Theory of Types and Programming Languages Fall 2022

Week 8

Plan

PREVIOUSLY: unit, sequencing, let, pairs, sums, recursion, state

TODAY:

- 1. mutable state (continued)
- 2. Curry-Howard isomorphism

NEXT: polymorphic (not so simple) typing NEXT: dependent type systems

References and Mutable State

[See slide deck from last week.]

The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

• "law of the excluded middle" — $P \lor \neg P$ — not recognized.

A proof of $P \land Q$ is a *pair* of evidence for P and evidence for Q.

A proof of $P \Rightarrow Q$ is a *procedure* for transforming evidence for P into evidence for Q.

Propositions as Types

Logic	Programming languages
propositions	types
proposition $P \Rightarrow Q$	type P→Q
proposition $P \land Q$	type $P imes Q$
proof of proposition <i>P</i>	term t of type P
proposition P is provable	type P is inhabited (by some term)
	evaluation

Propositions as Types

Logic	Programming languages
propositions	types
proposition ${\it P} \Rightarrow {\it Q}$	type P→Q
proposition $P \land Q$	type $\mathbb{P} imes \mathbb{Q}$
proof of proposition <i>P</i>	term t of type P
proposition <i>P</i> is provable	type P is inhabited (by some term)
proof simplification	evaluation
(a.k.a. "cut elimination")	