Theory of Types
and Programming Languages
Spring 2022

Week 11

Plan

TODAY:
1. type operators
2. dependent types

Note: This week's material is not from the TAPL textbook;

— it is mostly from Chapter 2 of "“Advanced Topics in Types and
Programming Languages’ (Benjamin C. Pierce et. al, MIT Press)

Different Kinds of Maps
What is missing?

Term — Term (Ax.t)
Type — Term (AX.t)

Different Kinds of Maps
What is missing?

Term
Type
Type
Term

Agenda today:
> Type operators
» Dependent types

L1l

Term
Term
Type
Type

(Ax.t)
(AX.t)
77
77

Type Operators and System F

Type Operators

Example. Type operators in Scala:

type MkFun[T] =T => T
val f: MkFun[Int] = (x: Int) => x

Type Operators

Example. Type operators in Scala:

type MkFun[T] =T => T
val f: MkFun[Int] = (x: Int) => x

Type operators are functions at the type level.

AX. T

Type Operators

Example. Type operators in Scala:
type MkFun[T] =T => T
val f: MkFun[Int] = (x: Int) => x

Type operators are functions at the type level.

AX. T

Three Problems:
> Type checking of type operators
» Equivalence of types

» Abstracting over type operators

Kinding

Problem: avoid meaningless types, like MkFun[int, String].

Kinding

Problem: avoid meaningless types, like MkFun[int, String].

* proper types, e.g. Bool, Int — Int
k = % type operators: map proper type to proper type
k= % = % two-argument operators

(* = %) = % type operators: map type operators to proper types

Kinding

Problem: avoid meaningless types, like MkFun[int, String].

* proper types, e.g. Bool, Int — Int
* = % type operators: map proper type to proper type
* =k = % two-argument operators
(* = %) = % type operators: map type operators to proper types
Kinds
(e)

A Types

Nat

\ Pair Nat Bool
(AX.X-X) Nat AX. X=X
VX. X=X . '
‘ \Nat—-Nat \ Pair Nat Pair Pair

Pair

\

\ \ * Terms

\

\ \
Ax:Nat.x >
(Ax:Nat.x) true

AXLAX XL x
(Ax:Nat.x) 5 pair [Nat] [Bool] 5 false

Kinding Notation

By analogy with lambda parameter type annotation, we write:
AX K. T

where K is the kind of X in this abstraction

Equivalence of Types

Problem: all the types below are equivalent

Nat — Bool Nat — Id Bool Id Nat — Id Bool
Id Nat — Bool Id (Nat — Bool) Id(ld(ld Nat — Bool)

We need to introduce definitional equivalence relation on types,
written S = T. The most important rule is:

(M 2K.S)T = [X—T]S (Q-AppPABS)
And we need one typing rule:

Mr=t:S S=T

T-E
M=t: T (?)

First-class Type Operators
Scala supports passing type operators as argument:

def makeInt[F[_1](f: () => F[Int]): F[Int] = £

makeInt[List] (() => List[Int](3))
makeInt [Option] (() => None)

First-class type operators supports polymorphism for type
operators, which enables more patterns in type-safe functional
programming.

System F, — Syntax

Formalizing first-class type operators leads to System F,:

t o= . terms
AX oK.t type abstraction
T = types
X type variable
T—T type of functions
vX K. T universal type
AX oK. T operator abstraction
TT operator application
K = kinds
* kind of proper types

K=K kind of operators

System F, — Semantics

i — 1]

- (E-App1)
t1to — t] B
ty — t}
R (E-App2)
t1 to — t1 15
()\XZTl.tl) Vo — [X — V2]t1 (E—APPABS)
t— t/
(E-TAPpP)

t[T]— t'[T]

(AX:K.ty) [T] — [X = T]t1 (E-TAPPTABS)

11

System F, — Kinding

X:KeTl
MN=EX:a K

MLX:KiETy: K
M+)\XIZKl.TQ L Kl = K2

Mr=T1:Ki= K, N=T,: K

([Tl TQZZKQ

M= Tq: % =Ty %
=Ty — Ty %

MX:Ki B Ty
M=VXaK1 Ty %

(K-TVAR)

(K-ABs)

(K-Arp)

(K-ARROW)

(K-ALL)

12

System F,, — Type Equivalence

T=S S u=T
T=T B
S5=T =T
S$5=T S =
ARROW
51 — 52 Tl — T2 (Q)
S =T,
’ ’ (K-ALL)
VX::K1.S = VXK. T
52 =T
-ABs
AX::K1.5 = M XK. T (Q-Aps)
5=T S =T
1 1 2 (Q-APp)

