Theory of Types and Programming Languages Fall 2022

Week 4

Programming in the Lambda-Calculus: Continued

Church Encoding

Recall Church encoding of *natural numbers*:

 $c_{0} = \lambda s. \quad \lambda z. \quad z$ $c_{1} = \lambda s. \quad \lambda z. \quad s \quad z$ $c_{2} = \lambda s. \quad \lambda z. \quad s \quad (s \quad z)$ $c_{3} = \lambda s. \quad \lambda z. \quad s \quad (s \quad (s \quad z))$...

succ n = λ s. λ z. s (n s z)

Is that the only possible one? Can you think of another one?

Church vs Scott Encoding

Recall Church encoding of natural numbers:

 $c_0 = \lambda s. \lambda z. z$ $c_1 = \lambda s. \lambda z. s z$ $c_2 = \lambda s. \lambda z. s (s z)$ $c_3 = \lambda s. \lambda z. s (s (s z))$...

succ n = λ s. λ z. s (n s z)

Is that the only possible one? Can you think of another one? Another encoding of data types, called *Scott* encoding:

 $c_0' = \lambda s. \lambda z. z$ succ' n = $\lambda s. \lambda z. s$ n

Church vs Scott Encoding

Recall Church encoding of natural numbers:

 $c_0 = \lambda s. \lambda z. z$ $c_1 = \lambda s. \lambda z. s z$ $c_2 = \lambda s. \lambda z. s (s z)$ $c_3 = \lambda s. \lambda z. s (s (s z))$...

succ n = λ s. λ z. s (n s z)

Is that the only possible one? Can you think of another one? Another encoding of data types, called *Scott* encoding:

 $c_0' = \lambda s. \lambda z. z$ succ' n = $\lambda s. \lambda z. s$ n

Notice the difference:

Church encodes folding, while Scott encodes pattern matching.

 $c_0' = \lambda s. \lambda z. z$ succ' $n = \lambda s. \lambda z. s n$

Predecessor:

?

 $c_0' = \lambda s. \lambda z. z$ succ' n = $\lambda s. \lambda z. s$ n

Predecessor:

pred' n = n id c_0 '

(where id = $\lambda x. x$)

 $c_0' = \lambda s. \lambda z. z$ succ' n = $\lambda s. \lambda z. s$ n

Predecessor:

pred' n = n id c_0 '

(where id = $\lambda x. x$)

Addition:

 $c_0' = \lambda s. \lambda z. z$ succ' n = $\lambda s. \lambda z. s$ n

Predecessor:

pred' n = n id c_0 '

(where id = $\lambda x. x$)

Addition:

plus' n m = n (λ pn. succ (plus' pn m)) m

Any problems with this?

 $c_0' = \lambda s. \lambda z. z$ succ' $n = \lambda s. \lambda z. s n$

Predecessor:

pred' n = n id c_0 '

(where id = $\lambda x. x$)

Addition:

plus' n m = n (λ pn. succ (plus' pn m)) m

Any problems with this?

This definition **refers to itself**! *Not a lambda term...* We seem to need recursion...

Divergence and Recursion in the Lambda Calculus

What can we say about the following definition? (self application)

self f = f f

What can we say about the following definition? (self application)

self f = f f i.e., self = λ f. f f

Seems a bit suspicious...

What can we say about the following definition? (self application)

self f = f f i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double f x = f (f x))

self double

What can we say about the following definition? (self application)

self f = f f i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double f x = f (f x))

self double

 \equiv double double

What can we say about the following definition? (self application)

self f = f f i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double f x = f (f x))

self double \equiv double double $\equiv \lambda x.$ double (double x)

 $\equiv \lambda x. \lambda x'.$ (double x) ((double x) x')

 $\equiv \lambda x. \lambda x'.$ double x (double x x')

