Inductive Proofs about the
Lambda Calculus

Two induction principles
Like before, we have two ways to prove that properties are true of
the untyped lambda calculus.
» Structural induction on terms
» Induction on a derivation of t — t/.

Let's look at an example of each.

Structural induction on terms
To show that a property P holds for all lambda-terms t, it suffices
to show that
> P holds when t is a variable;

» P holds when t is a lambda-abstraction A\x. ti, assuming
that P holds for the immediate subterm t;; and

> P holds when t is an application t; to, assuming that P
holds for the immediate subterms t; and t».

Structural induction on terms
To show that a property P holds for all lambda-terms t, it suffices
to show that
> P holds when t is a variable;

» P holds when t is a lambda-abstraction A\x. ti, assuming
that P holds for the immediate subterm t;; and

> P holds when t is an application t; to, assuming that P
holds for the immediate subterms t; and t».

N.b.: The variant of this principle where “immediate subterm” is

replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)

An example of structural induction on terms
Define the set of free variables in a lambda-term as follows:

FV(x) = {x}
FV(Ox.t1) = FV(t1) \ {x}
FV(tl t2) = F\/(tl) U F\/(tg)

Define the size of a lambda-term as follows:

size(x) =1
size(Ax.t1) = size(t1) + 1
size(t1 t2) = size(t1) + size(tz) + 1

Theorem: |FV/(t)| < size(t).

An example of structural induction on terms
Theorem: |FV/(t)| < size(t).

Proof: By induction on the structure of t.
» If t is a variable, then |FV/(t)| = 1 = size(t).
» If £ is an abstraction A\x. t1, then

|FV(¢)]
= |FV(t1) \ {x}| by defn
< |FV(t1)] by arithmetic
< size(t1) by induction hypothesis
< size(t1) +1 by arithmetic
= size(t) by defn.

An example of structural induction on terms
Theorem: |FV/(t)| < size(t).

Proof: By induction on the structure of t.

> If t is an application t1 to, then

FV ()
= |FV(t1) U FV(t2)| by defn
< |FV(t1)| +|FV(t2)] by arithmetic
< size(t1) + size(ty) by IH and arithmetic
< size(t1) + size(t2) +1 by arithmetic
= size(t) by defn.

Induction on derivations

Recall that the reduction relation is defined as the smallest binary
relation on terms satisfying the following rules:

(Ax.t1) vo — [X — V2]t1 (E—APPABS)

t] — t)

; (E-App1)
t1 to —t7 t2

ty — t)

— . (E-APP2)
1 to— vy t)

Induction on derivations

Induction principle for the small-step evaluation relation.
To show that a property P holds for all derivations of t — t/, it
suffices to show that

» P holds for all derivations that use the rule E-AppAbs;

» P holds for all derivations that end with a use of E-Appl
assuming that P holds for all subderivations; and

» P holds for all derivations that end with a use of E-App2
assuming that P holds for all subderivations.

An example of induction on derivations

Theorem: if t — t’ then FV/(t) O FV/(t/).

We must prove, for all derivations of t — t/, that
FV(t) 2 FV(t)).

An example of induction on derivations
Theorem: if t — t’ then FV/(t) O FV/(t/).

Proof: by induction on the derivation of t — t’. There are three
cases:

10

An example of induction on derivations

Theorem: if t — t’ then FV/(t) O FV/(t/).

Proof: by induction on the derivation of t — t’. There are three
cases:

» If the derivation of t — t’ is just a use of E-AppAbs, then t
is (\x.t1)v and t'is [x — v|t1. Reason as follows:

FV(t) = FV(Ox.t1)v)
= FV(t1) \ {x} UFV(v)
D FV([x = v]t1)
(t

— FV(¢/)

10

An example of induction on derivations
Theorem: if t — t’ then FV/(t) O FV/(t/).

Proof: by induction on the derivation of t — t/. There are three
cases:

> If the derivation ends with a use of E-Appl, then t has the
form t; to and t’ has the form t) t, and we have a
subderivation of t; — t}

By the induction hypothesis, FV/(t1) 2 FV/(t}). Now
calculate:

> E-App2 is treated similarly.

