Theory of Types and Programming Languages Fall 2022

Week 4

[Programming in the](#page-1-0) [Lambda-Calculus: Continued](#page-1-0)

Church Encoding

Recall Church encoding of natural numbers:

 $c_0 = \lambda s$. λz . z $c_1 = \lambda s$. λz . s z $c_2 = \lambda s$. λz . s (s z) $c_3 = \lambda s. \lambda z. s (s (s z))$...

succ $n = \lambda s$. λz . s (n s z)

Is that the only possible one? Can you think of another one?

Church vs Scott Encoding

Recall Church encoding of natural numbers:

 $c_0 = \lambda s$. λz . z $c_1 = \lambda s$. λz . s z $c_2 = \lambda s$. λz . s (s z) $c_3 = \lambda s$. λz . s (s (s z)) ...

succ $n = \lambda s$. λz . s (n s z)

Is that the only possible one? Can you think of another one? Another encoding of data types, called Scott encoding:

 $c_0' = \lambda s$. λz . z succ' n = λ s. λ z. s n

Church vs Scott Encoding

Recall Church encoding of natural numbers:

 $c_0 = \lambda s$. λz . z $c_1 = \lambda s$. λz . s z $c_2 = \lambda s$. λz . s (s z) $c_3 = \lambda s$. λz . s (s (s z)) ...

succ $n = \lambda s$. λz . s (n s z)

Is that the only possible one? Can you think of another one? Another encoding of data types, called Scott encoding:

 $c_0' = \lambda s$. λz . z succ' $n = \lambda s$. λz . s n

Notice the difference:

 $c_2' = succ'$ (succ' c_0') \equiv λ s. λ z. s (λ s. λ z. s (λ s. λ z. z))

Church encodes folding, while Scott encodes pattern matching.

 $c_0' = \lambda s$. λz . z succ' n = λ s. λ z. s n

Predecessor:

?

 $c_0' = \lambda s$. λz . z succ' n = λ s. λ z. s n

Predecessor:

pred' $n = n$ id c_0'

(where id = λ x. x)

 $c_0' = \lambda s$. λz . z succ' n = λ s. λ z. s n

Predecessor:

pred' n = n id c_0'

(where id = λ x. x)

Addition:

 $c_0' = \lambda s$. λz . z succ' n = λ s. λ z. s n

Predecessor:

pred' n = n id c_0'

(where id = λ x. x)

Addition:

plus' n m = n $(\lambda$ pn. succ (plus' pn m)) m

Any problems with this?

 $c_0' = \lambda s$. λz . z succ' n = λ s. λ z. s n

Predecessor:

pred' n = n id c_0'

(where id = λ x. x)

Addition:

plus' n m = n $(\lambda pn.$ succ (plus' pn m)) m

Any problems with this?

This definition **refers to itself!** Not a lambda term... We seem to need recursion...

[Divergence and Recursion in](#page-10-0) [the Lambda Calculus](#page-10-0)

What can we say about the following definition? (self application)

self $f = f f$

What can we say about the following definition? (self application)

self $f = f f$ i.e., self = λ f. f f

Seems a bit suspicious...

What can we say about the following definition? (self application)

self $f = f f$ i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double $f(x) = f(f(x))$

self double

What can we say about the following definition? (self application)

self $f = f f$ i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double $f(x) = f(f(x))$

self double

≡ double double

What can we say about the following definition? (self application)

self $f = f f$ i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double $f(x) = f(f(x))$

self double

- ≡ double double
- $\equiv \lambda x$. double (double x)
- $\equiv \lambda x. \lambda x'$. (double x) ((double x) x')
- $\equiv \lambda x. \lambda x'$. double x (double x x')
- $\equiv \lambda x. \lambda x'. x (x (x (x x')))$

What can we say about the following definition? (self application)

self $f = f f$ i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double $f(x) = f(f(x))$

self double

- ≡ double double
- $\equiv \lambda x$. double (double x)
- $\equiv \lambda x. \lambda x'$. (double x) ((double x) x')
- $\equiv \lambda x. \lambda x'$. double x (double x x')
- $\equiv \lambda x. \lambda x'. x (x (x (x x')))$
- ≡ ''quadruple''

What can we say about the following definition? (self application)

self $f = f f$ i.e., self = λ f. f f

Seems a bit suspicious...