(A=K T) T, =[X = T Ty

(Q-ApPPABS)

13

System F, — Typing
x:Tel
MN=x:T

M= Tp 0% Mx:TiFEt: T
=X T1.t0 T — 1o

Fl—t1:5—>T Fl—t2:5
Tty T

MX:KikEt: To
MEAX:Ki b VXK. T

M-t VXK. T, NrN=7:K
FEt[T]:[X— T]T>

M=t¢:S S=T =T

M=t: T

(T-VAR)

(T-ABs)

(T-App)

(T-TABs)

(T-TAPP)

(T-EQ)

14

Example

type PairRep|[Pair :: x = x =] = {
pair :YXNVNY.X =Y — (Pair X'Y),
fst - VXYY .(Pair X Y) — X,
snd : VXNVY.(Pair X Y) =Y

}

def swap[Pair :: x = %« = %, X 1%, Y i %]
(rep : PairRep Pair)
(pair : Pair X Y) : Pair Y X

let x = rep.fst [X] [Y] pair in
let y = rep.snd [X] [Y] pair in
rep.pair [Y] [X] y x

The method swap works for any representation of pairs.

15

Properties

Theorem [Preservation]: if [=t : T and t — t/, then [=1t : T.

Theorem [Progress|: if - t : T, then either t is a value or there
exists t' with t — .

16

Dependent Types

Why Does It Matter?

Example 1. Track length of integer vectors in types:

Vec ' Nat — x
first : (m:Nat) — Vec (n+1) — Int

(x:S) — T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.

18

Why Does It Matter?

Example 1. Track length of integer vectors in types:

Vec 1 Nat — %
first : (m:Nat) — Vec (n+1) — Int

(x:S) — T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.

Example 2. Safe formatting for sprintf:

sprintf . (f:Format) — Data(f) — String
Data([]) = Unit

Data("%' ::'d’ :: cs) = Nat % Data(cs)

Data('%' ::'s' :: ¢ s) = String * Data(cs)

Data(c ::) = Data(cs)

18

Dependent Function Type (a.k.a. 1 Types)

A dependent function type is inhabited by a dependent function:

Ax:S.t 0 (xS)—=>T

19

Dependent Function Type (a.k.a. 1 Types)

A dependent function type is inhabited by a dependent function:

Ax:S.t 0 (xS)—=>T

(x:S) — T'is also written [1,.5 T" in the literature.

19

Dependent Function Type (a.k.a. 1 Types)

A dependent function type is inhabited by a dependent function:

Ax:S.t 0 (xS)—=>T

(x:S) — T'is also written [1,.5 T" in the literature.

When T does not depend on x, degenerates to function type

Notation:

ST 2 (x8—>T where x does not appear free in T

19

The Calculus of Constructions

The Calculus of Constructions: Syntax

t,T

The

semantics is the usual S-reduction.

terms
sort
variable
abstraction
application
dependent type

sorts
sort of proper types
sort of kinds

contexts
empty context
term variable binding

21

The Calculus of Constructions: Typing

x:T el
=% [(T-Axiom) ——— (T-VAR)
Ne=x:T
N-S:s MxSkt: T
(T-ABS)
Ne=Ax:Sit: (x:S)—T
M=t :(xxS)—=T MrM-t:$
1: (x:S) ’ (T-App)
M+t t2:[X'—>t2]T
M=S: MxSHT:
S1 X So (T—PI)

M-(xS)—=T:s

Me¢:T T=T TFT:s
Fre=t: T/

(T-Conv)

The equivalence relation 7 = T’ is based on [-reduction.

22

Four Kinds of Lambdas

Example Type
AN x+1 N—N
AM:N—=N. fx (N—N)—N

23

Four Kinds of Lambdas

Example Type
Ax:Nox+1 N—N
AM:N—=N. fx (N—N)—N
AX o A X, x (X)) = X = X

AF:x — . Ax:F N. x

(Fx — %) —» (FN) — (FN)

23

Four Kinds of Lambdas

Example Type

AN x +1 N—-N

AM:N—=N. fx (N—N)—N

AX o A X, x (X)) = X = X

AFx — % Ax:F Nox (Fix — %) = (FN) = (FN)
AX k. X * — %

AFx — % FN (k — %) — %

23

Four Kinds of Lambdas

Example Type

Ax:Nox+1 N—-N

AM:N—=N. fx (N—N)—N

AX . A X, x (X)) = X = X

AFx — % Ax:F Nox (Fix — %) = (FN) = (FN)
AX k. X * — %

AFx — % FN (k — %) — %

An:N. Vec n N — x

AN — N. Vec (f 6)