11

Theory of Types
and Programming Languages

Fall 2022

Week 5

Plan
PREVIOUSLY: untyped lambda calculus

TODAY: types!!
1. Two example languages:
1.1 typing arithmetic expressions
1.2 simply typed lambda calculus (STLC)
2. For each:

2.1 Define types
2.2 Specify typing rules
2.3 Prove soundness: progress and preservation

NEXT: lambda calculus extensions
NEXT: polymorphic typing

13

Types

Outline

1.

begin with a set of terms, a set of values, and an evaluation
relation

define a set of types classifying values according to their
“shapes”

define a typing relation t : T that classifies terms according
to the shape of the values that result from evaluating them

. check that the typing relation is sound in the sense that,

41 ift : Tandt — v, thenv : T
4.2 if t : T, then evaluation of t will not get stuck

15

Recall: Arithmetic Expressions — Syntax

nv

true

false

if t then t else t
0

succ t

pred t

iszero t

true
false
nv

0

succ nv

terms
constant true
constant false
conditional
constant zero
successor
predecessor
zero test
values
true value
false value
numeric value

numeric values
zero value
successor value

16

Recall: Arithmetic Expressions — Evaluation Rules

if true then t, else t3 — t» (E-IFTRUE)

if false then ty else t3 — t3 (E-IFFALSE)

pred 0 — 0 (E-PREDZERO)
pred (succ nvi;) — nvy (E-PrREDSUCC)
iszero 0 — true (E-ISZEROZERO)

iszero (succ nvy) —» false (E-ISZEROSUCC)

17

Recall: Arithmetic Expressions — Evaluation Rules

t1

i
— T

(E-Ir)

if t; then t, else t3

t1

— if t| then t; else t3

i
— t

succ tip

t1

— succ t

!
— T

pred t;

t1

— pred t

!
— T

iszero t;

— iszero t}

(E-Succ)

(E-PRrED)

(E-ISZERO)

18

Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers

19

Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool tr ! T t3 : T
1 2 3 (T-Tr)
if t; then to else t3: T
0 : Nat (T-ZERO)
t; : Nat
B (T-Succ)
succ tj; : Nat
t1 : Nat
B (T-PRED)
pred t; : Nat
t1 : Nat
! (T-ISZERO)

iszero tj : Bool

20

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-ZERO T-ZERO
0 : Nat 0 : Nat
T-1ISZERO T-ZERO —— T-PRED
iszero O : Bool 0 : Nat pred O : Nat
T-1r

if iszero O then O else pred O : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.

21

Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool to ! T t3 . T

(T-Ir)
if t; then to else t3: T

Using this rule, we cannot assign a type to
if true then 0 else false

even though this term will certainly evaluate to a number.

22

Type Safety
The safety (or soundness) of this type system can be expressed by
two properties:
1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t — t' for some
t.
2. Preservation: Types are preserved by one-step evaluation
Ift : Tandt— t', thent : T.

23

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
4. 1f 0 : R, then R = Nat.
5. If succ t; : R, then R = Nat and t; : Nat.
6. If pred t; : R, then R = Nat and t; : Nat.
7. If iszero tj : R, then R = Bool and t; : Nat.

24

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
7. If iszero t1 : R, then R = Bool and t; : Nat.
Proof:

o o &

24

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
4. 1f 0 : R, then R = Nat.
5. If succ t; : R, then R = Nat and t; : Nat.
6. If pred t; : R, then R = Nat and t; : Nat.
7. If iszero tj : R, then R = Bool and t; : Nat.
Proof:

This leads directly to a recursive algorithm for calculating the type
of a term...

24

Typechecking Algorithm

typeof (t)

if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else '"not typable"
else if t = O then Nat
else if t = succ tl1 then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else if t = pred tl1 then
let T1 = typeof(tl) in
if T1 = Nat then Nat else "not typable"
else if t = iszero tl then
let T1 = typeof(tl) in
if T1 = Nat then Bool else "not typable"

25

Properties of the Typing
Relation

Recall: Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool tr ! T t3 : T
1 2 3 (T-Tr)
if t; then to else t3: T
0 : Nat (T-ZERO)
t; : Nat
B (T-Succ)
succ tj; : Nat
t1 : Nat
B (T-PRED)
pred t; : Nat
t1 : Nat
! (T-ISZERO)

iszero tj : Bool

27

Recall: Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
4. 1f 0 : R, then R = Nat.
5. If succ t; : R, then R = Nat and t; : Nat.
6. If pred t; : R, then R = Nat and t; : Nat.
7. If iszero tj : R, then R = Bool and t; : Nat.

28

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof-:

29

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v o= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1,

29

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v o= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate.

29

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v o= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool.

29

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v o= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.

29

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

30

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof-

30

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

30

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

30

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-1IF: t = if t; then t, else t3
t1 : Bool to ! T t3 ¢ T

30

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-IF: t =if t; then t, else t3

t1 : Bool to ! T t3 ¢ T
By the induction hypothesis, either t; is a value or else there is
some t) such that t; — t}. If t; is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IFTRUE or E-IFFALSE applies to t. On the
other hand, if t; — t/, then, by E-IF,
t — if t] then ty else ts.

30

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-Succ, T-PRED, and T-ISZERO
are similar.

(Recommended: Try to reconstruct them.)

