Theory of Types
and Programming Languages
Spring 2022

Week 11



Plan

TODAY:
1. type operators
2. dependent types

Note: This week's material is not from the TAPL textbook;

— it is mostly from Chapter 2 of "“Advanced Topics in Types and
Programming Languages’ (Benjamin C. Pierce et. al, MIT Press)



Different Kinds of Maps
What is missing?

Term — Term (Ax.t)
Type — Term (AX.t)



Different Kinds of Maps
What is missing?

Term
Type
Type
Term

Agenda today:
> Type operators
» Dependent types

L1l

Term
Term
Type
Type

(Ax.t)
(AX.t)
77
77



Type Operators and System F
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val f: MkFun[Int] = (x: Int) => x
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Type Operators

Example. Type operators in Scala:
type MkFun[T] =T => T
val f: MkFun[Int] = (x: Int) => x

Type operators are functions at the type level.

AX. T

Three Problems:
> Type checking of type operators
» Equivalence of types

» Abstracting over type operators
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Kinding

Problem: avoid meaningless types, like MkFun[int, String].

* proper types, e.g. Bool, Int — Int
* = % type operators: map proper type to proper type
* =k = % two-argument operators
(* = %) = % type operators: map type operators to proper types
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Kinding Notation

By analogy with lambda parameter type annotation, we write:
AX K. T

where K is the kind of X in this abstraction



Equivalence of Types

Problem: all the types below are equivalent

Nat — Bool Nat — Id Bool Id Nat — Id Bool
Id Nat — Bool Id (Nat — Bool) Id(ld(ld Nat — Bool)

We need to introduce definitional equivalence relation on types,
written S = T. The most important rule is:

(M 2K.S)T = [X—T]S (Q-AppPABS)
And we need one typing rule:

Mr=t:S S=T

T-E
M=t: T ( ?)




First-class Type Operators
Scala supports passing type operators as argument:

def makeInt[F[_1](f: () => F[Int]): F[Int] = £

makeInt[List] (() => List[Int](3))
makeInt [Option] (() => None)

First-class type operators supports polymorphism for type
operators, which enables more patterns in type-safe functional
programming.



System F, — Syntax

Formalizing first-class type operators leads to System F,:

t o= . terms
AX oK.t type abstraction
T = types
X type variable
T—T type of functions
vX K. T universal type
AX oK. T operator abstraction
TT operator application
K = kinds
* kind of proper types

K=K kind of operators



System F, — Semantics

i — 1]

- (E-App1)
t1to — t] B
ty — t}
R (E-App2)
t1 to — t1 15
()\XZTl.tl) Vo — [X — V2]t1 (E—APPABS)
t— t/
(E-TAPpP)

t[T]— t'[T]

(AX:K.ty) [T] — [X = T]t1 (E-TAPPTABS)
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System F, — Kinding

X:KeTl
MN=EX:a K

MLX:KiETy: K
M+ )\XIZKl.TQ L Kl = K2

Mr=T1:Ki= K, N=T,: K

([ Tl TQZZKQ

M= Tq: % =Ty %
=Ty — Ty %

MX:Ki B Ty
M=VXaK1 Ty %

(K-TVAR)

(K-ABs)

(K-Arp)

(K-ARROW)

(K-ALL)
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System F,, — Type Equivalence

T=S S u=T
T=T B
S5=T =T
S$5=T S =
ARROW
51 — 52 Tl — T2 (Q )
S =T,
’ ’ (K-ALL)
VX::K1.S = VXK. T
52 =T
-ABs
AX::K1.5 = M XK. T (Q-Aps)
5=T S =T
1 1 2 (Q-APp)

(A=K T) T, =[X = T Ty

(Q-ApPPABS)
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System F, — Typing
x:Tel
MN=x:T

M= Tp 0% Mx:TiFEt: T
=X T1.t0 T — 1o

Fl—t1:5—>T Fl—t2:5
Tty T

MX:KikEt: To
MEAX:Ki b VXK. T

M-t VXK. T, NrN=7:K
FEt[T]:[X— T]T>

M=t¢:S S=T =T

M=t: T

(T-VAR)