(N— N) — x

23

Strong Normalization

Given the following S-reduction rules

t1 — t]
! ! (“B-ABS)
Ax:Ti.tp — Ax:Tq. t]
t] — t]
- (F-App1)
t1to — 8] b2
th — t}
b (5-App2)
t1 to — t1 &,
()\Xi T]_.t]_)t2 — [X — tz]tl (/3—APPABS)

Theorem [Strong Normalization]: if '+t : T, then there is no
infinite sequence of terms t; such that t = t; and t; — t;,1.

24

Pure Type Systems

N=S:s; MxSET:s;

Fr=(xS)—=T:s (T-P1)
System (si,sj)
A { (%) }
AP { (%,%), (x,0) }
F { (%), (0, %) }
F* { (%), L%), (G0 }
ccC { (x%), (x,0), (O,%), (§,0 }
Fw cC
Sl
‘ The Lambda Cube
I Ay — F— F¥ — CC
/ /

25

Dependent Types in Coq

Proof Assistants

Dependent type theories are at the foundation of proof assistants,
like Coq, Agda, etc.

By Curry-Howard Correspondence
» proofs «— programs

P propositions <— types

27

Proof Assistants

Dependent type theories are at the foundation of proof assistants,
like Coq, Agda, etc.

By Curry-Howard Correspondence
» proofs «—> programs
P propositions <— types

Two impactful projects based on Coq:
» CompCert: certified C compiler
» Mechanized proof of 4-color theorem

27

Type Universes in Coq
The rule [= Type : Type is unsound (Girard's paradox).

[+ Prop : Type;
I+ Set: Typer
[+ Type; : Typeit1

I x:AF B : Prop FA:s
N=(x:A)— B: Prop

M x:At B: Set N-A:s s € {Prop, Set}
N=(x:A)— B: Set

I x:AF B: Type; = A: Type;
Ne(x:A)— B: Type;

28

Coq 101 - inductive definitions and recursion

1 Inductive nat : Type :=
2 | O
3 | S (n : nat).

29

Coq 101 - inductive definitions and recursion

1 Inductive nat : Type :=
2 | O
3 | S (n : nat).

1 Fixpoint double (n : nat) : nat :=
2 match n with

3 | 0=>0

4 | Sn’ => 8 (S (double n’))

5 end.

Recursion has to be structural.

29

Coq 101 - inductive definitions and recursion

1 Inductive nat : Type :=
2 | O
3 | S (n : nat).

1 Fixpoint double (n : nat) : nat :=
2 match n with

3 | 0=>0

4 | Sn’ => 8 (S (double n’))

5 end.

Recursion has to be structural.

1 Inductive even : nat -> Prop :=
| evenO : even O
3 | evenS : forall x:nat, even x -> even (S (S x)).

[N)

29

Coq 101 - proofs

1 Definition even_prop

:= forall x:nat, even (double x).

3 Fixpoint even_proof(x: nat): even (double x) :=

4 match x with

5 | O => even0

6 | Sn’> => evenS (double n’) (even_proof n’)
7 end.

9 Check even_proof : even_prop.

30

Coq 101 - proofs

© O N o U A W N =

Definition even_prop := forall x:nat, even (double x).

Fixpoint even_proof(x: nat): even (double x) :=
match x with

| O => even0
| Sn’> => evenS (double n’) (even_proof n’)
end.

Check even_proof : even_prop.

The 2nd branch has the type even S (S (double n')), and Coq
knows by normalizing the types:

even S (S (double n')) =g even (double (S n'))

30

Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition Term & Type
ANB t: (A B)

AV B t:A+B
A—B t:A—B

€ t: False

-A t:A— False
Vx:A. B t:(x:A)—= B
Ix:A.B t:(x:A B)

31

Curry-Howard correspondence in Coq

1 Inductive and (A B:Prop) : Prop :=
2 conj : A->B ->A/\B
3 where "A /\ B" := (and A B) : type_scope.

32

Curry-Howard correspondence in Coq

Inductive and (A B:Prop) : Prop :=

conj : A -> B
where "A /\ B"

Inductive or (A
| or_introl :
| or_intror :

where "A \/ B"

W W

-> A /\B
(and A B) : type_scope.