31

Preservation

Theorem: If t : Tand t — t/, then t’ :

T.

32

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

32

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-TRUE: t = true T = Bool

Then t is a value.

32

Preservation
Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1IF:
t =1if t; then to else t3 t; : Bool to : T t3: T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

32

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1IF:
t =1if t; then to else t3 t; : Bool to : T t3: T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: t1 = true t/ = t,

Immediate, by the assumption t, : T.

(E-IFFALSE subcase: Similar.)

32

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1IF:
t =1if t; then to else t3 t; : Bool to : T t3: T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: t; — t] t' =if t] then tp else t3
Applying the IH to the subderivation of t; : Bool yields

t} : Bool. Combining this with the assumptions that t> : T and
t3 : T, we can apply rule T-IF to conclude that

if t] then ty else t3 : T, thatis, t’ : T.

32

Messing With It

Messing with it: Remove a rule

What if we remove E-PREDZERO ?

34

Messing with it: Remove a rule

What if we remove E-PREDZERO ?

Then pred 0 type checks, but it is stuck and is not a value. Thus
the progress theorem fails.

34

Messing with it: If
What if we change the rule for typing if's to the following ?:

t1 : Bool to : Nat t3 : Nat

(T-Ir)
if t; then to else t3 : Nat

35

Messing with it: If
What if we change the rule for typing if's to the following ?:

t1 : Bool to : Nat t3 : Nat

(T-Ir)
if t; then to else t3 : Nat

The system is still sound. Some if's do not type, but those that
do are fine.

35

Messing with it: adding bit

t =

bit(t)

What needs to be done?

terms

boolean to natural

36

Messing with it: adding bit

t =
bit(t)
What needs to be done?

1. new evaluation rules

2. new typing rules

terms

boolean to natural

36

Messing with it: adding bit

t =

bit(t)

What needs to be done?
1. new evaluation rules
2. new typing rules

3. progress and preservation updates

terms

boolean to natural

36

Messing with it: adding bit

t =

bit(t)

What needs to be done?
1. new evaluation rules
2. new typing rules

3. progress and preservation updates

Alternative Approach: Desugaring

bit(t) = if t then 1 else O

terms

boolean to natural

36

Messing with it: adding bit

t = terms

bit(t) boolean to natural

What needs to be done?
1. new evaluation rules
2. new typing rules

3. progress and preservation updates

Alternative Approach: Desugaring
bit(t) = if t then 1 else O

Need to ensure it follows the intended semantics.

36

Messing with it: adding bit

t = terms

bit(t) boolean to natural

What needs to be done?
1. new evaluation rules
2. new typing rules

3. progress and preservation updates

Alternative Approach: Desugaring
bit(t) = if t then 1 else O

Need to ensure it follows the intended semantics.

Other desugaring example: local variables in lambda calculus...

36

The Simply Typed

Lambda-Calculus

The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or _, for short.

Unlike the untyped lambda-calculus, the “pure” form of A\, (with
no primitive values or operations) is not very interesting; to talk
about _,, we always begin with some set of “base types.”

> So, strictly speaking, there are many variants of _,,
depending on the choice of base types.

» For now, we'll work with a variant constructed over the
booleans.

38

Untyped lambda-calculus with booleans

t = terms
X variable
Ax.t abstraction
tt application
true constant true
false constant false
if t then t else t conditional

v o= values
AX.t abstraction value
true true value

false false value

“Simple Types”

T = types
Bool type of booleans
T—>T types of functions

Important: function types are right-associated

T1 — To> — T3 means 71 — (T2 — T3), not (Tl — T2) — T3

40

“Simple Types”

T = types
Bool type of booleans
T—>T types of functions

Important: function types are right-associated

T1 — To> — T3 means 71 — (T2 — T3), not (Tl — T2) — T3

What are some examples?

40

Type Annotations

We now have a choice to make. Do we...

» annotate lambda-abstractions with the expected type of the
argument

Ax:T1. to
(as in most mainstream programming languages), or
> continue to write lambda-abstractions as before
AX. to

and ask the typing rules to “guess’ an appropriate annotation
(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining
the typing rules simpler. Let’'s take this choice for now.

