
Theory of Types
and Programming Languages

Fall 2022

Week 4

1

Programming in the
Lambda-Calculus: Continued

2

Church Encoding

Recall Church encoding of natural numbers:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

...

succ n = λs. λz. s (n s z)

Is that the only possible one? Can you think of another one?

Another encoding of data types, called Scott encoding:

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Notice the difference:

c2’ = succ’ (succ’ c0’)

≡ λs. λz. s (λs. λz. s (λs. λz. z))

Church encodes folding, while Scott encodes pattern matching.

3

Church vs Scott Encoding

Recall Church encoding of natural numbers:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

...

succ n = λs. λz. s (n s z)

Is that the only possible one? Can you think of another one?

Another encoding of data types, called Scott encoding:

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Notice the difference:

c2’ = succ’ (succ’ c0’)

≡ λs. λz. s (λs. λz. s (λs. λz. z))

Church encodes folding, while Scott encodes pattern matching.

3

Church vs Scott Encoding

Recall Church encoding of natural numbers:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

...

succ n = λs. λz. s (n s z)

Is that the only possible one? Can you think of another one?

Another encoding of data types, called Scott encoding:

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Notice the difference:

c2’ = succ’ (succ’ c0’)

≡ λs. λz. s (λs. λz. s (λs. λz. z))

Church encodes folding, while Scott encodes pattern matching.
3

Scott Encoding of Numerals

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Predecessor:

?

pred’ n = n id c0’

(where id = λx. x)

Addition:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Any problems with this?

This definition refers to itself! Not a lambda term...
We seem to need recursion...

4

Scott Encoding of Numerals

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Predecessor:

pred’ n = n id c0’

(where id = λx. x)

Addition:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Any problems with this?

This definition refers to itself! Not a lambda term...
We seem to need recursion...

4

Scott Encoding of Numerals

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Predecessor:

pred’ n = n id c0’

(where id = λx. x)

Addition:

?

plus’ n m = n (λpn. succ (plus’ pn m)) m

Any problems with this?

This definition refers to itself! Not a lambda term...
We seem to need recursion...

4

Scott Encoding of Numerals

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Predecessor:

pred’ n = n id c0’

(where id = λx. x)

Addition:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Any problems with this?

This definition refers to itself! Not a lambda term...
We seem to need recursion...

4

Scott Encoding of Numerals

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Predecessor:

pred’ n = n id c0’

(where id = λx. x)

Addition:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Any problems with this?

This definition refers to itself! Not a lambda term...
We seem to need recursion...

4

Divergence and Recursion in
the Lambda Calculus

5

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self

6

Divergence in the Lambda Calculus

Self-applying self application... what could go wrong?

self self

= (λf. f f) self

≡ self self

≡ ...

self self is a term that reduces to itself in one step.

Within self-application great power lies. — Yoda, probably

Can we harness this power?

7

Divergence in the Lambda Calculus

Self-applying self application... what could go wrong?

self self

= (λf. f f) self

≡ self self

≡ ...

self self is a term that reduces to itself in one step.

Within self-application great power lies. — Yoda, probably

Can we harness this power?

7

Divergence in the Lambda Calculus

Self-applying self application... what could go wrong?

self self

= (λf. f f) self

≡ self self

≡ ...

self self is a term that reduces to itself in one step.

Within self-application great power lies.

— Yoda, probably

Can we harness this power?

7

Divergence in the Lambda Calculus

Self-applying self application... what could go wrong?

self self

= (λf. f f) self

≡ self self

≡ ...

self self is a term that reduces to itself in one step.

Within self-application great power lies. — Yoda, probably

Can we harness this power?

7

Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished! But we can do better (more convenient)...

8

Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished! But we can do better (more convenient)...

8

Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished! But we can do better (more convenient)...

8

Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished! But we can do better (more convenient)...

8

Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished!

But we can do better (more convenient)...

8

Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished! But we can do better (more convenient)...

