
Theory of Types
and Programming Languages

Spring 2022

Week 13

1



Foundations of Scala
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Where are we when modelling Scala?

Simple (?) example: List type:

trait List[T] {

def isEmpty: Boolean; def head: T; def tail: List[T]

}

def Cons[T](hd: T, tl: List[T]) = new List[T] {

def isEmpty = false; def head = hd; def tail = tl

}

def Nil[T] = new List[T] {

def isEmpty = true; def head = ???; def tail = ???

}
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New Problems

I List is parameterized.

I List is recursive.

I List can be invariant or covariant.
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Covariant List type

trait List[+T] {

def isEmpty: Boolean; def head: T; def tail: List[T]

}

Cons, Nil as before.
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Modelling Parameterized Types

Traditionally: Higher-kinded types.

I Besides plain types, have functions from types to types, and functions over
these and so on.

I Needs a kinding system:

* // Kind of normal types

* -> * // Kind of unary type constructors

* -> * -> *

(* -> *) -> *

...

I Needs some way to express type functions, such as a λ for types.
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Modelling Recursive Types

Traditionally: Have a constructor for recursive types µt.T (t).

Example:

mu ListInt. { head: Int, tail: ListInt }

Tricky interactions with equality and subtyping.

Consider:

type T = mu t. Int -> Int -> t

Also written as a shorthand:

type T = Int -> Int -> T

How do T and Int -> T relate?
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Modelling Variance

Traditionally: Express definition site variance

trait List[+T] ...

trait Function1[-T, +U] ...

List[C], Function1[D, E]

as use-site variance (aka Java wildcards):

trait List[T] ...

trait Function1[T, U]

List[? <: C]

Function1[? >: D, ? <: E]
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Meaning of Wildcards

A type like Function1[? >: D, ? <: E] means:

The type of functions where the argument is some (unknown) supertype of D
and the result is some (unknown) subtype of E.

This can be modelled as an existential type:

Function1[X, Y] forSome { type X >: D; type Y <: E } // Scala

ex X >: D, Y <: E. Function1[X, Y] // More traditional notation
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Combining Several of These Features

... is possible, but gets messy rather quickly
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Idea: Use Path Dependent Types as a Common Basis

Here is a re-formulation of List.

trait List { self =>

type T

def isEmpty: Boolean

def head: T

def tail: List { type T = self.T }

}

def Cons[X](hd: X, tl: List { type T = X }) = new List {

type T = X

def isEmpty = false

def head = hd

def tail = tl

}

Analogous for Nil.
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Handling Variance

trait List { self =>

type T

def isEmpty: Boolean

def head: T

def tail: List { type T <: self.T }

}

def Cons[X](hd: X, tl: List { type T <: X }) = new List {

type T = X

def isEmpty = false

def head = hd

def tail = tl

}
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Elements needed:

I Variables, functions

I Abstract types { type T <: B }

I Refinements C { ... }

I Path-dependent types self.T.
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Abstract Types

I An abstract type is a type without a concrete implementation

I Instead only (upper and/or lower) bounds are given.

Example

trait KeyGen {

type Key

def key(s: String): this.Key

}
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Implementations of Abstract Types

I Abstract types can be refined in subclasses or implemented as type aliases.

Example

object HashKeyGen extends KeyGen {

type Key = Int

def key(s: String) = s.hashCode

}
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Generic Functions over Abstract Types

We can write functions that work for all implementations of an abstract type
like this:

def mapKeys(k: KeyGen, ss: List[String]): List[k.Key] =

ss.map(s => k.key(s))

I k.Key is a path-dependent type.

I The type depends on the value of k, which is a term.

I The type of mapKeys is a dependent function type.

mapKeys: (k: KeyGen, ss: List[String]) -> List[k.Key]

I Note that the occurrence of k in the type is essential; without it we could
not express the result type!.
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Formalization

We now formalize these ideas in a calculus.

DOT standands for (path)-Dependent Object Types.