Quizz: what's this? (recall: double $f(x) = f(f(x))$

self double ≡ double double $\equiv \lambda x$. double (double x) $\equiv \lambda x. \lambda x'$. (double x) ((double x) x') $\equiv \lambda x. \lambda x'$. double x (double x x') $\equiv \lambda x. \lambda x'. x (x (x (x x')))$ ≡ ''quadruple''

Now how about this?

self self

Self-applying self application... what could go wrong?

self self

Self-applying self application... what could go wrong?

```
self self
  = (\lambda f. f f) self
```
Self-applying self application... what could go wrong?

```
self self
  = (\lambda f. f f) self
  ≡ self self
  ≡ ...
```
self self is a term that reduces to itself in one step.

Within self-application great power lies.

Self-applying self application... what could go wrong?

```
self self
  = (\lambda f. f f) self
  ≡ self self
  ≡ ...
```
self self is a term that reduces to itself in one step.

Within self-application great power lies. — Yoda, probably

Can we harness this power?

Recall our problem:

plus' n m = n (λ pn. succ (ν lus' pn m)) m

Let's rewrite plus' as a proper lambda term, using indirect recursion by self application...

Recall our problem:

plus' n m = n $(\lambda$ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus' myself n m = n $(\lambda$ pn. succ (myself myself pn m)) m

Recall our problem:

plus' n m = n $(\lambda$ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus' myself n m = n $(\lambda$ pn. succ (myself myself pn m)) m plus' = $mkPlus'$ mkPlus' \equiv self mkPlus'

Recall our problem:

plus' n m = n $(\lambda$ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

```
mkPlus' myself n m =
  n (\lambdapn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' \equiv self mkPlus'
plus' n m = mkPlus' mkPlus' n m
  \equiv n (\lambdapn. succ (mkPlus' mkPlus' pn m)) m
```
Recall our problem:

plus' n m = n $(\lambda$ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

```
mkPlus' myself n m =
  n (\lambdapn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' \equiv self mkPlus'
plus' n m = mkPlus' mkPlus' n m
  \equiv n (\lambdapn. succ (mkPlus' mkPlus' pn m)) m
  \equiv n (\lambdapn. succ (plus' pn m)) m
```
Mission accomplished!

Recall our problem:

plus' n m = n $(\lambda$ pn. succ (plus' pn m)) m

Let's rewrite plus' as a proper lambda term, using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

```
mkPlus' myself n m =
  n (\lambdapn. succ (myself myself pn m)) m
plus' = mkPlus' mkPlus' \equiv self mkPlus'
plus' n m = mkPlus' mkPlus' n m
  \equiv n (\lambdapn. succ (mkPlus' mkPlus' pn m)) m
  \equiv n (\lambdapn. succ (plus' pn m)) m
```
Mission accomplished! But we can do better (more convenient)...

Divergence, more formally

Recursion and divergence are intertwined, so we need to consider divergent terms.

omega = $(\lambda x. x x) (\lambda x. x x)$

Note that omega evaluates in one step to itself! So evaluation of omega never reaches a normal form: it diverges.

Divergence, more formally

Recursion and divergence are intertwined, so we need to consider divergent terms.

omega = $(\lambda x. x x) (\lambda x. x x)$

Note that omega evaluates in one step to itself! So evaluation of omega never reaches a normal form: it *diverges*.

Being able to write a divergent computation does not seem very useful in itself. However, there are variants of omega that are very useful...

- \triangleright A normal form is a term that cannot take an evaluation step.
- \triangleright A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

 \triangleright A normal form is a term that cannot take an evaluation step.

 \triangleright A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

 \triangleright A normal form is a term that cannot take an evaluation step.

 \triangleright A *stuck* term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

Yes. Example: x

 \triangleright A normal form is a term that cannot take an evaluation step.

 \triangleright A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

Yes. Example: x

BUT no stuck closed terms (a closed term is a term without free variables)

 \triangleright A normal form is a term that cannot take an evaluation step.

 \triangleright A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ -calculus?

Yes. Example: x

BUT no stuck closed terms (a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never "crash"...

Towards recursion: Iterated application

Suppose f is some λ -abstraction, and consider the following variant of omega:

 $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$
Towards recursion: Iterated application

Suppose f is some λ -abstraction, and consider the following variant of omega:

 $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Now the "pattern of divergence" becomes more interesting:

 ${\tt Y}_f$ is still not very useful, since (like omega), all it does is diverge. Is there any way we could "slow it down"?

Delaying divergence

poisonpill $= \lambda y$. omega

Note that $poissonpill$ is a value $-$ it it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

> (λp. fst (pair p fls) tru) poisonpill −→ fst (pair poisonpill fls) tru −→[∗] poisonpill tru −→ omega −→ · · ·

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit more tightly intertwined:

> $omega =$ λ y. (λ x. (λ y. x x y)) (λ x. (λ y. x x y)) y

Note that omegay is a normal form. However, if we apply it to any argument v , it diverges:

```
omegav v
```
= (λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v −→ (λx. (λy. x x y)) (λx. (λy. x x y)) v −→ (λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v =

Another delayed variant

Suppose f is a function. Define

 $z_f = \lambda y.$ ($\lambda x.$ f ($\lambda y.$ x x y)) ($\lambda x.$ f ($\lambda y.$ x x y)) y

This term combines the "added f'' from Y_f with the "delayed" divergence" of omegav.