(T-ABs)

(T-App)

(T-TABs)

(T-TAPP)

(T-EQ)
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Example

type PairRep|[Pair :: x = x = ] = {
pair :YXNVNY.X =Y — (Pair X'Y),
fst - VXYY .(Pair X Y) — X,
snd : VXNVY.(Pair X Y) =Y

}

def swap[Pair :: x = %« = %, X 1%, Y i %]
(rep : PairRep Pair)
(pair : Pair X Y) : Pair Y X

let x = rep.fst [X] [Y] pair in
let y = rep.snd [X] [Y] pair in
rep.pair [Y] [X] y x

The method swap works for any representation of pairs.

15



Properties

Theorem [Preservation]: if [ =t : T and t — t/, then [ =1t : T.

Theorem [Progress|: if - t : T, then either t is a value or there
exists t' with t — .

16



Dependent Types



Why Does It Matter?

Example 1. Track length of integer vectors in types:

Vec ' Nat — x
first : (m:Nat) — Vec (n+1) — Int

(x:S) — T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.

18



Why Does It Matter?

Example 1. Track length of integer vectors in types:

Vec 1 Nat — %
first : (m:Nat) — Vec (n+1) — Int

(x:S) — T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.

Example 2. Safe formatting for sprintf:

sprintf . (f:Format) — Data(f) — String
Data([]) = Unit

Data("%' ::'d’ :: cs) = Nat % Data(cs)

Data('%' ::'s' :: ¢ s) = String * Data(cs)

Data(c :: ) = Data(cs)

18



Dependent Function Type (a.k.a. 1 Types)

A dependent function type is inhabited by a dependent function:

Ax:S.t 0 (xS)—=>T
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Dependent Function Type (a.k.a. 1 Types)

A dependent function type is inhabited by a dependent function:

Ax:S.t 0 (xS)—=>T

(x:S) — T'is also written [1,.5 T" in the literature.

When T does not depend on x, degenerates to function type

Notation:

ST 2 (x8—>T where x does not appear free in T

19



The Calculus of Constructions



The Calculus of Constructions: Syntax

t,T

The

semantics is the usual S-reduction.

terms
sort
variable
abstraction
application
dependent type

sorts
sort of proper types
sort of kinds

contexts
empty context
term variable binding

21



The Calculus of Constructions: Typing

x:T el
=% [ (T-Axiom) ——— (T-VAR)
Ne=x:T
N-S:s MxSkt: T
(T-ABS)
Ne=Ax:Sit: (x:S)—T
M=t :(xxS)—=T MrM-t:$
1: (x:S) ’ (T-App)
M+t t2:[X'—>t2]T
M=S: MxSHT:
S1 X So (T—PI)

M-(xS)—=T:s

Me¢:T T=T TFT:s
Fre=t: T/

(T-Conv)

The equivalence relation 7 = T’ is based on [-reduction.
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Four Kinds of Lambdas

Example Type
AN x+1 N—N
AM:N—=N. fx (N—N)—N
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Four Kinds of Lambdas

Example Type
Ax:Nox+1 N—N
AM:N—=N. fx (N—N)—N
AX o A X, x (X)) = X = X

AF:x — . Ax:F N. x

(Fx — %) —» (FN) — (FN)
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Four Kinds of Lambdas

Example Type

AN x +1 N—-N

AM:N—=N. fx (N—N)—N

AX o A X, x (X)) = X = X

AFx — % Ax:F Nox (Fix — %) = (FN) = (FN)
AX k. X * — %

AFx — % FN (k — %) — %
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Four Kinds of Lambdas

Example Type

Ax:Nox+1 N—-N

AM:N—=N. fx (N—N)—N

AX . A X, x (X)) = X = X

AFx — % Ax:F Nox (Fix — %) = (FN) = (FN)
AX k. X * — %

AFx — % FN (k — %) — %

An:N. Vec n N — x

AN — N. Vec (f 6)