:Prop) : Prop :=
->A\/B

-> A \/B

(or A B) : type_scope.

32

Curry-Howard correspondence in Coq

N N

Inductive and (A B:Prop) : Prop :=

conj : A -> B
where "A /\ B"

Inductive or (A
| or_introl :
| or_intror :

where "A \/ B"

Inductive False :

W W

-> A /\B

:Prop) : Prop :=
->A\/B

-> A \/B

(or A B) : type_scope.

Prop :=.

(and A B) : type_scope.

32

Curry-Howard correspondence in Coq

N N

Inductive and (A B:Prop)

conj : A -> B
where "A /\ B"

Inductive or (A
| or_introl :
| or_intror :

where "A \/ B"

W W

Inductive False :

Definition not (A:

Notation "~ x" :=

: Prop :=

-> A /\B
(and A B) : type_scope.
:Prop) : Prop :=
->A\/B
-> A \/B
(or A B) : type_scope.
Prop :=.
Prop) := A -> False.
(not x) : type_scope.

32

Curry-Howard correspondence in Coq - continued

1 Notation "A -> B" := (forall (_ : A), B) : type_scope.

> Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
3 Notation "A <-> B" := (iff A B) : type_scope.

33

Curry-Howard correspondence in Coq - continued

1 Notation "A -> B" := (forall (_ : A), B) : type_scope.
> Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
3 Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "’exists’ x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

33

Curry-Howard correspondence in Coq - continued

L N N

N N

Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B —> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "’exists’ x .. y , p" :=

(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A

Notation "x = y" := (eq x y) : type_scope.

33

The equivalence between LEM and DNE

In intuitionistic logics, the law of excluded middle (LEM) and the
law of double negation (DNE) are not provable.

> LEM: VP.PV =P
» DNE: VP.——P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.

34

The equivalence between LEM and DNE

In intuitionistic logics, the law of excluded middle (LEM) and the
law of double negation (DNE) are not provable.

> LEM: VP.PV =P
» DNE: VP.——P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, VP. P — ——P can be proved.

34

The equivalence between LEM and DNE

In intuitionistic logics, the law of excluded middle (LEM) and the
law of double negation (DNE) are not provable.

> LEM: VP.PV =P
» DNE: VP.——P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, VP. P — ——P can be proved. How?

34

The equivalence between LEM and DNE

In intuitionistic logics, the law of excluded middle (LEM) and the
law of double negation (DNE) are not provable.

> LEM: VP.PV =P
» DNE: VP.——P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, VP. P — ——P can be proved. How?

We will prove that LEM is equivalent to DNE:

1 Definition LEM: Prop := forall P: Prop, P \/7P.
2 Definition DNE: Prop := forall P: Prop, ""P -> P.
3 Definition LEM_DNE_EQ: Prop := LEM <-> DNE.

34

LEM — DNE

1 Definition LEM_To_

DNE :=

2 fun (lem: forall P : Prop, P \/ ~ P) (Q:Prop) (q: ~"Q)

=>
3 match lem Q with
4 | or_introl 1 =>
5 1
6
7 | or_intror r =>
8 match (q r) with end
9 end.
10
11 Check LEM_To_DNE : LEM -> DNE.

35

DNE — LEM

1 Definition DNE_To_LE

N

3 (dne (@ \/ 7 Q)
(fun H: “(Q \/
let nq := (f
in H (or_int

).

IS

N~ o o

9 Check DNE_To_LEM :

11 Definition proof :=
12 Check proof : LEM <-

fun (dne: forall P :

M :=
Prop, ““P -> P) (Q:Prop) =>

Q=
un q: Q => H (or_introl q))
ror nq)

DNE -> LEM.

conj LEM_To_DNE DNE_To_LEM.
> DNE.

36

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

» Scala supports path-dependent types and literal types.
» Dependent Haskell is proposed by researchers.

37

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

» Scala supports path-dependent types and literal types.
» Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.

37

Problem with Type Checking

Value constructors:

Vee : N —x
nil : VecO
cons : N— (mN)— Vecn— Vecn+1

Appending vectors:

append : (m:N)— (mN) — Vec m — Vec n — Vec (n+ m)
append = Am:N.An:N. \l:Vec m. A\t:Vec n.

match | with

| nil =t

| cons x r y = cons x (r+ n) (append r ny t)

Question: How does the type checker know S (r+n) = n+ (5 r)?

38