 $\equiv \lambda x. \lambda x'. x (x (x x')))$

What can we say about the following definition? (self application)

self f = f f i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double f x = f (f x))

self double \equiv double double $\equiv \lambda x.$ double (double x) $\equiv \lambda x. \lambda x'.$ (double x) ((double x) x') $\equiv \lambda x. \lambda x'.$ double x (double x x') $\equiv \lambda x. \lambda x'. x (x (x (x x')))$ $\equiv ``quadruple''$

What can we say about the following definition? (self application)

self f = f f i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double f x = f (f x))

self double $\equiv double double
\equiv \lambda x. double (double x)
\equiv \lambda x. \lambda x'. (double x) ((double x) x')
\equiv \lambda x. \lambda x'. double x (double x x')
\equiv \lambda x. \lambda x'. x (x (x (x x')))
\equiv ``quadruple''$

Now how about this?

self self

Self-applying self application... what could go wrong?

self self

Self-applying self application... what could go wrong?

```
self self
= (\lambda f. f f) self
```

Self-applying self application ... what could go wrong?

```
self self
= (\lambda f. f f) self
= self self
= ...
```

self self is a term that reduces to itself in one step.

Within self-application great power lies.

Self-applying self application ... what could go wrong?

```
self self
= (\lambda f. f f) self
= self self
= ...
```

self self is a term that reduces to itself in one step.

Within self-application great power lies. — Yoda, probably

Can we harness this power?

Recall our problem:

plus' n m = n (λ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using *indirect recursion* by self application...

Recall our problem:

plus' n m = n (λ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using *indirect recursion* by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus' myself n m =
 n (\lambda pn. succ (myself myself pn m)) m

Recall our problem:

plus' n m = n (λ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using *indirect recursion* by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus' myself n m =
 n (\lambda pn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' ≡ self mkPlus'

Recall our problem:

plus' n m = n (λ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using *indirect recursion* by self application...

Idea: take an argument that will hold the current definition itself!

```
mkPlus' myself n m =
   n (\lambda pn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' 	≡ self mkPlus'
plus' n m = mkPlus' mkPlus' n m
   ≡ n (\lambda pn. succ (mkPlus' mkPlus' pn m)) m
```

Recall our problem:

plus' n m = n (λ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using *indirect recursion* by self application...

Idea: take an argument that will hold the current definition itself!

```
mkPlus' myself n m =
   n (λpn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' 	≡ self mkPlus'
plus' n m = mkPlus' mkPlus' n m
   ≡ n (λpn. succ (mkPlus' mkPlus' pn m)) m
   ≡ n (λpn. succ (plus' pn m)) m
```

Mission accomplished!

Recall our problem:

plus' n m = n (λ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using *indirect recursion* by self application...

Idea: take an argument that will hold the current definition itself!

```
mkPlus' myself n m =
  n (λpn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' ≡ self mkPlus'
plus' n m = mkPlus' mkPlus' n m
  ≡ n (λpn. succ (mkPlus' mkPlus' pn m)) m
  ≡ n (λpn. succ (plus' pn m)) m
```

Mission accomplished! But we can do better (more convenient)...

Divergence, more formally

Recursion and divergence are intertwined, so we need to consider divergent terms.

omega = $(\lambda x. x x) (\lambda x. x x)$

Note that omega evaluates in one step to itself! So evaluation of omega never reaches a normal form: it *diverges*.

Divergence, more formally

Recursion and divergence are intertwined, so we need to consider divergent terms.

omega = $(\lambda x. x x) (\lambda x. x x)$

Note that omega evaluates in one step to itself! So evaluation of omega never reaches a normal form: it *diverges*.

Being able to write a divergent computation does not seem very useful in itself. However, there are variants of omega that are *very* useful...

- A normal form is a term that cannot take an evaluation step.
- A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

- A normal form is a term that cannot take an evaluation step.
- A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

- A normal form is a term that cannot take an evaluation step.
- A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

Yes. Example: x

A normal form is a term that cannot take an evaluation step.

