
Type Reconstruction and Polymorphism
Week 9

1



Type Checking and Type Reconstruction

We now come to the question of type checking and type

reconstruction.

Type checking: Given Γ, t and T , check whether Γ ` t : T

Type reconstruction: Given Γ and t, find a type T such that

Γ ` t : T

Type checking and reconstruction seem difficult since parameters in

lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can

have many types.

Idea: : We construct all type derivations in parallel, reducing type

reconstruction to a unification problem.

2



From Judgements to Equations

TP : Judgement→ Equations

TP (Γ ` t : T ) =

case t of

x : {Γ(x) =̂ T}
λx.t′ : let a, b fresh in

{(a→ b) =̂ T} ∪
TP (Γ, x : a ` t′ : b)

t t′ : let a fresh in

TP (Γ ` t : a→ T ) ∪
TP (Γ ` t′ : a)

3



Example

Let twice = λf. λx. f (f x)

Then twice gives rise to the following equations . . .

4



Soundness and Completeness I

Definition: In general, a type reconstruction algorithm A assigns to

an environment Γand a term t a set of types A(Γ, t).

The algorithm is sound if for every type T ∈ A(Γ, t) we can prove the

judgement Γ ` t : T .

The algorithm is complete if for every provable judgement Γ ` t : T

we have that T ∈ A(Γ, t).

5



Theorem: TP is sound and complete. Specifically:

Γ ` t : T iff ∃ b. [T/a]EQNS

where

a is a new type variable

EQNS = TP (Γ ` t : a)

b = tv(EQNS )\tv(Γ)

Here, tv denotes the set of free type variables

(of a term, environment, or equation set)

6



Type Reconstruction and Unification

Problem: : Transform set of equations

{Ti =̂ Ui}i=1, ...,m

into equivalent substitution

{aj 7→ T ′j}j=1, ..., n

where type variables do not appear recursively on their right hand sides

(directly or indirectly). That is:

aj 6∈ tv(T ′k) for j = 1, . . . , n, k = j, . . . , n

7



Substitutions
A substitution s is an idempotent mapping from type variables to types

which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a =̂ T with a

not in tv(T ).

Substitutions can be generalized to mappings from types to types by

definining

s(T → U) = sT → sU

s(K[T1, . . . , Tn]) = K[sT1, . . . , sTn]

Substitutions are idempotent mappings from types to types, i.e.

s(s(T )) = s(T ). (why?)

The ◦operator denotes composition of substitutions (or other

functions): (f ◦ g) x = f(gx).

8



A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

mgu : (Type =̂ Type)→ Subst→ Subst

mgu(T =̂ U) s = mgu′(sT =̂ sU) s

mgu′(a =̂ a) s = s

mgu′(a =̂ T ) s = s ∪ {a 7→ T} if a 6∈ tv(T )

mgu′(T =̂ a) s = s ∪ {a 7→ T} if a 6∈ tv(T )

mgu′(T → T ′ =̂ U → U ′) s = (mgu(T ′ =̂ U ′) ◦mgu(T =̂ U)) s

mgu′(K[T1, . . . , Tn] =̂ K[U1, . . . , Un]) s

= (mgu(Tn =̂ Un) ◦ . . . ◦mgu(T1 =̂ U1)) s

mgu′(T =̂ U) s = error in all other cases

9



Soundness and Completeness of Unification

Definition: A substitution u is a unifier of a set of equations

{Ti =̂ Ui}i=1, ...,m if uTi = uUi, for all i.

Moreover, it is a most general unifier if for every other unifier u′ of the

same equations there exists a substitution s such that u′ = s ◦ u.

Theorem: Given a set of equations EQNS :

• if EQNS has a unifier then mgu EQNS {} computes the most

general unifier of EQNS ;

• if EQNS has no unifier then mgu EQNS {} fails.

10



From Judgements to Substitutions

TP : Judgement→ Subst→ Subst

TP (Γ ` t : T ) =

case t of

x : mgu(newInstance(Γ(x)) =̂ T )

λx.t′ : let a, b fresh in

mgu((a→ b) =̂ T ) ◦
TP (Γ, x : a ` t′ : b)

t t′ : let a fresh in

TP (Γ ` t : a→ T ) ◦
TP (Γ ` t′ : a)

11



Soundness and Completeness II

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

Γ ` t : T iff T = r(s(a)) for some r

where

a is a new type variable

s = TP (Γ ` t : a) {}
r is a substitution on tv(s a)\tv(s Γ)

12



Strong Normalization

Question: Can Ω be given a type?

Ω = (λx. x x) (λx. x x) :?

What about Y ?

Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If ` t : T , then there is a value

V such that t→∗ V .

Corollary: Simply typed lambda calculus is not Turing complete.

13



Polymorphism

In the simply typed lambda calculus, a term can have many types.

But a variable or parameter has only one type.

Example:

x = λy. y

x x

i.e.,

(λx. x x) (λy. y)

is untypable.

14



Polymorphism

Untypable:

x = λy. y

x x

But if we substitute actual parameter for formal, we obtain

(λy. y) (λy. y) : a→ a

Terms that can be instantiated to many types are called polymorphic.

15



Polymorphism in Programming

Polymorphism is essential for many program patterns.

Example: map

let rec map f xs =

if isEmpty (xs) then nil

else cons (f (head xs)) (map (f, tail xs))

...

names: List[String]

nums : List[Int]

...

map toUpperCase names

map increment nums

Without polymorphic type for map, one of the two calls must be illegal!