If we now apply z_f to an argument v, something interesting happens:

$$
z_f \, v
$$
\n
$$
=
$$
\n
$$
(\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v
$$
\n
$$
\rightarrow
$$
\n
$$
(\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) v
$$
\n
$$
=
$$
\n
$$
f (\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v
$$
\n
$$
=
$$
\n
$$
f z_f v
$$

Since z_f and v are both values, the next computation step will be the reduction of $f\ z_f$ — that is, before we "diverge," $f\$ gets to do some computation.

Now we are getting somewhere.

Recursion

Let

```
f = \lambda fct.\lambdan.
              if n == 0 then 1
              else n * (fct (pred n))
```
f looks just the ordinary factorial function, except that, in place of a recursive call in the last time, it calls the function fct, which is passed as a parameter.

N.b.: for brevity, this example uses "real" numbers and booleans, infix syntax, etc. It can easily be translated into the pure lambda calculus (using Church numerals, etc.).

We can use z to "tie the knot" in the definition of f and obtain a real recursive factorial function:

$$
z_f 3
$$
\n
$$
\rightarrow
$$
\nf 2f 3\n
$$
z_f 3
$$
\n
$$
=
$$
\n
$$
(\lambda fct. \lambda n. \ldots) z_f 3
$$
\n
$$
\rightarrow \rightarrow
$$
\n
$$
3 \rightarrow (z_f \text{ (pred 3)})
$$
\n
$$
\rightarrow
$$
\n
$$
3 * (z_f 2)
$$
\n
$$
\rightarrow
$$
\n
$$
3 * (z_f 2)
$$
\n
$$
\rightarrow
$$
\n
$$
3 * (z_f 2)
$$

· · ·

A Generic z

If we define

 $z = \lambda f.$ z_f

i.e.,

 $z =$ λ f. λ y. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y)) y

then we can obtain the behavior of $\mathsf z_f$ for any $\mathtt f$ we like, simply by applying z to f .

z f \longrightarrow z_f

For example:

```
fact = z (\lambdafct.
                      \lambdan.
                        if n == 0 then 1
                        else n * (fct (pred n)) )
```
Technical Note

The term z here is essentially the same as the fix discussed the book.

 $z =$ λ f. λ y. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y)) y $fix =$ λ f. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y))

z is hopefully slightly easier to understand, since it has the property that $z \,$ f $v \rightarrow^{*}$ f $(z \,$ f) v , which f ix does not (quite) share.

[Programming in the Lambda](#page-47-0) [Calculus, Continued \(Again\)](#page-47-0)

Recall: Church Booleans

 $\text{tru} = \lambda \text{t}$. λf . t fls = λ t. λ f. f

We showed last time that, if $\mathbf b$ is a boolean (i.e., it behaves like either tru or fls), then, for any values v and w, either

b v $w \longrightarrow^* v$

(if b behaves like tru) or

$$
b\ v\ w\longrightarrow^* w
$$

(if b behaves like fls).

Booleans with "bad" arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c_0 omega ?

Booleans with "bad" arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c_0 omega ?

Not what we want!

A better way

Wrap the branches in an abstraction, and use a dummy "unit value," to force evaluation of thunks:

unit $= \lambda x. x$

Use a "conditional function":

test = λ b. λ t. λ f. b t f unit

If tru' is or behaves like tru , fls' is or behaves like fls , and s and t are arbitrary terms then

test tru' (λ dummy. s) (λ dummy. t) \longrightarrow^* s test fls['] (λ dummy. s) (λ dummy. t) \longrightarrow^* t

Recall: The z Operator

In the previous part, we defined an operator z that calculates the "fixed point" of a function it is applied to:

 $z =$ λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

That is, if $z_f = z$ f then z_f v \longrightarrow^* f z_f v.

Recall: Factorial

As an example, we defined the factorial function as follows:

```
fact =z (\lambda)fct.
        \lambdan.
          if n == 0 then 1
          else n * (fct (pred n)))
```
For simplicity, we used primitive values from the calculus of numbers and booleans presented in week 2, and even used shortcuts like 1 and *.

As mentioned, this can be translated "straightforwardly" into the pure lambda calculus. Let's do that.