A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

Yes. Example: x

BUT no stuck *closed* terms (a closed term is a term without free variables)

A normal form is a term that cannot take an evaluation step.

A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

Yes. Example: x

BUT no stuck *closed* terms (a closed term is a term without free variables) Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never "crash"...

Towards recursion: Iterated application

Suppose f is some λ -abstraction, and consider the following variant of omega:

 $Y_f = (\lambda x. f(x x)) (\lambda x. f(x x))$
Towards recursion: Iterated application

Suppose f is some λ -abstraction, and consider the following variant of omega:

 $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Now the "pattern of divergence" becomes more interesting:

 Y_f is still not very useful, since (like omega), all it does is diverge. Is there any way we could "slow it down"?

Delaying divergence

poisonpill = λy . omega

Note that **poisonpill** is a value — it it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

 $\begin{array}{c} (\lambda p. \mbox{ fst (pair p fls) tru) poisonpill} \\ & \longrightarrow \\ \mbox{fst (pair poisonpill fls) tru} \\ & \longrightarrow^* \\ & \underline{poisonpill \mbox{ tru}} \\ & \longrightarrow \\ & \mbox{ omega} \\ & \longrightarrow \end{array}$

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit more tightly intertwined:

omegav = $\lambda y. (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) y$

Note that omegav is a normal form. However, if we apply it to any argument v, it diverges:

```
omegav v
```

$$(\lambda y. (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) y) v$$

$$\longrightarrow$$

$$(\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) v$$

$$\longrightarrow$$

$$(\lambda y. (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) y) v$$

$$=$$

Another delayed variant

Suppose f is a function. Define

 $z_f = \lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y$

This term combines the "added f" from Y_f with the "delayed divergence" of omegav.

If we now apply z_f to an argument v, something interesting happens:

$$z_{f} v$$

$$=$$

$$(\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v$$

$$\longrightarrow$$

$$\frac{(\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))}{\longrightarrow} v$$

$$f (\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v$$

$$=$$

$$f z_{f} v$$

Since z_f and v are both values, the next computation step will be the reduction of $f z_f$ — that is, before we "diverge," f gets to do some computation.

Now we are getting somewhere.

Recursion

Let

```
\begin{array}{rcl} \mathbf{f} &=& \lambda \mathbf{f} \mathbf{c} \mathbf{t} \,. & \\ && \lambda \mathbf{n} \,. & \\ && & \text{if } \mathbf{n} = = \ \mathbf{0} \ \text{then} \ \mathbf{1} & \\ && & & \text{else } \mathbf{n} \ \ast \ (\text{fct (pred n)}) \end{array}
```

f looks just the ordinary factorial function, except that, in place of a recursive call in the last time, it calls the function fct, which is passed as a parameter.

N.b.: for brevity, this example uses "real" numbers and booleans, infix syntax, etc. It can easily be translated into the pure lambda calculus (using Church numerals, etc.).

We can use z to "tie the knot" in the definition of f and obtain a real recursive factorial function:

$$z_{f} 3$$

$$\longrightarrow^{*}$$
f $z_{f} 3$

$$=$$
 $(\lambda \text{fct. } \lambda n. \dots) z_{f} 3$

$$\longrightarrow \longrightarrow$$
if 3=0 then 1 else 3 * (z_{f} (pred 3)))
$$\longrightarrow^{*}$$
3 * (z_{f} (pred 3)))
$$\longrightarrow$$
3 * ($z_{f} 2$)
$$\longrightarrow^{*}$$
3 * (f $z_{f} 2$)

. . .

A Generic z

If we define

 $z = \lambda f \cdot z_f$

i.e.,

 $z = \lambda f. \lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y$

then we can obtain the behavior of z_f for any f we like, simply by applying z to f.

 $z f \longrightarrow z_f$

For example:

```
fact = z (\lambdafct.
\lambdan.
if n == 0 then 1
else n * (fct (pred n)) )
```

Technical Note

The term ${\tt z}$ here is essentially the same as the fix discussed the book.

