).

� The important difference is that Grammar B is a valid Scala

program, when combined with an API that defines the necessary

primitives.

� These primitives are called parser combinators.

27



Concrete and Abstract Syntax

Concrete grammar, for parsing:

Expr ::= Term {’+’ Term | ’−’ Term}.
Term ::= Factor {’∗’ Factor | ’/’ Factor}.
Factor ::= Number | ’(’ Expr ’)’.

What we really care about: the abstract “grammar” or abstract syntax

28



To Prepare For Next Lecture

You should try to at least look at the reading material for a particular

lecture before that lecture.

Next week, we’ll start with Chapter 3 of the textbook.

(Chapter 2 contains some mathematical preliminaries which we assume you are

familiar with.)

29


