
Theory of Types
and Programming Languages

Fall 2022

Week 8

1



Plan

PREVIOUSLY: unit, sequencing, let, pairs, sums, recursion, state

TODAY:

1. mutable state (continued)

2. Curry-Howard isomorphism

NEXT: polymorphic (not so simple) typing
NEXT: dependent type systems

2



References and Mutable State

[See slide deck from last week.]

3



The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

I “law of the excluded middle” — P ∨ ¬P — not recognized.

A proof of P ∧ Q is a pair of evidence for P and evidence for Q.

A proof of P ⇒ Q is a procedure for transforming evidence for P
into evidence for Q.

4



Propositions as Types

Logic Programming languages

propositions types
proposition P ⇒ Q type P→Q

proposition P ∧ Q type P× Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

proof simplification

evaluation

(a.k.a. “cut elimination”)

5



Propositions as Types

Logic Programming languages

propositions types
proposition P ⇒ Q type P→Q

proposition P ∧ Q type P× Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)
proof simplification evaluation

(a.k.a. “cut elimination”)

5