 $z = \lambda f. \lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y$ fix = $\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$

z is hopefully slightly easier to understand, since it has the property that $z f v \longrightarrow^* f (z f) v$, which fix does not (quite) share.

Programming in the Lambda Calculus, Continued (Again)

Recall: Church Booleans

 $\begin{array}{rcl} {\rm tru} & = & \lambda {\rm t.} \ \lambda {\rm f.} \ {\rm t} \\ {\rm fls} & = & \lambda {\rm t.} \ \lambda {\rm f.} \ {\rm f} \end{array}$

We showed last time that, if b is a boolean (i.e., it behaves like either tru or fls), then, for any values v and w, either

 $b v w \longrightarrow^* v$

(if b behaves like tru) or

$$b v w \longrightarrow^* w$$

(if **b** behaves like **fls**).

Booleans with "bad" arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c_0 omega?

Booleans with "bad" arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c_0 omega?

Not what we want!

A better way

Wrap the branches in an abstraction, and use a dummy "unit value," to force evaluation of thunks:

unit = $\lambda x. x$

Use a "conditional function":

test = $\lambda b. \lambda t. \lambda f. b t f unit$

If tru' is or behaves like tru, fls' is or behaves like fls, and s and t are arbitrary terms then

test tru' (λ dummy. s) (λ dummy. t) \longrightarrow * s test fls' (λ dummy. s) (λ dummy. t) \longrightarrow * t

Recall: The z Operator

In the previous part, we defined an operator z that calculates the "fixed point" of a function it is applied to:

 $z = \lambda f. \lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y$

That is, if $z_f = z$ f then $z_f v \longrightarrow^* f z_f v$.

Recall: Factorial

As an example, we defined the factorial function as follows:

```
fact =

z (\lambdafct.

\lambdan.

if n == 0 then 1

else n * (fct (pred n)))
```

For simplicity, we used primitive values from the calculus of numbers and booleans presented in week 2, and even used shortcuts like 1 and *.

As mentioned, this can be translated "straightforwardly" into the pure lambda calculus. Let's do that.

Lambda calculus version of Factorial (not!)

Here is the naive translation:

```
badfact =

z (\lambdafct.

\lambdan.

iszro n

c_1

(times n (fct (prd n))))
```

Why is this not what we want?

Lambda calculus version of Factorial (not!)

Here is the naive translation:

```
badfact =

z (\lambdafct.

\lambdan.

iszro n

c<sub>1</sub>

(times n (fct (prd n))))
```

Why is this not what we want?

(Hint: What happens when we evaluate $badfact c_0$?)

Lambda calculus version of Factorial

A better version:

 $\texttt{fact} \ \texttt{c}_3 \longrightarrow^{\!\!\!*}$

```
fact c_3 \longrightarrow^* (\lambda s. \lambda z.
                         s ((\lambdas. \lambdaz.
                             s ((\lambdas. \lambdaz.
                                s ((\lambdas. \lambdaz.
                                    s ((\lambdas. \lambdaz.
                                       s ((\lambdas. \lambdaz.
                                          s ((\lambdas. \lambdaz. z)
                                            s z))
                                        s z))
                                        s z))
                                     s z))
                                  s z))
                              s z))
```

Ugh!

If we enrich the pure lambda calculus with "regular numbers," we can display church numerals by converting them to regular numbers:

realnat = λ n. n (λ m. succ m) 0 Now:

 $\begin{array}{c} \text{realnat (times } c_2 \ c_2) \\ \longrightarrow^* \\ \text{succ (succ (succ (succ zero))).} \end{array}$

Alternatively, we can convert a few specific numbers:

whack = λ n. (equal n c₀) c₀ ((equal n c₁) c₁ ((equal n c₂) c₂ ((equal n c₃) c₃ ((equal n c₄) c₄ ((equal n c₅) c₅ ((equal n c₆) c₆ n))))))

Now:

whack (fact c₃) \longrightarrow^* λ s. λ z. s (s (s (s (s z))))

Equivalence of Lambda Terms

Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be used to represent natural numbers.

