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Church Encoding

Recall Church encoding of natural numbers:

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

...

succ n = λs. λz. s (n s z)

Is that the only possible one? Can you think of another one?

Another encoding of data types, called Scott encoding:

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Notice the difference:

c2’ = succ’ (succ’ c0’)

≡ λs. λz. s (λs. λz. s (λs. λz. z))

Church encodes folding, while Scott encodes pattern matching.
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Scott Encoding of Numerals

c0’ = λs. λz. z

succ’ n = λs. λz. s n

Predecessor:

?

pred’ n = n id c0’

(where id = λx. x)

Addition:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Any problems with this?

This definition refers to itself! Not a lambda term...
We seem to need recursion...
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Divergence and Recursion in
the Lambda Calculus
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Self Application

What can we say about the following definition? (self application)

self f = f f

i.e., self = λf. f f

Seems a bit suspicious...

Quizz: what’s this? (recall: double f x = f (f x))

self double

≡ double double

≡ λx. double (double x)

≡ λx. λx’. (double x) ((double x) x’)

≡ λx. λx’. double x (double x x’)

≡ λx. λx’. x (x (x (x x’)))

≡ ‘‘quadruple’’

Now how about this?

self self
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Divergence in the Lambda Calculus

Self-applying self application... what could go wrong?

self self

= (λf. f f) self

≡ self self

≡ ...

self self is a term that reduces to itself in one step.

Within self-application great power lies. — Yoda, probably

Can we harness this power?
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Hacking self application

Recall our problem:

plus’ n m = n (λpn. succ (plus’ pn m)) m

Let’s rewrite plus’ as a proper lambda term,
using indirect recursion by self application...

Idea: take an argument that will hold the current definition itself!

mkPlus’ myself n m =

n (λpn. succ (myself myself pn m)) m

plus’ = mkPlus’ mkPlus’ ≡ self mkPlus’

plus’ n m = mkPlus’ mkPlus’ n m

≡ n (λpn. succ (mkPlus’ mkPlus’ pn m)) m

≡ n (λpn. succ (plus’ pn m)) m

Mission accomplished! But we can do better (more convenient)...
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Divergence, more formally

Recursion and divergence are intertwined, so we need to consider
divergent terms.

omega = (λx. x x) (λx. x x)

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very
useful in itself. However, there are variants of omega that are very
useful...
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Recall: Normal forms

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Does every term evaluate to a normal form?

No, omega is not in normal form.

But are there any stuck terms in the pure λ-calculus?

Yes. Example: x

BUT no stuck closed terms
(a closed term is a term without free variables)

Note: closedness is preserved by evaluation!

Closed terms in the pure λ calculus never “crash”...
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Towards recursion: Iterated application

Suppose f is some λ-abstraction, and consider the following
variant of omega:

Yf = (λx. f (x x)) (λx. f (x x))

Now the “pattern of divergence” becomes more interesting:

Yf
=

(λx. f (x x)) (λx. f (x x))

−→
f ((λx. f (x x)) (λx. f (x x)))

−→
f (f ((λx. f (x x)) (λx. f (x x))))

−→
f (f (f ((λx. f (x x)) (λx. f (x x)))))

−→
· · ·
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Yf is still not very useful, since (like omega), all it does is diverge.

Is there any way we could “slow it down”?

12



Delaying divergence

poisonpill = λy. omega

Note that poisonpill is a value — it it will only diverge when we
actually apply it to an argument. This means that we can safely
pass it as an argument to other functions, return it as a result from
functions, etc.

(λp. fst (pair p fls) tru) poisonpill

−→
fst (pair poisonpill fls) tru

−→∗

poisonpill tru

−→
omega

−→
· · ·
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A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a
bit more tightly intertwined:

omegav =
λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y

Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

omegav v

=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

−→
(λx. (λy. x x y)) (λx. (λy. x x y)) v

−→
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

=
omegav v
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Another delayed variant

Suppose f is a function. Define

zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

This term combines the “added f” from Yf with the “delayed
divergence” of omegav.
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If we now apply zf to an argument v, something interesting
happens:

zf v

=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

−→
(λx. f (λy. x x y)) (λx. f (λy. x x y)) v

−→
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f zf v

Since zf and v are both values, the next computation step will be
the reduction of f zf — that is, before we “diverge,” f gets to do
some computation.
Now we are getting somewhere.
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Recursion

Let

f = λfct.
λn.
if n == 0 then 1

else n * (fct (pred n))

f looks just the ordinary factorial function, except that, in place of
a recursive call in the last time, it calls the function fct, which is
passed as a parameter.

