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Review (and more details)
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Recall: Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test
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Recall: Inference Rule Notation

More explicitly: T is the smallest set closed under the rules:

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T
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Generating Functions

Each rule can be thought of as a “generating function”
given some elements from T ,
it generates some other element of T

Saying T is closed under these rules means that T cannot be
made any bigger using these generating functions.

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T
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Let’s write these generating functions explicitly.

F1(U) = {true}
F2(U) = {false}
F3(U) = {0}
F4(U) = {succ t1 | t1 ∈ U}
F5(U) = {pred t1 | t1 ∈ U}
F6(U) = {iszero t1 | t1 ∈ U}
F7(U) = {if t1 then t2 else t3 | t1, t2, t3 ∈ U}

Each one takes a set of terms U as input and produces a set of
“terms justified by U” as output.
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We can define a generating function for the whole set of inference
rules (by combining generating functions of individual rules):

F (U) = F1(U)∪F2(U)∪F3(U)∪F4(U)∪F5(U)∪F6(U)∪F7(U)

then restate the previous definition of the set of terms T as:

Definition:

I A set U is said to be “closed under F” (or “F-closed”) if
F (U) ⊆ U.

I The set of terms T is the smallest F -closed set.
(I.e., if O is another set such that F (O) ⊆ O, then T ⊆ O.)
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Our alternate definition of the set of terms can also be stated
using the generating function F :

S0 = ∅
Si+1 = F (Si )

S =
⋃

i Si
Compare this definition of S with the one we saw last time:

S0 = ∅
Si+1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

S =
⋃

i Si

We have “pulled” F out and given it a name.
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Our two definitions characterize the same set from different
directions:

I “from above,” as the intersection of all F -closed sets;

I “from below,” as the limit (union) of a series of sets that start
from ∅ and get “closer and closer to being F -closed.”

Proposition 3.2.6 in the book shows that these two definitions
actually define the same set.
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Structural Induction

The principle of structural induction on terms can also be re-stated
using generating functions:

Suppose T is the smallest F -closed set.

If, for each set U,
from the assumption “P(u) holds for every u ∈ U”
we can show “P(v) holds for any v ∈ F (U),”

then P(t) holds for all t ∈ T.

Why?
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Structural Induction

Why? Because:

I We assumed that T was the smallest F -closed set, i.e., that
T ⊆ O for any other F -closed set O.

I But showing

for each set U,
given P(u) for all u ∈ U
we can show P(v) for all v ∈ F (U)

amounts to showing that “the set of all terms satisfying P”
(call it OP) is itself an F -closed set.

I Since T ⊆ OP , every element of T satisfies P.
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Structural Induction

Compare this with the structural induction principle for terms from
last lecture:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.
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Operational Semantics and
Reasoning
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Recall: Abstract Machines

An abstract machine consists of:

I a set of states

I a transition relation on states, written −→

For the simple languages we are considering at the moment, the
term being evaluated is the whole state of the abstract machine.
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Recall: Operational Semantics for Booleans

The evaluation relation t −→ t′ is the smallest relation closed
under the following rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)
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Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else

branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?
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Recall: Evaluation, more explicitly

−→ is the smallest two-place relation closed under the rules:

((if true then t2 else t3), t2) ∈ −→

((if false then t2 else t3), t3) ∈ −→

(t1, t
′
1) ∈ −→

((if t1 then t2 else t3), (if t′1 then t2 else t3)) ∈ −→

Exercise: write the generating function corresponding to these rules
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Recall: Numbers

Boolean and numeric values:

v ::= values
true constant true
false constant false
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value
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Evaluation rules for numbers t −→ t′

t1 −→ t′1
succ t1 −→ succ t′1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1
pred t1 −→ pred t′1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-IsZero)
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Recall: Derivations

We can record the “justification” for a particular pair of terms that
are in the evaluation relation in the form of a tree.

Terminology:

I These trees are called derivation trees (or just derivations).

I The final statement in a derivation is its conclusion.

I We say that the derivation is a witness for its conclusion (or a
proof of its conclusion) — it records all the reasoning steps
that justify the conclusion.
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Recall: Induction on Derivations

We can now write proofs about evaluation “by induction on
derivation trees.”

Given an arbitrary derivation D with conclusion t −→ t′, assume
the desired result for its immediate sub-derivation (if any) and
proceed by a case analysis (using the previous lemma) of the final
evaluation rule used in constructing the derivation tree.