 $c_{0} = \lambda s. \lambda z. z$ $c_{1} = \lambda s. \lambda z. s z$ $c_{2} = \lambda s. \lambda z. s (s z)$ $c_{3} = \lambda s. \lambda z. s (s (s z))$

Other lambda-terms represent common operations on numbers:

 $scc = \lambda n. \lambda s. \lambda z. s (n s z)$

Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be used to represent natural numbers.

 $c_0 = \lambda s. \lambda z. z$ $c_1 = \lambda s. \lambda z. s z$ $c_2 = \lambda s. \lambda z. s (s z)$ $c_3 = \lambda s. \lambda z. s (s (s z))$

Other lambda-terms represent common operations on numbers:

 $scc = \lambda n. \lambda s. \lambda z. s (n s z)$

In what sense can we say this representation is "correct"? In particular, on what basis can we argue that scc on church numerals corresponds to ordinary successor on numbers?

The naive approach

One possibility:

For each *n*, the term scc c_n evaluates to c_{n+1} .

The naive approach... doesn't work

One possibility:

For each *n*, the term scc c_n evaluates to c_{n+1} . Unfortunately, this is false. E.g.:

$$scc c_2 = (\lambda n. \lambda s. \lambda z. s (n s z)) (\lambda s. \lambda z. s (s z))$$

$$\longrightarrow \lambda s. \lambda z. s ((\lambda s. \lambda z. s (s z)) s z)$$

$$\neq \lambda s. \lambda z. s (s (s z))$$

$$= c_3$$

A better approach

Recall the intuition behind the church numeral representation:

- a number n is represented as a term that "does something n times to something else"
- scc takes a term that "does something *n* times to something else" and returns a term that "does something *n* + 1 times to something else"

I.e., what we really care about is that $scc c_2$ behaves the same as c_3 when applied to two arguments.

$$scc c_2 v w = (\lambda n. \lambda s. \lambda z. s (n s z)) (\lambda s. \lambda z. s (s z)) v w$$
$$\longrightarrow (\lambda s. \lambda z. s ((\lambda s. \lambda z. s (s z)) s z)) v w$$
$$\longrightarrow (\lambda z. v ((\lambda s. \lambda z. s (s z)) v z)) w$$
$$\longrightarrow v ((\lambda s. \lambda z. s (s z)) v w)$$
$$\longrightarrow v ((\lambda z. v (v z)) w)$$
$$\longrightarrow v (v (v w))$$

c_3	v	W	$= (\lambda s. \lambda z. s (s (s z)))$	v	W
			\longrightarrow (λ z. v (v (v z))) w		
			$\longrightarrow v (v (v w)))$		

A general question

We have argued that, although $scc c_2$ and c_3 do not evaluate to the same thing, they are nevertheless "behaviorally equivalent."

What, precisely, does behavioral equivalence mean?

Intuition

Roughly,

"terms ${\bf s}$ and ${\bf t}$ are behaviorally equivalent"

should mean:

"there is no 'test' that distinguishes ${\tt s}$ and ${\tt t}$ — i.e., no way to put them in the same context and observe different results."

Intuition

Roughly,

"terms ${\bf s}$ and ${\bf t}$ are behaviorally equivalent" should mean:

"there is no 'test' that distinguishes ${\tt s}$ and ${\tt t}$ — i.e., no way to put them in the same context and observe different results."

To make this precise, we need to be clear what we mean by a *testing context* and how we are going to *observe* the results of a test.

Examples

tru =
$$\lambda t. \lambda f. t$$

tru' = $\lambda t. \lambda f. (\lambda x.x) t$
fls = $\lambda t. \lambda f. f$
omega = $(\lambda x. x x) (\lambda x. x x)$
poisonpill = $\lambda x.$ omega
placebo = $\lambda x.$ tru
 $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Which of these are behaviorally equivalent?
Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

l.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

l.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Aside:

Is observational equivalence a decidable property?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Aside:

- Is observational equivalence a decidable property?
- Does this mean the definition is ill-formed?