Lambda calculus version of Factorial (not!)

Here is the naive translation:

```
badfact =z (\lambdafct.
         \lambdan.
            iszro n
            C<sub>1</sub>(times n (fct (prd n))))
```
Why is this not what we want?

Lambda calculus version of Factorial (not!)

Here is the naive translation:

```
badfact =z (\lambdafct.
         \lambdan.
            iszro n
            C<sub>1</sub>(times n (fct (prd n))))
```
Why is this not what we want?

(Hint: What happens when we evaluate badfact c_0 ?)

Lambda calculus version of Factorial

A better version:

```
fact =z (\lambdafct.
         \lambdan.
           test (iszro n)
            (\lambdadummy. c<sub>1</sub>)
            (λdummy. (times n (fct (prd n)))))
```
fact $c_3 \longrightarrow^*$

```
fact c_3 \longrightarrow^* (\lambdas. \lambdaz.
                          s ((\lambda s, \lambda z).
                             s ((\lambda s, \lambda z).
                                 s ((\lambda s, \lambda z).
                                    s ((\lambda s, \lambda z,s ((\lambda s, \lambda z,s ((\lambda s, \lambda z, z)s z))
                                          s \, z)s z))
                                      s( z)s( z)s( z)
```
Ugh!

If we enrich the pure lambda calculus with "regular numbers," we can display church numerals by converting them to regular numbers:

realnat = λ n. n (λ m. succ m) 0 Now: realnat (times c_2 c_2)

−→[∗] succ (succ (succ (succ zero))).

Alternatively, we can convert a few specific numbers:

 $whack =$ λ n. (equal n c₀) c₀ ((equal n c_1) c_1 $((equal n c₂) c₂)$ $((equal n c₃) c₃)$ ((equal n c_4) c_4 ((equal n c_5) c_5 ((equal n c_6) c_6 n))))))

Now:

$$
\begin{array}{ccc}\n\text{whack (fact } c_3) \\
\longrightarrow^* \\
\lambda s. \lambda z. s (s (s (s (s (s 2))))\n\end{array}
$$

[Equivalence of Lambda Terms](#page-61-0)

Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be used to represent natural numbers.

 $c_0 = \lambda s$. λz . z $c_1 = \lambda s$. λz . s z $c_2 = \lambda s$. λz . s (s z) $c_3 = \lambda s$. λz . s (s (s z))

Other lambda-terms represent common operations on numbers:

 $\sec = \lambda n$. λs . λz . s (n s z)

Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be used to represent natural numbers.

 $c_0 = \lambda s$. λz . z $c_1 = \lambda s$. λz . s z $c_2 = \lambda s$. λz . s (s z) $c_3 = \lambda s$. λz . s (s (s z))

Other lambda-terms represent common operations on numbers:

 $\sec = \lambda n$. λs . λz . s (n s z)

In what sense can we say this representation is "correct"? In particular, on what basis can we argue that scc on church numerals corresponds to ordinary successor on numbers?

The naive approach

One possibility:

For each *n*, the term scc c_n evaluates to c_{n+1} .

The naive approach... doesn't work

One possibility:

For each *n*, the term scc c_n evaluates to c_{n+1} . Unfortunately, this is false. $E.g.:$

```
scc c<sub>2</sub> = (\lambdan. \lambdas. \lambdaz. s (n s z)) (\lambdas. \lambdaz. s (s z))
            \rightarrow \lambdas. \lambdaz. s ((\lambdas. \lambdaz. s (s z)) s z)
             \neq \lambdas. \lambdaz. s (s (s z))
             = c_3
```
A better approach

Recall the intuition behind the church numeral representation:

- ightharpoonup a number n is represented as a term that "does something n times to something else"
- \triangleright scc takes a term that "does something *n* times to something else" and returns a term that "does something $n + 1$ times to something else"

I.e., what we really care about is that \sec ϵ_2 behaves the same as $c₃$ when applied to two arguments.

$$
\begin{array}{ll}\n\sec c_2 \, v \, w = (\lambda n. \, \lambda s. \, \lambda z. \, s \, (n \, s \, z)) \, (\lambda s. \, \lambda z. \, s \, (s \, z)) \, v \, w \\
\longrightarrow (\lambda s. \, \lambda z. \, s \, ((\lambda s. \, \lambda z. \, s \, (s \, z)) \, s \, z)) \, v \, w \\
\longrightarrow (\lambda z. \, v \, ((\lambda s. \, \lambda z. \, s \, (s \, z)) \, v \, w) \\
\longrightarrow v \, ((\lambda z. \, v \, (v \, z)) \, w) \\
\longrightarrow v \, (v \, (v \, w))\n\end{array}
$$

A general question

We have argued that, although \sec c₂ and c₃ do not evaluate to the same thing, they are nevertheless "behaviorally equivalent."