Program:

I Syntax, Typing rules (this week)

I An approach to the meta theory (next week).
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Syntax

x , y , z Variable
a, b, c Termmember
A,B,C Typemember

S ,T ,U ::= Type
> top type
⊥ bot type
{a : T} field declaration
{A : S ..T} type declaration
x .A type projection
S ∧ T intersection
µ(x : T ) recursive type
∀(x : S) T dependent function

v ::= Value
ν(x : T ) d object
λ(x : T ) t lambda

s, t, u ::= Term
x variable
v value
x .a selection
x y application
let x = t in u let

d ::= Definition
{a = t} field def.
{A = T} type def.
d1 ∧ d2 aggregate def.
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DOT Types
DOT Scala

> Any Top type
⊥ Nothing Bottom type

{a : T} { def a: T } Record field
{A : S ..T} { type A >: S <:

T}

Abstract type

T ∧ U T & U Intersection
(Together these can form records)

x .A x.A Type projection

µ(x : T ) {x => ...} Recursive type
(Scala allows only recursive records)

∀(x : S) T (x: S) => T Dependent function type
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DOT Definitions

Definitions make concrete record values.

DOT Scala

{a = t} { def a = t } Field definition

{A = T} { type A = T } Type definition

d1 ∧ d2 - Record formation

(Scala uses {d1 . . . dn} directly)

Definitions are grouped together in an object

DOT Scala

ν(x : T ) d new { x: T => d } Instance creation
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DOT Terms

DOT values are objects and lambdas.

DOT terms have member selection and application work on variables, not
values or full terms.

x.a instead of t.a

x y instead of t u

This is not a reduction of expressiveness. With let, we can apply the following
desugarings, where x and y are fresh variables:

t.a ---> let x = t in x.a

t u ---> let x = t in let y = u in x y

This way of writing programs is also called administrative normal form (ANF).
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Programmer-Friendlier Notation

In the following we use the following ASCII versions of DOT constructs.

(x: T)=> U for λ(x : T ) U
(x: T)-> U for ∀(x : T ) U
new(x: T)d or
new { x: T => d } for ν(x : T ) d
rec(x: T) or
{ x => T } for µ(x : T )
T & U for T ∧ U
Any for >
Nothing for ⊥
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Encoding of Generics

For generic types: Encode type parameters as type members

For generic functions: Encode type parameters as value parameters which carry
a type field. Hence polymorphic (universal) types become dependent function
types.

Example: The polymorphic type of the twice method:

∀X .(X → X )→ X → X

is represented as

(cX: {A: Nothing..Any}) -> (cX.A -> cX.A) -> cX.A -> cX.A

cX is a menmonic for “cell containing a type variance X”.
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Example: Church Booleans

Let

type IFT = { if: (x: {A: Nothing..Any}) -> x.A -> x.A -> x.A }

Then define:

let boolimpl =

new(b: { Boolean: IFT..IFT } &

{ true: IFT } &

{ false: IFT })

{ Boolean = IFT } &

{ true = { if = (x: {A: Nothing..Any}) => (t: x.A) => (f:

x.A) => t } &

{ false = { if = (x: {A: Nothing..Any}) => (t: x.A) => (f:

x.A) => f }

in ...
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Church Booleans API

To hide the implementation details of boolImpl, we can use a wrapper:

let bool =

let boolWrapper =

(x: rec(b: {Boolean: Nothing..IFT} &

{true: b.Boolean} &

{false: b.Boolean})) => x

in boolWrapper boolImpl
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Abbreviations and Syntactic Sugar

We use the following Scala-oriented syntax for type members.

type A for {A: Nothing..Any}

type A = T for {A: T..T}

type A >: S for {A: S..Any}

type A <: U for {A: Nothing..U}

type A >: S <: U for {A: S..U}
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Abbreviations (2)

We group multiple, intersected definitions or declarations in one pair of braces,
replacing & with ; or a newline. E.g, the definition

{ type A = T; a = t }

expands to

{ A = T} & { a = t }

and the type

{ type A <: T; a: T }

expands to

{ A: Nothing..T } & { a: T }
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Abbreviations (3)

We expand type ascriptions to applications:

t: T

expands to

((x: T) => x) t

(which expands in turn to)

let y = (x: T) => x in let z = t in y z
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Abbreviations (4)

We abbreviate

new (x: T)d

to

new { x => d }

if the type of definitions d is given explicitly, and to

new { d }

if d does not refer to the this reference x.