Examples

omega and tru are not observationally equivalent

Examples

omega and tru are not observationally equivalent

tru and fls are observationally equivalent

Behavioral Equivalence

This primitive notion of observation now gives us a way of "testing" terms for behavioral equivalence

Terms s and t are said to be *behaviorally equivalent* if, for every finite sequence of values v_1 , v_2 , ..., v_n , the applications

 $s v_1 v_2 \ldots v_n$

and

t $v_1 v_2 \ldots v_n$

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

tru = $\lambda t. \lambda f. t$ tru' = $\lambda t. \lambda f. (\lambda x.x) t$

So are these:

omega = $(\lambda x. x x) (\lambda x. x x)$ $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

These are not behaviorally equivalent (to each other, or to any of the terms above):

```
fls = \lambda t. \lambda f. f
poisonpill = \lambda x. omega
placebo = \lambda x. tru
```

Given terms s and t, how do we *prove* that they are (or are not) behaviorally equivalent?

To prove that s and t are *not* behaviorally equivalent, it suffices to find a sequence of values $v_1 \dots v_n$ such that one of

 $s v_1 v_2 \ldots v_n$

and

t $v_1 v_2 \ldots v_n$

diverges, while the other reaches a normal form.

Example:

the single argument unit demonstrates that fls is not behaviorally equivalent to poisonpill:

 $\begin{array}{l} \text{fls unit} \\ = (\lambda t. \ \lambda f. \ f) \ \text{unit} \\ \longrightarrow^* \lambda f. \ f \end{array}$

poisonpill unit diverges

Example:

the argument sequence (λx. x), poisonpill, (λx. x) demonstrate that tru is not behaviorally equivalent to fls:

$$ext{tru} (\lambda \mathbf{x}. \mathbf{x}) ext{ poisonpill } (\lambda \mathbf{x}. \mathbf{x}) \ \longrightarrow^* (\lambda \mathbf{x}. \mathbf{x}) (\lambda \mathbf{x}. \mathbf{x}) \ \longrightarrow^* \lambda \mathbf{x}. \mathbf{x}$$

fls $(\lambda x. x)$ poisonpill $(\lambda x. x)$ \rightarrow^* poisonpill $(\lambda x. x)$, which diverges

To prove that s and t *are* behaviorally equivalent, we have to work harder: we must show that, for *every* sequence of values $v_1 \dots v_n$, either both

 $s v_1 v_2 \ldots v_n$

and

t $v_1 v_2 \ldots v_n$

diverge, or else both reach a normal form.

How can we do this?

In general, such proofs require some additional machinery that we will not have time to get into in this course (so-called *applicative bisimulation*). But, in some cases, we can find simple proofs. *Theorem:* These terms are behaviorally equivalent:

tru = $\lambda t. \lambda f. t$ tru' = $\lambda t. \lambda f. (\lambda x.x) t$

Proof: Consider an arbitrary sequence of values $v_1 \dots v_n$.

- For the case where the sequence has up to one element (i.e., n ≤ 1), note that both tru / tru v₁ and tru' / tru' v₁ reach normal forms after zero / one reduction steps.
- For the case where the sequence has more than one element (i.e., n > 1), note that both tru v₁ v₂ v₃ ... v_n and tru' v₁ v₂ v₃ ... v_n reduce to v₁ v₃ ... v_n. So either both normalize or both diverge.

Theorem: These terms are behaviorally equivalent:

omega = $(\lambda x. x x) (\lambda x. x x)$ $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Proof: Both

omega $v_1 \ldots v_n$

and

 $Y_f v_1 \dots v_n$

diverge, for every sequence of arguments $v_1 \dots v_n$.