N.b.: for brevity, this example uses “real” numbers and booleans,
infix syntax, etc. It can easily be translated into the pure lambda
calculus (using Church numerals, etc.).
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We can use z to “tie the knot” in the definition of f and obtain a
real recursive factorial function:

zf 3

−→∗

f zf 3

=
(λfct. λn. ...) zf 3

−→ −→
if 3=0 then 1 else 3 * (zf (pred 3))

−→∗

3 * (zf (pred 3)))

−→
3 * (zf 2)

−→∗

3 * (f zf 2)

· · ·
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A Generic z

If we define

z = λf. zf

i.e.,

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of zf for any f we like, simply by
applying z to f.

z f −→ zf

19



For example:

fact = z ( λfct.
λn.
if n == 0 then 1

else n * (fct (pred n)) )

20



Technical Note

The term z here is essentially the same as the fix discussed the
book.

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

fix =
λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

z is hopefully slightly easier to understand, since it has the property
that z f v −→∗ f (z f) v, which fix does not (quite) share.

21



Programming in the Lambda
Calculus, Continued (Again)

22



Recall: Church Booleans

tru = λt. λf. t

fls = λt. λf. f

We showed last time that, if b is a boolean (i.e., it behaves like
either tru or fls), then, for any values v and w, either

b v w −→∗
v

(if b behaves like tru) or

b v w −→∗
w

(if b behaves like fls).

23



Booleans with “bad” arguments

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!
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A better way

Wrap the branches in an abstraction, and use a dummy “unit
value,” to force evaluation of thunks:

unit = λx. x

Use a “conditional function”:

test = λb. λt. λf. b t f unit

If tru′ is or behaves like tru, fls′ is or behaves like fls, and s

and t are arbitrary terms then

test tru′ (λdummy. s) (λdummy. t) −→∗ s

test fls′ (λdummy. s) (λdummy. t) −→∗ t

25



Recall: The z Operator

In the previous part, we defined an operator z that calculates the
“fixed point” of a function it is applied to:

z =
λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

That is, if zf = z f then zf v −→∗ f zf v.

26



Recall: Factorial

As an example, we defined the factorial function as follows:

fact =
z (λfct.

λn.
if n == 0 then 1

else n * (fct (pred n)))

For simplicity, we used primitive values from the calculus of
numbers and booleans presented in week 2, and even used
shortcuts like 1 and *.

As mentioned, this can be translated “straightforwardly” into the
pure lambda calculus. Let’s do that.

27



Lambda calculus version of Factorial (not!)

Here is the naive translation:

badfact =
z (λfct.

λn.
iszro n

c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)
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Lambda calculus version of Factorial

A better version:

fact =
z (λfct.

λn.
test (iszro n)

(λdummy. c1)

(λdummy. (times n (fct (prd n)))))
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Displaying numbers

fact c3 −→∗

(λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz.
s ((λs. λz. z)

s z))

s z))

s z))

s z))

s z))

s z))

Ugh!
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Displaying numbers

If we enrich the pure lambda calculus with “regular numbers,” we
can display church numerals by converting them to regular
numbers:

realnat = λn. n (λm. succ m) 0

Now:

realnat (times c2 c2)

−→∗

succ (succ (succ (succ zero))).
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Displaying numbers

Alternatively, we can convert a few specific numbers:

whack =
λn. (equal n c0) c0

((equal n c1) c1
((equal n c2) c2
((equal n c3) c3
((equal n c4) c4
((equal n c5) c5
((equal n c6) c6
n))))))

Now:

whack (fact c3)

−→∗

λs. λz. s (s (s (s (s (s z)))))
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Equivalence of Lambda Terms
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Recall: Church Numerals

We have seen how certain terms in the lambda calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

34
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In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?
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The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

6= λs. λz. s (s (s z))

= c3
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A better approach

Recall the intuition behind the church numeral representation:

I a number n is represented as a term that “does something n
times to something else”

I scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.
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scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w

−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w

−→(λz. v ((λs. λz. s (s z)) v z)) w

−→v ((λs. λz. s (s z)) v w)

−→v ((λz. v (v z)) w)

−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w

−→(λz. v (v (v z))) w

−→v (v (v w)))
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A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?
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Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.
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Examples

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

fls = λt. λf. f

omega = (λx. x x) (λx. x x)

poisonpill = λx. omega

placebo = λx. tru

Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?
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Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?
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Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent
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Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.
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Examples

These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f

poisonpill = λx. omega

placebo = λx. tru
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Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?
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Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.
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Proving behavioral inequivalence

Example:

I the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit

= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit

diverges
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Proving behavioral inequivalence

Example:

I the argument sequence (λx. x), poisonpill, (λx. x)

demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)

−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)

−→∗ poisonpill (λx. x), which diverges
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Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?
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Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

I For the case where the sequence has up to one element (i.e.,
n ≤ 1), note that both tru / tru v1 and tru′ / tru′ v1
reach normal forms after zero / one reduction steps.

I For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce to v1 v3 ... vn. So either
both normalize or both diverge.
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Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.
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