Example

Theorem: If t −→ t′, i.e., if (t, t′) ∈−→, then size(t) > size(t′).
Proof: By induction on a derivation D of t −→ t′.

Consider one by one each possible final rule used in D:
E-IfTrue, E-IfFalse, E-If, etc.
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Recall: Normal forms

A normal form is a term that cannot be evaluated any further

— i.e., a term t is a normal form (or “is in normal form”)
if there is no t′ such that t −→ t′.

I.e., a state where the abstract machine is halted. It can be
regarded as a “result” of evaluation.
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Recall: Values are normal forms

All values are normal forms in our language of booleans and
numbers.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a “stuck term” is one that is a normal form but not a
value.

Stuck terms model run-time errors.

What are some examples?

23



Recall: Values are normal forms, but we have stuck terms

All values are normal forms in our language of booleans and
numbers.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a “stuck term” is one that is a normal form but not a
value.

Stuck terms model run-time errors.

What are some examples?

23



Recall: Values are normal forms, but we have stuck terms

All values are normal forms in our language of booleans and
numbers.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a “stuck term” is one that is a normal form but not a
value.

Stuck terms model run-time errors.

What are some examples?

23



Recall: Values are normal forms, but we have stuck terms

All values are normal forms in our language of booleans and
numbers.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a “stuck term” is one that is a normal form but not a
value.

Stuck terms model run-time errors.

What are some examples?

23



Recall: Multi-step evaluation.

The multi-step evaluation relation, −→∗, is the reflexive, transitive
closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t −→ t′

t −→∗ t′

t −→∗ t

t −→∗ t′ t′ −→∗ t′′

t −→∗ t′′
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Recall: Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof sketch: By an argument on the strictly reducing size of
terms at each evaluation step.
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The Lambda Calculus
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The lambda-calculus

I If our previous language of arithmetic expressions was the
simplest nontrivial programming language, then the
lambda-calculus is the simplest interesting programming
language...
I Turing complete
I higher order (functions as data)

I Indeed, in the lambda-calculus, all computation happens by
means of function abstraction and application.

I The e. coli of programming language research

I The foundation of many real-world programming language
designs (including OCaml, Haskell, Scheme, Lisp, ...)
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Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml and “x ⇒ t” in Scala.
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So plus3 (succ 0) is just a convenient shorthand for:

“the function that, given x,
yields succ (succ (succ x)), applied to succ 0.”

Reduction.

plus3 (succ 0)

=
(λx. succ (succ (succ x))) (succ 0)

=
succ (succ (succ (succ 0)))
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Abstractions over Functions

Consider the λ-abstraction

g = λf. f (f (succ 0))

Note that the parameter variable f is used in the function position
in the body of g. Terms like g are called higher-order functions.
If we apply g to an argument like plus3, the “substitution rule”
yields a nontrivial computation:

g plus3

= (λf. f (f (succ 0))) (λx. succ (succ (succ x)))

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) (succ 0))

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ (succ 0))))

i .e. succ (succ (succ (succ (succ (succ (succ 0))))))
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Abstractions Returning Functions

Consider the following variant of g:

double = λf. λy. f (f y)

I.e., double is the function that, when applied to a function f,
yields a function that, when applied to an argument y, yields
f (f y).
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Example

double plus3 0

= (λf. λy. f (f y))

(λx. succ (succ (succ x)))

0

i .e. (λy. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) y))

0

i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) 0)

i .e. (λx. succ (succ (succ x)))

(succ (succ (succ 0)))

i .e. succ (succ (succ (succ (succ (succ 0)))))
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The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and
application, we can throw away all the other language primitives
and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a
function.

I Variables always denote functions

I Functions always take other functions as parameters

I The result of a function is always a function
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Formalities
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Syntax

t ::= terms
x variable
λx.t abstraction
t t application

Terminology:

I terms in the pure λ-calculus are often called λ-terms

I terms of the form λx. t are called λ-abstractions or just
abstractions
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Syntactic conventions

Since λ-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

I Application associates to the left
E.g., t u v means (t u) v, not t (u v)

I Bodies of λ- abstractions extend as far to the right as possible
E.g., λx. λy. x y means λx. (λy. x y), not
λx. (λy. x) y
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Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

Test:

λx. λy. x y z

λx. (λy. z y) y
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Values

v ::= values
λx.t abstraction value
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Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Notation: [x 7→ v2]t12 is “the term that results from sub-
stituting free occurrences of x in t12 with v2.”