8

Divergence, more formally

Recursion and divergence are intertwined, so we need to consider
divergent terms.

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very
useful...

9

Divergence, more formally

Recursion and divergence are intertwined, so we need to consider
divergent terms.

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very
useful...

9

Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?

Yes. Example: x

BUT no stuck closed terms
(a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never “crash”...

10

Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?

Yes. Example: x

BUT no stuck closed terms
(a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never “crash”...

10

Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?

Yes. Example: x

BUT no stuck closed terms
(a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never “crash”...

10

Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?

Yes. Example: x

BUT no stuck closed terms
(a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never “crash”...

10

Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?

Yes. Example: x

BUT no stuck closed terms
(a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never “crash”...

10

Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following
variant of omega:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(λx. f (x x)) (λx. f (x x))

−→
f ((λx. f (x x)) (λx. f (x x)))

−→
f (f ((λx. f (x x)) (λx. f (x x))))

−→
f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→
· · ·

11

Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following
variant of omega:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(λx. f (x x)) (λx. f (x x))

−→
f ((λx. f (x x)) (λx. f (x x)))

−→
f (f ((λx. f (x x)) (λx. f (x x))))

−→
f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→
· · ·

11

Yf is still not very useful, since (like omega), all it does is diverge.

Is there any way we could “slow it down”?

12

Delaying divergence

poisonpill = λy. omega

Note that poisonpill is a value — it it will only diverge when we
actually apply it to an argument. This means that we can safely
pass it as an argument to other functions, return it as a result from
functions, etc.

(λp. fst (pair p fls) tru) poisonpill

−→
fst (pair poisonpill fls) tru

−→∗

poisonpill tru

−→
omega

−→
· · ·

13

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a
bit more tightly intertwined:

omegav =
λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y

Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

omegav v

=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

−→
(λx. (λy. x x y)) (λx. (λy. x x y)) v

−→
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

=
omegav v

14

Another delayed variant

Suppose f is a function. Define

zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

This term combines the “added f” from Yf with the “delayed
divergence” of omegav.

15

If we now apply zf to an argument v, something interesting
happens:

zf v

=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

−→
(λx. f (λy. x x y)) (λx. f (λy. x x y)) v

−→
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f zf v

Since zf and v are both values, the next computation step will be
the reduction of f zf — that is, before we “diverge,” f gets to do
some computation.
Now we are getting somewhere.

16

Recursion

Let

f = λfct.
λn.
if n == 0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of
a recursive call in the last time, it calls the function fct, which is
passed as a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans,
infix syntax, etc. It can easily be translated into the pure lambda
calculus (using Church numerals, etc.).

17

We can use z to “tie the knot” in the definition of f and obtain a
real recursive factorial function:

zf 3

−→∗

f zf 3

=
(λfct. λn. ...) zf 3

−→ −→
if 3=0 then 1 else 3 * (zf (pred 3))

−→∗

3 * (zf (pred 3)))

−→
3 * (zf 2)

−→∗

3 * (f zf 2)

· · ·

18

A Generic z

If we define

z = λf. zf

i.e.,

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of zf for any f we like, simply by
applying z to f.

z f −→ zf

19

For example:

fact = z (λfct.
λn.
if n == 0 then 1

else n * (fct (pred n)))

20

Technical Note

The term z here is essentially the same as the fix discussed the
book.

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

fix =
λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

z is hopefully slightly easier to understand, since it has the property
that z f v −→∗ f (z f) v, which fix does not (quite) share.

21

Programming in the Lambda
Calculus, Continued (Again)

22

Recall: Church Booleans

tru = λt. λf. t

fls = λt. λf. f

We showed last time that, if b is a boolean (i.e., it behaves like
either tru or fls), then, for any values v and w, either

b v w −→∗
v

(if b behaves like tru) or

b v w −→∗
w

(if b behaves like fls).

23

Booleans with “bad” arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!

24

Booleans with “bad” arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!