29



Church Booleans, Abbreviated

let bool =

new { b =>

type Boolean = {if: (x: { type A }) -> (t: x.A) -> (f: x.A) ->

x.A}

true = {if: (x: { type A }) => (t: x.A) => (f: x.A) => t}

false = {if: (x: { type A }) => (t: x.A) => (f: x.A) => f}

}: { b => type Boolean; true: b.Boolean; false: b.Boolean }
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Example: Covariant Lists

We now model the following Scala definitions in DOT:

package scala.collection.immutable

trait List[+A] {

def isEmpty: Boolean; def head: A; def tail: List[A]

}

object List {

def nil: List[Nothing] = new List[Nothing] {

def isEmpty = true

def head = head; def tail = tail // infinite loops

}

def cons[A](hd: A, tl: List[A]) = new List[A] {

def isEmpty = false; def head = hd; def tail = tl

}

}
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Encoding of Lists

let scala_collection_immutable_impl = new { sci =>

type List = { thisList =>

type A

isEmpty: bool.Boolean

head: thisList.A

tail: sci.List & {type A <: thisList.A }

}

cons = ...

nil = ...

// definitions in next slide...
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Encoding of Lists (ctd)

cons = (x: {type A}) => (hd: x.A) =>

(tl: sci.List & { type A <: x.A }) =>

new {

type A = x.A

isEmpty = bool.false

head = hd

tail = tl

}

nil = new { l: { head: Nothing, tail: Nothing } =>

type A = Nothing

isEmpty = bool.true

head = l.head

tail = l.tail

}

} // end of "new { sci => ..."
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List API

We wrap scala_collection_immutable_impl to hide its implementation types.

let scala_collection_immutable =

scala_collection.immutable_impl : { sci =>

type List <: { thisList =>

type A

isEmpty: bool.Boolean

head: thisList.A

tail: sci.List & {type A <: thisList.A }

}

cons: (x: {type A}) -> (hd: x.A) ->

(tl: sci.List & { type A <: x.A }) ->

sci.List & { type A = x.A }

nil: sci.List & { type A = Nothing }

}
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Nominal Types

The encodings give an explanation what nominality means.

A nominaltype such as List is simply an abstract type, whose implementation
is hidden.
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Still To Do

The rest of the calculus is given by three definitions:

An evaluation relation t −→ t ′.

Type assignment rules Γ ` x : T

Subtyping rules Γ ` T <: U.
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Evaluation t −→ t ′

Evaluation is particular since it works on variables not values.

This is needed to keep reduced terms in ANF form.

e[t] −→ e[t ′] if t −→ t ′

let x = v in e[x y ] −→ let x = v in e[[z 7→ y ]t] if v = λ(z : T ) t
let x = v in e[x .a] −→ let x = v in e[t] if v = ν(x : T ) . . . {a = t} . . .

let x = y in t −→ [x 7→ y ]t
let x = let y = s in t in u −→ let y = s in let x = t in u

where the evaluation context e is defined as follows:

e ::= [ ] | let x = [ ] in t | let x = v in e

Note that evaluation uses only variable renaming, not full substitution.
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Type Assignment Γ ` t : T

x : T ∈ Γ

Γ ` x : T
(Var)

Γ, x : T ` t : U

Γ ` λ(x : T ) t : ∀(x : T ) U
(All-I)

Γ ` x : ∀(z : S) T Γ ` y : S

Γ ` x y : [z 7→ y ]T
(All-E)

Γ, x : T ` d : T

Γ ` ν(x : T ) d : µ(x : T )
({}-I)

Γ ` x : {a : T}
Γ ` x .a : T

({}-E)
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Type Assignment (2)

Γ ` t : T Γ, x : T ` u : U
x /∈ fv(U)

Γ ` let x = t in u : U
(Let)

Γ ` x : T

Γ ` x : µ(x : T )
(Rec-I)

Γ ` x : µ(x : T )

Γ ` x : T
(Rec-E)

Γ ` x : T Γ ` x : U

Γ ` x : T ∧ U
(And-I)

Γ ` t : T Γ ` T <: U

Γ ` t : U
(Sub)
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Type Assignment

Note that there are now 4 rules which are not syntax-directed: (Sub), (And-I),
(Rec-I), and (Rec-E).