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)
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Terminology

A term of the form (λx.t) v — that is, a λ-abstraction applied
to a value — is called a redex (short for “reducible expression”).
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Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.

Some other common ones:

I Call by name (cf. Haskell)

I Normal order (leftmost/outermost)

I Full (non-deterministic) beta-reduction
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Classical Lambda Calculus
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Full beta reduction

The classical lambda calculus allows full beta reduction.
I The argument of a β-reduction to be an arbitrary term, not

just a value.
I Reduction may appear anywhere in a term.

Computation rule:

(λx.t12) t2 −→ [x 7→ t2]t12 (E-AppAbs)

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
t1 t2 −→ t1 t′2

(E-App2)

t −→ t′

λx.t −→ λx.t′
(E-Abs)
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Substitution revisited

Remember: [x 7→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v2.”

This is trickier than it looks!
For example:

(λx. (λy. x)) y

−→ [x 7→ y]λy. x

= ???

Solution:
need to rename bound variables before performing the substitution.

(λx. (λy. x)) y

= (λx. (λz. x)) y

−→ [x 7→ y]λz. x

= λz. y
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Alpha conversion

Renaming bound variables is formalized as α-conversion.
Conversion rule:

y 6∈ fv(t)

λx. t =α λy.[x 7→ y]t
(α)

Equivalence rules:

t1 =α t2

t2 =α t1
(α-Symm)

t1 =α t2 t2 =α t3

t1 =α t3
(α-Trans)

Congruence rules: the usual ones.
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Confluence

Full β-reduction makes it possible to have different reduction
paths.

Q: Can a term evaluate to more than one normal form?

The answer is no; this is a consequence of the following

Theorem [Church-Rosser]
Let t, t1, t2 be terms such that t −→∗ t1 and t −→∗ t2. Then
there exists a term t3 such that t1 −→∗ t3 and t2 −→∗ t3.
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Programming in the
Lambda-Calculus
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Multiple arguments

Consider the function double, which returns a function as an
argument.

double = λf. λy. f (f y)

This idiom — a λ-abstraction that does nothing but immediately
yield another abstraction — is very common in the λ-calculus.

In general, λx. λy. t is a function that, given a value v for x,
yields a function that, given a value u for y, yields t with v in
place of x and u in place of y.

That is, λx. λy. t is a two-argument function.

(Recall the discussion of currying in OCaml.)
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The “Church Booleans”

tru = λt. λf. t

fls = λt. λf. f

tru v w

= (λt.λf.t) v w by definition
−→ (λf. v) w reducing the underlined redex
−→ v reducing the underlined redex

fls v w

= (λt.λf.f) v w by definition
−→ (λf. f) w reducing the underlined redex
−→ w reducing the underlined redex
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Functions on Booleans

not = λb. b fls tru

That is, not is a function that, given a boolean value v, returns
fls if v is tru and tru if v is fls.
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Functions on Booleans

and = λb. λc. b c fls

That is, and is a function that, given two boolean values v and w,
returns w if v is tru and fls if v is fls

Thus and v w yields tru if both v and w are tru and fls if either
v or w is fls.
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Pairs

pair = λf.λs.λb. b f s

fst = λp. p tru

snd = λp. p fls

That is, pair v w is a function that, when applied to a boolean
value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru

and w if b is fls, so the first and second projection functions fst

and snd can be implemented simply by supplying the appropriate
boolean.
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Example

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition
−→ fst ((λs. λb. b v s) w) reducing
−→ fst (λb. b v w) reducing
= (λp. p tru) (λb. b v w) by definition

−→ (λb. b v w) tru reducing
−→ tru v w reducing
−→∗ v as before.
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Church numerals

Idea: represent the number n by a function that “repeats some
action n times.”

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

That is, each number n is represented by a term cn that takes two
arguments, s and z (for “successor” and “zero”), and applies s, n
times, to z.

54



Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

iszro = λm. m (λx. fls) tru

What about predecessor?
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Predecessor

zz = pair c0 c0

ss = λp. pair (snd p) (scc (snd p))

prd = λm. fst (m ss zz)
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