Type Reconstruction and Polymorphism
Week 9

Type Checking and Type Reconstruction

We now come to the question of type checking and type
reconstruction.

Type checking: Given I', t and T', check whether I' -+ ¢ : T

Type reconstruction: Given I' and ¢, find a type 1T’ such that
' =¢t:T

Type checking and reconstruction seem difficult since parameters in
lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can
have many types.

Idea: : We construct all type derivations in parallel, reducing type

reconstruction to a unification problem.

From Judgements to Equations

TP : Judgement — Equations

TP Ft:T)=
caset of
x . {T'(x) =T}
Ax.t’ . leta,b fresh in

{(la—>b)=T} U
TP(I',z:a F t':b)
tt" . leta fresh in
TPT - t:a—T) U
TP - t:a)

Example

Let twice = Af. Ax. f (f x)

Then twice gives rise to the following equations

Soundness and Completeness |

Definition: In general, a type reconstruction algorithm A assigns to

an environment I'and a term ¢ a set of types A(T,).

The algorithm is sound if for every type T' € A(T",t) we can prove the
judgement I' = ¢: 7T

The algorithm is complete if for every provable judgement I' - ¢: T
we have that T' € A(T',1).

Theorem: TP is sound and complete. Specifically:

I - ¢t:T iff 3b. [T/a]EQNS
where
a i1s a new type variable
EQNS =TP(I + t:a)
b= tv(EQNS)\tv(T)

Here, tv denotes the set of free type variables
(of a term, environment, or equation set)

Type Reconstruction and Unification

Problem: : Transform set of equations

{T; =U;}iz1, . om
into equivalent substitution
{aj — T;}j:L...,n

where type variables do not appear recursively on their right hand sides
(directly or indirectly). That is:

a; € tv(T)) forj=1,....,n k=3, ...,n

Substitutions

A substitution s is an idempotent mapping from type variables to types

which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a = 1" with a
not in tv(7T).
Substitutions can be generalized to mappings from types to types by
definining

s(T'— U) = sT — sU

s(K[Ty, ..., Ty]) = K|sTy, ..., sT})]

Substitutions are idempotent mappings from types to types, i.e.
S(s(T)) = s(T). (why?)

The ooperator denotes composition of substitutions (or other
functions): (fog)x = f(gz).

A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

magu . (Type = Type) — Subst — Subst
mgu(T =U) s = mgu'(sT = sU) s

mgu'(a = a) s = s

mgu'(a =1T) s = sU{a — T} ifa ¢ tv(T)
mgu' (T = a) s = sU{a — T} ifa & tv(T)
mgu' (T —T'=U —-U")s = (mgu(T'=U")omgu(T =U)) s
mgu' (KT, ..., T,] = KUy, ..., Uy,]) s

= (mgu(Tn, =Un)o...omgu(Ty =Uy)) s

mgu' (T =U) s = error in all other cases

Soundness and Completeness of Unification

Definition: A substitution u is a unifier of a set of equations

{T; =U;}izma, . m if 0T = uU;, for all a.

Moreover, it is a most general unifier if for every other unifier u’ of the
same equations there exists a substitution s such that v’ = s o w.

Theorem: Given a set of equations EQNS:

e if FQNS has a unifier then mgu EQNS {} computes the most
general unifier of EQNS;

e if FQNS has no unifier then mgu EQNS {} fails.

10

From Judgements to Substitutions

TP : Judgement — Subst — Subst
TP F t:T) =
caset of
x . mgu(newlInstance(I'(z)) =T)
Ax.t’ . leta,b fresh in
mgu((ea —b) =T) o
TP(I',x:a F t':b)
tt" . leta fresh in
TP(T F t:a—T) o
TP F t:a)

11

Soundness and Completeness ||

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

L'+ ¢t:T iff T=r(s(a)) for somer
where

a is a new type variable
s=TP ([F t:a){}

r is a substitution on tv(s a)\tv(s I')

12

Strong Normalization

Question: Can () be given a type?

Q = (A.xzx) M.z x):?

What about Y?
Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If = t: T, then there is a value
V such thatt —* V.

Corollary: Simply typed lambda calculus is not Turing complete.

13

Polymorphism

In the simply typed lambda calculus, a term can have many types.

But a variable or parameter has only one type.

Example:
T =Ay.y
T T
l.e.,
(Az. x x) (\y. y)
is untypable.

14

Polymorphism

Untypable:

T = A\y. Yy

But if we substitute actual parameter for formal, we obtain

(A\y.y) Ay.-y):a—a

Terms that can be instantiated to many types are called polymorphic.

15

Polymorphism in Programming

Polymorphism is essential for many program patterns.

Example: map

let rec map f xs =
if isEmpty (xs) then nil
else cons (f (head xs)) (map (f, tail xs))

names: List[String]
nums : List[Int]

map toUpperCase names
map increment nums

Without polymorphic type for map, one of the two calls must be illegal!