It turns out that the meta theory becomes simpler if (And-I), (Rec-I), and
(Rec-E) are not rolled into subtyping.
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Definition Type Assignment Γ ` d : T

Γ ` t : T

Γ ` {a = t} : {a : T}
(Fld-I)

Γ ` {A = T} : {A : T ..T} (Typ-I)

Γ ` d1 : T1 Γ ` d2 : T2

dom(d1), dom(d2) disjoint

Γ ` d1 ∧ d2 : T1 ∧ T2
(AndDef-I)

Note that there is no subsumption rule for definition type assignment.
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Subtyping Γ ` T <: U

Γ ` T <: > (Top)

Γ ` ⊥ <: T (Bot)

Γ ` T <: T (Refl)

Γ ` S <: T Γ ` T <: U

Γ ` S <: U
(Trans)

Γ ` T ∧ U <: T (And1-<:)

Γ ` T ∧ U <: U (And2-<:)

Γ ` S <: T Γ ` S <: U

Γ ` S <: T ∧ U
(<:-And)
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Subtyping (2)

Γ ` x : {A : S ..T}
Γ ` x .A <: T

(Sel-<:)

Γ ` x : {A : S ..T}
Γ ` S <: x .A

(<:-Sel)

Γ ` S2 <: S1

Γ, x : S2 ` T1 <: T2

Γ ` ∀(x : S1) T1 <: ∀(x : S2) T2
(All-<:-All)

Γ ` T <: U

Γ ` {a : T} <: {a : U}
(Fld-<:-Fld)

Γ ` S2 <: S1 Γ ` T1 <: T2

Γ ` {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

43



Conclusion

DOT is a fairly small calculus that can express “classical” Scala programs.

Even though the calculus is small, its meta theory turned out to be surprisingly
hard.
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Foundations of Scala – Examples
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Uses of Abstract Types

1. To encode type parameters (as in List)

2. To hide information (as in KeyGen)

3. To resolve variance puzzlers
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Resolving Variance Puzzlers with Abstract Types

A standard example to justify unsound covariance is this:

Let’s model animals which eat food items.

Both Animal and Food are the root of a type hierarchy.

trait Animal

trait Cow extends Animal with Food

trait Lion extends Animal

trait Food

trait Grass extends Food
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Adding eat

trait Animal {

def eat(food: Food): Unit

}

trait Cow extends Animal {

def eat(food: Grass): Unit

}

trait Lion extends Animal {

def eat(food: Cow): Unit

}

Problem: eat in Cow or Lion does not override correctly the eat in Animal,
because of the contravariance rule for function subtyping.
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Refining the Model

We can get the right behavior with an abstract type.

trait Animal {

type Diet <: Food

def eat(food: Diet): Unit

}

trait Cow extends Animal {

type Diet <: Grass

def eat(food: this.Diet): Unit

}

object Milka extends Cow {

type Diet = AlpineGrass

def eat(food: AlpineGrass): Unit

}
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Translating to DOT

type Animal = { this => {Diet: Nothing..Food} & {eat: this.Diet

-> Unit}}

type Cow = { this => {Diet: Nothing..Grass} & {eat: this.Diet

-> Unit}}

Do we have Cow <: Animal?
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Translating to DOT

type Animal = { this => {Diet: Nothing..Food} & {eat: this.Diet

-> Unit}}

type Cow = { this => {Diet: Nothing..Grass} & {eat: this.Diet

-> Unit}}

Is Cow <: Animal?

No. There is no subtyping rule for recursive types.
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Translating to DOT

But we do have:

x: Cow

==> // expand the definition

x: { this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}

==> // by (Rec-E)

x: {Diet: Nothing..Grass} & {eat: x.Diet -> Unit}}

==> // by (Sub)

x: {Diet: Nothing..Food} & {eat: x.Diet -> Unit}}

==> // by (Rec-I)

x: { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}

==> // Collapse the definition

x: Animal
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Foundations of Scala – Meta Theory
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Foundations of Scala – Meta Theory

As usual, need to prove progress and preservation theorems.

Theorem (Preservation) If Γ ` t : T and t −→ u then Γ ` u : T .