What, precisely, does behavioral equivalence mean?

Intuition

Roughly,

"terms s and t are behaviorally equivalent"

should mean:

"there is no 'test' that distinguishes s and $t - i.e.,$ no way to put them in the same context and observe different results."

Intuition

Roughly,

"terms s and t are behaviorally equivalent" should mean:

"there is no 'test' that distinguishes s and $t - i.e.$, no way to put them in the same context and observe different results."

To make this precise, we need to be clear what we mean by a testing context and how we are going to observe the results of a test.

Examples

```
tru = \lambda t. \lambda f. t
tru' = \lambdat. \lambdaf. (\lambdax.x) t
fls = \lambda t. \lambda f. f
omega = (\lambda x. x x) (\lambda x. x x)poisonpill = \lambdax. omega
placebo = \lambdax. tru
Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))
```
Which of these are behaviorally equivalent?
Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Aside:

 \blacktriangleright Is observational equivalence a decidable property?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we "observe" a term's behavior simply by running it and seeing if it halts.

Aside:

- \blacktriangleright Is observational equivalence a decidable property?
- Does this mean the definition is ill-formed?

Examples

 \triangleright omega and tru are not observationally equivalent

Examples

 \triangleright omega and tru are not observationally equivalent

 \triangleright tru and fls are observationally equivalent

Behavioral Equivalence

This primitive notion of observation now gives us a way of "testing" terms for behavioral equivalence

Terms s and t are said to be *behaviorally equivalent* if, for every finite sequence of values v_1, v_2, \ldots, v_n , the applications

 $S \ V1 \ V2 \ \ldots \ Vn$

and

t v_1 v₂ ... v_n

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

tru = λt . λf . t tru' = λ t. λ f. (λ x.x) t

So are these:

omega = $(\lambda x. x x) (\lambda x. x x)$ $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

These are not behaviorally equivalent (to each other, or to any of the terms above):

```
fls = \lambdat. \lambdaf. f
poisonpill = \lambdax. omega
placebo = \lambdax. tru
```
Given terms s and t , how do we *prove* that they are (or are not) behaviorally equivalent?

To prove that s and t are not behaviorally equivalent, it suffices to find a sequence of values $v_1 \ldots v_n$ such that one of

 $S \ V1 \ V2 \ \ldots \ Vn$

and

t v_1 v_2 ... v_n

diverges, while the other reaches a normal form.

Example:

 \triangleright the single argument unit demonstrates that fls is not behaviorally equivalent to poisonpill:

> fls unit $=$ (λt . λf . f) unit \longrightarrow^* λ f. f

poisonpill unit diverges

Example:

If the argument sequence $(\lambda x. x)$, poisonpill, $(\lambda x. x)$ demonstrate that tru is not behaviorally equivalent to fls:

$$
tru (λx. x) poisonpill (λx. x)
$$

\n
$$
→^* (λx. x) (λx. x)
$$

\n
$$
→^* λx. x
$$

fls $(\lambda x. x)$ poisonpill $(\lambda x. x)$ → * poisonpill (λ x. x), which diverges

To prove that s and t are behaviorally equivalent, we have to work harder: we must show that, for every sequence of values $v_1 \ldots v_n$, either both

 $S \ V1 \ V2 \ \ldots \ Vn$

and

t v_1 v₂ ... v_n

diverge, or else both reach a normal form.

How can we do this?

In general, such proofs require some additional machinery that we will not have time to get into in this course (so-called *applicative* bisimulation). But, in some cases, we can find simple proofs. Theorem: These terms are behaviorally equivalent:

tru = λt . λf . t tru' = λ t. λ f. (λ x.x) t

Proof: Consider an arbitrary sequence of values $v_1 \ldots v_n$.

- \triangleright For the case where the sequence has up to one element (i.e., $n \le 1$), note that both tru / tru v_1 and tru' / tru' v_1 reach normal forms after zero / one reduction steps.
- \triangleright For the case where the sequence has more than one element (i.e., $n > 1$), note that both tru v_1 v_2 v_3 ... v_n and tru' v₁ v₂ v₃ ... v_n reduce to v₁ v₃ ... v_n. So either both normalize or both diverge.

Theorem: These terms are behaviorally equivalent:

omega = $(\lambda x. x x) (\lambda x. x x)$ $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Proof: Both

omega $v_1 \ldots v_n$

and

 Y_f V_1 ... V_n

diverge, for every sequence of arguments $v_1 \ldots v_n$.