16

Explicit Polymorphism

We introduce a polymorphic type Va.1', which can be used just as any

other type.
We then need to make introduction and elimination of V's explicit.
Typing rules:
I' = t:Va.T ' =¢:T
(VE) (VI)
' = t[U]:[U/a|T ' - Aa.t:Va.T

17

We also need to give all parameter types, so programs become verbose.

Example:

let rec map [a] [b] (f: a — b) (xs: List[a]) =
if isEmpty [a] (xs) then nil [3]
else cons [b] (f (head [a] xs)) (map [a][b] (f, tail [a] xs))

names: List[String]

nums : List[Int]

map [String] [String] toUpperCase names

map [Int] [Int] increment nums

18

Translating to System F

The translation of map into a System-F term is as follows: (See
blackboard)

19

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter
types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we
have a new syntactic category of type schemes. Syntax:

Type Scheme S == T | Va.S

Type schemes are not fully general types; they are used only to type
named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its
inventors. (The original treatment uses let ... in ... rather than
val ... ; ...).

20

Hindley/Milner Typing rules

(VAR) Iz : S, IV F x: S (x & dom(I"))

I' - t:VaT L' t:T a ¢ tv(l)
(VE) (V1)
'+ t:[U/a]T I' - t:VaT
' -¢:8S Ce:SEHY:T
(LET)

' - letx=tint : T

The other two rules are as in simply typed lambda calculus:

Cx:T FHt:U I'-M:T—-U ©I' EN:T

(1) (—E)
' Xet: T — U ' - MN:U

21

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply
typed lambda calculus. We only have to add a clause for let
expressions and refine the rules for variables.

TP : Judgement — Subst — Subst

TP(T - t:T)=

caset of

let x =ty inty : leta fresh in fun s —
let sy =TP (' - t1:a) sin
TP (I',x:gen(s1 I', sy a) F ta:T) s1

where gen(I', T)) = Vtv(T)\tv(I"). T

22

Variables in Environments

When comparing with the type of a variable in an environment, we
have to make sure we create a new instance of their type as follows:

newlnstance(VNay, ..., a,.5) =

let by, ..., b, fresh in
b1/ay, ..., bn/ay]S

TP - t:T)=
caset of

x : {newlnstance(I'(x)) =T}

23

Hindley /Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner
system.
let map = AMf.Axs in
if isEmpty (xs) then nil
else cons (f (head xs)) (map (f, tail xs))

// names: List[String]
// nums : List[Int]
// map : Va.Vb.(a — b) — List[a] — List[b]

map toUpperCase names

map Increment nums

24

Limitations of Hindley/Milner

Hindley /Milner still does not allow parameter types to be polymorphic.

l.e.
(Az. x) (A\y. y)
is still ill-typed, even though the following is well-typed:

let id = \y. y in id id

With explicit polymorphism the expression could be completed to a

well-typed term:

(Aa. Az : (Va : a — a). x|la — al(x]a])) (Ab. \y. y)

25

The Essence of let

We regard
let x =tint

as a shorthand for
t/x]t’

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM' be the type system that results if we replace
rule (LET) from the Hindley/Milner system HM by:

Cr¢:T T F [t/at':U
' - letx=t int' : U

(LET’)

26

Theorem: I bFgp t:SifFT by ¢S

The theorem establishes the following connection between the
Hindley /Milner system and the simply typed lambda calculus F:

Corollary: Let t* be the result of expanding all let’s in ¢ according
to the rule

letx =tint' — [t/x|t/
Then
Pl—HM t: T = FI—Fl t* . T

Furthermore, if every let-bound name is used at least once, we also
have the reverse:

I |_F1 t*: T = I Fyy t:T

27

Principal Types

Definition: A type T is a generic instance of a type scheme
S =Vai...Va,. T if there is a substitution s on a1, ..., a, such
that T = sT”. We write in this case S < T'.

Definition: A type scheme S’ is a generic instance of a type

scheme S iff for all types T’
S'<T = ST

We write in this case S < §’.

28

Definition: A type scheme S is principal (or: most general) for I’
and ¢ iff

e ' ¢t:S
o I' - t:5 implies S <5’

29

Definition: A type system 7'S has the principal type property iff,
whenever I' Fpg t: .S, then there exists a principal type scheme for I'

and t.

Theorem:
1. HM' without let has the p.t.p.
2. HM' with let has the p.t.p.
3. HM has the p.t.p.

Proof sketch: (1): Use type reconstruction result for the simply typed
lambda calculus. (2): Expand all let's and apply (1). (3): Use
equivalence between HM and HM'.

These observations could be used to come up with a type
reconstruction algorithm for HM . But in practice one takes a more

direct approach.

30

Forms of Polymorphism

Polymorphism means “having many forms”.
Polymorphism also comes in several forms.

e Universal polymorphism, sometimes also called generic types: The
ability to instantiate type variables.

e Inclusion polymorphism, sometimes also called subtyping: The
ability to treat a value of a subtype as a value of one of its

supertypes.

e Ad-hoc polymorphism, sometimes also called overloading: The
ability to define several versions of the same function name, with
different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

31