Theorem (Progress) If ` t : T then t is a value or there is a term u such that
t −→ u.

(?)

54



The Meta Theory

As usual, need to prove progress and preservation theorems.

Theorem (Preservation) If Γ ` t : T and t −→ u then Γ ` u : T .

Theorem (Progress) If ` t : T then t is a value or there is a term u such that
t −→ u.

(?)

In fact this is wrong. Counter example:

t = let x = (y: Bool) => y in x
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Fixing Progress

Theorem (Progress) If ` t : T then t is an answer or there is a term u such
that t −→ u.

Answers n are defined by the production

n ::= x | v | let x = v in n
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Why It’s Difficult

We always need some form of inversion.

E.g.:

I If Γ ` x : ∀(x : S)T
then x is bound to some lambda value λ(x : S ′) t,
where S <: S ′ and Γ ` t : T .

This looks straightforward to show.

But it isn’t.
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User-Definable Theories

In DOT, the subtyping relation is given in part by user-definable definitions

type T >: S <: U

This makes T a supertype of S and a subtype of U.

By transitivity, S <: U.

So the type definition above proves a subtype relationship which was
potentially not provable before.
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Bad Bounds

What if the bounds are non-sensical?

3.1 Example: type T >: Any <: Nothing

By the same argument as before, this implies that

Any <: Nothing

Once we have that, again by transitivity we get S <: T for arbitrary S and T .

That is the subtyping relations collapses to a point.
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Bad Bounds and Inversion

A collapsed subtyping relation means that inversion fails.

Example: Say we have a binding x = ν(x : T ) ....

So in the corresponding environment Γ we would expect a binding x : µ(x : T ).

But if every type is a subtype of every other type, we also get with
subsumption that Γ ` x : ∀(x : S)U!.

Hence, we cannot draw any conclusions from the type of x . Even if it is a
function type, the actual value may still be a record.
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Can We Exclude Bad Bounds Statically?

Unfortunately, no.

Consider:

type S = { type A; type B >: A <: Bot }

type T = { type A >: Top <: B; type B }

Individually, both types have good bounds. But their intersection does not:

type S & T == { type A >: Top <: Bot; type B >: Top <: Bot }

So, bad bounds can arise from intersecting types with good bounds.

But maybe we can verify all intersections in the program?
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Bad Bounds Can Arise at Run-Time

The problem is that types can get more specific at run time.

Recall again preservation: If Γ ` t : T and t −→ u then Γ ` u : T .

Because of subsumption u might also have a type S which is a true subtype of
T .

That S could have bad bounds (say, arising from an intersection).
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Dealing With It: A False Start

Bad bounds make problems by combining the selection subtyping rules with
transitivity.

Γ ` x : {A : S ..T}
Γ ` x .A <: T

(Sel-<:)

Γ ` x : {A : S ..T}
Γ ` S <: x .A

(<:-Sel)

Can we “tame’ ’ these rules so that bad bounds cannot be exploited? E.g.
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Dealing With It: A False Start

Γ ` x : {A : S ..T} Γ ` S <: T

Γ ` x .A <: T
(Sel-<:)

Γ ` x : {A : S ..T} Γ ` S <: T

Γ ` S <: x .A
(<:-Sel)

Problem: we lose monotonicity. Tighter assumptions may yield worse results.
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Dealing With It: Another False Start

Can we get rid of transitivity instead?

I.e. only use algorithmic version of subtyping rules?

We tried (for a long time), but got nowhere.

Transitivity seems to be essential for inversion lemmas and many other aspects
of the proof.
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Dealing With It: The Solution

Observation: To prove preservation, we need to reason at the top-level only
about environments that arise from an actual computation. I.e. in

I If Γ ` t : T and t −→ u then Γ ` u : T .

The environment Γ corresponds to an evaluated let prefix, which binds
variables to values.

And values have guaranteed good bounds because all type members are aliases.

Γ ` {A = T} : {A : T ..T} (Typ-I)
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Introducing Explicit Stores

We have seen that the let prefix of a term acts like a store.

For the proofs of progress and preservation it turns out to be easier to model
the store explicitly.

A store is a set of bindings x = v or variables to values.