24

A better way

Wrap the branches in an abstraction, and use a dummy “unit
value,” to force evaluation of thunks:

unit = λx. x

Use a “conditional function”:

test = λb. λt. λf. b t f unit

If tru′ is or behaves like tru, fls′ is or behaves like fls, and s

and t are arbitrary terms then

test tru′ (λdummy. s) (λdummy. t) −→∗ s

test fls′ (λdummy. s) (λdummy. t) −→∗ t

25

Recall: The z Operator

In the previous part, we defined an operator z that calculates the
“fixed point” of a function it is applied to:

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

That is, if zf = z f then zf v −→∗ f zf v.

26

Recall: Factorial

As an example, we defined the factorial function as follows:

fact =
z (λfct.

λn.
if n == 0 then 1

else n * (fct (pred n)))

For simplicity, we used primitive values from the calculus of
numbers and booleans presented in week 2, and even used
shortcuts like 1 and *.

As mentioned, this can be translated “straightforwardly” into the
pure lambda calculus. Let’s do that.

27

Lambda calculus version of Factorial (not!)

Here is the naive translation:

badfact =
z (λfct.

λn.
iszro n

c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)

28

Lambda calculus version of Factorial (not!)

Here is the naive translation:

badfact =
z (λfct.

λn.
iszro n

c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)

28

Lambda calculus version of Factorial

A better version:

fact =
z (λfct.

λn.
test (iszro n)

(λdummy. c1)

(λdummy. (times n (fct (prd n)))))

29

Displaying numbers

fact c3 −→∗

(λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz. z)

s z))

s z))

s z))

s z))

s z))

s z))

Ugh!

30

Displaying numbers

fact c3 −→∗ (λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz. z)

s z))

s z))

s z))

s z))

s z))

s z))

Ugh!

30

Displaying numbers

If we enrich the pure lambda calculus with “regular numbers,” we
can display church numerals by converting them to regular
numbers:

realnat = λn. n (λm. succ m) 0

Now:

realnat (times c2 c2)

−→∗

succ (succ (succ (succ zero))).

31

Displaying numbers

Alternatively, we can convert a few specific numbers:

whack =
λn. (equal n c0) c0

((equal n c1) c1
((equal n c2) c2
((equal n c3) c3
((equal n c4) c4
((equal n c5) c5
((equal n c6) c6
n))))))

Now:

whack (fact c3)

−→∗

λs. λz. s (s (s (s (s (s z)))))

32

Equivalence of Lambda Terms

33

Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

34

Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

34

The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

6= λs. λz. s (s (s z))

= c3

35

The naive approach... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

6= λs. λz. s (s (s z))

= c3

35

A better approach

Recall the intuition behind the church numeral representation:

I a number n is represented as a term that “does something n
times to something else”

I scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.

36

scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w

−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w

−→(λz. v ((λs. λz. s (s z)) v z)) w

−→v ((λs. λz. s (s z)) v w)

−→v ((λz. v (v z)) w)

−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w

−→(λz. v (v (v z))) w

−→v (v (v w)))

37

A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?

38

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

39

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

39

Examples

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

fls = λt. λf. f

omega = (λx. x x) (λx. x x)

poisonpill = λx. omega

placebo = λx. tru

Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?

40

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

41

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

41

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

41

Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent

42

Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent

42

Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

43

Examples

These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f

poisonpill = λx. omega

placebo = λx. tru

44

Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?

45

Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.

46

Proving behavioral inequivalence

Example:

I the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit

= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit

diverges

47

Proving behavioral inequivalence

Example:

I the argument sequence (λx. x), poisonpill, (λx. x)

demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)

−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)

−→∗ poisonpill (λx. x), which diverges

48

Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?

49

Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

I For the case where the sequence has up to one element (i.e.,
n ≤ 1), note that both tru / tru v1 and tru′ / tru′ v1
reach normal forms after zero / one reduction steps.

I For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce to v1 v3 ... vn. So either
both normalize or both diverge.

50

Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.

51