(N— N) — x
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Strong Normalization

Given the following S-reduction rules

t1 — t]
! ! (“B-ABS)
Ax:Ti.tp — Ax:Tq. t]
t] — t]
- (F-App1)
t1to — 8] b2
th — t}
b (5-App2)
t1 to — t1 &,
()\Xi T]_.t]_)t2 — [X — tz]tl (/3—APPABS)

Theorem [Strong Normalization]: if '+t : T, then there is no
infinite sequence of terms t; such that t = t; and t; — t;,1.

24



Pure Type Systems

N=S:s; MxSET:s;

Fr=(xS)—=T:s (T-P1)
System (si,sj)
A { (%) }
AP { (%,%), (x,0) }
F { (%), (0, %) }
F* { (%), L%), (G0 }
ccC { (x%), (x,0), (O,%), (§,0 }
Fw cC
Sl
‘ The Lambda Cube
I Ay — F— F¥ — CC
/ /

25



Dependent Types in Coq



Proof Assistants

Dependent type theories are at the foundation of proof assistants,
like Coq, Agda, etc.

By Curry-Howard Correspondence
» proofs «— programs

P propositions <— types
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Proof Assistants

Dependent type theories are at the foundation of proof assistants,
like Coq, Agda, etc.

By Curry-Howard Correspondence
» proofs «—> programs
P propositions <— types

Two impactful projects based on Coq:
» CompCert: certified C compiler
» Mechanized proof of 4-color theorem

27



Type Universes in Coq
The rule [ = Type : Type is unsound (Girard's paradox).

[+ Prop : Type;
I+ Set: Typer
[+ Type; : Typeit1

I x:AF B : Prop FA:s
N=(x:A)— B: Prop

M x:At B: Set N-A:s s € {Prop, Set}
N=(x:A)— B: Set

I x:AF B: Type; = A: Type;
Ne(x:A)— B: Type;
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Coq 101 - inductive definitions and recursion

1 Inductive nat : Type :=
2 | O
3 | S (n : nat).
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Recursion has to be structural.

29



Coq 101 - inductive definitions and recursion

1 Inductive nat : Type :=
2 | O
3 | S (n : nat).

1 Fixpoint double (n : nat) : nat :=
2 match n with

3 | 0=>0

4 | Sn’ => 8 (S (double n’))

5 end.

Recursion has to be structural.

1 Inductive even : nat -> Prop :=
| evenO : even O
3 | evenS : forall x:nat, even x -> even (S (S x)).

[N)
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Coq 101 - proofs

1 Definition even_prop

:= forall x:nat, even (double x).

3 Fixpoint even_proof(x: nat): even (double x) :=

4 match x with

5 | O => even0

6 | Sn’> => evenS (double n’) (even_proof n’)
7 end.

9 Check even_proof : even_prop.

30



Coq 101 - proofs

© O N o U A W N =

Definition even_prop := forall x:nat, even (double x).

Fixpoint even_proof(x: nat): even (double x) :=
match x with

| O => even0
| Sn’> => evenS (double n’) (even_proof n’)
end.

Check even_proof : even_prop.

The 2nd branch has the type even S (S (double n')), and Coq
knows by normalizing the types:

even S (S (double n')) =g even (double (S n'))

30



Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition Term & Type
ANB t: (A B)

AV B t:A+B
A—B t:A—B

€ t: False

-A t:A— False
Vx:A. B t:(x:A)—= B
Ix:A.B t:(x:A B)

31



Curry-Howard correspondence in Coq

1 Inductive and (A B:Prop) : Prop :=
2 conj : A->B ->A/\B
3 where "A /\ B" := (and A B) : type_scope.

32



Curry-Howard correspondence in Coq

Inductive and (A B:Prop) : Prop :=

conj : A -> B
where "A /\ B"

Inductive or (A
| or_introl :
| or_intror :

where "A \/ B"

W W

-> A /\B
(and A B) : type_scope.

