
Theory of Types
and Programming Languages

Fall 2022

Week 6

1



Plan

PREVIOUSLY:

1. type safety as progress and preservation

2. typed arithmetic expressions

3. simply typed lambda calculus (STLC)

3.1 Progress
3.2 Inversion Lemma
3.3 Canonical Forms Lemma

TODAY:

1. STLC, continued

1.1 Preservation for STLC
1.2 Substitution Lemma
1.3 Weakening and Permutation

2. Extensions to STLC

NEXT: state, recursion, polymorphism, etc.

2



Preservation for STLC

3



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction

on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...

Subcase: t1 = λx:T11. t12
t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

4



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Which case is the hard one??

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...

Subcase: t1 = λx:T11. t12
t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

4



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...

Subcase: t1 = λx:T11. t12
t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

4



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...

Subcase: t1 = λx:T11. t12
t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

4



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...

Subcase: t1 = λx:T11. t12
t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

4



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...

Subcase: t1 = λx:T11. t12
t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

4



The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...

5



The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...

5



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.

6



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.

6



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.

6



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the derivation of Γ, x:S ` t : T.
Proceed by cases on the final typing rule used in the derivation.

7



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T.
Proceed by cases on the final typing rule used in the derivation.

7



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T.
Proceed by cases on the final typing rule used in the derivation.

7



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T.
Proceed by cases on the final typing rule used in the derivation.

Case T-App: t = t1 t2
Γ, x:S ` t1 : T2→T1
Γ, x:S ` t2 : T2
T = T1

By the induction hypothesis,
Γ ` [x 7→ s]t1 : T2→T1 and Γ ` [x 7→ s]t2 : T2.

By T-App, Γ ` [x 7→ s]t1 [x 7→ s]t2 : T

i.e., Γ ` [x 7→ s](t1 t2) : T.

7



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T.
Proceed by cases on the final typing rule used in the derivation.

Case T-Var: t = z

with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x

or another variable.

I If z = x, then [x 7→ s]z = s. The required result is then
Γ ` s : S, which is among the assumptions of the lemma.

I Otherwise, [x 7→ s]z = z, and the desired result is immediate.

7



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T.
Proceed by cases on the final typing rule used in the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1
Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s).

I Using permutation on the given subderivation, we obtain
Γ, y:T2, x:S ` t1 : T1.

I Using weakening on the other given derivation (Γ ` s : S), we
obtain Γ, y:T2 ` s : S.

I Now, by the induction hypothesis, Γ, y:T2 ` [x 7→ s]t1 : T1.

I By T-Abs, Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the
definition of substitution), Γ ` [x 7→ s](λy:T2. t1) : T2→T1.

7



Preservation for STLC

Going back to preservation...

8



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...
Subcase: t1 = λx:T11. t12

t2 a value v2
t′ = [x 7→ v2]t12

By inversion, we have Γ, x:T11 ` t12 : T12.

By the substitution lemma, this gives us Γ ` t′ : T12.

9



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...
Subcase: t1 = λx:T11. t12

t2 a value v2
t′ = [x 7→ v2]t12

By inversion, we have Γ, x:T11 ` t12 : T12.

By the substitution lemma, this gives us Γ ` t′ : T12.

9



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

There are three subcases for such evaluation...
Subcase: t1 = λx:T11. t12

t2 a value v2
t′ = [x 7→ v2]t12

By inversion, we have Γ, x:T11 ` t12 : T12.

By the substitution lemma, this gives us Γ ` t′ : T12.

9



Summary: Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Lemmas to prove:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)

10



Review: Type Systems

To define and verify a type system, you must:

1. Define types

2. Specify typing rules

3. Prove soundness: progress and preservation

11



Two Typing Topics

12



Erasure

erase(x) = x

erase(λx:T1. t2) = λx. erase(t2)
erase(t1 t2) = erase(t1) erase(t2)

13



Intro vs. elim forms

An introduction form for a given type gives us a way of
constructing elements of this type.
An elimination form for a type gives us a way of using elements of
this type.

14



Extensions to STLC

15



Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding
them to the syntax of types, extending the syntax of terms with
associated constants (zero) and operators (succ, etc.) and
adding appropriate typing and evaluation rules. We can do this for
as many base types as we like.

For more theoretical discussions (as opposed to programming) we
can often ignore the term-level inhabitants of base types, and just
treat these types as uninterpreted constants.
E.g., suppose B and C are some base types. Then we can ask
(without knowing anything more about B or C) whether there are
any types S and T such that the term

(λf:S. λg:T. f g) (λx:B. x)

is well typed.

16



The Unit type

t ::= ... terms
unit constant unit

v ::= ... values
unit constant unit

T ::= ... types
Unit unit type

New typing rules Γ ` t : T

Γ ` unit : Unit (T-Unit)

17



Sequencing

t ::= ... terms
t1;t2

t1 −→ t′1
t1;t2 −→ t′1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)

18



Sequencing

t ::= ... terms
t1;t2

t1 −→ t′1
t1;t2 −→ t′1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)

18



Derived forms

I Syntatic sugar

I Internal language vs. external (surface) language

19



Sequencing as a derived form

t1;t2
def
= (λx:Unit.t2) t1

where x /∈ FV(t2)

20



Equivalence of the two definitions

[board]

21



Ascription

New syntactic forms

t ::= ... terms
t as T ascription

New evaluation rules t −→ t′

v1 as T −→ v1 (E-Ascribe)

t1 −→ t′1
t1 as T −→ t′1 as T

(E-Ascribe1)

New typing rules Γ ` t : T

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

22



Ascription as a derived form

t as T
def
= (λx:T. x) t

23



Let-bindings

New syntactic forms

t ::= ... terms
let x=t in t let binding

New evaluation rules t −→ t′

let x=v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

t1 −→ t′1
let x=t1 in t2 −→ let x=t′1 in t2

(E-Let)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2
(T-Let)

24



Pairs

t ::= ... terms
{t,t} pair
t.1 first projection
t.2 second projection

v ::= ... values
{v,v} pair value

T ::= ... types
T1× T2 product type

25



Evaluation rules for pairs

{v1,v2}.1 −→ v1 (E-PairBeta1)

{v1,v2}.2 −→ v2 (E-PairBeta2)

t1 −→ t′1
t1.1 −→ t′1.1

(E-Proj1)

t1 −→ t′1
t1.2 −→ t′1.2

(E-Proj2)

t1 −→ t′1
{t1,t2} −→ {t′1,t2}

(E-Pair1)

t2 −→ t′2
{v1,t2} −→ {v1,t

′
2}

(E-Pair2)

26



Typing rules for pairs

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1× T2
(T-Pair)

Γ ` t1 : T11× T12

Γ ` t1.1 : T11
(T-Proj1)

Γ ` t1 : T11× T12

Γ ` t1.2 : T12
(T-Proj2)

27



Tuples

t ::= ... terms
{ti

i∈1..n} tuple
t.i projection

v ::= ... values
{vi

i∈1..n} tuple value

T ::= ... types
{Ti

i∈1..n} tuple type

28



Evaluation rules for tuples

{vi
i∈1..n}.j −→ vj (E-ProjTuple)

t1 −→ t′1
t1.i −→ t′1.i

(E-Proj)

tj −→ t′j

{vi
i∈1..j−1,tj,tk

k∈j+1..n}

−→ {vi
i∈1..j−1,t′j,tk

k∈j+1..n}

(E-Tuple)

29



Typing rules for tuples

for each i Γ ` ti : Ti

Γ ` {ti i∈1..n} : {Ti
i∈1..n}

(T-Tuple)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj
(T-Proj)

30