41

Typing Context
E

™

.
&
=

contexts
empty context
non-empty context

42

Typing Context

contexts
empty context
non-empty context

E

™

.
&
=

Definition: write x:T € [to denote “x is bound to T in ["
x:T € Ix:T

x:T e T X#£y
x:T € I,y:S

42

Typing rules

true : Bool

false : Bool

t1 : Bool to i T

t3

: T

if t; then tr else t3

. T

(T-TRUE)
(T-FALSE)

(T-IrF)

43

Typing rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)

t; : Bool tra: T t3: T
1 2 3 (T-Tr)

if t; then to else t3: T

777

(T-ABs)
Ax:T1.to 1 T1—=To

43

Typing rules

true : Bool

false : Bool

t1 : Bool to i T t3 : T
if t; then to else t3: T

[x:T1F ty : To
NEAx:T1.to 1 T1—To

x:Tel
Nk x:T

(T-TRUE)
(T-FALSE)

(T-IrF)

(T-ABs)

(T-VAR)

43

Typing rules

I+ true : Bool (T-TRUE)
I+ false : Bool (T-FALSE)
N t1 : Bool MlE ty: T N t3: T
1 : Boo 2 3 (T-Tr)
F if t; then to, else t3: T
M x:T1F tp: T
S S (T-ABs)
NEAx:T1.to 1 T1—To
x:Tel
T (T-VAR)
[x:T
N t1 @ T11—T Nty : T
1 11—~T12 2 11 (T-App)

M+ t1 to @ Too

43

Typing Derivations

Notation: instead of “c - ¢t : T", we'll often just write “+ ¢t : T"

44

Typing Derivations

Notation: instead of “c =t : T", we'll often just write “t : T"

What derivations justify the following typing statements?
» - (Ax:Bool.x) true : Bool

» f:Bool—Bool
f (if false then true else false) : Bool

» f:Bool—Bool
Ax:Bool. f (if x then false else x) : Bool—Bool

44

Properties of A_,

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.
1. Progress: A closed, well-typed term is not stuck
If = t : T, then either t is a value or else t — t' for
some t'.

2. Preservation: Types are preserved by one-step evaluation
Ifl-¢t:Tandt — t/, thenT - ¢t : T

45

Proving progress

Same steps as before...

46

Proving progress

Same steps as before...
> inversion lemma for typing relation
» canonical forms lemma

> progress theorem

46

Inversion

Lemma:
1. If '+ true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. If T+ 4if t; then t, else t3 : R, then [F t; : Bool and
I+ to,t3 : R.

47

Inversion

Lemma:
1. If '+ true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. If T+ 4if t; then t, else t3 : R, then [F t; : Bool and
I+ to,t3 : R.

4. If '+ x : R, then

47

Inversion

Lemma:
1. If '+ true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. If T+ 4if t; then t, else t3 : R, then [F t; : Bool and
I+ to,t3 : R.

4. f I'+=x : R, then x:R e I.

47

Inversion

Lemma:

1.
2.
3.

If = true : R, then R = Bool.
If [+ false : R, then R = Bool.

If M= 4if t; then t, else t3 : R, then - t; : Bool and
I+ to,t3 : R.

IfF'-x: R, thenx:ReT.

If = Ax:Ty.to : R, then

47

Inversion

Lemma:
1. If '+ true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. If T+ 4if t; then t, else t3 : R, then [F t; : Bool and
MFty,t3 ¢ R.
4. f I'+=x : R, then x:R e I.
5 If = Ax:Ty.ts : R, then R = T1—R> for some Ry with

[x:T1F to: Ro.

47

Inversion

Lemma:
1. If '+ true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. If T+ 4if t; then t, else t3 : R, then [F t; : Bool and
MFty,t3 ¢ R.
4. f I'+=x : R, then x:R e I.
5 If = Ax:Ty.ts : R, then R = T1—R> for some Ry with

[x:T1F to: Ro.
If =ty to : R, then

47

Inversion

Lemma:
1. If '+ true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. If T+ 4if t; then t, else t3 : R, then [F t; : Bool and
MFty,t3 ¢ R.
4. f I'+=x : R, then x:R e I.
5 If = Ax:Ty.ts : R, then R = T1—R> for some Ry with

[x:T1F to: Ro.

If =t1 to : R, then there is some type T1; such that
[ty : Tyg—Rand Ity : Tqq.

47

Canonical Forms

Lemma:

48

Canonical Forms

Lemma:

1. If v is a value of type Bool, then

48

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

48

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1—T», then

48

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1—T», then v has the form \x:T;.to.

48

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t — t'.

Proof: By induction

49

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t — t'.

Proof: By induction on typing derivations.

49

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t — t'.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

49

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t — t'.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t, with
Fty:Ty1—Tip and =ty @ Ty,

49

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t — t'.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t, with

Ft1 : T11—Tio and = tp @ T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise to.

49

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t — t'.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t, with

Ft1 : T11—Tio and = tp @ T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t,. If t1 can take a step, then rule E-APP1 applies to t.
If t1 is a value and t, can take a step, then rule E-APP2 applies.
Finally, if both t; and t, are values, then the canonical forms
lemma tells us that t; has the form A\x:Tq;.t1>, and so rule
E-AppPABS applies to t.

49