:Prop) : Prop :=
->A\/B

-> A \/B

(or A B) : type_scope.
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Curry-Howard correspondence in Coq

N N

Inductive and (A B:Prop) : Prop :=

conj : A -> B
where "A /\ B"

Inductive or (A
| or_introl :
| or_intror :

where "A \/ B"

Inductive False :

W W

-> A /\B

:Prop) : Prop :=
->A\/B

-> A \/B

(or A B) : type_scope.

Prop :=.

(and A B) : type_scope.
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Curry-Howard correspondence in Coq

N N

Inductive and (A B:Prop)

conj : A -> B
where "A /\ B"

Inductive or (A
| or_introl :
| or_intror :

where "A \/ B"

W W

Inductive False :

Definition not (A:

Notation "~ x" :=

: Prop :=

-> A /\B
(and A B) : type_scope.
:Prop) : Prop :=
->A\/B
-> A \/B
(or A B) : type_scope.
Prop :=.
Prop) := A -> False.
(not x) : type_scope.
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Curry-Howard correspondence in Coq - continued

1 Notation "A -> B" := (forall (_ : A), B) : type_scope.

> Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
3 Notation "A <-> B" := (iff A B) : type_scope.

33



Curry-Howard correspondence in Coq - continued

1 Notation "A -> B" := (forall (_ : A), B) : type_scope.
> Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
3 Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "’exists’ x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.
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Curry-Howard correspondence in Coq - continued

L N N

N N

Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B —> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "’exists’ x .. y , p" :=

(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A

Notation "x = y" := (eq x y) : type_scope.

33



The equivalence between LEM and DNE

In intuitionistic logics, the law of excluded middle (LEM) and the
law of double negation (DNE) are not provable.

> LEM: VP.PV =P
» DNE: VP.——P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.
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The equivalence between LEM and DNE

In intuitionistic logics, the law of excluded middle (LEM) and the
law of double negation (DNE) are not provable.

> LEM: VP.PV =P
» DNE: VP.——P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, VP. P — ——P can be proved. How?

We will prove that LEM is equivalent to DNE:

1 Definition LEM: Prop := forall P: Prop, P \/7P.
2 Definition DNE: Prop := forall P: Prop, ""P -> P.
3 Definition LEM_DNE_EQ: Prop := LEM <-> DNE.

34



LEM — DNE

1 Definition LEM_To_

DNE :=

2 fun (lem: forall P : Prop, P \/ ~ P) (Q:Prop) (q: ~"Q)

=>
3 match lem Q with
4 | or_introl 1 =>
5 1
6
7 | or_intror r =>
8 match (q r) with end
9 end.
10
11 Check LEM_To_DNE : LEM -> DNE.

35



DNE — LEM

1 Definition DNE_To_LE

N

3 (dne (@ \/ 7 Q)
(fun H: “(Q \/
let nq := (f
in H (or_int

).

IS

N~ o o

9 Check DNE_To_LEM :

11 Definition proof :=
12 Check proof : LEM <-

fun (dne: forall P :

M :=
Prop, ““P -> P) (Q:Prop) =>

Q=
un q: Q => H (or_introl q))
ror nq)

DNE -> LEM.

conj LEM_To_DNE DNE_To_LEM.
> DNE.
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Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

» Scala supports path-dependent types and literal types.
» Dependent Haskell is proposed by researchers.
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Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

» Scala supports path-dependent types and literal types.
» Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.
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Problem with Type Checking

Value constructors:

Vee : N —x
nil  : VecO
cons : N— (mN)— Vecn— Vecn+1

Appending vectors:

append : (m:N)— (mN) — Vec m — Vec n — Vec (n+ m)
append = Am:N.An:N. \l:Vec m. A\t:Vec n.

match | with

| nil =t

| cons x r y = cons x (r+ n) (append r ny t)

Question: How does the type checker know S (r+n) = n+ (5 r)?

38