The evaluation relation now relates terms and stores.

s|t −→ s ′|t ′
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Evaluation s|t −→ s ′|t ′

s|x .a −→ s|t if s(x) = ν(x : T ) . . . {a = t} . . .
s|x y −→ s|[z := y ]t if s(x) = λ(z : T ) t

s|let x = y in t −→ s|[x := y ]t
s|let x = v in t −→ s, x = v |t
s|let x = t in u −→ s ′|let x = t ′ in u if s|t −→ s ′|t ′
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Relationship between Stores and Environments

For the theorems and proofs of progress and preservation, we need to relate
environment and store.

Definition: An environment Γ corresponds to a store s, written Γ ∼ s, if for
every binding x = v in s there is an entry Γ ` x : T where Γ `! v : T .

Γ `! v : T is an exact typing relation.

We define Γ `! x : T iff Γ ` x : T by a typing derivation which ends in a
(All-I) or ({}-I) rule

(i.e. no subsumption or substructural rules are allowed at the toplevel).
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Progress and Preservation, 2nd Take

Theorem (Preservation)

If Γ ` t : T and Γ ∼ s and s|t −→ s ′|t ′, then there exists an environment
Γ′ ⊃ Γ such that, one has Γ′ ` t ′ : T and Γ′ ∼ s ′.

Theorem (Progress)

If Γ ` t : T and Γ ∼ s then either t is an answer, or s|t −→ s ′|t ′, for some
store s ′, term t ′.
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Objects with Pattern Matching
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An Example

“Typeful” encoding of expressions in a simple language

sealed class Expr[A]

case class IntLit(value: Int) extends Expr[Int]

case class First [A, B](pair: Expr[Pair[A, B]]) extends Expr[A]

case class Second[A, B](pair: Expr[Pair[A, B]]) extends Expr[B]

case class MkPair[A, B](lhs: Expr[A], rhs: Expr[B])

extends Expr[Pair[A,B]]
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An Example

Pattern matching on instances:

def eval[T](expr: Expr[T]): T =

expr match {

case e: IntLit => e.value

case e: MkPair[_, _] => Pair(eval(e.lhs), eval(e.rhs))

case e: First[T, _] => eval(e.pair).first

case e: Second[_, T] => eval(e.pair).second

}

The IntLit branch of this example should compile even though expr.value

returns an Int where a value of type T is expected

in the IntLit branch, we discover expr is an Expr[T] and an Expr[Int]

and since Expr is invariant, this can only hold if T and Int are the same type.

In general, this form of reasoning is non-trivial.
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Questions

How to reason about these things?

We need a form of local subtyping reasoning. . .

Should this still work when Expr is made covariant?

sealed class Expr[+A]

How to justify it? (Soundness?)
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Answers in DOT

Type parameters are “just” type members. . .

val g: {

type Expr <: { type A }

type IntLit <: Expr & { type A = Int; val value: Int }

def newIntLit(i: Int): IntLit

} = new {

type Expr = { type A }

type IntLit = Expr & { type A = Int; val value: Int }

def newIntLit(i: Int): IntLit =

new { type A = Int; val value = i }

}
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Answers in DOT

Pattern matching uncovers subtyping information by refining types

def eval(tp: { type T }, e: g.Expr & { type A = tp.T }): tp.T =

e match {

case e1: g.IntLit =>

// Here, e1.A = e.A = tp.T and e1.A = Int so tp.T = Int

e1.value

...

}

Covariant case:

def eval(tp: { type T }, e: g.Expr & { type A <: tp.T }): tp.T =

e match {

case e1: g.IntLit =>

// Here, e1.A = e.A <: tp.T and e1.A = Int so tp.T :> Int

e1.value

...

}
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Subtyping Reconstruction

We call this reasoning subtyping reconstruction (SR).

SR subsumes another problem found in functional programming languages

related to generalized algebraic data types (GADTs)

SR is sound thanks to DOT(∗) being sound!

(∗) Actually an extension of the DOT presented here, with:

I Types rooted in paths (as in x.a.b.c.A), not just variables (as in x.A)

I Singleton types x.type, used for things like scrut.type & IntLit

I A representation of runtime class instance tests (basic case construct)
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Subtyping Reconstruction

Paper currently in submission!
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