16



Explicit Polymorphism

We introduce a polymorphic type ∀a.T , which can be used just as any

other type.

We then need to make introduction and elimination of ∀’s explicit.

Typing rules:

(∀E)
Γ ` t : ∀a.T

Γ ` t[U ] : [U/a]T
(∀I)

Γ ` t : T

Γ ` Λa.t : ∀a.T

17



We also need to give all parameter types, so programs become verbose.

Example:

let rec map [a] [b] (f: a → b) (xs: List[a]) =

if isEmpty [a] (xs) then nil [a]

else cons [b] (f (head [a] xs)) (map [a][b] (f, tail [a] xs))

...

names: List[String]

nums : List[Int]

...

map [String] [String] toUpperCase names

map [Int] [Int] increment nums

18



Translating to System F

The translation of map into a System-F term is as follows: (See

blackboard)

19



Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter

types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we

have a new syntactic category of type schemes. Syntax:

Type Scheme S ::= T | ∀a.S

Type schemes are not fully general types; they are used only to type

named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its

inventors. (The original treatment uses let ... in ... rather than

val ... ; ...).

20



Hindley/Milner Typing rules

(Var) Γ, x : S,Γ′ ` x : S (x 6∈ dom(Γ′))

(∀E)
Γ ` t : ∀a.T

Γ ` t : [U/a]T
(∀I)

Γ ` t : T a 6∈ tv(Γ)

Γ ` t : ∀a.T

(Let)
Γ ` t : S Γ, x : S ` t′ : T

Γ ` let x = t in t′ : T

The other two rules are as in simply typed lambda calculus:

(→I)
Γ, x : T ` t : U

Γ ` λx.t : T → U
(→E)

Γ ` M : T → U Γ ` N : T

Γ ` M N : U

21



Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply

typed lambda calculus. We only have to add a clause for let

expressions and refine the rules for variables.

TP : Judgement→ Subst→ Subst

TP (Γ ` t : T ) =

case t of

...

let x = t1 in t2 : let a fresh in fun s→
let s1 = TP (Γ ` t1 : a) s in

TP (Γ, x : gen(s1 Γ, s1 a) ` t2 : T ) s1

where gen(Γ, T ) = ∀ tv(T )\tv(Γ) . T

22



Variables in Environments

When comparing with the type of a variable in an environment, we

have to make sure we create a new instance of their type as follows:

newInstance(∀a1, . . . , an.S) =

let b1, . . . , bn fresh in

[b1/a1, . . . , bn/an]S

TP (Γ ` t : T ) =

case t of

x : {newInstance(Γ(x)) =̂ T}
. . .

23



Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner

system.

let map = λf.λxs in

if isEmpty (xs) then nil

else cons (f (head xs)) (map (f, tail xs))

...

// names: List[String]

// nums : List[Int]

// map : ∀a.∀b.(a → b) → List[a] → List[b]

...

map toUpperCase names

map increment nums

24



Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic.

I.e.

(λx. x x) (λy. y)

is still ill-typed, even though the following is well-typed:

let id = λy. y in id id

With explicit polymorphism the expression could be completed to a

well-typed term:

(Λa. λx : (∀a : a→ a). x[a→ a](x[a])) (Λb. λy. y)

25



The Essence of let

We regard

let x = t in t′

as a shorthand for

[t/x]t′

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM ′ be the type system that results if we replace

rule (Let) from the Hindley/Milner system HM by:

(Let’)
Γ ` t : T Γ ` [t/x]t′ : U

Γ ` let x = t in t′ : U

26



Theorem: Γ `HM t : S iff Γ `HM ′ t : S

The theorem establishes the following connection between the

Hindley/Milner system and the simply typed lambda calculus F1:

Corollary: Let t∗ be the result of expanding all let’s in t according

to the rule

let x = t in t′ → [t/x]t′

Then

Γ `HM t : T ⇒ Γ `F1 t∗ : T

Furthermore, if every let-bound name is used at least once, we also

have the reverse:

Γ `F1
t∗ : T ⇒ Γ `HM t : T

27



Principal Types

Definition: A type T is a generic instance of a type scheme

S = ∀α1 . . . ∀αn. T
′ if there is a substitution s on α1, . . . , αn such

that T = sT ′. We write in this case S ≤ T .

Definition: A type scheme S′ is a generic instance of a type

scheme S iff for all types T

S′ ≤ T ⇒ S ≤ T

We write in this case S ≤ S′.

28



Definition: A type scheme S is principal (or: most general) for Γ

and t iff

• Γ ` t : S

• Γ ` t : S′ implies S ≤ S′

29



Definition: A type system TS has the principal type property iff,

whenever Γ `TS t : S, then there exists a principal type scheme for Γ

and t.

Theorem:

1. HM ′ without let has the p.t.p.

2. HM ′ with let has the p.t.p.

3. HM has the p.t.p.

Proof sketch: (1): Use type reconstruction result for the simply typed

lambda calculus. (2): Expand all let’s and apply (1). (3): Use

equivalence between HM and HM ′.

These observations could be used to come up with a type

reconstruction algorithm for HM . But in practice one takes a more

direct approach.

30



Forms of Polymorphism

Polymorphism means “having many forms”.

Polymorphism also comes in several forms.

• Universal polymorphism, sometimes also called generic types: The

ability to instantiate type variables.

• Inclusion polymorphism, sometimes also called subtyping: The

ability to treat a value of a subtype as a value of one of its

supertypes.

• Ad-hoc polymorphism, sometimes also called overloading: The

ability to define several versions of the same function name, with

different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

31


